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Abstract 

This paper proposes a novel adaptive robust optimization (ARO)-based mathematical framework for 

resilience enhancement of interdependent critical infrastructure (CI) systems against natural hazards (NHs). 

In this framework, the potential impacts of a specific NH on an infrastructure are firstly evaluated, in terms 

of failure and recovery probabilities of system components; these are, then, fed into a two-stage ARO model 

to determine the optimal planning of resilience strategies under limited investment budget, anticipating the 

most-likely worst realization of the uncertainty of component failures under the NH. For its exact solution, 

a decomposition method based on simultaneous column-and-row generation (C&RG) is adopted. The 

approach is applied to a case study concerning the resilience of interdependent power and gas networks 

(IPGNs) subject to (simulated) wind storms. The numerical results demonstrate the effectiveness of the 

proposed framework for the optimization of the resilience of interdependent CIs under hazardous events; 

this provides a valuable tool for making informed pre-hazard preparation decisions. The value of a 

coordinated pre-hazard planning that takes into account CI interdependencies is also highlighted. 

Keywords: risk management; interdependent infrastructure resilience; natural hazard; robust optimization; 

trilevel programming  



Manuscript submitted to European Journal of Operational Research 

1. Introduction 

Critical infrastructure (CI) systems such as the electrical power grid, transportation network, Internet, water 

distribution network, etc. are highly interconnected and mutually dependent, either physically, or 

geographically, or logically, or through a host of information and communications technologies (so-called 

“cyber-based systems”)(Rinaldi, Peerenboom et al. 2001, Kröger and Zio 2011, Zio 2016). The 

interdependencies among CI systems serve to their functions, but may also generate new vulnerabilities by 

creating new hazards and opening new paths for the propagation of failures from one individual CI system 

to another, resulting in inter-systems cascading failures (Buldyrev, Parshani et al. 2009, Fang, Pedroni et 

al. 2015). This aspect of CI interdependency has shown in recent disasters, ranging from large-scale power 

outages to terrorist attacks and windstorms (Vespignani 2010, Zio and Sansavini 2011).  

Recent years have seen many disruptions of CIs operation caused by natural disasters (i.e., floods, ice and 

wind storms, hurricanes, tsunamis, and earthquakes), with substantial impact on the human livelihoods and 

economic properties (Montz, Tobin et al. 2017). In the USA, for example, the annual impact of weather-

related power blackouts ranges from $20 to $55 billion (Campbell 2012) and the trend of such events shows 

that their frequency has increased over the last 30 years, with a dramatic increase in the 2000s (Panteli and 

Mancarella 2015). Also, there is a justified concern that the number and severity of these extreme weather 

events will increase in the future as a result of global warming and climate changes (Cutter, Ismail-Zadeh 

et al. 2015). This calls for techniques and tools capable of assessing the risk from natural hazards (NHs) on 

interdependent CIs, in support to policymakers and decision makers for investments in CI protection and 

resilience measure. 

By recognizing the significance of these issues, many governments and organizations have initiated plans 

and activities for improving the protection and resilience of national/regional interdependent CIs, such as 

the national CI security and resilience research and development plan in USA (Presidential Policy Directive 

2013), the infrastructure resilience programme in UK (Department for Environment 2011), the Australian 

government’s CI resilience strategy and implementation program (Australian Government 2010), and the 

European Programme for Critical Infrastructure Protection (EPCIP) of the European Commission 

(Commission of the European Communities 2006). These plans and activities are supported and guided by 

substantial research efforts in the field, whereby, the number of papers on interdependent CI protection and 
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resilience has increased exponentially during the past decades (Ouyang 2014, Sharkey, Cavdaroglu et al. 

2015). 

As a technical concept, resilience is essentially related to the capability of a system to withstand, adapt to 

and quickly recover from the effects of a disruptive event (Fang, Pedroni et al. 2016, Hosseini, Barker et al. 

2016, Zio 2016). For its quantitative evaluation, a number of resilience metrics have been proposed, most of 

them based on the system performance curve under disruption (Hosseini, Barker et al. 2016) and describing 

numerically the two factors of system robustness and recovery rapidity defined by Bruneau, Chang et al. 

(2003). System robustness is quantified by the system functionality level immediately after the event; 

recovery rapidity quantifies how quickly the system recovers after the event. Enhancements of system 

resilience prior to disruption can be achieved by allocating resources for interventions that reduce the value 

of one or both of the two above mentioned factors that characterize resilience (He and Zhuang 2016, 

MacKenzie and Zobel 2016). 

In the present paper, we focus on the pre-disruption investment planning for enhancing the resilience of 

interdependent CI systems against NHs. In the literature, a range of approaches have been proposed for the 

assessment and optimization of CI resilience under NHs, though mostly for single CI systems. A probabilistic 

framework composed of four coupled models has been proposed by Ouyang and Dueñas-Osorio (2014) for 

quantifying the resilience of electric power systems under hurricanes. Similar multi-phase resilience 

assessment approaches have been applied to analyze the impact of windstorms and floods on Great Britain's 

power transmission system (Panteli and Mancarella 2015, Espinoza, Panteli et al. 2016, Panteli, Pickering 

et al. 2017). Franchin and Cavalieri (2015) proposed a simulation-based probabilistic assessment framework 

for quantifying the resilience of CI systems under earthquakes. The seismic resilience of coupled municipal 

water system and electrical power system are analyzed by Adachi and Ellingwood (2008) using a probability-

based simulation method. Rocchetta, Li et al. (2015) developed a probabilistic risk assessment and risk-cost 

optimization framework for distributed power generation systems considering the effects of extreme weather 

conditions (i.e., lightening and strong wind). 

The above resilience studies analyze different single CI systems under different types of NHs, typically within 

a probabilistic simulation framework. This approach is valuable for assessing system resilience in a statistical 

manner, e.g., computing the average system performance loss or identifying the critical components, based 

on different realizations of specific hazards. However, for a specific realization/estimation of a hazard event, 

the uncertainty within the estimated failure probabilities might be propagated by the simulation-based 
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methods, leading to underestimation or overestimation of system vulnerability. Actually, it is very difficult 

to predict accurately the failure probability of each component in a CI system exposed to a specific NH, like 

a hurricane or earthquake (Pidgeon 2012). More robust tools to assist decision makers during pre-hazard 

preparation are needed (Fang, Sansavini et al. 2017). 

System resilience optimization is concerned with the development of strategies to mitigate the performance 

loss of a system under disruption (i.e., increase the system robustness) and/or to restore a system to normal 

operations as quickly and efficiently as possible, following disruption (i.e., enhance system recovery rapidity). 

For quickly restoring post-disruption service of interdependent CI systems, a network flows-based mixed 

integer programming (MIP) model has been proposed by Lee II, Mitchell et al. (2007). With this model, the 

impact of interdependencies between the supply chain network (SCN) and its supporting infrastructures on 

the SCN’s recovery from a disruption (Gong, Mitchell et al. 2014), and the value of information-sharing for 

interdependent network restoration (Sharkey, Cavdaroglu et al. 2015) have been studied. Nurre, Cavdaroglu 

et al. (2012) extended this network flow-based model by integrating the scheduling decisions into the CI 

system restoration, arriving at an integer programming formulation of the integrated network design and 

scheduling problem. Zhang, Liu et al. (2016) formulated a two-stage MIP for resource allocation in 

interdependent CI systems with a focus on minimizing the restoration time. All of the above-mentioned 

models concern post-disruption decision-making, assuming that a disruption has already happened.  

In the context of pre-disruption decision-making for CI resilience improvement, the problem is usually 

formulated as multi-level defender-attacker optimization models, whose general framework is introduced in 

Brown, Carlyle et al. (2006). In this framework, there is a virtual attacker who seeks to find the most 

harmful attack strategy to disrupt the system and a defender who pursues minimum damage from the attack 

through the pre-attack defense and post-attack response. The interactions between the attacker and the 

defender can be modeled by a tri-level defender-attacker-defender (DAD) game, which also takes the form 

of two-stage adaptive robust optimization (ARO) (Bertsimas, Brown et al. 2011, Ruiz and Conejo 2015). It 

is noted that albeit the two-stage ARO and the DAD game model have different origins, they share an 

identical tri-level optimization structure. This modeling framework has been applied to identify the optimum 

resilience strategies for electric power grids (Alguacil, Delgadillo et al. 2014, Yuan, Wang et al. 2016, Fang 

and Sansavini 2017), rail systems (Alderson, Brown et al. 2011), commodity distribution networks (Alderson, 

Brown et al. 2015), facility networks (Losada, Scaparra et al. 2012), general CIs (Scaparra and Church 2008) 

and interdependent CIs (Ouyang 2017). By assuming an intelligent attacker and exploiting its optimization, 
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these multi-level defender-attacker models intend to estimate a worst case damage scenario for any feasible 

protection strategy. For the pre-disruption investment planning of interdependent CIs under NHs, however, 

the pure worst-case-oriented ARO (i.e., DAD) approaches may be overly conservative. Actually, future 

projections of specific NH events are usually available via climate models (Davis, Wang et al. 2008, Holland, 

Belanger et al. 2010, Batke, Jocque et al. 2014), though usually associated with uncertainties. Without 

taking into account the projection information of specific NHs as well as the spatiotemporal correlations of 

the NHs which strongly impact the probabilities of some common cause failures, the pure worst-case-oriented 

ARO approaches might overestimate the system functionality loss and lead to inefficient or even misleading 

protection decisions. 

To overcome the drawbacks of the aforementioned methods, this paper presents a novel ARO-based 

mathematical framework for enhancing the resilience of interdependent CI systems against NHs by 

integrating the projected information of specific NHs. In particular, the time-varying failure probabilities of 

system components are firstly computed by integrating the spatial-temporal profile of the NHs and the 

structural fragilities of the components. The restoration time of components is also estimated 

probabilistically. Then, the information about the probabilities of failure and restoration of the components 

is fed to the virtual attacker in the ARO as a constraint for its attack decisions. Therefore, the failure 

scenarios identified by the optimization represent the most-likely worst cases under the specific hazard. The 

proposed approach bridges the gap between the difficulties of accurately predicting the hazard information 

in the classical probability-based analyses and the over-conservativeness of the pure worst-case-oriented 

ARO models for CI resilience under a specific NH, thus, providing a useful tool to for making informed pre-

hazard preparation decisions. 

The remainder of this paper is organized as follows. Section 2 introduces the models for evaluating the 

impacts of NHs on individual CIs, including threat characterization, structural fragility, and component 

restoration time models. In Section 3, the detailed formulation of the optimization framework for the 

resilience of interdependent CIs is proposed. Section 4 proposes the solution methodology for the proposed 

optimization model. Section 5 presents the numerical results by applying the proposed framework to the 

interdependent power and gas test systems. Concluding remarks are provided in Section 6. 

2. Impact of NHs on CIs 
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Depending on the nature of the formation process, NHs can be categorized into: geophysical (earthquake, 

volcano and tsunami), meteorological (tropical storm, tornado, blizzard, ice storm, and drought), 

hydrological (flood), biological (epidemics and insect pests) and extraterrestrial (meteor). The former three 

types are usually most destructive to CI systems. They include not just one single instantaneous impact, 

but multiple and even continuous impacts. For instance, the windstorms that affected China in 2005 caused 

more than 60 high-voltage power transmission towers to collapse, and the ice and snow storms that 

devastated a large area in South China lasted for hours (Xie and Zhu 2011). Disasters can even last for days, 

like the hurricane Irma (2017) in the Caribbean and the United States, where many of the CIs were wiped 

out in most of the Caribbean islands and the eastern US (especially Florida). Moreover, hazard impacts 

often are difficult to characterize because a given NH may initiate a number of different threats. For example, 

tropical storms can cause damages through wind, rain, storm surge and islanding flooding. The most 

significant characteristics for assessing the disaster impacts are speed, onset, availability of perceptual cues 

(such as wind, rain, or ground movement), intensity, scope and duration of impact (Lindell and Prater 2003). 

Table 1 summarizes the basic characteristics of different types of NHs (Wang, Chen et al. 2016, Fang, 

Sansavini et al. 2017).  

Table 1. Characteristics of different NHs 

Disaster type Impact region Predictability Span/Area Affecting time 

Tropical storm 

hurricane 
Coastal regions 

24-72 hours, 

moderate to 

good 

Large (radius 

up to 1500km) 
Hours to days 

Tornado Inland plains 
0-2 hours, bad 

to moderate 

Small (radius 

up to 8km) 

Minutes to 

hours 

Blizzard, ice 

storm 

High latitude 

regions 

24-72 hours, 

moderate to 

good 

Large (up to 

1500 km) 
Hours to days 

Earthquake 
Regions on 

fault lines 

Seconds to 

minutes, bad 
Small to large 

Minutes to 

days 

(aftershock) 

Tsunami Coastal regions 
Minutes to 

hours, moderate 
Small to large 

Minutes to 

hours 

Drought, Wild 

fire 
Inland regions Days, good 

Medium to 

large 

Days to 

months 

Flooding 
Low-lying 

regions 

Moderate to 

good 
Small to large 

Days to 

months 
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The physical impacts of NHs on CIs vary substantially across different NH types and CI systems. The 

prediction and evaluation of such impacts are challenging tasks due to the uncertainty in the highly dynamic 

evolution of the hazards themselves and the inherent complexity of the large-scale CI systems. A framework 

for quantifying the physical impacts of NHs on CIs is illustrated in Figure 1 (Ouyang and Dueñas-Osorio 

2014, Panteli and Mancarella 2015). The core of the framework consists of 1) threat characterization model, 

which associates the NH parameters with the estimation of the local environment for the CI system 

components; 2) structural fragility model, which determines the functional states of the CI system 

components; 3) component restoration model, which estimates the restoration times of the impacted 

components. The inputs of the framework are the parameters characterizing the NHs, e.g., taken from 

weather information, and the evaluation by the combination of the three models provides in outputs the 

spatiotemporal profile of the functional states of the CI components under the NHs. 

 

Figure 1.  A general framework for quantifying the physical impacts of NHs on CIs 

In the remaining part of this section, we introduce how the impacts of a specific type of NH, i.e., wind 

storms (typhoon, cyclone or hurricane), on components of electrical power systems can be analyzed through 

the combination of threat characterization, fragility models of system components and system restoration 

models. 

2.1.  Threat characterization 

The primary step to evaluate the impacts of NH on a CI system is to model the spatiotemporal profile of 

the threats associated to the hazard, given that CI systems (like power grids) cover extensive geographic 

scales (Panteli and Mancarella 2015, Zio 2016). Threat characterization models aim to associate the hazard 

parameters with the local threat intensity for each CI component.  
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We take windstorm as an example, which is represented by forecasted data, like landing time and position, 

approaching angle, translational velocity, central pressure difference, maximum wind speed, radius of 

maximum wind, as obtained by climate models (CMs) and real measurement data (Davis, Wang et al. 2008). 

The majority of windstorm-related power outages in power transmission occurs because high intense winds 

directly blow down poles, and/or trees are blown over power lines and poles (Han, Guikema et al. 2009). 

Hence, the intensity of wind is a characteristic of the primary threat of storms.  

The wind speeds profile of a storm can be generated through parametric radial wind field models (Davis, 

Wang et al. 2008, Holland, Belanger et al. 2010, Batke, Jocque et al. 2014). The wind speed at location 

(�, �) at time � can be represented by Holland, Belanger et al. (2010) 

�(�, �; �) = �
 {(

� )� �[1−(��� )�]}
�
 (1) 

where � is the distance from the point to the storm center (� !"#!�(�), � !"#!�(�)), which moves with the 

translational velocity �# of the storm, �
 is the maximum wind speed, 

 is the radius of maximum wind 

(also called wind radius) and can be calculated from the storm eye-diameter (ED) (Batke, Jocque et al. 

2014), % is the empirical Holland parameter and can be estimated based on the central pressure of the storm, 

and & is a scaling parameter that adjusts the wind profile shape and a value of & = 0.5 is typically used 

(Holland, Belanger et al. 2010). Figure 2 shows an example of wind profile of the Typhoon Meranti at 2016 

September 14, 18:00 (GMT+8) when making landfall at Xiamen, China, calculated by Eq. (1) based on the 

dataset from the National Oceanic and Atmospheric Administration (NOAA) of the United States (NOAA 

2016). 

Structural damage from windstorms is mostly related to peak gust wind speed, which is the largest speed 

during a specified period (usually 3 seconds). A gust factor can be used to convert the surface wind speed 

calculated by Eq. (1) to the most likely peak gust speed. A gust model has been developed for modeling gust 

factors, and a justified empirical value of 1.287 can be used (Vickery and Skerlj 2005). 
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Figure 2.  Wind profile of the Typhoon Meranti at 2016 September 14, 18:00 (GMT+8) when making 

landfall at Xiamen, China 

Storm-induced flooding is not considered here as a major threat to power systems, though storm surges 

associated with landfalling windstorms can cause damages to underground power components and 

substations (Brown 2009). Yet, detailed threat models of storm flooding considering local geospatial 

information exist in the literature (Lin, Emanuel et al. 2012, Aerts, Lin et al. 2013) and they can be included 

if relevant data are available. 

2.2.  Structural fragility models 

The functional state of the components of a CI system can be determined by the following three steps: i) 

identify the key (types of) components of the system, ii) model their fragility, and iii) estimate their failure 

probability.  

In the first step, the types of components identified as vulnerable to the threat and whose failures could 

possibly have a high impact on system performance, are identified. Although power systems comprise many 

types of components, it is practical to mainly focus on the most important ones, e.g. substations and 

overhead lines (including support structures and the conductors between structures). In this study, we 

assume that generation is not directly affected by the windstorm (with the exception of wind generation), 

albeit generation nodes can be disconnected due to outages of transmission corridors. 

Fragility analysis is required to compute the probability of failure of components exposed to given levels of 

threat intensity. The concept of fragility curves originates from structural reliability analysis (Li and 
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Ellingwood 2006, Panteli and Mancarella 2015) and represents the conditional probability of failure of a 

structural element as a function of disaster strength parameters like wind speed and precipitation. 

The calculation of fragility curves is often based on parametric statistical models, taking into account factors 

like the design strength and aging. For different CI components, different fragility curves may best fit to 

historical data. For power systems, there is a range of literature discussing the structural fragility models 

subject to wind loading (Savory, Parke et al. 2001, Hangan, Savory et al. 2008, Bjarnadottir, Li et al. 2012, 

Salman, Li et al. 2015). The lognormal distribution is usually assumed to describe the fragility curves of 

support poles and overhead power lines (Bjarnadottir, Li et al. 2012, Salman, Li et al. 2015); the direct 

threat-induced failure probability *(�(�)) as a function of the wind speed �(�) is given by the following 

lognormal cumulative distribution function (CDF)  

*(�(�)) = Φ[ln(�(�)/0)1 ] (2) 

where Φ(⋅) is the CDF of the standard normal distribution, 0 is the median of the fragility function and 1 

is the logarithmic standard deviation of the intensity measurement. The values of the parameters 0 and 1 

are related with the structural characteristics of the component under consideration.  

In the third step, the overall failure probability of each component is computed by taking into account direct 

and indirect threats that could lead to failure. For example, besides failures caused by direct wind load, 

overhead power lines also fail due to falling trees and flying debris. Actually, around 55.2% of power outages 

in the U.S. Northeast regional distribution systems are caused by trees falling down during wind storms (Li, 

Zhang et al. 2014). In addition, overhead lines consist of support poles, conductor wires and other types of 

equipment. The collapse of a single pole or conductor results in the disconnection of the entire line. Therefore, 

the overall failure probability of an overhead line is modeled as a series system with the fragility analysis of 

each pole and conductor associated with that line. It is assumed that the fragility of different components 

of an overhead line is independent. The overall failure probability of an overhead line 4 under wind speed 

�(�) is calculated as (Ouyang and Dueñas-Osorio 2014) 

*5,7�859�!(�(�)) = 1 − ∏[1 − *=>(�(�))]

@=1

∏[1 − *A>(�(�))]"
@=1

 (3) 

where 0 is the number of poles supporting line 4, B is the number of conductor lines between two adjacent 

poles at line 4, *=> is the conditional failure probability of the Cth pole at line 4 which can be given by Eq. 
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(2) and *A> is defined as the failure probability of conductor C between two poles: this probability can be 

modeled by (Ouyang and Dueñas-Osorio 2014) 

*A>(�(�)) = max (*A>,G(�(�)),H*A>,G#(�(�))) (4) 

where *A>,G(�(�)) is the direct wind-induced failure probability of conductor C, *A>,G#(�(�)) represents the 

fallen tree-induced failure probability of conductor C and H is the average tree-induced failure probability 

of overhead conductors, reflecting the efforts of trimming trees by utilities and assumed constant (Ouyang 

and Dueñas-Osorio 2014). The direct wind-induced failure probability *A>,G(�(�)) can be computed by Eq. 

(2), based on the structure property parameters of the conductor (Bayliss, Bayliss et al. 2012). The fallen 

tree-induced failure probability *A>,G#(�(�)) can be calculated approximately by empirical models such as 

the one proposed by Canham, Papaik et al. (2001). For simplicity, in this study we do not consider the tree-

induced failure probability of overhead conductors. 

2.3.  Component restoration time model 

A range of models have been proposed in the literature for the post-disaster restoration processes of various 

CI systems (Liu, Davidson et al. 2007, Nateghi, Guikema et al. 2011, Duffey and Ha 2013). The output of 

these models is usually represented by restoration curves at the system level (percentage of customers with 

service versus time) or by system average interruption duration indices (SAIDI). Yet, for system criticality 

analyses aiming at supporting pre-event decision making, models for estimating the restoration times of 

components are required. The response to the disaster and the restoration time of failed CI components 

varies directly with: (i) storm categories, (ii) locations and types of damaged components and (iii) the 

amounts of repair crews and material resources available. Thus, the restoration time of a failed component 

can be expressed by 

I = J(K&��LM��, 4MK&�NMB, ��*�, ��OMP�K�O). (5) 

In practice, it is usually challenging to have an analytic form of J(⋅). Instead, probabilistic models like 

Gaussian (Ouyang and Dueñas-Osorio 2014) and exponential distributions (Zapata, Silva et al. 2008, 

Espinoza, Panteli et al. 2016) are traditionally used to represent the repair processes of power system 

components. Zapata, Silva et al. (2008) studied realistic historical data and showed that the lognormal 

distribution is a more appropriate model for component repair times in power systems. On the other hand, 

storm categories and intensities significantly affect the repair times of the damaged components, e.g., more 
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time is needed for the repair crews to approach safely the affected areas under severe weather conditions. 

This effect can be modeled as an increase in the Mean Time To Repair (MTTR) of components by a factor 

of restoration stress (RS). For example, Espinoza, Panteli et al. (2016) assumed random RS values in the 

range {2, 4} for overhead lines restoration under moderate storms. In practice, data about RS can be 

obtained or estimated from past repair experience under different storm categories (Bhuiyan and Allan 1994). 

Therefore, for a given storm category, the probability that a failed component, e.g., an overhead line 4, is 
repaired within time � is given by 

*5,�!U�8�(V ≤ I |K&�L) = Φ {ln[I/(
\ �#] ⋅ ^II
5)]1 } (6) 

where 
\ �#] represents the restoration stress under storm category K&�L, ^II
5 is the ^II
 of overhead 

line 4 under normal operation and 1 is the logarithmic standard deviation of restoration time. 

3. Mathematical formulation of the optimization model 

In this section, the detailed mathematical formulation of the proposed robust optimization framework for 

the resilience of interdependent CIs under NHs is provided. 

A network flow-based approach is used in this study for the modeling of interdependent CIs, where each CI 

is modeled as a network and their interdependencies are represented via inter-links. Specifically, the set of 

CIs of concern is denoted by b. Each CI C in b is modeled by a network c@(d @, e@) described by a collection 

of nodes d @ and edges e@. Each link 4 ∈ e@ in CI network C has an associated capacity J5̅@ representing the 

maximal amount of flow that can pass through it, while each node B ∈ d @ has a supply capacity L"̅@  and a 

required demand h"̂#@  of flow for its nominal operation at time �. Flow distributes through the CI network 

according to the flow capacities of the links and supply capacities of the nodes, following the rule of flow 

conservation. 

For CI network C ∈ b, its resilience to a NH is regarded as the cumulative system performance level during 

the NH, quantified by the normalized total satisfied demand level 


@ = ∑ ∑ h"#@"∈k >#∈l∑ ∑ h"̂#@"∈k >#∈l
 (7) 
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where h"#@  denotes the satisfied flow at node B ∈ d @ at time �, and l is the set of all discrete times within 

the hazard horizon. Then, the resilience of the interdependent CIs under this event is represented by the 

weighted sum of the resilience of each CI network, expressed by 


 = ∑ n@ ∑ ∑ h"#@"∈k >#∈l∑ ∑ h"̂#@"∈k >#∈l@∈o
 (8) 

where n@ is the weighting factor for the resilience of CI network C. 

For the resilience of interdependent CIs under a NH, our purpose is to find the optimal planning of resilience 

strategies under limited investment budget, anticipating the worst possible realization of the uncertainty of 

component failures under the NH. In particular, a two-stage ARO model is set up as follows: 

1) The optimal investment planning, denoted by decision variable p, is sought by maximizing the 

resilience of the interdependent CIs under a limited budget. This is done by anticipating that, right 

after this decision is made:  

2) the NH will behave in the worst possible manner given the forecasted but uncertain information of 

the NH. Therefore, assuming p is fixed, NH will select the realization of the uncertain component 

failures, denoted by variable q, which minimizes the interdependent CIs resilience; this is done by 

anticipating that, right after the worst uncertainty outcome is realized: 

3) the interdependent CIs will try to adapt to it via response operations; thus, assuming that p and q 

are fixed, the system operators will select the optimal operation, denoted by decision variables r, in 

order to maximize the systems’ resilience.  

For illustrative purposes, this paper considers two typical ex-ante resilience strategies, i.e., protecting 

transmission lines and placing distributed generation (DG) units, which have been considered also by other 

scholars in the literature (Yuan, Wang et al. 2016). In this study, protected lines are assumed to be 

invulnerable and cannot be damaged by NHs. Also, the DG units are used for generation backup in case of 

supply interruption under NHs and can continue supplying power to connected loads. Other possible 

resilience strategies can be easily incorporated into our analysis framework. Since the most common 

components disrupted under NHs are transmission lines in electrical power grids (Wang, Chen et al. 2016), 

this study focuses on outages of transmission lines. But, the approach can be extended to account for the 

outages of other components. The transmission lines damaged by the NHs are assumed to be completely 

unusable until they are repaired. 
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The two-stage ARO framework for the optimal investment planning of interdependent CIs under NHs is 

framed within a three-level max-min-max problem, which takes the form of defender-attacker-defender game 

models (Brown, Carlyle et al. 2006, Alderson, Brown et al. 2011, Fang and Sansavini 2017, Ouyang and 

Fang 2017). It is noted that even the defender-attacker-defender game model and the two-stage ARO have 

different origins, they share an identical tri-level optimization structure. 

The proposed two-stage ARO model uses the following notations: 

Indices, sets, and parameters 

Input parameters for each network 

C ∈ b Set of all energy networks; C = 1 represents the power network  

4 ∈ e@ Set of transmission lines in network C 

B ∈ d @ Set of nodes in network C 

M(4) Origin or sending node of line 4 
�(4) Destination or receiving node of line 4 
e"@,"�� Set of neighboring lines of node B ∈ d @, i.e., e"@,"�� = {4∣4 ∈ e@: M(4) = B or �(4) = B} 

L"̅@  Capacity of generation at node B ∈ d @ 
L"̅@,y Capacity of distributed generation at node B ∈ d @ 
J5̅@ Capacity of line 4 ∈ e@ 
h"̂#@  Demand at node B ∈ d @ at time � 
z5 Reactance of power transmission line 4  
{
�| Maximum allowable limit for {"# variables 

Input parameters for interdependencies 

d @,A Set of all nodes in network C that depend on the nodes of other networks to operate, i.e., 

the consequent nodes 

}@,A Set of all lines in network C that depend on the nodes of other networks to operate, i.e., 

the consequent links  
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d @,~ Set of all nodes in network C that any other network nodes depend on, i.e., the antecedent 

nodes 

d @←
,A Set of all nodes in network C that depend on the nodes in network 0(0 ≠ C) to operate 

}@←
,A Set of all lines in network C that depend on the nodes in network 0(0 ≠ C) to operate 

d @→
,~ Set of all nodes in network C that the operation of the nodes in network 0(0 ≠ C) depend 

on 

�8,�@→
 Set of ordered pairs (N, �) associated with node N ∈ d @→
,~ and node � ∈ d 
←@,A , and 

node � is operational only when the demand of flow of node N in network C can be fully 

satisfied 

^8,�@→
 Set of ordered pairs (N, �) associated with node N ∈ d @→
,~ and line � ∈ }
←@,A , and line 

� operates with its full capacity when the demand of flow of node N in network C is fully 

satisfied; otherwise line � operates with a reduced capacity J�̃
 

Input parameters for interdependent CIs resilience investment 

��  Monetary investment budget for system resilience  

K5@,�  Cost of protecting line 4 in network C 

K"@,y Cost of placing a distributed generation at node B ∈ d @ 

Input parameters for NHs  

Γ@ Budget of failure uncertainty for network C 

Υ@ Budget of recovery uncertainty for network C 

l Set of discrete times of hazards 

I 
�| Maximal repair time of failed lines 

q ∈ � Uncertainty set of component failures 

r ∈ � Feasible set of system operation under a realization of uncertainty 

Decision variables 

Ex-ante protection decision variables 
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�5@ �5@ = 1 if a line 4 in network C is protected, 0 otherwise 

�"@  �"@ = 1 if distributed generation is placed at node B in network C, 0 otherwise 

Disruption uncertainty variables 

�5#@  �5#@ = 1 if a line 4 in network C is damaged to be offline at time �, 0 otherwise 

�5#@  �5#@ = 1 if a line 4 in network C is restored to be online within time �, 0 otherwise 

�5#@  �5#@ = 1 if a line 4 in network C is online (operational) at time �, 0 otherwise 

Ex-post operation decision variables 

�8�#@→
 Interdependency variable that is equal to 1 if the interdependency from node N in network 

C to component (node or line) � in network 0 works normally at time �, 0 otherwise 

{"# Phase angle in node B in the power network (C = 1) at time � 
J5#@ Flow in line 4 in network C at time � 
L"#@  Flow generated at node B ∈ d @ at time � 
h"#@  Satisfied flow at node B ∈ d @ at time � 

Mathematically, the hierarchical structure of the two-stage ARO is represented by the following tri-level 

optimization problem: 

max� min�∈�(�) max�∈�(�,�) 
(p, q, r) (9) 

 s.t.  

∑ (∑ K5@,� �5@5∈�>
+ ∑ K"@,y�"@"∈k >

)
@∈o

≤ ��  (10) 

�5@, �"@ ∈ {0,1} ∀4, B, C (11) 

where 
(p, q, r) is the objective function representing the resilience of the interdependent CIs under a NH 

and is calculated by Eq. (8). The first level problem in (9) is to identify the optimal set of transmission lines 

to protect and the optimal sites to place DG units so that the resilience of the interdependent CIs is 

maximized. The worst case realization of the uncertainty of the NH’s impacts on the systems and the 

successive adaptive action is considered in the middle-low level problem ℋ(p) = min�∈�(�) max�∈�(�,�) 
(p, q, r). 
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Note that q ∈ �(p) defines the uncertainty set dependent on the severity of NHs and r ∈ �(p, q) represents 

the feasible set of system operation under an investment planning p and a realization of uncertainty q. 

Constraint (10) enforces the limit of the total investment budget. Constraint (11) enforces the integrality of 

the investment decision variables. 

The uncertainty set � of component failures under a hazard is modeled as follows:  

       �(p) = {q ∣∑(− log2 *5#@ )�5#@5∈�>
≤ Γ@ , ∀C, � 

∑ �5#@#∈l
≤ 1 − �5@, ∀C, 4 

∑ [− log2 �̅̅̅̅̅5,�!U�8�(�|K&�L)] �5#@5∈�>
≤ Υ@, ∀C, � ∈ {1, … , I 
�|} 

∑ �5#@
¡�¢£

#=1
= ∑ �5#@#∈l

, ∀C, 4 
�5#@ + ∑ �5¤@

#
¤=
�|{#−∑ #⋅¦§>̈©�¢£

¨=1 ,1}
= 1, ∀C, 4, � ∈ l 

�5#@ , �5#@ , �5#@ ∈ {0,1}, ∀C, 4, �⎭}⎬
}⎫ 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

where q = [±, ², ³] indicates the operation states of the lines in the interdependent CI systems over the 

whole time horizon of the hazard. Constraint (12) defines the uncertainty budget of system failure. Inspired 

by Shannon’s information theory (Shannon and Weaver 1998), this definition relates the failure probabilities 

µ of the system components and their binary damage variables ± at each time period. The parameter Γ@ 

represents the total uncertainty budget of failure of network C and can be assigned by the analyst. The 

failure probability *5#@  is calculated by Equation (3). Constraint (12) states that the failure of a “reliable” 

line, i.e., having smaller failure probability	*4�C , is more “surprising”, i.e., takes up more failure uncertainty 

budget than the failure of a vulnerable line that has a larger failure probability *5#@ . For instance, if the 

failure probability of a line *5#@ = 0, then the occurrence of its failure takes an infinite large failure uncertainty 

budget and �5#@  will be 0, if Γ@  is not infinite. Conversely, if the failure probability  *5#@ = 1, then the 

occurrence of its failure takes zero budget, and �5#@  will be 1 in the optimization. Therefore, given a vector µ 

of the failure probability of the system components, a large Γ@ implies a large failure budget for system C 

and thus a large upper limit of the number of failed lines. In other words, by setting a large Γ@ the decision 

maker anticipates a large damage caused by the hazard. Constraint (13) states that a transmission line 
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cannot fail if it has been protected (�5@ = 1) and it can only fail once during the horizon of the hazard if it 

has not been protected (�5@ = 0). Similar to the Constraint (12), (14) bounds the uncertainty budget Υ@ for 

the recovery times of components in network C: a large value of Υ@ represents a high degree of uncertainty 

with regard to the restoration times of failed lines in network C. In (14), �̅̅̅̅̅5,�!U�8�(�|K&�L) represents the 

normalized probability that a failed line 4 is recovered within time duration �(� ≤ I 
�|) under a specific 

category of hazard, and is calculated as follows  

�5,�!U�8�(�|K&�L) = *5,�!U�8�(�|K&�L) − *5,�!U�8�(� − 1|K&�L) (18) 

�̅̅̅̅̅5,�!U�8�(�|K&�L) = �5,�!U�8�(�|K&�L)
max#∈{1,…,¡�¢£}�5,�!U�8�(�|K&�L) (19) 

where *5,�!U�8�(�|K&�L) is obtained by Equation (6). It is noted that �̅̅̅̅̅5,�!U�8�(�|K&�L) always takes the value 

of 1 for the time period with the largest probability, i.e., for � = &�Lmax�5,�!U�8�(�|K&�L). Constraint (15) 

indicates that a failed line is repaired within a specific time duration. Constraint (16) imposes that a line is 

either functional, i.e.,  �5#@ = 1  or failed and not being repaired, i.e.,  ∑ �5#@#
�|{#−∑ #⋅¦§>̈©�¢£
¨=1 ,0} = 1  where 

∑ � ⋅ �5#@¡�¢£
#=1  gives the repair time of the line. Constraint (17) imposes the integrity conditions for the 

variables ±, ² and ³. 

In the third level of (9), the feasible set of system operations under a realization of uncertainty q ∈ � for 

interdependent CIs is formulated based on a network flow-based approach, which is most applicable to 

single-commodity infrastructures including, for example, power, water, wastewater, gas and supply chain 

systems (Nurre, Cavdaroglu et al. 2012). It is noted that different physical constraints may be enforced to 

the network flow depending on the specific types of CI systems of interest (Fang and Sansavini 2017). For 

illustrative purposes, this paper considers interdependent power and gas networks (IPGNs), combining the 

linearized DC power flow model for the power network and the general flow-based model for the gas network 

as follows 

�(p, q) = {r ∣L"#@ + ∑ J5#@5∈�>|�(5)="
− ∑ J5#@5∈�>|¸(5)="

= h"#@ , ∀C, B, � (20) 

0 ≤ L"#@ ≤ L"̅@ + �"@ L"̅@,y, ∀C, B, � (21) 

0 ≤ h"#@ ≤ h"̂#@ , ∀C, B, � (22) 
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−�5#@ J5̅@ ≤ J5#@ ≤ �5#@ J5̅@, ∀C, 4, � (23) 

z5J5#1 − [{¸(5)# − {�(5)#] ≤ ^(1 − �5#1 ), ∀4, � (24) 

z5J5#1 − [{¸(5)# − {�(5)#] ≥ −^(1 − �5#1 ), ∀4, � (25) 

−{
�| ≤ {"# ≤ {
�|, ∀B, � (26) 

h8#@ − �8�#@→
h8̂#@ ≥ 0,∀(N, �) ∈ �8,�@→
 ∪ ^8,�@→
, ∀� (27) 

L�#
 − �8�#@→
L�̅
 ≤ 0, ∀(N, �) ∈ �8,�@→
, ∀� (28) 

h�#
 − �8�#@→
h�̂#
 ≤ 0, ∀(N, �) ∈ �8,�@→
, ∀� (29) 

−�8�#@→
J5̅
 ≤ J5#
 ≤ �8�#@→
J5̅
, ∀(N, �) ∈ �8,�@→
, 4 ∈ e�
,"��, ∀� (30) 

−�8�#@→
J�̅
 − (1 − �8�#@→
)J�̃
 ≤ J�#
 ≤ �8�#@→
J�̅
 + (1 − �8�#@→
)J�̃
, ∀(N, �) ∈ ^8,�@→
, ∀�} (31) 

where (20)-(23) are the general flow constraints for the power and gas networks (and possibly other networks 

considered). Constraint (20) enforces the flow balance at each node for all the networks. Constraint (21) 

limits the capacities of generation units in each network. Constraint (22) bounds the maximum value of 

served demand at each node for all the networks. Constraint (23) sets the limits of network flow on each 

lines. Constraints (24)-(25) impose the physical restrictions on flows specifically for the power network (C =
1), where ^  is a sufficiently large positive constraint (i.e., ^ ≥ 2{
�|) and Constraint (26) bounds phase 

angles for power network nodes.  

Different types of interdependencies exist among CI networks. Rinaldi, Peerenboom et al. (2001) defined 

four principal classes of interdependencies: physical, cyber, geographic, and logical. For IPGNs, typical 

connections include: i) sink-source connections where a gas city gate can fuel a gas turbine engine, which is 

an electric generator, ii) sink-sink connections where a city gate requires some energy from an electrical load 

to regulate its valves, and iii) sink-transmit connections where compressors consume electricity from an 

electrical load to increase the pressure on a gas pipeline, as sufficient line pressure is a feasibility requirement 

for the gas network. All these interdependencies can be modeled by defining a set of ordered components 

pairs (N, �) associated with node N in one CI network and component (node or line) � in another network, 

where the interdependency relation for (N, �) works if the flow demand of node N is fully satisfied (Gong, 

Mitchell et al. 2014, González, Dueñas‐Osorio et al. 2016, Ouyang 2017). For the former two types of 

interdependencies in IPGNs, component � will be completely failed if the interdependency relation for (N, �) 
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does not work. The sink-transmit connections in IPGNs are modeled as capacity reduction, i.e., the capacity 

of line � is reduced if the interdependency relation for (N, �) does not work (Coffrin, Van Hentenryck et al. 

2012). For this, we define a binary variable �8�#@→
 to represent the interdependency from node N in network 

C to component (node or line) � in network	0 at time �: �8�#@→
 = 1 if the interdependency works normally 

and �8�#@→
 = 0 otherwise. For each ordered pair	(N, �) ∈ �N,�C→0 ∪ ^N,�C→0, the interdependency works normally, 

i.e., �8�#@→
 = 1, only if the demand level at node N in network C is fully satisfied at time �, i.e., h8#@ = h8̂#@ , as 

described by Constraint (27). For each node � in the ordered pair (N, �) ∈ �8,�@→
, the flow generation is 

bounded by zero or its generation capacity, as stated by Constraint (28), and its demand level is bounded 

by zero or the required demand, as stated by Constraint (29). Furthermore, if node � is not functioning, all 

its attached lines will not work and the flow on these lines should be zero, as described by Constraint (30). 

Finally, Constraint (31) models the sink-transmit interdependencies in IPGNs: the capacity of line � in 

network 0 decreases from its normal level J�̅
  to a reduced level J�̃
  (J�̃
 < J�̅
) if the demand of its 

dependent node N in network C is not fully satisfied (�8�#@→
 = 0). 
It is important to note that although the interdependency model (27)-(31) is proposed for IPGNs, it is 

general enough to account for all kinds of physical, geographical and logical interdependencies among 

different CIs via the approach of antecedence-consequence ordered pairs (Coffrin, Van Hentenryck et al. 

2012, Gong, Mitchell et al. 2014). Note that the upper level decision variables �"@  as well as the medium-

level ones �5#@  are included in Constraints (20)-(31) and, thus, they influence the lower-level problem, i.e., 

the maximization of system resilience by response operation.  

4. Solution technique  

In general, solving two-stage adaptive robust models is difficult because their multilevel optimization 

structure often gives rise to NP-hard problems (Ruiz and Conejo 2015). Several solution algorithms extended 

from the Benders’ decomposition have been designed to address these problems. In these methods, the first 

stage objective function is gradually reconstructed using dual information from the second stage problem 

(Yao, Edmunds et al. 2007, Thiele, Terry et al. 2009, Bertsimas, Litvinov et al. 2013, Jabr 2013, Alguacil, 

Delgadillo et al. 2014). Regarding the proposed ARO model (9)-(31), however, the existence of the binary 

interdependency variables �8�@→
 in the third level prevents the merging of the two inner problems, i.e. the 

second and third level min-max problems, into a single min problem using the Karush-Kuhn-Tucker (KKT) 

conditions (or the strong duality) of the third level max problem. Therefore, solution methods that depend 
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on the gradual reconstruction of the upper stage problem using dual information from the lower stage are 

inapplicable. 

In this paper, we adopt a cutting plane strategy, which is based on primal cuts (Zeng and Zhao 2013), 

involving only primal decision variables, and we adapt its extended version, i.e., a nested column-and-row 

generation (NC&RG) method (Zhao and Zeng 2012), to solve the proposed two-stage ARO problem (9)-

(31). Note that the uncertainty set defined by (12)-(17) is dependent on the first-stage decisions �5@, which 

makes the NC&RG not capable of being directly employed to solve the proposed ARO model (9)-(31) 

(Neyshabouri and Berg 2017). Next, in Section 4.1 we reformulate the ARO model (9)-(31) to its equivalent 

problem in which a new uncertainty set �̃ is defined so that it is independent on the first-stage decision 

variables and, then, in Section 4.2 we propose the main procedures for adapting the NC&RG algorithm to 

solve the reformulated ARO model. 

4.1.  Reformulation of uncertainty set 

Observe that the uncertainty set � is dependent on the first-stage decision variables �5@  only through 

Constraint (13), where �5@ is a binary variable; thus, we have ∑ �5#@#∈l ≤ 1 − �5@ ≤ 1 ∀C, 4. Following this 

observation, we can relax Constraint (13) to 

∑ �5#@#∈l
≤ 1 ∀C, 4. (32) 

Then, the relaxed uncertainty set is defined by 

�̃ = {q|(6), (8) − (11), (26)}. (33) 

To ensure the equivalence of the optimal solutions of the original ARO problem, a restricted feasible 

operation set �̃(p, q) should be defined. Actually, this can be achieved by substituting Constraints (23)-(25) 

in �(p, q) with the following constraint: 

−[�5@ + �5#@ (1 − �5@)]J5̅@ ≤ J5#@ ≤ [�5@ + �5#@ (1 − �5@)]J5̅@, ∀C, 4, �. (34) 

z5J5#1 − [{¸(5)# − {�(5)#] ≤ ^{1 − [�51 + �5#1 (1 − �51)]}, ∀4, � (35) 

z5J5#1 − [{¸(5)# − {�(5)#] ≥ −^{1 − [�51 + �5#1 (1 − �51)]}, ∀4, � (36) 

Then, the new restricted feasible operation set is given by 
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�̃(p, q) = {r|(20) − (22), (26) − (31), (34) − (36)}. (37) 

Consequently, we have the following middle-low level problem ℋ̃(p) based on the relaxed uncertainty set 

�̃ and restricted feasible operation set �̃(p, q)  
ℋ̃(p) = min�∈�̃ max�∈�̃(�,�) 
(p, q, r). (38) 

Observation 4.1. For any given first stage decision vector p, ℋ̃(p) is feasible since q = [±, ², ³] = [À, À, Á] 
and r = [Â, Ã, Ä, Å, Æ] = À is always a feasible solution. 

Proposition 4.1. Given a fixed first stage decision vector p, for any q̃ ∈ �̃, there exists a q ∈ �(p) so that 
�(p, q) = �̃(p, q̃).  
Proof. It suffices to find a vector q ∈ �(p) so that Constraints (34)-(36) are equivalent to Constraints (23)-

(25) for any given q̃ ∈ �̃ and for the given p. Note that vector p has only 1 and 0 elements, i.e., �5@ = 1 or 
0.  

i) For �5@ = 0, Constraint (13) is equivalent to the Constraint (32) and Constraints (34)-(36) are 

equivalent to Constraints (23)-(25). Thus, we simply set [�5#@ , �5#@ , �5#@ ] = [�5̃#@ , �5̃#@ , �5̃#@ ] ∀� ∈ l for 

any feasible [�5̃#@ , �5̃#@ , �5̃#@ ];  
ii) For  �5@ = 1 , the item �5@ + �5#@ (1 − �5@)  in Constraint (34) and the item �51 + �5#1 (1 − �51) in 

Constraints (35)-(36) for �̃(p, q̃) are both equal to 1 for all � ∈ l. On the other side, for �(p), 
we have ∑ �5#@#∈l ≤ 1 − �5@ = 1, and �5#@ = 0 for all � ∈ l because of the non-negativity of �5#@ . 

Then, according to Constraint (16), we have �5#@ = 1 for all � ∈ l. Thus, Constraints (23)-(25) 

in �(p, q) are exactly the same with Constraints (34)-(36) in �̃(p, q̃) for ∀� ∈ l. Consequently, 

we can set [�5#@ , �5#@ , �5#@ ] = [0, �5̃#@ , 1] for all � ∈ l. 

Therefore, the value of the vector q ∈ �(p) has been found so that �̃(p, q̃) = �(p, q).                                     ■ 

From Proposition 4.1, we can make the following statement: 

Proposition 4.2. Given any first stage decision vector p, problem ℋ̃(p) is equivalent to the original 

middle-low level problem ℋ(p). 
Proof. The proof is straightforward due the Proposition 4.1 and the fact that �(p) ⊆ �̃ for any p.         ■ 
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Therefore, the original ARO model (9)-(31) is equivalent to the following first-stage decision-independent 

problem: max� ℋ̃(p) subject to Constraints (10)(11), which can be rewritten in a compact form: 

max� min�∈�̃ maxÈ,É∈�̃(�,�) Ê¡ Ë (39) 

 s.t.  

Ìp ≤ �� , p ∈ {0,1}
1 (40) 

�̃ = {q ∈ {0,1}
2|Îq ≤ Ä} (41) 

�̃(p, q̃) = {Ë ∈ ℝ
3 , Æ ∈ {0,1}
4|ÒË + ÓÆ ≤ Ô − Õp − Öq} (42) 

where Constraint (40) corresponds to Constraints (10)(11), Constraint (41) corresponds to Constraint (33), 

Constraint (42) corresponds to Constraint (37), p  is the binary first-stage decision vector, q  is the 

uncertainty vector, Ë represents the continuous operation variables {"#, J5#@ , L"#@ , h"#@  and Æ represents the 

binary interdependency variables. Matrices Î , Ò, Ó, Õ, Ö  contain the coefficients of variables in the 

constraints and vectors Ä, Ô contain the right-hand side parameters in the constraints. 01, 02, 03, 04 are 

the dimensions of the vector spaces of variables p, q, Ë and Æ respectively, and vector Ê is the coefficient 

vector of variables in the objective function. 

In the next subsection, we outline the steps of the exact procedure of the adapted NC&RG algorithm for 

the solution of the equivalent problem. For clarity, the compact formulation (39)-(42) is used. 

4.2.  Solution procedure 

4.2.1. Inner C&RG for Middle Lower-Level Problem ℋ̃(�) 
With fixed first-stage decision p∗, middle-level binary variable q∗ and lower-level binary variable Æ∗, the 

lower level maximization problem becomes 

maxÈ Ê¡ Ë (43) 

s.t. ÒË ≤ Ô − Õp∗ − Ö q∗ − ÓÆ∗. (44) 

Then, this pure linear programming can be replaced by its dual form as follows 
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minÚ (Ô − Õp∗ − Öq∗ − ÓÆ∗)¡ Û (45) 

s.t. Ò¡ Û = Ê, Û ≥ À (46) 

where Û is the dual variable. Then, the middle lower-level problem ℋ̃(p∗) can be solved by the inner C&RG 

algorithm described below in Table 2.  

Table 2. Inner C&RG algorithm for solving ℋ̃(p∗) 
Step 1. Select an arbitrary feasible uncertainty scenario q∗ ∈ �̃, and solve the following inner subproblem: 

maxÈ,É Ê¡ Ë 

(47) 
s.t. ÒË + ÓÆ ≤ Ô − Õp∗ − Ö q∗. 

The obtained optimal solution is denoted by (Ë∗, Æ∗); then, we set the upper bound Ü� = Ê¡ Ë∗, 
the lower bound e� = 0, the iteration counter N��� = 1, Æ1∗ = Æ∗. 

Step 2. Solve the following inner master problem: 

minÝ,�,Ú Þ (48) 

s.t. Þ ≥ (Ô − Õp∗ − Öq − ÓÆ8∗)¡ Û8, N = 1, … N��� (49) 

Îq ≤ Ä, q ∈ {0,1}
2 (50) 

Ò¡ Û8 = Ê, Û8 ≥ À, N = 1, … N���. (51) 

Obtain the optimal objective value Þ∗ and optimal solution q∗. Update e� = Þ∗. 
Step 3. Solve the inner subproblem (47) with q∗ obtained in Step 2. Obtain the optimal solution (Ë∗, Æ∗) 

and optimal objective value Ê¡ Ë∗. Update the upper bound as Ü� = min{Ü�, Ê¡ Ë∗}. 
Step 4. If (Ü� − e�) Ü�⁄ ≤ à1, terminate and return the optimal solution (q∗, Ë∗, Æ∗) and the optimal 

value ℋ̃∗(p∗) = Þ∗; otherwise, generate extra variables Û8#!�+1 and add related constraints (49) 

and (51) by setting Æ8#!�+1∗ ← Æ∗ (where Æ∗ is the optimal solution obtained from Step 3) to the 

inner master problem (48)-(51). Update N��� ← N��� + 1 and continue with Step 2. 

Note that there are bilinear terms involving q and Û8 in Constraint (49), which can be simply linearized 

due to the binary nature of q. Therefore, the inner master problem and the inner subproblem are both 
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mixed integer linear programming (MILP) that can be solved efficiently by using standard branch-and-cut 

solvers. 

4.2.2. Outer C&RG for Upper-Level Problem 

Adopting a similar method to the inner C&RG algorithm, the outer C&RG algorithm for the upper-level 

problem identifies the optimal first-stage decision under all possible uncertainty scenarios, as described below 

in Table 3. 

Table 3. Outer C&RG algorithm for upper-level problem 

Step 1. Set e� = 0,Ü� = +∞, and the iteration counter N��� = 1, q1∗ = [±, ², ³] = [À, À, Á]. 
Step 2. Solve the following outer master problem: 

maxâ,�,È,É ã (52) 

s.t. Ìp ≤ �� , p ∈ {0,1}
1 . (53) 

ã ≤ Ê¡ Ë8, N = 1, … N��� (54) 

ÒË8 + ÓÆ8 + Õp ≤ Ô − Ö q8∗, Ë8 ∈ ℝ
3 , Æ8 ∈ {0,1}
4 , N = 1,… N��� (55) 

Obtain the optimal solution p∗ and the optimal value ã∗ ; update the upper bound as Ü� =
min{Ü�, ã∗}. 

Step 3. Call the inner C&RG algorithm in Table 2 to solve the problem ℋ̃(p∗) with p∗ obtained in Step 

2; obtain the optimal solution (q∗, Ë∗, Æ∗) and optimal value ℋ̃∗(p∗), and update the lower bound 

as e� = max{e�, ℋ̃∗(p∗)}. 

Step 4. If  (Ü� − e�) Ü�⁄ ≤ à2 , terminate and return the optimal solution  (p∗, q∗, Ë∗, Æ∗)  and the 

optimal value ã∗; otherwise, generate extra variables Ë8#!�+1, Æ8#!�+1 and add related constraints 

(54)-(55) by setting q8#!�+1∗ ← q∗ (where q∗ is the optimal solution obtained from Step 3) to the 

outer master problem (52)-(55). Update N��� ← N��� + 1 and continue with Step 2. 

Finally, the proposed two-stage ARO model (9)-(31) is reformulated to its equivalent problem (39)-(42), 

and, then, solved by adapting the nested C&RG algorithm. The convergence proof and the analysis of the 

convergence properties of this type of algorithms are provided in Zhao and Zeng (2012). 

5. Case study 
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5.1.  Dataset 

This section presents numerical experiments of the proposed analysis framework on test IPGNs. The power 

system is the IEEE 24-bus one area reliability test system (Grigg, Wong et al. 1999), and the gas system is 

adapted from the IEEE 9-bus system (Ouyang and Fang 2017). To embed the systems into a specific 

territory, the line lengths and geographical locations are chosen following (Mohanpurkar, Sogbi et al. 2015). 

Bus P7 of the test power system is taken as a reference node and is located near Xiamen (24.5 N, 118.0E), 

a coastal city in China. The power and gas systems are georeferenced by projecting them onto a 400×400km2 

study area located in the South China, as illustrated in Figure 4. The detailed interdependencies between 

the two systems are given in Table 4 and are illustrated in Figure 3.  

We assume for simplicity that only the conductor wires and support poles in the power system are vulnerable 

and can be damaged during the passage of a typhoon. The fragility curve data of power poles and lines are 

adopted from Panteli, Pickering et al. (2017). The hardening cost for an overhead line in the power system 

depends on the length of the line with a coefficient of $1.0× 105 per km (Louth 2011), and a type of DG 

with 22MW unit capacity is considered to be placed in the system at an installation cost of $1.0× 107 per 

unit. 

 

Figure 3.  Interdependent power and gas systems. 



Manuscript submitted to European Journal of Operational Research 

 

Figure 4.  The georeferenced IPGNs and one realization of a typhoon track. 

Table 4. The interdependencies between the power and gas systems 

Ordered pairs (N, �) Interdependency description 

(P8,<G2,G8>) Sink-transmit connection where the compressor on line <G2,G8> consumes 

electricity from electrical load node P8 

(P9,G7) Sink-sink connection where node G7 requires some energy from electrical load P9 

to regulate its valves 

(P10,<G3,G6>) Sink-transmit connection where the compressor on line <G3,G6> consumes 

electricity from electrical load node P10 

(P14,<G1,G4>) Sink-transmit connection where the compressor on line <G1,G4> consumes 

electricity from electrical load node P14 

(G5,P15) Sink-source connection where the electric generators at node P15 consume gas 

from node G5 to generate electricity 

 

5.2.  Windstorm simulation 
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We consider four different scenarios of typhoon (a tropical windstorm that develops in the Northwestern 

Pacific Basin) with a category of “very strong” (sustained wind between 157–193 km/h) according to the 

RSMC Tokyo's Tropical Cyclone Intensity Scale. The tracks of the four typhoon scenarios are illustrated in 

Figure 5. Typhoons 1-3 share the same landfall location with latitude 24.50N and longitude 118.30E (near 

Xiamen). The typhoon track illustrated in Figure 4 corresponds to the typhoon scenario 1 in Figure 5. The 

red plus signs in Figure 4 represent the locations of the storm eye at different times, with one hour time 

steps. The inner yellow circles 

�| in Figure 4 and Figure 5 indicate the boundary of the maximum winds 

for the traveling typhoons at their landfall points. The area between the yellow circle 

�| and the dashed 

yellow circle 2

�| experiences around 82.5% of the maximum wind speed. 

In order to assess the typhoon impact on the different elements of the system, its dynamic wind field is 

modeled through Equation (1), from which we can calculate the time-varying wind speeds at each location 

within the power system. Figure 6 shows the surface wind speed variations at bus P2 within the power 

system as the typhoons of the studied four scenarios travel along their tracks. One can find that bus P2 

generally experiences the strongest wind threat during typhoon 3, since its track is the most geographically 

adjacent to P2. 

 

Figure 5.  Tracks of 4 different typhoons with different landfall points and traveling directions. 



Manuscript submitted to European Journal of Operational Research 

 

Figure 6.  Hourly wind profiles at bus P2 under different scenarios of typhoons. 

5.3.  Results 

Based on the above windstorm simulation and the geographic and structural fragility data of the test systems, 

the failure probability of transmission lines can be calculated using Equations (2)-(4). The recovery 

probabilities of failed lines are calculated by Equation (6), where the data for the MTTR and RS parameters 

of the transmission lines are based on Ouyang and Dueñas-Osorio (2014) and Espinoza, Panteli et al. (2016). 

The solution procedure proposed in Section 4.2 for the case study is implemented and solved in the IBM 

CPLEX 12.6 optimization studio. All calculations are performed on a laptop with 2.6-GHz CPU and 8GB 

RAM. The resilience weighting factor n@ is set as 0.5 for both the power and gas systems. The recovery 

uncertainty budget Υ is set as 0.1 for the power system. A tolerance level à1 = à2 = 1.0 × 10−5 is enforced 

for both the outer and inner layer C&RG algorithms.  
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Figure 7.  Optimal worst-case power and gas system resilience under different values of failure 

uncertainty budget Γ for typhoon (a) scenario 1, (b) scenario 2, (c) scenario 3, and (d) scenario 4, 

respectively, when there is no investment in resilience strategies, i.e., �� = $0. 

We first investigate the case of no investment in resilience strategies (i.e. �� = $0). The proposed ARO 

model is solved for different values of failure uncertainty budget Γ for typhoon scenarios 1-4. Figure 7 

presents the results of the optimized worst-case power and gas system resilience, i.e., 
U¸G!� and 
]�í, and 

their combination 
 for each scenarios. It can be seen that the combined power and gas system resilience 

decreases as the failure uncertainty budget Γ increases, for all the four typhoon scenarios. This is because a 

bigger value of Γ represents a larger upper limit of the number of failed lines, and the failure of a “reliable” 

line, i.e., having smaller failure probability *5#U¸G!�, is increasingly allowed with an increased Γ. In other 

words, the decision maker allows more “surprising” events to happen by setting a larger value of Γ. For 

example, when Γ = 0.002 the optimal worst-case failed lines are 8-9, 11-13 and 17-22, resulting in a loss of 

the combined system resilience (i.e., 1 − 
) equal to 4.0× 10−3 in typhoon scenario 1; when Γ is increased 

to 0.006 the worst-case failed lines are 2-6, 3-9, 8-9, 11-13, 12-23 and 17-22, resulting in a loss of the combined 

system resilience equal to 2.2× 10−2. Furthermore, Figure 7 shows that the resilience of the gas system is 

also deteriorated along with the decreased power system resilience for scenarios 1-3, due to the fact that the 

operations of some gas components (i.e., compressors and valves) are dependent on the incessant power 

supply from the corresponding electrical load buses. In scenario 4, the gas system is not affected since the 
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typhoon does not hit directly the power and gas systems, especially the interdependent components P8, P9, 

P10, and P14 (see Figure 5).  

 

Figure 8.  The power and gas systems (a) before and (b) after line hardening under typhoon scenario 1 

and for î = 0.026 and investment budget �� = $4.0 × 107.  

Second, we consider hardening the power transmission lines (no DG unit placement) to protect against 

extreme winds induced by the typhoons. The hardening budget is assumed to be �� = $4.0 × 107. By using 

the two-stage ARO model and solution algorithm proposed in Sections 3 and 4, the optimal hardening plan 

and worst-case system resilience can be calculated. Figure 8 shows the comparison of damaged lines before 

and after hardening under typhoon scenario 1 for Γ = 0.026. There are 13 damaged lines in the Figure 8(a) 

and damaged lines in Figure 8(b) has decreased to 9. Figure 8(b) also shows the locations and hardening 

strategies of transmission lines, where lines 8-10, 10-11, 12-13, and 14-16 are hardened. By this hardening 

strategy, the combined power and gas system resilience is enhanced from 0.880 to 0.970, which is an 

improvement of 10.23%. 

(a) 

(b) 
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Figure 9.  Optimal combined power and gas systems resilience along with î  under different investment 

budgets �� = $0, $2.0 × 107, $4.0 × 107, and $6.0 × 107 for typhoon (a) scenario 1, (b) scenario 2, (c) 

scenario 3, and (d) scenario 4, respectively. 

Figure 9 shows the combined system resilience along with Γ for different investment budgets and for the 

four typhoon scenarios studied. One can see that in the absence of protection, the post-hazard combined 

system resilience decreases the most rapidly with the value of failure uncertainty budget Γ. With each 

additional investment in protection, this curve becomes less steep, indicating improved operational resilience 

for the IPGNs. This is simply because additional transmission lines can be hardened when the investment 

budget is increased. Table 5 reports the detailed hardening plans under different investment budgets for the 

four typhoon scenarios (Γ is fixed for each scenario). Indeed, additional transmission lines are chosen to be 

hardened with each added investment budget, in most of the cases. However, it is noticed that the number 

of hardened lines is not increased when the investment budget is increased from $4.0 × 107 to $6.0 × 107 in 

scenario 4, but the hardened lines are changed, i.e., lines 2-4 and 15-16 are substituted by lines 2-6 and 3-9, 

which also leads to an enhancement of the combined system resilience from 0.990 to 1.000. This indicates 

that the optimal set of lines to be hardened in small budget situations is not necessarily a subset of the lines 

to be hardened in large budget situations. Therefore, the decision maker should evaluate carefully the 

available investment budget in order to obtain the optimal hardening plan. 
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Table 5. Optimal hardening plans for different typhoon scenarios and investment budgets  

Typhoon 

scenario 

Investment budget �� (× 107$) Set of transmission lines to be 

hardened 

Combined 

resilience 

1 (Γ = 0.026) 2.0 8-10, 12-13 0.911 

4.0 8-10, 10-11, 12-13, 14-16 0.970 

6.0 6-10, 9-12, 8-10, 10-11, 11-13, 12-13, 0.987 

2 (Γ = 0.1) 2.0 8-10, 10-12 0.926 

4.0 8-10, 10-12, 12-13, 13-23, 20-23 0.960 

6.0 6-10, 8-9, 9-12, 10-12, 12-13, 12-23 0.978 

3 (Γ = 0.026) 2.0 2-4, 8-10 0.973 

4.0 1-5, 2-6, 8-10, 9-12 0.995 

6.0 1-5, 2-4, 3-9, 8-9, 9-12 0.999 

4 (Γ = 1.5) 2.0 3-24, 15-24 0.978 

4.0 1-5, 2-4, 3-24, 4-9, 15-16, 15-24 0.990 

6.0 1-5, 2-6, 3-9, 3-24, 4-9, 15-24 1.000 

Third, to investigate the importance of DG in the IPGNs under NHs, a comparison among resilience 

strategies “without DG” and “with DG” is studied. In the case of “without DG”, only transmission line 

hardening is allowed; in the case of “with DG”, both the strategies of line hardening and DG unit allocation 

are allowed. Figure 10 shows the results of the combined power and gas system resilience as a function of 

the investment budget ��  for the two cases and for each of the studied scenarios. As can be seen from the 

Figure, the effectiveness of hardening in terms of enhanced interdependent system resilience is improved by 

DG allocation as the combined system resilience of “with DG” is generally larger than that of “without DG”, 

except for typhoon scenario 4 where the two cases result in identical solutions. In fact, DG units are effective 

as a backup when a power system is damaged by a natural disaster: the loads in branches that are 

disconnected from the main grid can be picked up by a DG unit if available, forming so-called microgrids 

where the power can be supplied by the DG within the microgrid (Yuan, Wang et al. 2016). This result 

highlights the importance of coordinating the placement of DG units with transmission line hardening, or 

more generally coordinating different resilience strategies, in the pre-disruption investment planning for 

system resilience enhancement. 



Manuscript submitted to European Journal of Operational Research 

 

Figure 10.  Impact of DG on combined system resilience. The failure uncertainty budget is fixed at î =
0.026, 0.1, 0.026 and 1.5 for typhoon scenarios 1, 2, 3, and 4, respectively. 

In reality, a coordinated defense agency for different CIs may not exist. Thus, each system makes its own 

protection decisions without considering the interdependencies with other CIs. To investigate this case, we 

assume that the decision makers in the power system make the protection planning only for their own 

interest without considering the interdependencies with the gas network, i.e. the objective function in the 

proposed ARO model is the resilience of only the power system. We call this strategy “egotistic protection” 

to differentiate it from “coordinated protection” where the interdependent systems are protected as a whole. 

The protection solutions attained from the “egotistic” ARO model are tested under the worst case NH 

realization (i.e., a NH attacks the power system to minimize the combined power and gas resilience by taking 

into account their interdependencies) to obtain the power system resilience, gas system resilience and their 

combination. Figure 11 shows the comparison of the system resilience between the case of coordinated 

protection and the case of egotistic protection for typhoon scenarios 1-3 (in typhoon scenario 4 where the 

interdependencies are not affected, the two protection strategies obviously lead to the same results). It can 

be seen from the Figure that when the investment budget is small, the egotistic protection (diamond dash-

dot lines) is able to increase marginally the power system resilience compared with the coordinated protection 

(diamond lines), nevertheless, this is achieved by compromising the resilience of the gas system considerably. 

That is, the gas system resilience in egotistic protection (circle dash-dot lines) decreases largely compared 

with that in coordinated protection (circle lines). The combined power and gas resilience in the case of 

egotistic protection (square dash-dot lines) is always smaller than or at most equal to that in the case of 
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coordinated protection (square lines). When the investment budget is increased, the two protection strategies 

gradually result in equivalent effects, since the power buses that support the operation of the gas system 

also come into the list of protection in the egotistic strategy. These results highlight the significance of 

protecting interdependent CIs as a whole against NHs, especially when the investment budget is relatively 

small. 

 

   

Figure 11.  Comparison of power system, gas system and their combined resilience between the case of 

coordinated protection and the case of egotistic protection for typhoon scenarios (a) 1, (b) 2, and (c) 3, 

respectively; both transmission line hardening and DG placement are considered. The failure uncertainty 

budget is fixed at î = 0.026, 0.1, and 0.026 for scenarios 1, 2, and 3, respectively.  

Finally, Figure 12 shows the computation times of the NC&RG algorithm for solving the proposed ARO 

model. It can be observed that the computation burden is relatively light for small values of failure 

uncertainty budget Γ and small investment budget ��  for each typhoon scenario. This is because the 

feasible hardening plans for small ��  and the number of transmission lines allowed to be failed for small Γ 
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are both limited. As the values of Γ and ��  are increased, the computational time largely increases, 

particularly for large values of failure uncertainty budget Γ. In fact, the investment budget ��  largely affect 

the feasibility region (solution space) of the outer-layer master problem (52), and the failure uncertainty 

budget Γ conditions the feasibility region (solution space) of the inner-layer master problem (48). The two 

MIP problems (48) and (52) are the most computationally demanding steps of the proposed method. In 

practice, the computational burden can be released by sophisticated MIP gap setting, e.g., the dynamic gap 

strategy for NC&RG (Fang and Sansavini 2017), or allowance of a larger converging tolerance level à1 and 

à2. 

 

Figure 12.  Computational performance of the optimization algorithm for typhoon (a) scenario 1, (b) 

scenario 2, (c) scenario 3, and (d) scenario 4, respectively.  

6. Conclusions 

This paper presents a novel ARO-based mathematical framework for enhancing the resilience of 

interdependent CIs against NHs. In this framework, the potential impacts of a specific NH on an 

infrastructure are firstly evaluated, in terms of failure and recovery probabilities of system components; 

these are, then, fed into a two-stage ARO model to determine the optimal planning of resilience strategies 

under limited investment budget, anticipating the worst possible realization of the uncertainty of component 

failures under the NH. More specifically, in the first stage, the optimal investment planning under a limited 

budget is sought by maximizing the resilience of the interdependent CIs, which is done by anticipating that, 
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right after this decision is made, the NH will behave in the worst possible manner given the forecasted but 

uncertain information of the NH. In the second stage, right after the worst uncertainty outcome is realized, 

the interdependent CIs will try to adapt to it via response operations, in order to minimize the impact 

caused by the NH. This approach bridges the gap between the difficulties of accurately predicting the hazard 

information in the classical probability-based analyses and the over-conservatism of the pure worst-case-

oriented models for CI resilience under a specific NH, thus, providing a useful tool to help decision-makers 

in making more-informed pre-hazard preparation decisions.  

Mathematically, the proposed model configures a tri-level max-min-max MIP with discrete variables existed 

in the innermost layer, which is challenging to be solved directly. For its solution, we adopt a cutting plane 

strategy which is based on primal cuts, involving only primal decision variables, and we adapt its extended 

version, called the NC&RG method to solve the proposed two-stage ARO problem. The application to a 

case study concerning the resilience of IPGNs under simulated wind storms demonstrates the effectiveness 

of the proposed model and solution method.  

Some managerial insights can be drawn from the specific case study including: 1) investment in pre-hazard 

resilience strategies, e.g., transmission line hardening and DG placement, can effectively improve the 

resilience of IPGNs against typhoons; however, the optimal set of lines to be hardened is sensitive to the 

amount of investment budget. Thus, the decision maker should evaluate carefully the available budget in 

order to obtain the optimal plan for implementation. 2) Considering the combination of different resilience 

strategies can be more effective for system resilience enhancement. 3) When the investment budget is 

relatively small, it is significant to protect different CIs as a whole and consider their interdependency in 

order to achieve a globally optimum resilience enhancement plan against NHs. 

Reference 

Adachi, T. and B. R. Ellingwood (2008). "Serviceability of earthquake-damaged water systems: Effects of 

electrical power availability and power backup systems on system vulnerability." Reliability engineering & 

system safety 93(1): 78-88. 

Aerts, J. C., N. Lin, W. Botzen, K. Emanuel and H. de Moel (2013). "Low‐Probability Flood Risk Modeling 

for New York City." Risk Analysis 33(5): 772-788. 

Alderson, D. L., G. G. Brown and W. M. Carlyle (2015). "Operational models of infrastructure resilience." 

Risk Analysis 35(4): 562-586. 



Manuscript submitted to European Journal of Operational Research 

Alderson, D. L., G. G. Brown, W. M. Carlyle and R. K. Wood (NAVAL POSTGRADUATE SCHOOL 

MONTEREY CA DEPT OF OPERATIONS RESEARCH) (2011). "Solving defender-attacker-defender 

models for infrastructure defense." Available at: Accessed  

Alguacil, N., A. Delgadillo and J. M. Arroyo (2014). "A trilevel programming approach for electric grid 

defense planning." Computers & Operations Research 41: 282-290. 

Australian Government (2010). "Critical infrastructure resilience strategy." Available at: 

https://www.tisn.gov.au/Documents/Australian+Government+s+Critical+Infrastructure+Resilience+Str

ategy.pdf, Accessed October 12, 2017. 

Batke, S. P., M. Jocque and D. L. Kelly (2014). "Modelling hurricane exposure and wind speed on a 

mesoclimate scale: a case study from Cusuco NP, Honduras." PloS one 9(3): e91306. 

Bayliss, C., C. R. Bayliss and B. J. Hardy (2012). Transmission and distribution electrical engineering, 

Elsevier. 

Bertsimas, D., D. B. Brown and C. Caramanis (2011). "Theory and applications of robust optimization." 

SIAM review 53(3): 464-501. 

Bertsimas, D., E. Litvinov, X. A. Sun, J. Zhao and T. Zheng (2013). "Adaptive robust optimization for the 

security constrained unit commitment problem." IEEE Transactions on Power Systems 28(1): 52-63. 

Bhuiyan, M. and R. Allan (1994). "Inclusion of weather effects in composite system reliability evaluation 

using sequential simulation." IEE Proceedings-Generation, Transmission and Distribution 141(6): 575-584. 

Bjarnadottir, S., Y. Li and M. G. Stewart (2012). "Hurricane risk assessment of power distribution poles 

considering impacts of a changing climate." Journal of Infrastructure Systems 19(1): 12-24. 

Brown, G., M. Carlyle, J. Salmerón and K. Wood (2006). "Defending critical infrastructure." Interfaces 

36(6): 530-544. 

Brown, R. (2009). "Cost-benefit analysis of the deployment of utility infrastructure upgrades and storm 

hardening programs." Quanta Technology, Raleigh. 

Bruneau, M., S. E. Chang, R. T. Eguchi, G. C. Lee, T. D. O’Rourke, A. M. Reinhorn, M. Shinozuka, K. 

Tierney, W. A. Wallace and D. Von Winterfeldt (2003). "A framework to quantitatively assess and enhance 

the seismic resilience of communities." Earthquake spectra 19(4): 733-752. 

Buldyrev, S. V., R. Parshani, G. Paul, H. E. Stanley and S. Havlin (2009). "Catastrophic cascade of failures 

in interdependent networks." arXiv preprint arXiv:0907.1182. 

Campbell, R. J. (2012). Weather-related power outages and electric system resiliency, Congressional 

Research Service, Library of Congress Washington, DC. 



Manuscript submitted to European Journal of Operational Research 

Canham, C. D., M. J. Papaik and E. F. Latty (2001). "Interspecific variation in susceptibility to windthrow 

as a function of tree size and storm severity for northern temperate tree species." Canadian Journal of Forest 

Research 31(1): 1-10. 

Coffrin, C., P. Van Hentenryck and R. Bent (2012). Last-Mile Restoration for Multiple Interdependent 

Infrastructures. AAAI. 

Commission of the European Communities (2006). "Communication from the Commission on a European 

Programme for Critical Infrastructure Protection." Available at: http://eur-

lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2006:0786:FIN:EN:PDF, Accessed October 12, 2017. 

Cutter, S. L., A. Ismail-Zadeh, I. Alcantara-Ayala, O. Altan, D. N. Baker, S. Briceno, H. Gupta, A. Holloway, 

D. Johnston and G. A. McBean (2015). "Global risks: pool knowledge to stem losses from disasters." Nature 

522(7556). 

Davis, C., W. Wang, S. S. Chen, Y. Chen, K. Corbosiero, M. DeMaria, J. Dudhia, G. Holland, J. Klemp 

and J. Michalakes (2008). "Prediction of landfalling hurricanes with the advanced hurricane WRF model." 

Monthly Weather Review 136(6): 1990-2005. 

Department for Environment (Food & Rural Affairs) (2011). "Climate resilient infrastructure: preparing for 

a changing climate." Available at: https://www.gov.uk/government/publications/climate-resilient-

infrastructure-preparing-for-a-changing-climate--2, Accessed October 12, 2017. 

Duffey, R. B. and T. Ha (2013). "The probability and timing of power system restoration." IEEE 

Transactions on power Systems 28(1): 3-9. 

Espinoza, S., M. Panteli, P. Mancarella and H. Rudnick (2016). "Multi-phase assessment and adaptation of 

power systems resilience to natural hazards." Electric Power Systems Research 136: 352-361. 

Fang, Y.-P., N. Pedroni and E. Zio (2016). "Resilience-based component importance measures for critical 

infrastructure network systems." IEEE Transactions on Reliability 65(2): 502-512. 

Fang, Y., N. Pedroni and E. Zio (2015). "Optimization of Cascade‐Resilient Electrical Infrastructures and 

its Validation by Power Flow Modeling." Risk Analysis 35(4): 594-607. 

Fang, Y. and G. Sansavini (2017). "Emergence of Antifragility by Optimum Postdisruption Restoration 

Planning of Infrastructure Networks." Journal of Infrastructure Systems 23(4): 04017024. 

Fang, Y. and G. Sansavini (2017). "Optimizing power system investments and resilience against attacks." 

Reliability Engineering & System Safety 159: 161-173. 

Fang, Y., G. Sansavini and Z. Enrico (2017). "An Optimization-Based Mathematical Framework for the 

Identification of Infrastructure Vulnerabilities under Natural Hazards." Risk Analysis Under review. 

Franchin, P. and F. Cavalieri (2015). "Probabilistic assessment of civil infrastructure resilience to 

earthquakes." Computer‐Aided Civil and Infrastructure Engineering 30(7): 583-600. 



Manuscript submitted to European Journal of Operational Research 

Gong, J., J. E. Mitchell, A. Krishnamurthy and W. A. Wallace (2014). "An interdependent layered network 

model for a resilient supply chain." Omega 46: 104-116. 

González, A. D., L. Dueñas‐Osorio, M. Sánchez‐Silva and A. L. Medaglia (2016). "The interdependent 

network design problem for optimal infrastructure system restoration." Computer‐Aided Civil and 

Infrastructure Engineering 31(5): 334-350. 

Grigg, C., P. Wong, P. Albrecht, R. Allan, M. Bhavaraju, R. Billinton, Q. Chen, C. Fong, S. Haddad and 

S. Kuruganty (1999). "The IEEE reliability test system-1996. A report prepared by the reliability test system 

task force of the application of probability methods subcommittee." IEEE Transactions on power systems 

14(3): 1010-1020. 

Han, S. R., S. D. Guikema and S. M. Quiring (2009). "Improving the predictive accuracy of hurricane power 

outage forecasts using generalized additive models." Risk analysis 29(10): 1443-1453. 

Hangan, H., E. Savory, A. El Damatty, J. Galsworthy and C. Miller (2008). Modeling and prediction of 

failure of transmission lines due to high intensity winds. Structures Congress 2008: Crossing Borders. 

He, F. and J. Zhuang (2016). "Balancing pre-disaster preparedness and post-disaster relief." European 

Journal of Operational Research 252(1): 246-256. 

Holland, G. J., J. I. Belanger and A. Fritz (2010). "A revised model for radial profiles of hurricane winds." 

Monthly Weather Review 138(12): 4393-4401. 

Hosseini, S., K. Barker and J. E. Ramirez-Marquez (2016). "A review of definitions and measures of system 

resilience." Reliability Engineering & System Safety 145: 47-61. 

Jabr, R. (2013). "Robust transmission network expansion planning with uncertain renewable generation and 

loads." IEEE Transactions on Power Systems 28(4): 4558-4567. 

Kröger, W. and E. Zio (2011). Vulnerable systems, Springer Science & Business Media. 

Lee II, E. E., J. E. Mitchell and W. A. Wallace (2007). "Restoration of services in interdependent 

infrastructure systems: A network flows approach." IEEE Transactions on Systems, Man, and Cybernetics, 

Part C (Applications and Reviews) 37(6): 1303-1317. 

Li, G., P. Zhang, P. B. Luh, W. Li, Z. Bie, C. Serna and Z. Zhao (2014). "Risk analysis for distribution 

systems in the northeast US under wind storms." IEEE Transactions on Power Systems 29(2): 889-898. 

Li, Y. and B. R. Ellingwood (2006). "Hurricane damage to residential construction in the US: Importance 

of uncertainty modeling in risk assessment." Engineering structures 28(7): 1009-1018. 

Lin, N., K. Emanuel, M. Oppenheimer and E. Vanmarcke (2012). "Physically based assessment of hurricane 

surge threat under climate change." Nature Climate Change 2(6): 462. 

Lindell, M. K. and C. S. Prater (2003). "Assessing community impacts of natural disasters." Natural hazards 

review 4(4): 176-185. 



Manuscript submitted to European Journal of Operational Research 

Liu, H., R. A. Davidson and T. V. Apanasovich (2007). "Statistical forecasting of electric power restoration 

times in hurricanes and ice storms." IEEE Transactions on Power Systems 22(4): 2270-2279. 

Losada, C., M. P. Scaparra and J. R. O’Hanley (2012). "Optimizing system resilience: a facility protection 

model with recovery time." European Journal of Operational Research 217(3): 519-530. 

Louth, D. (Connecticut Light & Power) (2011). "Governor’s Two-Storm Panel:  Distribution Infrastructure 

Hardening Options and Recommendations." Available at: 

http://www.ctconstruction.org/files/public/Two_Storm_Panel_Storm_Hardening.pdf, Accessed October 

2017. 

MacKenzie, C. A. and C. W. Zobel (2016). "Allocating Resources to Enhance Resilience, with Application 

to Superstorm Sandy and an Electric Utility." Risk Analysis 36(4): 847-862. 

Mohanpurkar, M., H. V. Sogbi and S. Suryanarayanan (2015). Geographical Information Systems and Loop 

Flows in Power Systems. Electric Power Engineering Research and Education, Springer: 135-153. 

Montz, B. E., G. A. Tobin and R. R. Hagelman III (2017). Natural hazards: explanation and integration, 

Guilford Publications. 

Nateghi, R., S. D. Guikema and S. M. Quiring (2011). "Comparison and validation of statistical methods 

for predicting power outage durations in the event of hurricanes." Risk analysis 31(12): 1897-1906. 

Neyshabouri, S. and B. P. Berg (2017). "Two-stage robust optimization approach to elective surgery and 

downstream capacity planning." European Journal of Operational Research 260(1): 21-40. 

NOAA (2016). "Tracking data of the Typhoon Meranti." 

Nurre, S. G., B. Cavdaroglu, J. E. Mitchell, T. C. Sharkey and W. A. Wallace (2012). "Restoring 

infrastructure systems: An integrated network design and scheduling (INDS) problem." European Journal 

of Operational Research 223(3): 794-806. 

Ouyang, M. (2014). "Review on modeling and simulation of interdependent critical infrastructure systems." 

Reliability engineering & System safety 121: 43-60. 

Ouyang, M. (2017). "A mathematical framework to optimize resilience of interdependent critical 

infrastructure systems under spatially localized attacks." European Journal of Operational Research 262(3): 

1072-1084. 

Ouyang, M. and L. Dueñas-Osorio (2014). "Multi-dimensional hurricane resilience assessment of electric 

power systems." Structural Safety 48: 15-24. 

Ouyang, M. and Y. Fang (2017). "A mathematical framework to optimize critical infrastructure resilience 

against intentional attacks." Computer‐Aided Civil and Infrastructure Engineering. 

Panteli, M. and P. Mancarella (2015). "Influence of extreme weather and climate change on the resilience of 

power systems: Impacts and possible mitigation strategies." Electric Power Systems Research 127: 259-270. 



Manuscript submitted to European Journal of Operational Research 

Panteli, M. and P. Mancarella (2015). "Modeling and evaluating the resilience of critical electrical power 

infrastructure to extreme weather events." IEEE Systems Journal. 

Panteli, M., C. Pickering, S. Wilkinson, R. Dawson and P. Mancarella (2017). "Power System Resilience to 

Extreme Weather: Fragility Modeling, Probabilistic Impact Assessment, and Adaptation Measures." IEEE 

Transactions on Power Systems 32(5): 3747-3757. 

Pidgeon, N. (2012). "Climate change risk perception and communication: addressing a critical moment?" 

Risk Analysis 32(6): 951-956. 

Presidential Policy Directive (PPP) (2013). "Critical Infrastructure Security and Resilience." PPD-21, 

Available at: https://obamawhitehouse.archives.gov/the-press-office/2013/02/12/presidential-policy-

directive-critical-infrastructure-security-and-resil, Accessed October 12, 2017. 

Rinaldi, S. M., J. P. Peerenboom and T. K. Kelly (2001). "Identifying, understanding, and analyzing critical 

infrastructure interdependencies." IEEE Control Systems 21(6): 11-25. 

Rocchetta, R., Y. Li and E. Zio (2015). "Risk assessment and risk-cost optimization of distributed power 

generation systems considering extreme weather conditions." Reliability Engineering & System Safety 136: 

47-61. 

Ruiz, C. and A. J. Conejo (2015). "Robust transmission expansion planning." European Journal of 

Operational Research 242(2): 390-401. 

Salman, A. M., Y. Li and M. G. Stewart (2015). "Evaluating system reliability and targeted hardening 

strategies of power distribution systems subjected to hurricanes." Reliability Engineering & System Safety 

144: 319-333. 

Savory, E., G. A. Parke, M. Zeinoddini, N. Toy and P. Disney (2001). "Modelling of tornado and microburst-

induced wind loading and failure of a lattice transmission tower." Engineering structures 23(4): 365-375. 

Scaparra, M. P. and R. L. Church (2008). "A bilevel mixed-integer program for critical infrastructure 

protection planning." Computers & Operations Research 35(6): 1905-1923. 

Shannon, C. E. and W. Weaver (1998). The mathematical theory of communication, University of Illinois 

press. 

Sharkey, T. C., B. Cavdaroglu, H. Nguyen, J. Holman, J. E. Mitchell and W. A. Wallace (2015). 

"Interdependent network restoration: On the value of information-sharing." European Journal of Operational 

Research 244(1): 309-321. 

Thiele, A., T. Terry and M. Epelman (2009). "Robust linear optimization with recourse." Rapport technique: 

4-37. 

Vespignani, A. (2010). "Complex networks: The fragility of interdependency." Nature 464(7291): 984-985. 



Manuscript submitted to European Journal of Operational Research 

Vickery, P. J. and P. F. Skerlj (2005). "Hurricane gust factors revisited." Journal of Structural Engineering 

131(5): 825-832. 

Wang, Y., C. Chen, J. Wang and R. Baldick (2016). "Research on resilience of power systems under natural 

disasters—A review." IEEE Transactions on Power Systems 31(2): 1604-1613. 

Xie, Q. and R. Zhu (2011). "Earth, wind, and ice." IEEE Power and Energy Magazine 9(2): 28-36. 

Yao, Y., T. Edmunds, D. Papageorgiou and R. Alvarez (2007). "Trilevel optimization in power network 

defense." IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 37(4): 

712-718. 

Yuan, W., J. Wang, F. Qiu, C. Chen, C. Kang and B. Zeng (2016). "Robust optimization-based resilient 

distribution network planning against natural disasters." IEEE Transactions on Smart Grid 7(6): 2817-2826. 

Zapata, C., S. Silva, H. Gonzalez, O. Burbano and J. Hernandez (2008). Modeling the repair process of a 

power distribution system. Transmission and Distribution Conference and Exposition: Latin America, 2008 

IEEE/PES, IEEE. 

Zeng, B. and L. Zhao (2013). "Solving two-stage robust optimization problems using a column-and-constraint 

generation method." Operations Research Letters 41(5): 457-461. 

Zhang, C., X. Liu, Y. Jiang, B. Fan and X. Song (2016). "A two-stage resource allocation model for lifeline 

systems quick response with vulnerability analysis." European Journal of Operational Research 250(3): 855-

864. 

Zhao, L. and B. Zeng (2012). "An exact algorithm for two-stage robust optimization with mixed integer 

recourse problems." submitted, available on Optimization-Online. org. 

Zio, E. (2016). "Challenges in the vulnerability and risk analysis of critical infrastructures." Reliability 

Engineering & System Safety 152: 137-150. 

Zio, E. and G. Sansavini (2011). "Modeling interdependent network systems for identifying cascade-safe 

operating margins." IEEE Transactions on Reliability 60(1): 94-101. 

 


