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ABSTRACT 

This paper proposes a novel mathematical optimization framework for the identification of the 

vulnerabilities of electric power infrastructure systems (which is a paramount example of critical 

infrastructure) due to natural hazards. In this framework, the potential impacts of a specific natural 

hazard on an infrastructure are firstly evaluated, in terms of failure and recovery probabilities of system 

components; these are, then, fed into a bi-level attacker-defender interdiction model to determine the 

critical components whose failures lead to the largest system functionality loss. The proposed framework 

bridges the gap between the difficulties of accurately predicting the hazard information in classical 

probability-based analyses and the over-conservatism of the pure attacker-defender interdiction models. 

Mathematically, the proposed model configures a bi-level max-min mixed integer linear programming 

(MILP) that is challenging to solve. For its solution, the problem is casted into an equivalent one-level 

MILP that can be solved by efficient global solvers. The approach is applied to a case study concerning 

the vulnerability identification of the georeferenced RTS24 test system under simulated wind storms. 

The numerical results demonstrate the effectiveness of the proposed framework for identifying critical 

locations under multiple hazard events and, thus, for providing a useful tool to help decision-makers in 

making more-informed pre-hazard preparation decisions.  
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1. INTRODUCTION 

Modern society relies on the effective functioning of critical infrastructure (CI) systems such as the 

power grid, transportation network, Internet, water distribution network, etc. to provide public services, 

improve quality of life, sustain private profits and spur economic growth. Recent years have seen many 

disruptions of CIs caused by natural disasters (i.e., floods, ice and wind storms, hurricanes, tsunamis 

and earthquakes) leading to a substantial impact on the human livelihoods and economic properties 

(Munich, Kron, & Schuck, 2014). Furthermore, there is a significant concern that the number and 

severity of these extreme natural events will increase in the future as a result of global warming and 

climate changes (Cutter et al., 2015). Hence, there is a need of techniques and tools to assess the impact 

of extreme natural events on CIs, in support policymakers and investments in system protection practices 

(Cadini, Agliardi, & Zio, 2017a, 2017b; Rocchetta, Li, & Zio, 2015). 

A key component of the protection of CIs against natural disasters for managing and mitigating 

service disruptions is the ability to evaluate potential vulnerabilities. Vulnerability analysis for CI 

systems has been given increased attention in the research community during the last decades. Different 

definitions and pre-analytic visions of vulnerability have been developed by diverse researchers and 

policy makers from different knowledge domains. As a result, the implementation of vulnerability 

analysis takes different forms (Johansson, Hassel, & Zio, 2013). For example, Haimes (2006) defines 

vulnerability as “the manifestation of the inherent states of the system that can be exploited to adversely 

affect that system”– stressing that vulnerability is concerned with the intrinsic characteristics of a system 

rather than the environment in which the system is located. Aven (2011) interprets vulnerability as the 

uncertainty about and severity of the consequences of the activity given the occurrence of the accident 

initiating event, which is scenario-specific. As a matter of fact, albeit vulnerability is often viewed as an 

inherent characteristic of a system, most researchers acknowledge that vulnerability is conditional on a 

hazard or that it is useless to discuss vulnerability independent of its hazard context (Birkmann, 2007). 

Overall, the concept of vulnerability has been continuously widened and broadened towards a more 

comprehensive vision, and interested readers can refer to some relevant discussions and overviews on 

this in the literature (Ezell, 2007; Füssel, 2007; Kröger & Zio, 2011; Murray & Grubesic, 2007; Scholz, 

Blumer, & Brand, 2012; Zio, 2016; Zio & Aven, 2011).  

In the context of the present paper, we follow previous studies (Apostolakis & Lemon, 2005; Ezell, 

2007) and view vulnerability as a measure of system susceptibility to scenarios for more narrowly 

identifying weak points in the system within the context of a scenario. Thus, vulnerability analysis is 

adopted from the perspective of critical components analysis that focuses on the identification of 

important components or combinations of components with regard to the impact on system functionality 

loss subject to a natural hazard (Jönsson, Johansson, & Johansson, 2008; Oh, Deshmukh, & Hastak, 

2012; Zio & Sansavini, 2011, 2013). In this paper, we carry out the vulnerability analysis in support to 
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short-term pre-event preparation practices, e.g. choosing critical power poles to be hardened or 

allocating backup power units in an electrical power system before a specific typhoon strikes the system. 

A range of approaches have been proposed in the literature for the vulnerability assessment of CI 

systems under natural hazards (Zio & Kroger, 2009). Sohn (2006) used an accessibility perspective to 

study the vulnerability of a highway network under flood damage by evaluating the significance of its 

links. Dawson, Peppe, and Wang (2011) proposed a multi-agent simulation method coupled with a 

hydrodynamic model to evaluate the vulnerability of individuals to flooding threats. Jenelius and 

Mattsson (2012) presented a grid-based approach to analyze the vulnerability of road networks under 

area-covering disruptions. The road network is covered using a grid of uniformly shaped and sized cells, 

where each cell represents the spatial extent of a disrupting event. Adachi and Ellingwood (2008) 

introduced a probability-based simulation method to study the seismic vulnerability of a municipal water 

system taking into account the supporting electrical power system. Na and Shinozuka (2009) applied a 

similar simulation-based method for the seismic loss estimation of seaport transportation systems. Hong, 

Ouyang, Peeta, He, and Yan (2015) proposed a comprehensive methodology to quantitatively assess the 

railway system vulnerability under floods using historical data and GIS technology. Other important 

investigations concerning the vulnerabilities of various CI systems under natural hazards include the 

seismic vulnerability analysis of the power grid and water pipeline system in Shelby County, USA 

(Hernandez-Fajardo & Dueñas-Osorio, 2011, 2013), and of the European gas and electricity systems 

(Poljanšek, Bono, & Gutiérrez, 2012), the vulnerability assessment of the power grid and gas network 

under wind storms (Ouyang & Dueñas-Osorio, 2014; Salman, Li, & Stewart, 2015; Winkler, Duenas-

Osorio, Stein, & Subramanian, 2010), the vulnerability of telecommunication systems to hurricanes 

(Kwasinski, 2010) and the lightning vulnerability of the power grid (Dueñas-Osorio & Vemuru, 2009). 

The above vulnerability studies analyze different CI systems and different types of natural hazards, 

but generally entail a probability-based analysis framework, which includes the following steps: i) threat 

characterization by modeling the specific natural hazard, ii) estimation of failure probabilities of system 

components under the hazard scenario, iii) simulation of the damage state of each component, and iv) 

modeling and analysis of the system functional response given the component damages. This simulation-

based analysis framework is valuable for assessing system vulnerability in a statistical manner, i.e., 

computing the average system performance loss or identifying the critical components in the system, 

based on different realizations of a specific hazard. However, for a specific realization/estimation of a 

hazard event, the uncertainty within the estimated failure probabilities can be propagated by the 

simulation-based methods, leading to underestimation or overestimation of system vulnerability. 

Actually, it is extremely difficult to accurately predict the failure probabilities of each components in a 

CI system exposed to a natural hazard. Therefore, there is a strong need to develop more robust tools to 

assist decision makers during pre-hazard preparation (Pidgeon, 2012).  
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Optimization methods have been applied for the identification of weak locations vital to the 

operation of network systems. Interdiction models have been developed to assess the vulnerabilities of 

network systems based on the component importance to system functionality (Arroyo, 2010; Bier, Gratz, 

Haphuriwat, Magua, & Wierzbicki, 2007; G. Brown, Carlyle, Salmeron, & Wood, 2005; Church, 

Scaparra, & Middleton, 2004; Delgadillo, Arroyo, & Alguacil, 2010; Matisziw & Murray, 2009; 

Matisziw, Murray, & Grubesic, 2007; Ramirez-Marquez, 2010; Salmeron, Wood, & Baldick, 2004; 

Wood, 2011). In the classical problem of network interdiction, an intelligent attacker’s activities are 

modeled using the constructs of network optimization (e.g., maximum flows, multi-commodity flows, 

and shortest paths), and attacks target the network’s components to disrupt the network’s functionality 

to the maximum, resulting in a bi-level attacker-defender Stackelberg game in a mathematical form of 

“max-min” (or “min-max”) programming (Wood, 2011). Its extension to trilevel defender-attacker-

defender system defense models in supporting the allocation of limited protection resources have also 

been studied in CI protection planning (G. Brown, Carlyle, Salmerón, & Wood, 2006; Y.-P. Fang & Zio, 

2019; Y. Fang & Sansavini, 2017; Ouyang & Fang, 2017). By exploiting optimization, these interdiction 

models intend to establish bounds for network vulnerability in terms of critical components associated 

with worst-case impacts to system performance. In other words, these methods might overestimate the 

system performance loss during the vulnerability analysis of a CI system under a natural hazard, and the 

identified critical components may not necessarily be failed by the hazard. 

To overcome the drawbacks of the aforementioned methods, this paper presents a novel 

optimization-based mathematical framework for the identification of the vulnerabilities of electric 

power infrastructure systems (which is a paramount example of CI) under natural hazards by combining 

the interdiction models and the predicted information of specific natural hazards. In particular, the time-

varying failure probabilities of system components are firstly computed by integrating the spatial-

temporal profile of the natural hazard and the structural fragilities of the components. The restoration 

time of components is also estimated probabilistically. Then, the attacker-defender interdiction game is 

modeled as an optimization problem, which incorporates the probabilities of failure and restoration of 

the components, and identifies critical parts of the system. Therefore, the failure scenarios identified by 

the optimization represent the most-likely worst cases under the specific hazard. The proposed approach 

bridges the gap between the difficulties of accurately predicting the hazard information in the classical 

probability-based analyses and the over-conservativeness of the pure attack-defender interdiction 

models for CI vulnerabilities analysis under a specific natural hazard, thus, providing a useful tool to 

help decision-makers in making more-informed pre-hazard preparation decisions. 

The remainder of the paper is organized as follows. Section 2 introduces the models for evaluating 

the impacts of natural hazards on CI systems, including threat characterization, structural fragility and 

component restoration time models. In Section 3, the detailed formulation of the optimization 

framework for the identification of CI vulnerabilities is proposed. Section 4 proposes the solution 

methodology for the proposed optimization model. Section 5 presents the numerical results by applying 
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the proposed framework to the georeferenced RTS24 power test system. Relevant discussion and 

concluding remarks are provided in Section 6. 

2. IMPACT OF NATURAL HAZARDS ON CRITICAL 

INFRASTRUCTURES 

Depending on the nature of the formation process, natural disasters can be divided into: geophysical 

(earthquake, volcano, and tsunami), meteorological (tropical storm, tornado, blizzard, ice storm, and 

drought), and hydrological (flood), biological (epidemics and insect pests), and extraterrestrial (meteor). 

The former three types are generally most destructive to CI systems. They include not just one single 

instantaneous impact, but multiple and even continuous impacts. For instance, the windstorms that 

affected China in 2005 caused more than 60 high-voltage power transmission towers to collapse, and 

the ice and snow storms that devastated a large area in South China lasted for hours (Xie & Zhu, 2011). 

Disasters can even last for days, like the hurricane Sandy (2012) in the United States, where many of 

the CIs were wiped out in most of the eastern US (especially the coastal Mid-Atlantic States). Moreover, 

hazard impacts often are difficult to characterize because a given natural hazard may initiate a number 

of different threats. For example, tropical storms can cause damages through wind, rain, storm surge 

and islanding flooding. The most significant characteristics for assessing the disaster impacts are speed, 

onset, availability of perceptual cues (such as wind, rain, or ground movement), intensity, scope and 

duration of impact (Lindell & Prater, 2003). Table I summarizes the basic characteristics of natural 

disasters (Guikema, Davidson, & Liu, 2006; Wang, Chen, Wang, & Baldick, 2016).  

Table I. Characteristics of natural disasters 

Disaster type Impact region Predictability Span/Area Affecting time 

Tropical storm 

hurricane 
Coastal regions 

24-72 hours, 

moderate to good 

Large (radius up 

to 1500km) 
Hours to days 

Tornado Inland plains 
0-2 hours, bad to 

moderate 

Small (radius up 

to 8km) 

Minutes to 

hours 

Blizzard, ice 

storm 

High latitude 

regions 

24-72 hours, 

moderate to good 

Large (up to 

1500 km) 
Hours to days 

Earthquake 
Regions on fault 

lines 

Seconds to 

minutes, bad 
Small to large 

Minutes to days 

(aftershock) 

Tsunami Coastal regions 
Minutes to hours, 

moderate 
Small to large 

Minutes to 

hours 

Drought, Wild 

fire 
Inland regions Days, good Medium to large Days to months 

Flooding 
Low-lying 

regions 
Moderate to good Small to large Days to months 

Physical impacts of natural disasters on CIs vary substantially across different hazard types and CI 

systems. The prediction and evaluation of the impacts are challenging tasks due to the presence of 
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uncertainty about the highly dynamic evolution of hazards, as well as the inherent complexity of large-

scale CI systems. In the remaining part of this section, we introduce how the impacts of a specific type 

of natural hazard, i.e., wind storms, on components of power systems can be analyzed through the 

combination of threat characterization, fragility models of system components and system restoration 

models. 

2.1 Threat Characterization 

The primary step to evaluate the impacts of a specific natural hazard on a CI system is to model the 

spatiotemporal profile of all the threats engendered from the hazard because CI systems cover extensive 

geographic scales (Kröger & Zio, 2011; Zio, 2016). Threat characterization models aim to associate the 

forecasted hazard parameters with the estimation of local threat intensity for each CI components.  

A wind storm (typhoon or hurricane) event is represented by its key information forecasted, e.g. 

landing time and positions, approaching angle, translational velocity, central pressure difference, 

maximum wind speed, radius of maximum wind, which can be obtained through climate models (CMs) 

and/or real measurement data (Davis et al., 2008). The majority of wind-storm-related power outages in 

power transmission happens because trees are blown onto power lines and poles, and/or high intense 

winds directly blow down poles during storms (Han, Guikema, & Quiring, 2009). Thus, the intensity of 

wind is regarded as the primary threat of storms. The wind speeds profile for a storm can be generated 

through parametric radial wind field models (Batke, Jocque, & Kelly, 2014; Davis et al., 2008; Holland, 

1980; Holland, Belanger, & Fritz, 2010). The wind speed at location (𝑥, 𝑦) at time 𝑡 can be represented 

by (Holland et al., 2010) 

𝑣(𝑥, 𝑦; 𝑡) = 𝑣𝑚 {(
𝑅𝑚

𝑟
)

𝑏

𝑒
[1−(

𝑅𝑚
𝑟

)
𝑏

]
}

𝑎

 (1) 

where 𝑟 is the distance from the point to the storm center (𝑥𝑐𝑒𝑛𝑡𝑒𝑟(𝑡), 𝑦𝑐𝑒𝑛𝑡𝑒𝑟(𝑡)), which moves in the 

translational velocity 𝑣𝑡 of the storm, 𝑣𝑚 is the maximum wind speed, 𝑅𝑚 is the radius of maximum 

wind (also called as wind radius) and can be calculated from the storm eye-diameter (ED) (Batke et al., 

2014), 𝑏 is the empirical Holland parameter and can be estimated based on the central pressure of the 

storm, and 𝑎 is a scaling parameter that adjusts the wind profile shape and a value of 𝑎 = 0.5 is typically 

used (Holland et al., 2010). Fig. 1 shows an example of wind profile of the Typhoon Meranti at 2016 

September 14, 18:00 (GMT+8) when making landfall at Xiamen, China, calculated by Eq. (1) based on 

the dataset from the National Oceanic and Atmospheric Administration (NOAA) of the United States 

(NOAA, 2016). 

Structural damage is mostly related to peak gust wind speed, which is measured as the largest speed 

during a specified period (usually 3 seconds). A gust factor can be used to convert the surface wind 

speed calculated by Eq. (1) to the most likely peak gust speed. A gust model has been developed for 
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modeling gust factors (Vickery & Skerlj, 2005), and a justified empirical value of 1.287 can be used 

(Xu & Brown, 2008). 

 

Fig. 1.  Wind profile of the Typhoon Meranti at 2016 September 14, 18:00 (GMT+8) when making landfall at 

Xiamen, China 

Storm-induced flooding is not considered here as a major threat to power systems, though storm 

surges associated with landfalling wind storms can cause damages to underground power components 

and substations (R. Brown, 2009). Yet, detailed threat models of storm flooding considering local 

geospatial information exist in the literature (Aerts, Lin, Botzen, Emanuel, & de Moel, 2013; Lin, 

Emanuel, Oppenheimer, & Vanmarcke, 2012), and they can be included if relevant data are available. 

2.2 Structural Fragility Models 

The functionality state of each components within a CI system can be determined by the following 

three steps: i) identify the key (types of) components of the system, ii) modeling the fragility of 

components, and iii) failure probability assignment.  

In the first step, the types of components identified vulnerable to the threat, whose failures could 

possibly have a high impact on system performance, are identified. Although power systems comprise 

many types of components, it is practical to focus on the most important ones, e.g. substations and 

overhead lines (including the support structures and the conductors between structures). As a matter of 

fact, power outages due to storm-type events are most often a result of damage to overhead power lines 

caused by strong winds (Campbell, 2012). Therefore, in this study, we assume that generation and 

substation plants are not directly affected by the windstorm and consider only the failures of overhead 

lines, although generation nodes can be disconnected due to outages of transmission corridors. 

Fragility analysis is required to compute the probability of failure of components under certain levels 

of threat intensity. The concept of fragility curves originates from structural reliability analysis (Booker, 

Torres, Guikema, Sprintson, & Brumbelow, 2010; Espinoza, Panteli, Mancarella, & Rudnick, 2016; Y. 
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Li & Ellingwood, 2006), and, represents the conditional probability of failure of a structural element as 

a function of disaster strength parameters like wind speed and precipitation, as illustrated in Fig. 2. 

 

Fig. 2. Generic fragility curve  

The calculation of fragility curves is often based on parametric statistical models, taking into account 

factors like the designed strength and aging of the components. For different CI components, different 

fragility curves may be used as best fits to historical data. Regarding power systems, there is a range of 

literature discussing the structural fragility models subject to wind loading (Bjarnadottir, Li, & Stewart, 

2012; Fenton & Sutherland, 2011; Hangan, Savory, El Damatty, Galsworthy, & Miller, 2008; Salman 

et al., 2015; Savory, Parke, Zeinoddini, Toy, & Disney, 2001). The lognormal distribution is usually 

assumed to describe the fragility curves of support poles and overhead power lines (Bjarnadottir et al., 

2012; Salman et al., 2015), and the direct threat-induced failure probability 𝑝(𝑣(𝑡)) as a function of the 

wind speed 𝑣(𝑡) is given by the following lognormal cumulative distribution function (CDF)  

𝑝(𝑣(𝑡)) = Φ [
ln(𝑣(𝑡)/𝑚)

𝜎
] (2) 

where Φ(⋅) is the CDF of the standard normal distribution, 𝑚 is the median of the fragility function, and 

𝜎 is the logarithmic standard deviation of the intensity measure. The values of the parameters 𝑚 and 𝜎 

are related with the structural characteristics of the component under consideration.  

In the third step, the overall failure probability of each component is computed by taking into account 

direct and indirect threats that could lead to failure. For example, besides failures caused by direct wind 

load, overhead power lines also fail due to falling trees and flying debris. Actually, around 55.2% of 

power outages in the U.S. Northeast regional distribution systems are caused by trees falling down 

during wind storms (G. Li et al., 2014). In addition, overhead lines consist of support poles, conductor 

wires and other types of equipment (Ouyang & Dueñas-Osorio, 2014). The collapse of a single pole or 

conductor results in the disconnection of the entire line. Therefore, the overall failure probability of an 

overhead line is modeled as a series system with the fragility analysis of each pole and conductor 
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associated with that line. It is assumed that the fragility of different components of an overhead line is 

independent. The overall failure probability of an overhead line 𝑙 under wind speed 𝑣(𝑡) is calculated 

as 

𝑝𝑙,𝑓𝑎𝑖𝑙𝑢𝑟𝑒(𝑣(𝑡)) = 1 − ∏[1 − 𝑝𝑆𝑘
(𝑣(𝑡))]

𝑚

𝑘=1

∏[1 − 𝑝𝐶𝑘
(𝑣(𝑡))]

𝑛

𝑘=1

 (3) 

where 𝑚 is the number of poles supporting line 𝑙, 𝑛 is the number of conductor lines between two 

adjacent poles at line 𝑙, 𝑝𝑆𝑘
 is the conditional failure probability of the 𝑘th pole at line 𝑙 which can be 

given by Eq. (2), and 𝑝𝐶𝑘
 is defined as the failure probability of conductor 𝑘 between two poles. This 

probability can be modeled by (Ouyang & Dueñas-Osorio, 2014; Winkler et al., 2010): 

𝑝𝐶𝑘
(𝑣(𝑡)) = max (𝑝𝐶𝑘,𝑤(𝑣(𝑡)), 𝜛𝑝𝐶𝑘,𝑤𝑡(𝑣(𝑡))) (4) 

where 𝑝𝐶𝑘,𝑤(𝑣(𝑡))  is the direct wind-induced failure probability of conductor 𝑘 ; 𝑝𝐶𝑘,𝑤𝑡(𝑣(𝑡)) 

represents the fallen tree-induced failure probability of conductor 𝑘; and 𝜛 is the average tree-induced 

failure probability of overhead conductors, reflecting the efforts of trimming trees of utilities and 

assumed constant (Ouyang & Dueñas-Osorio, 2014). The direct wind-induced failure probability 

𝑝𝐶𝑘,𝑤(𝑣(𝑡)) can be computed by Eq. (2), based on the structure property parameters of the conductor 

(Bayliss, Bayliss, & Hardy, 2012). The fallen tree-induced failure probability 𝑝𝐶𝑘,𝑤𝑡(𝑣(𝑡)) can be 

calculated approximately as (Canham, Papaik, & Latty, 2001) 

log (
𝑝𝐶𝑘,𝑤𝑡(𝑣(𝑡))

1 − 𝑝𝐶𝑘,𝑤𝑡(𝑣(𝑡))
) = 𝑎𝑠 + 𝑐𝑠(𝑘𝑧𝑆𝑘)𝐷𝐻

𝑏𝑠 (5) 

where 𝑎𝑠, 𝑏𝑠, and 𝑐𝑠 are parameters related with tree species, 𝑆𝑘 the wind intensity (0-1 scale) at the 

conductor, and 𝐷𝐻 the tree diameter at breast height. The parameter 𝑆𝑘 can be calculated by dividing the 

local peak gust wind speed by the maximum wind speed in the affected area (Canham et al., 2001). 

2.3 Component Restoration Time Model 

A range of models have been proposed in the literature for the post-disaster restoration processes of 

various CI systems (Duffey & Ha, 2013; Guikema, Quiring, & Han, 2010; Liu, Davidson, & 

Apanasovich, 2007; Nateghi, Guikema, & Quiring, 2011). The output of these models is usually 

represented by restoration curves at the system level (percentage of customers with service versus time) 

or by system average interruption duration indices (SAIDI). Yet, for system criticality analyses aiming 

at supporting pre-event decision making, models for estimating the restoration times of components are 

required. The response to the disaster and the restoration time of failed CI components varies directly 

with: (i) storm categories, (ii) locations and types of damaged components, and (iii) the amount of repair 

crews and material resources available. Thus, the restoration time of a failed component can be 

expressed by 
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𝑇 = 𝑓(𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑡𝑦𝑝𝑒, 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠). (6) 

In practice it is usually challenging to have an analytic form of 𝑓(⋅). Instead, probabilistic models 

like Gaussian (Ouyang & Dueñas-Osorio, 2014) and exponential distributions (Espinoza et al., 2016; 

Zapata, Silva, Gonzalez, Burbano, & Hernandez, 2008) are traditionally used to represent the repair 

processes of power system components. Zapata et al. (2008) studied realistic historical data and showed 

that the lognormal distribution is a more appropriate model for component repair times in power systems. 

On the other hand, storm categories and intensities significantly affect the repair times of the damaged 

components, e.g., more time is needed for the repair crews to approach safely the affected areas under 

severe weather conditions. This effect can be modeled as an increase in the Mean Time To Repair 

(𝑀𝑇𝑇𝑅) of components by a factor of restoration stress (RS). For example, Espinoza et al. (2016) 

assumed random RS values in the range {2, 4} for overhead lines restoration under moderate storms. In 

practice, data about RS can be obtained or estimated from past repair experience under different storm 

categories (Bhuiyan & Allan, 1994). 

Therefore, for a given storm category, the probability that a failed component, e.g., an overhead line 

𝑙, is repaired within time 𝑇 is given by (Zapata et al., 2008) 

𝑝𝑙,𝑟𝑒𝑝𝑎𝑖𝑟(𝜏 ≤ 𝑇|𝑐𝑎𝑡𝑔) = Φ {
ln[𝑇/(𝑅𝑆𝑐𝑎𝑡𝑔 ∙ 𝑀𝑇𝑇𝑅𝑙)]

𝜎
} (7) 

where 𝑅𝑆𝑐𝑎𝑡𝑔  represents the restoration stress under storm category 𝑐𝑎𝑡𝑔 , 𝑀𝑇𝑇𝑅𝑙  is the 𝑀𝑇𝑇𝑅  of 

overhead line 𝑙 under normal operation, and 𝜎 is the logarithmic standard deviation of restoration time.  

3. MATHEMATICAL FORMULATION OF THE OPTIMIZATION 

MODEL 

For conducting the system vulnerability analysis, the failure probabilities of the CI components 

obtained from the hazard model and component fragility models can be fed to simulation-based models, 

e.g., the Sequential Monte Carlo-based time-series simulation (Espinoza et al., 2016; Kadri, Birregah, 

& Châtelet, 2014; Lindell & Prater, 2003). However, the uncertainty of the estimated failure 

probabilities can be propagated by simulation-based methods and lead to underestimation or 

overestimation of system vulnerability, especially for a specific realization of hazard event. On the other 

hand, the vulnerabilities of CI can be identified by a worst-case interdiction analysis, i.e., by an attacker-

defender bi-level programming model (Arroyo, 2010; G. Brown et al., 2005; Y. Fang & Sansavini, 2017; 

Salmeron et al., 2004). Nevertheless, the pure attacker-defender approach does not take into account the 

predicted information of specific natural hazards, as well as the spatiotemporal correlations of the natural 

hazards which strongly impact the probability of some common cause failures. Therefore, the pure 

attacker-defender approach can be misleading for the hardening of a system against specific natural 

disasters. 
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In this section, we propose a bi-level optimization model for identifying the vulnerabilities of a CI 

system under a specific hazard. The notations used in the model are given as follows: 

Indices, sets and parameters 

𝑖 Index used for buses (nodes) 

𝑙 Index used for transmission lines 

𝑉 Set of buses 

𝑉𝐺 Set of generators 

𝑉𝐷 Set of demand nodes 

𝐿 Set of transmission lines 

𝕋 Set of discrete times of hazards 

𝕌 Uncertainty set of system component failures 

𝕆(𝒖) Feasible set of system operation under a realization of an uncertainty scenario 𝒖 ∈ 𝕌 

𝑅̃(𝒖, 𝒐) System functionality loss under hazards 

𝑇𝑚𝑎𝑥 Maximal repair time of system components 

𝑋𝑙 Reactance of transmission line 𝑙  

𝑂(𝑙) Origin or sending node of line 𝑙 

𝑅(𝑙) Destination or receiving node of line 𝑙 

𝐺𝑖
𝐺 Capacity of generator 𝑖 

𝐹𝑙
𝐿 Capacity of line 𝑙 

𝑃𝑖𝑡
𝐷 Total demand at node 𝑖 at time 𝑡 

𝜃𝑚𝑎𝑥 Maximum allowable limit for 𝜃𝑖𝑡 variables 

𝑐𝑖𝑡
𝐷 Load shedding cost at node 𝑖 at time 𝑡 

Γ Budget of failure uncertainty 

Υ Budget of recovery uncertainty 

Decision variables 

𝑦𝑙𝑡 Binary variables indicating whether an overhead line 𝑙 is damaged to be offline (𝑦𝑙𝑡 = 1) 

or not (𝑦𝑙𝑡 = 0) at time 𝑡 

𝑟𝑙𝑡 Binary variables indicating whether an overhead line 𝑙 is restored to be online (𝑟𝑙𝑡 = 1) 

or not (𝑟𝑙𝑡 = 0) within time 𝑡 

𝑥𝑙𝑡 Binary variables indicating whether an overhead line 𝑙 is online (operational, 𝑥𝑙𝑡 = 1) or 

not (𝑥𝑙𝑡 = 0) at time 𝑡 

𝜃𝑖𝑡 Phase angle in node 𝑖 at time 𝑡 

𝑓𝑙𝑡 Power flow in line 𝑙 at time 𝑡 

𝑔𝑖𝑡 Power output at generator node 𝑖 ∈ 𝑉𝐺 at time 𝑡 

∆𝑃𝑖𝑡 Load shedding in node 𝑖 ∈ 𝑉𝐷 

The proposed bi-level interdiction optimization is formulated as follows: 
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max
𝒖∈𝕌

min
𝒐∈𝕆(𝒖)

𝑅̃(𝒖, 𝒐) (8) 

where 

𝑅̃(𝒖, 𝒐) = ∑ ∑ 𝑐𝑖𝑡
𝐷∆𝑃𝑖𝑡

𝑖∈𝑉𝐷𝑡∈𝕋

 (9) 

is the objective function representing the total system performance loss during a natural hazard event, 

where the variable 𝒖 represents the time-dependent failure states of the transmission lines affected by 

the event; the variable 𝒐 indicates the feasible system operation vector; 𝕌 and 𝕆 are the uncertainty set 

of transmission line failures and the feasible set of system operations, respectively. The objective 

function is calculated by the cumulative load shedding costs across all the demand nodes 𝑉𝐷 in the 

system and over the entire event duration 𝕋. The first level problem in (8) aims to identify the most 

critical failure pattern of transmission lines 𝒖 so that the system performance loss 𝑅̃(𝒖, 𝒐) is maximized. 

The vector variable 𝒖 includes information about which transmission lines are failed, and the associated 

failure and recovery times, which are modeled by the time-dependent indicator variables 𝒙, 𝒚 and 𝒓, i.e., 

𝒖 = [𝒙, 𝒚, 𝒓]. The second level problem is to minimize the system performance loss 𝑅̃(𝒖, 𝒐) due to the 

physical damage of transmission lines in the second level via feasible system operations, i.e. re-

dispatching of the power flows. 

The uncertainty set 𝕌 of component failures under a hazard is modeled as follows:  

       𝕌 = {𝒖 |∑(− log2 𝑝𝑙𝑡)𝑦𝑙𝑡

𝑙∈𝐿

≤ Γ , ∀𝑡 ∈ 𝕋 

∑ 𝑦𝑙𝑡

𝑡

≤ 1, ∀𝑙 ∈ 𝐿 

∑[− log2 𝓅̅𝑙,𝑟𝑒𝑝𝑎𝑖𝑟(𝑡|𝑐𝑎𝑡𝑔)]𝑟𝑙𝑡

𝑙∈𝐿

≤ Υ, ∀𝑡 ∈ {1, … , 𝑇𝑚𝑎𝑥} 

∑ 𝑟𝑙𝑡

𝑇𝑚𝑎𝑥

𝑡=1

≤ 1, ∀𝑙 ∈ 𝐿 

𝑥𝑙𝑡 + ∑ 𝑦𝑙𝑡

𝑡

𝑡−∑ 𝑡∙𝑟𝑙𝑡𝑡

= 1, 𝑙 ∈ 𝐿, 𝑡 ∈ 𝕋 

𝑥𝑙𝑡 , 𝑦𝑙𝑡 , 𝑟𝑙𝑡 ∈ {0,1}, ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝕋} 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

where 𝒖 = [𝒙, 𝒚, 𝒓] indicates the failure states of the overhead lines in the system over the whole time 

horizon of the hazard. Constraint (10) defines the uncertainty budget of system failure. Inspired by 

Shannon’s information theory ("7th AIMMS–MOPTA Optimization Modeling Competition," 2015; 

Shannon, 2001), this definition relates the failure probabilities 𝒑 of the system components and their 

binary damage variables 𝒚 at each time period. The parameter Γ represents the total uncertainty budget 
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of system failure, and can be assigned by the analyst. As a matter of fact, the notion of uncertainty 

budget is widely used in robust optimization for allowing the decision maker to control the conservatism 

of the robust optimization formulation, which is inherently max-min (i.e., worst-case) (Ben-Tal, El 

Ghaoui, & Nemirovski, 2009; Bertsimas, Brown, & Caramanis, 2011). Generally, a large value of 

uncertainty budget represents a low level of risk that the decision maker is willing to take, i.e., the 

decision maker is conservative. By this approach, we provide the decision maker with a knob to adjust 

for her/his risk attitude. In the constraint (10), the failure probability 𝑝𝑙𝑡 is calculated by Eq. (3). The 

constraint (10) states that the failure of a “reliable” line, i.e., having smaller failure probability 𝑝𝑙𝑡, is 

more “surprising”, i.e., takes up more failure uncertainty budget than the failure of a vulnerable line that 

has a larger failure probability 𝑝𝑙𝑡. For instance, if the failure probability of a line 𝑝𝑙𝑡 = 0, then the 

occurrence of its failure takes an infinite large failure uncertainty budget and 𝑦𝑙𝑡 will be 0, if Γ is not 

infinite. Conversely, if the failure probability 𝑝𝑙𝑡 = 1, then the occurrence of its failure takes zero budget, 

and 𝑦𝑙𝑡 will be 1 in the optimization. Therefore, given a vector 𝒑 of the failure probability of the system 

components, a large Γ implies a large system failure budget and thus a large upper limit of the number 

of failed lines. In other words, by setting a larger Γ the decision maker is willing to take a lower level of 

risk (i.e., assuming a larger quantity of “bad luck”) and, thus, obtains a larger set of worst-case failed 

lines (that he/she presumably wants to protect). Constraint (11) states that an overhead line can only fail 

once during the horizon of a hazard. Similar to constraint (10), constraint (12) bounds the uncertainty 

budget Υ for the component recovery times. A large value of Υ represents a high degree of uncertainty 

with regard to the restoration times of the failed lines. In other words, the decision maker expects a large 

quantity of “bad luck” and allows the failed lines to be restored with more “surprising” periods of time, 

e.g., longer periods of time with smaller probabilities. In (12), 𝓅̅𝑙,𝑟𝑒𝑝𝑎𝑖𝑟(𝑡|𝑐𝑎𝑡𝑔) represents the 

normalized probability that a failed line 𝑙  is recovered within time duration 𝑡(𝑡 ≤ 𝑇𝑚𝑎𝑥)  under a 

specific category of storm, and is calculated as follows: 

𝓅𝑙,𝑟𝑒𝑝𝑎𝑖𝑟(𝑡|𝑐𝑎𝑡𝑔) = 𝑝𝑙,𝑟𝑒𝑝𝑎𝑖𝑟(𝑡|𝑐𝑎𝑡𝑔) − 𝑝𝑙,𝑟𝑒𝑝𝑎𝑖𝑟(𝑡 − 1|𝑐𝑎𝑡𝑔) (16) 

𝓅̅𝑙,𝑟𝑒𝑝𝑎𝑖𝑟(𝑡|𝑐𝑎𝑡𝑔) =
𝓅𝑙,𝑟𝑒𝑝𝑎𝑖𝑟(𝑡|𝑐𝑎𝑡𝑔)

max
𝑡∈{1,…,𝑇𝑚𝑎𝑥}

𝓅𝑙,𝑟𝑒𝑝𝑎𝑖𝑟(𝑡|𝑐𝑎𝑡𝑔)
 (17) 

where 𝑝𝑙,𝑟𝑒𝑝𝑎𝑖𝑟(𝑡|𝑐𝑎𝑡𝑔) is obtained by Eq. (7). The normalized probability is used here to ensure that 

the problem is still feasible when the uncertainty budget Υ takes the value of 0. Specifically, it is noted 

that 𝓅̅𝑙,𝑟𝑒𝑝𝑎𝑖𝑟(𝑡|𝑐𝑎𝑡𝑔) always takes the value of 1 for the time period with the largest probability, i.e., 

for 𝑡∗ = 𝑎𝑟𝑔max 𝓅𝑙,𝑟𝑒𝑝𝑎𝑖𝑟(𝑡|𝑐𝑎𝑡𝑔); then, the recovery duration of a failed line 𝑙  will be 𝑡∗  in the 

optimization for Υ = 0. In practice, the values assigned to the parameter Υ can, for instance, reflect the 

decision maker’s own attitude towards restoration uncertainty; the connection between risk preference 

and the budget of uncertainty set has been studied in depth in (Bertsimas et al., 2011; Bertsimas & Thiele, 

2006). Constraint (13) indicates that a failed line is repaired only once during a hazard. Constraint (14) 



14 

 

imposes that a line is either functional, i.e., 𝑥𝑙𝑡 = 1, or failed and not being repaired, i.e., ∑ 𝑦𝑙𝑡
𝑡
𝑡−∑ 𝑡∙𝑟𝑙𝑡𝑡

=

1, where ∑ 𝑡 ∙ 𝑟𝑙𝑡𝑡  gives the repair time of the line. Constraint (15) imposes the integrity conditions for 

the variables 𝒙, 𝒚 and 𝒓. 

In the second level of (8), the feasible set of system operations under a realization of an uncertainty 

scenario 𝒖 ∈ 𝕌 for power grids is formulated by the DC power flow (Y. Fang & Sansavini, 2017; 

Ouyang & Fang, 2017) as follows: 

𝕆(𝒖) = {𝒐 |𝑋𝑙𝑓𝑙𝑡 − [𝜃𝑂(𝑙)𝑡 − 𝜃𝑅(𝑙)𝑡] ≤
𝛼𝑙𝑡

𝑀1(1 − 𝑥𝑙𝑡), ∀𝑙, 𝑡 

 𝑋𝑙𝑓𝑙𝑡 − [𝜃𝑂(𝑙)𝑡 − 𝜃𝑅(𝑙)𝑡] ≥
𝛽𝑙𝑡

− 𝑀1(1 − 𝑥𝑙𝑡), ∀𝑙, 𝑡 

𝑃𝑖𝑡
𝐷 =

𝛾𝑖𝑡
𝑔𝑖𝑡 + ∑ 𝑓𝑙𝑡

𝑙∈𝐿|𝑅(𝑙)=𝑖

− ∑ 𝑓𝑙𝑡

𝑙∈𝐿|𝑂(𝑙)=𝑖

+ ∆𝑃𝑖𝑡 , ∀𝑖, 𝑡 

0 ≤ 𝑔𝑖𝑡 ≤
𝛿𝑖𝑡

𝐺𝑖
𝐺 , ∀𝑖, 𝑡 

0 ≤ ∆𝑃𝑖𝑡 ≤
𝜁𝑖𝑡

𝑃𝑖𝑡
𝐷 , ∀𝑖, 𝑡 

−𝑥𝑙𝑡𝐹𝑙
𝐿 ≤

𝜂𝑙𝑡

𝑓𝑙𝑡 ≤
𝜌𝑙𝑡

𝑥𝑙𝑡𝐹𝑙
𝐿, ∀𝑙, 𝑡 

−𝜃𝑚𝑎𝑥 ≤
𝜆𝑖𝑡

𝜃𝑖𝑡 ≤
𝜇𝑖𝑡

𝜃𝑚𝑎𝑥, ∀𝑖, 𝑡 

𝜃𝑡
𝑟𝑒𝑓

=
𝜗𝑡

𝑟𝑒𝑓

0, ∀𝑡} 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

where constraints (18)-(19) represent the power flow for every line, where 𝑀 is a sufficiently large 

positive constraint (i.e., 𝑀 ≥ 2𝜃𝑚𝑎𝑥 ). Constraint (20) enforces the power balance for each bus. 

Constraint (21) limits the capacities of generation units. Also, constraint (22) bounds the maximum 

value of unserved electricity demand for each bus. Constraint (23) sets the limits of power flow on each 

lines. Finally, constraint (24) bounds phase angles and constraint (25) sets the phase angle of the 

reference bus to zero. The feasible operation of the system is represented by continuous variables 

𝑔𝑖𝑡 , 𝑓𝑙𝑡, ∆𝑃𝑖𝑡 , 𝜃𝑖𝑡 and 𝜃𝑡
𝑟𝑒𝑓

. In (18)-(25), we denote the dual variables associated with each constraints 

that will be used in Section (4). 

4. SOLUTION METHOD  

The proposed max-min formulation (8)-(25) of Section 3 configures a bi-level mix-integer linear 

programming (MILP) problem. The solution method presented in this section casts the problem into an 

equivalent one-level MILP. For a given upper level decision vector 𝒖, the lower-level system operation 

problem 

min
𝒐∈𝕆(𝒖)

𝑅̃(𝒐) where 𝕆(𝒖) is subject to (18)-(25) (26) 
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is a pure linear programming (LP) problem, hereinafter referred to as the primal of the lower-level 

problem (or simply primal problem). 

Proposition 1: For every given upper-level decision vector 𝒖 = [𝒙, 𝒚, 𝒓] and for bounded 𝑐𝑖𝑡
𝐷, the 

primal of the lower-level problem (26) has a finite optimum. 

Proof: It suffices to show that the problem (26) is neither unbounded nor infeasible for any given 

upper level decision vector [𝒙, 𝒚, 𝒓]. Note that all decision variables in (26), i.e., 𝒈, 𝒇, ∆𝑷, 𝜽 and 𝜽𝒓𝒆𝒇, 

have finite lower and upper bounds, which is consistent with the physical requirements of power system 

operation. Moreover, [𝒈, 𝒇, 𝜽, 𝜽𝒓𝒆𝒇] = 0 and ∆𝑷 = 𝑷𝑫 is always a feasible solution to the problem, for 

any values of [𝒙, 𝒚, 𝒓].                                                                                                                            ∎ 

The dual problem of the lower-level primal problem is given as follows: 

max
𝓭∈𝔻(𝒖)

∑ {∑[𝐹𝑙
𝐿𝑥𝑙𝑡(𝜌𝑙𝑡 − 𝜂𝑙𝑡) + 𝑀1(1 − 𝑥𝑙𝑡)(𝛼𝑙𝑡 − 𝛽𝑙𝑡)]

𝑙∈𝐿𝑡∈𝕋

+ ∑[𝑃𝑖𝑡
𝐷(𝛾𝑖𝑡 + 𝜁𝑖𝑡) + 𝜃𝑚𝑎𝑥(𝜇𝑖𝑡 − 𝜆𝑖𝑡) + 𝐺𝑖

𝐺𝛿𝑖𝑡]

𝑖∈𝑉

} 

Subject to 

𝔻(𝒖) = {𝓭 |𝛾𝑖𝑡 + 𝛿𝑖𝑡 ≤
𝑔𝑖𝑡

0, ∀𝑖 ∈ 𝑉, 𝑡 ∈ 𝕋 

𝛾𝑖𝑡 + 𝜁𝑖𝑡 ≤
∆𝑃𝑖𝑡

𝑐𝑖𝑡
𝐷 , ∀𝑖 ∈ 𝑉, 𝑡 ∈ 𝕋 

𝑋𝑙𝛼𝑙𝑡 + 𝑋𝑙𝛽𝑙𝑡 + 𝛾𝑅(𝑙)𝑡 − 𝛾𝑂(𝑙)𝑡 + 𝜌𝑙𝑡 + 𝜂𝑙𝑡 =
𝑓𝑙𝑡

0, ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝕋 

∑ (𝛼𝑙𝑡 + 𝛽𝑙𝑡)

(𝑙 ∈ 𝐿|𝑅(𝑙) = 𝑖)

− ∑ (𝛼𝑙𝑡 + 𝛽𝑙𝑡)

(𝑙 ∈ 𝐿|𝑂(𝑙) = 𝑖)

+ 𝜆𝑖𝑡 + 𝜇𝑖𝑡 =
𝜃𝑖𝑡

0, ∀𝑖 ∈ 𝑉\𝑟𝑒𝑓, 𝑡 ∈ 𝕋 

∑ (𝛼𝑙𝑡 + 𝛽𝑙𝑡)

(𝑙 ∈ 𝐿|𝑅(𝑙) = 𝑖)

− ∑ (𝛼𝑙𝑡 + 𝛽𝑙𝑡)

(𝑙 ∈ 𝐿|𝑂(𝑙) = 𝑖)

+ 𝜆𝑖𝑡 + 𝜇𝑖𝑡 + 𝜗𝑡
𝑖 =

𝜃𝑡
𝑖

0, for 𝑖 = 𝑟𝑒𝑓, 𝑡 ∈ 𝕋 

𝛼𝑙𝑡 ≤ 0, 𝛽𝑙𝑡 ≥ 0, 𝜂𝑙𝑡 ≥ 0, 𝜌𝑙𝑡 ≤ 0, ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝕋 

𝛿𝑖𝑡 ≤ 0, 𝜁𝑖𝑡 ≤ 0, 𝜆𝑖𝑡 ≥ 0, 𝜇𝑖𝑡 ≤ 0, ∀𝑖 ∈ 𝑉, 𝑡 ∈ 𝕋} 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

where 𝓭 represents the vector of dual variables and its feasible space 𝔻(𝒖) is given by (28)-(34), in 

which the primal variables that each dual constraints correspond to are defined. 

Regarding the optimality of the lower-level primal problem (26) and its dual problem (27)-(34), the 

following property exists: 

Proposition 2: For a given upper-level decision vector 𝒖 = [𝒙, 𝒚, 𝒓], suppose [𝒈, 𝒇, ∆𝑷, 𝜽, 𝜽𝒓𝒆𝒇] is a 

feasible solution to the lower-level primal problem (26) and [𝜶, 𝜷, 𝜸, 𝜼, 𝝆, 𝜹, 𝜻, 𝝀, 𝝁, 𝝑𝒓𝒆𝒇] is a feasible 

solution to problem (27)-(34). Then, [𝒈, 𝒇, ∆𝑷, 𝜽, 𝜽𝒓𝒆𝒇]  is an optimal solution to (26), and 

[𝜶, 𝜷, 𝜸, 𝜼, 𝝆, 𝜹,𝜻, 𝝀, 𝝁, 𝝑𝒓𝒆𝒇] is an optimal solution to (27)-(34), if and only if 



16 

 

∑ ∑ 𝑐𝑖𝑡
𝐷∆𝑃𝑖𝑡

𝑖∈𝑉𝐷𝑡∈𝕋

= ∑ {∑[𝐹𝑙
𝐿𝑥𝑙𝑡(𝜌𝑙𝑡 − 𝜂𝑙𝑡) + 𝑀1(1 − 𝑥𝑙𝑡)(𝛼𝑙𝑡 − 𝛽𝑙𝑡)]

𝑙∈𝐿𝑡∈𝕋

+ ∑[𝑃𝑖𝑡
𝐷(𝛾𝑖𝑡 + 𝜁𝑖𝑡) + 𝜃𝑚𝑎𝑥(𝜇𝑖𝑡 − 𝜆𝑖𝑡) + 𝐺𝑖

𝐺𝛿𝑖𝑡]

𝑖∈𝑉

}. 

(35) 

Proof: A proof can be easily completed by evoking Proposition 1 together with the LP strong duality 

theorem which is a necessary condition of Proposition 2 and a direct consequence of the weak duality 

theorem which is a sufficient condition of Proposition 2.                                                                     ∎ 

Therefore, based on Proposition 2, the bi-level problem (8)-(25) can be transformed into the 

following single-level maximization problem by considering the dual of the inner-level problem:  

max
𝒖∈𝕌,𝓭∈𝔻(𝒖)

∑ {∑[𝐹𝑙
𝐿𝑥𝑙𝑡(𝜌𝑙𝑡 − 𝜂𝑙𝑡) + 𝑀1(1 − 𝑥𝑙𝑡)(𝛼𝑙𝑡 − 𝛽𝑙𝑡)]

𝑙∈𝐿𝑡∈𝕋

+ ∑[𝑃𝑖𝑡
𝐷(𝛾𝑖𝑡 + 𝜁𝑖𝑡) + 𝜃𝑚𝑎𝑥(𝜇𝑖𝑡 − 𝜆𝑖𝑡) + 𝐺𝑖

𝐺𝛿𝑖𝑡]

𝑖∈𝑉

} 

subject to 

(10)-(15) and (28)-(34) 

(36) 

The bilinear terms in the objective function of (36), i.e., 𝑥𝑙𝑡(𝜌𝑙𝑡 − 𝜂𝑙𝑡) and (1 − 𝑥𝑙𝑡)(𝛼𝑙𝑡 − 𝛽𝑙𝑡), can 

be linearized using linearization schemes that have been previously reported in the MILP literature (e.g., 

see Y. Fang and Sansavini (2017) and Ouyang and Fang (2017)). Specifically, we replace 𝑥𝑙𝑡𝜌𝑙𝑡 and 

𝑥𝑙𝑡𝜂𝑙𝑡 with 𝜌̃𝑙𝑡 and 𝜂̃𝑙𝑡, respectively, and introduce the following four additional constraints: 

𝜌𝑙𝑡 ≤ 𝜌̃𝑙𝑡 ≤ 0, ∀𝑙, 𝑡 (37) 

−𝑀2𝑥𝑙𝑡 ≤ 𝜌̃𝑙𝑡 ≤ 𝜌𝑙𝑡 + 𝑀2(1 − 𝑥𝑙𝑡), ∀𝑙, 𝑡 (38) 

0 ≤ 𝜂̃𝑙𝑡 ≤ 𝜂𝑙𝑡, ∀𝑙, 𝑡 (39) 

𝜂𝑙𝑡 − 𝑀2(1 − 𝑥𝑙𝑡) ≤ 𝜂̃𝑙𝑡 ≤ 𝑀2𝑥𝑙𝑡, ∀𝑙, 𝑡 (40) 

where 𝑀2  is a sufficiently large number. Likewise, we replace the bilinear terms (1 − 𝑥𝑙𝑡)𝛼𝑙𝑡  and 

(1 − 𝑥𝑙𝑡)𝛽𝑙𝑡 with 𝛼̃𝑙𝑡 and 𝛽̃𝑙𝑡, respectively, and introduce four additional constraints: 

𝛼𝑙𝑡 ≤ 𝛼̃𝑙𝑡 ≤ 0, ∀𝑙, 𝑡 (41) 

−𝑀2(1 − 𝑥𝑙𝑡) ≤ 𝛼̃𝑙𝑡 ≤ 𝛼𝑙𝑡 + 𝑀2𝑥𝑙𝑡, ∀𝑙, 𝑡 (42) 

0 ≤ 𝛽̃𝑙𝑡 ≤ 𝛽𝑙𝑡, ∀𝑙, 𝑡 (43) 

𝛽𝑙𝑡 − 𝑀2𝑥𝑙𝑡 ≤ 𝛽̃𝑙𝑡 ≤ 𝑀2(1 − 𝑥𝑙𝑡), ∀𝑙, 𝑡 (44) 

Consequently, the single level problem (36) is recast into an equivalent MILP, summarized as 

follows: 



17 

 

max
𝒖∈𝕌,𝓭∈𝔻(𝒖)

∑ {∑[𝐹𝑙
𝐿(𝜌̃𝑙𝑡 − 𝜂̃𝑙𝑡) + 𝑀1(𝛼̃𝑙𝑡 − 𝛽̃𝑙𝑡)]

𝑙∈𝐿𝑡∈𝕋

+ ∑[𝑃𝑖𝑡
𝐷(𝛾𝑖𝑡 + 𝜁𝑖𝑡) + 𝜃𝑚𝑎𝑥(𝜇𝑖𝑡 − 𝜆𝑖𝑡) + 𝐺𝑖

𝐺𝛿𝑖𝑡]

𝑖∈𝑉

} 

subject to 

(10)-(15), (28)-(34) and (37)-(44). 

(45) 

This resulting MILP problem is solved by global optimization solvers such as CPLEX (IBM, 2015). 

5. CASE STUDY 

5.1 Data Set  

To illustrate the proposed vulnerability analysis approach, the IEEE 24-bus one area reliability test 

system (named as RTS24) is considered (Grigg et al., 1999). To embed the system into a specific 

territory, the line lengths and geographical locations are chosen following Mohanpurkar, Sogbi, and 

Suryanarayanan (2015). Bus 7 of the test system is taken as a reference node and is located near Xiamen 

(24.5 N, 118.0E), a coastal city in China. The system is georeferenced by projecting it onto a 

400×400km
2
 study area located in the South of China, as illustrated in Fig. 3. There are 24 nodes (buses) 

and 38 transmission lines (circuits). The georeferenced coordinates of all nodes are given in Table II. 

In the present study, we use analytical fragility curves for power towers and transmission lines 

(between two supporting towers) adapted from Panteli, Pickering, Wilkinson, Dawson, and Mancarella 

(2016) (the “base” cases shown in Fig. 1 of Panteli et al. (2016)), which are based on the European codes. 

The parameters setting of 𝑤critical and 𝑤collapse are the same as those in Panteli et al. (2016). The fallen 

tree-induced failure probability of conductors is not considered for simplicity. However, this can be 

easily incorporated when the related data are available. As for the level of damage for towers and 

transmission lines, binary states are considered, i.e., a component is either completely out of service or 

fully operational, and the likelihood of complete failure is modeled using the analytical fragility curves.  



18 

 

 

Fig. 3.  The georeferenced RTS24 test system and one realization of a Catg-1 storm track. 

Table II. Geographical coordinates of power system buses 

Node ID Longitude Latitude Node ID Longitude Latitude Node ID Longitude Latitude 

1 116.288E 24.507N 9 116.770E 25.366N 17 115.236E 27.003N 

2 117.104E 24.507N 10 117.340E 25.357N 18 115.531E 27.420N 

3 115.492E 25.375N 11 116.701E 25.791N 19 116.485E 26.723N 

4 116.416E 25.067N 12 117.350E 25.791N 20 117.203E 26.723N 

5 117.035E 24.878N 13 118.147E 26.262N 21 116.534E 27.311N 

6 118.156E 25.203N 14 116.445E 26.271N 22 117.212E 26.985N 

7 117.960E 24.507N 15 115.501E 26.162N 23 117.812E 26.823N 

8 118.147E 24.805N 16 115.472E 26.578N 24 115.501E 25.782N 

 

5.2 Wind Storm Simulation 

For illustration purposes, the storms hit at the location with latitude 24.50N and longitude 118.30E 

(near Xiamen). The storms are assumed to be moving with a translational speed of 25km/h and traveling 

towards northwest (135°) (Dorst, 2017). Fig. 3 illustrates one realization of the forecasted track of the 

storms. The red plus signs represent the locations of the storm eye at different times, with one hour time 

steps. The yellow circle indicates the boundary of the maximum winds for the traveling storms at the 

landfall point. The area between the yellow circle 𝑅𝑚𝑎𝑥  and the dashed yellow circle 2𝑅𝑚𝑎𝑥 

experiences around 82.5% of the maximum wind speed. 

In order to assess the wind storm impact on the different elements of the RTS24 system, its dynamic 

wind field is modelled through Eq. (1), from which we can calculate the time-varying wind speeds at 
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each location within the power system. We consider three moderate-to-extreme wind storms, i.e. 

category-1, category-2 and category-3 with their maximal wind speed 𝑉𝑚=38 m/s, 46 m/s and 54 m/s, 

respectively. Fig. 4 shows the surface wind gust speed variations at node 7 within the test system as the 

storms of the studied three categories travel along their tracks. 

 

Fig. 4.  Hourly wind gust profiles at node no.7 under different categories of wind storms. 

For the recovery time of the failed transmission lines, we assume 𝑀𝑇𝑇𝑅𝑙 = 10 hrs and 𝜎 = 1 for 

overhead lines (Espinoza et al., 2016; Zapata et al., 2008). As storm intensity increases, the repair crews 

need more time to approach the affected area and restore the damaged components, therefore, the 

restoration stress is assumed to be 𝑅𝑆𝑐𝑎𝑡𝑔 = 1, 2, and 3 for category-1, category-2 and category-3 wind 

storms, respectively. Due to the lack of historical restoration data for the IEEE test system, the 

distribution parameters are assumed based on the related literature. The development of probabilistic 

restoration models for power system components based on historical data is of practical interest. Yet, 

regardless of the developed probabilistic model, the probability values of the restoration times of the 

failed components can be incorporated into the proposed optimization framework via the constraints 

(10)-(15). This entails no additional burden to the proposed vulnerability analysis framework, whose 

development is the focus of the present work. 

5.3 Results 

Based on the above wind storm simulation and the geographic and structural fragility data of the test 

system, the failure probability of transmission lines can be calculated using Eqs. (2)-(4). The recovery 

probability of failed lines are calculated by Eq. (7), where the data for the MTTR and RS parameters of 

the transmission lines are based on Ouyang and Dueñas-Osorio (2014) and Espinoza et al. (2016). The 

proposed optimization problem for component criticality analysis is converted into its equivalent MILP 

problem following Section 4. The resulting MILP problem is implemented and solved in the IBM 
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CPLEX 12.6 optimization studio (IBM, 2015). All calculations are performed on a laptop with 2.6-GHz 

CPU and 8GB RAM. 

 

Fig. 5.  Optimized worst case load shedding (system performance loss 𝑅̃) under different failure uncertainty Γ at 

Υ = 0.1.  

Fig. 5 shows the optimized worst-case system performance loss 𝑅̃ in terms of load shedding under 

different budgets of failure uncertainty Γ when Υ = 0.1, for the three categories of storms. It can be seen 

that a severe storm generally results in large system load shedding for each Γ because the large wind 

speeds increase the failure probabilities of the system components. Fig. 6 shows the time-dependent 

failure probabilities of all the 38 transmission lines in the RTS24 system under a) category-1, b) 

category-2 and c) category-3 storms, respectively. The failure probability of transmission lines is not 

likely to exceed 0.8 for the category-1 storm as shown in Fig. 6(a), whereas the number of lines whose 

failure probabilities exceed 0.9 increases largely for the category-2 storm in Fig. 6(b) and especially for 

the category-3 storm in Fig. 6(c). 



21 

 

 

Fig. 6. Time-dependent failure probabilities of the transmission lines in the test system under (a) category-1, (b) 

category-2 and (c) category-3 storms. 

Furthermore, Fig. 5 shows that the performance loss increases as the failure uncertainty budget Γ 

increases, for all the three storm severities. This is because a bigger value of Γ represents a larger upper 

limit of the number of failed lines, and indicates that the decision maker is more tolerant to loss of system 

performance. Therefore, the decision maker obtains a larger set of worst-case failed line by setting a 

large Γ. This can be further shown in Table III where the set of worst-case failed lines (Column 2) 

attained by the optimization for different values of Γ and their corresponding load shedding (Column 3) 

for the category-1 storm are listed. For instance, when Γ = 0.14 the optimized worst-case failed lines 
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are Line 8-9, Line 11-13 and Line 17-22, resulting in a total amount of 136.6MWh load shedding. It is 

important that the different sets of worst-case failed lines offer decision makers the flexibility to choose 

the appropriate critical lines to be protected. Moreover, Table III shows that the optimum set of the 

worst-case failed lines at small values of Γ is not necessarily a subset of the lines to be failed at large 

values of Γ. For example, Line 8-9 is failed in the optimized worst-case when Γ = 0.14 (row 3) and 0.22 

(row 4), but it is replaced by Line 2-6 and Line 3-9 when Γ = 0.23 (row 5) and 0.32 (row 6); Line 17-

22 is identified critical in rows 2-7 but not in rows 8-9.  

Table III. Optimized worst-case failed lines and load shedding (LS) for the Catg-1 storm at Υ = 0.1 

Γ Worst-case failed lines LS (MWh) 

0.07 17-22 130.1 

0.14 8-9, 11-13, 17-22 136.6 

0.22 8-9, 11-13, 12-23, 17-22 427.2 

0.23 2-6, 3-9, 11-13, 12-23, 17-22  446.0 

0.32 2-6, 3-9, 11-13, 12-23, 17-22 478.4 

0.35 2-6, 3-9, 9-12, 11-13, 12-23, 17-22 590.3 

0.36 2-6, 3-9, 8-9, 9-12, 11-13, 12-23, 16-19, 17-22 1849.2 

0.37 2-6, 3-9, 8-9, 9-12, 11-13, 12-13, 12-23, 14-16, 16-19 3978.7 

0.38 2-6, 3-9, 6-10, 8-9, 9-12, 11-13, 12-13, 12-23, 14-16, 16-19 4522.7 

 

Unlike the static network interdiction problems (Wood, 2011) in which the failure of a set of lines 

results in a fixed system performance loss, in the proposed model the failures of lines are time-dependent 

due to the spatiotemporal dynamic of natural hazards. Thus, the failures of a same set of lines may lead 

to different amounts of load shedding if their failures times are different, as we can observe in the rows 

5 and 6 of Table III. For better illustration, Fig. 7(a) and Fig. 7(b) show the detailed failure and recovery 

times of each failed lines for the cases of Γ = 0.23 (row 5 in Table III) and Γ = 0.32 (row 6 in Table 

III), respectively. The failure and restoration times of Line 3-9 and Line 17-22 differ in the two cases, 

i.e., the former fails at the beginning of period 𝑡 = 10 and is repaired at the end of 𝑡 = 17 for Γ = 0.23, 

whereas it fails at 𝑡 = 8 and is repaired at 𝑡 = 15 for Γ = 0.32; the non-functional period of the latter 

starts from 𝑡 = 18 to 𝑡 = 25 for Γ = 0.23, but it starts from 𝑡 = 17 to 𝑡 = 24 for Γ = 0.32. This leads 

to a difference in the system load shedding of up to 32.4MWh for the two cases. In practice, the possible 

failure times of lines might be used to inform the decision maker of his/her preparation time allowance. 

Thus, the time allowance obtained by setting a larger value of failure uncertainty budget Γ, i.e., by 

allowing more “surprising” event to happen, is more robust for the preparation practice.  



23 

 

 

 

Fig. 7. Failure and restoration times of the worst-case failed lines for the Catg-1 storm at Υ = 0.1 for (a) Γ =

0.23 and (b) Γ = 0.32 

Table IV and Table V report the optimized worst-case failed lines and load shedding for the category-

2 and category-3 storms, respectively. For larger storms, smaller values of failure uncertainty budget Γ 

should be taken to obtain the same number of worst-case failed lines to that of smaller storms. This is 

due to the fact that more severe storms cause higher failure probabilities of overhead lines, as shown in 

Fig. 6; thus, less uncertainty budget is taken up by individual lines. Furthermore, the comparison of the 

optimized results in Table III, Table IV and Table V for the three categories of storms shows that 

stronger storms generally result in larger amounts of load shedding when a same set of lines are failed. 

For example, the performance loss for the category-1, category-2 and category-3 storms, is 478.4MWh, 

614.4MWh and 809.3MWh, respectively, when the same set of lines, i.e., Lines 2-6, 3-9, 11-13, 12-23 

and 17-22, fails (rows 6 in Table III, Table IV and Table V). This is not unexpected since it often takes 

longer times to be restored for lines damaged in stronger storms, as represented in Eq. (7). Furthermore, 

Table III, Table IV and Table V show that very similar results regarding the worst-case failed lines are 

obtained for the three storms. This is probably because the three storms are assumed to have exactly the 

same landfall point and traveling direction, thus being characterized by a similar wind field though with 

different degrees of strength. 

Discovering the worst-case failed system components and load shedding for a specific upcoming 

storm has important practical considerations for forecasting system damage and advising defensive 

actions. We see from Table III, Table IV and Table V that large values of the failure uncertainty budget 

Γ correspond to large sets of worst-case failed transmission lines and usually large monetary costs for 
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their protection. Based on these Tables, the decision makers can, therefore, select the sets of most critical 

lines to be hardened that are in line with their investment budget. 

Table IV. Optimized worst-case failed lines and load shedding for the Catg-2 storm at Υ = 0.1 

Γ Worst-case failed lines LS (MWh) 

0.001 17-22 162.6 

0.002 11-13, 17-22 172.4 

0.005 11-13, 12-23, 17-22 533.2 

0.010 2-6, 3-9, 11-13, 12-23, 17-22  586.7 

0.020 2-6, 3-9, 11-13, 12-23, 17-22 614.4 

0.021 2-6, 3-9, 9-12, 11-13, 12-23, 16-19, 17-22 2240.6 

0.022 2-6, 3-9, 9-12, 11-13, 12-13, 12-23, 14-16, 16-19 5247.5 

0.023 2-6, 3-9, 6-10, 8-9, 11-13, 12-13, 12-23, 14-16, 16-19, 17-22 5848.7 

0.024 2-6, 3-9, 6-10, 8-9, 8-10, 9-12, 11-13, 12-13, 12-23, 14-16, 16-19 6209.6 

 

Table V. Optimized worst-case failed lines and load shedding for the Catg-3 storm at Υ = 0.1 

Γ(10−4) Worst-case failed lines LS (MWh) 

0.10 8-9, 11-13 0 

0.30 11-13, 12-23 618.9 

0.35 2-6, 3-9, 11-13, 12-23 708.3 

0.50 2-6, 3-9, 11-13, 12-23, 17-22 791.4 

1.00 2-6, 3-9, 11-13, 12-23, 17-22 809.3 

4.50 2-6, 3-9, 9-12, 11-13, 12-13, 12-23, 16-19 3824.1 

4.60 2-6, 3-9, 8-9, 9-12, 10-11, 11-13, 12-13, 12-23, 16-19 3842.0 

4.80 2-6, 3-9, 6-10, 11-13, 12-13, 12-23, 14-16, 16-19 6960.8 

4.90 2-6, 3-9, 6-10, 8-9, 9-12, 10-11, 11-13, 12-13, 12-23, 14-16, 15-21, 16-19 6974.6 

 

Finally, we consider multiple landfall points and directions of different category-1 storms and find 

the solutions for each storm. We consider 5 different storm scenarios around the test system as shown 

in Fig. 8. The optimized solutions regarding the worst-case failed lines and the corresponding load 

shedding are shown in Table VI. For each scenario, three different values of failure uncertainty budget 

are considered. Table VI shows that the optimized critical lines are quite different in the storms with 

various trajectories, although there is some overlapping of the worst-case failed lines, e.g., Line 17-22 

in scenarios 1, 2 and 5. No single line is identified critical in all the five storms. These results indicate 

that the landfall locations and directions of storms do affect the uncertain set of system component 

failures. This is due to the fact that the considered test system spans a quite large scale of geographical 

space and the impact of a storm on the system components is site-dependent. This contradicts the 

assumptions made in previous studies where the wind speed at the central point of a system is applied 

uniformly to all components of the system (Salman et al., 2015). 
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Fig. 8. Tracks of different wind storms with different landfall points and traveling directions 

Table VI. Optimized worst-case failed lines and load shedding for different scenarios of category-1 storms where 

“NO” means no failure lines 

Scenarios Γ Worst-case failed lines LS (MWh) Computation time (s) 

Storm 1 

0.08 17-22 130.1 0.4 

0.23 2-6, 3-9, 11-13, 12-23, 17-22  446.0 172 

0.38 2-6, 3-9, 6-10, 8-9, 9-12, 11-13, 12-13, 12-23, 14-

16, 16-19 
4522.7 1380 

Storm 2 

0.08 17-22 130.1 0.8 

0.23 11-13, 12-23, 17-22 408.0 29 

0.38 8-9, 8-10, 11-13, 12-13, 12-23, 17-22, 21-22 1771.8 820 

Storm 3 

0.08 NO 0 0.5 

0.23 2-6, 3-9, 8-9 22.4 56 

0.38 1-3, 2-4, 2-6, 3-9, 8-9, 8-10,  737.0 221 

Storm 4 

0.08 NO 0 0.8 

0.23 NO 0 0.7 

0.38 1-3, 3-9 350.0 4 

Storm 5 

0.08 17-22 130.1 5 

0.23 11-13, 12-23, 17-22 390.3 61 

0.38 1-5, 2-6, 3-9, 6-10, 11-3, 12-13, 12-23, 17-22 2188.0 1045 

 

The last column of Table VI reports the computational times required for solving the corresponding 

MILP models. It is shown that the total computational time increases rapidly as the failure uncertainty 

budget Γ increases. Indeed, a large value of Γ represents a big failure uncertainty set 𝕌, i.e., a large 
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searching space for the optimization problem. However, small values of Γ result in small sets of critical 

lines (candidates for protection) and are, therefore, probably more interesting to system managers who 

have to face limited investment budgets.  

6. DISCUSSION AND CONCLUSION 

Physical models for evaluating the impact of natural hazards on infrastructure networks are affected 

by many uncertainties, including the intensity model of the natural hazard, the components structural 

fragility model and the probabilistic model of the restoration time of the failed components. These 

uncertainties can lead to the unreliable identification of system vulnerabilities. On the other hand, basic 

attacker-defender interdiction models based on the worst-case analysis can lead to an excessively 

conservative vulnerability analysis for CI systems subject to natural hazards. This paper presents a novel 

optimization-based framework for the identification of CI vulnerabilities under natural hazards; system 

vulnerability is interpreted from the perspective of critical components analysis and focuses on the 

identification of important components (or combinations of components), whose failures have a large 

impact on system functionality. In this framework, the estimated probabilities of components failure and 

restoration under specific natural hazards are integrated into a bi-level attacker-defender game 

interdiction model. This approach bridges the gap between the difficulties of accurately predicting the 

failure probabilities of system components in the simulation-based models and the over-conservatism 

of the basic attacker-defender approaches for CI vulnerabilities analysis under natural hazards. 

Therefore, it provides a valuable way to help decision-makers in making informed pre-hazard hardening 

planning decisions.  

By formulating the parameterized uncertainty set 𝕌 of the component failure states subject to the 

hazard, we are able to control the conservatism of the optimization solution via the uncertainty budgets 

Γ and Υ. For example, a larger value of the failure uncertainty budget Γ represents that the decision 

maker is more conservative (i.e., assuming a larger quantity of “bad luck”) and the failure of a “reliable” 

line, i.e., having smaller failure probability 𝑝𝑙𝑡, is even increasingly allowed. In other words, the decision 

maker may select a large Γ if he/she believes that component failure probabilities are affected by large 

uncertainties. This approach allows the decision maker a level of flexibility in setting the tradeoff 

between robustness and performance. 

Mathematically, the proposed model configures a bi-level max-min MILP, which is challenging to 

be solved directly. By leveraging the properties of the lower level LP problem, the model is transformed 

into an equivalent one-level MILP problem and, then, solved by an efficient global solver, i.e., CPLEX. 

The application to a case study involving the georeferenced RTS24 test system under simulated wind 

storms demonstrates the effectiveness of the proposed approach for the identification of CI 

vulnerabilities due to a specific hazard event. These identified critical locations, which are conditional 

on the specific hazard, can be provided to the decision maker for use in supporting short-term pre-event 
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preparation practices, e.g. choosing critical power poles to be hardened or allocating backup power units 

in a power grid, before a specific wind storm strikes the system. By setting different values of the failure 

uncertainty budget Γ, the decision maker can select the sets of the most critical components to be 

hardened, which are compatible with the investment budget. 

The present study considers binary states of system components, i.e., completely out of service and 

fully operational, which is a modeling approach widely adopted in literature (Arroyo, 2010; G. Brown 

et al., 2005; G. Brown et al., 2006; Y. Fang & Sansavini, 2017; Ouyang & Fang, 2017; Salmeron et al., 

2004; Wood, 2011). However, it may be also interesting to consider multiple states of damage, e.g., a 

damaged overhead line is operational but with a reduced capacity. Moreover, due to the interconnected 

and dynamic nature of modern power systems, small disturbances may trigger long chains of knock-on 

component failures that can lead to massive power outages, i.e., the so-called cascading failures. The 

modeling of these is still a challenging problem, because of the many different mechanisms involved 

and the limited data available from historical cascade events (Y.-P. Fang, Pedroni, & Zio, 2015; B. Li, 

Barker, & Sansavini, 2017; Zio, 2016): for this reason they have not been taken into account in the 

present study and will be considered in future works. 

Power systems operations are also affected by many uncertainties, e.g., the capacity of renewable 

power generators and the power demand. One possible way to take into account these uncertainties is to 

construct another uncertainty set of the related system parameters 𝕌∗ in the same max-min optimization 

framework as the present study. Then, the optimization for the worst case scenario, i.e., for the worst 

case values of both the uncertain system parameters 𝕌∗ and the uncertain component failure states 𝕌, 

can be carried out within the first level problem in (8). This new problem can be solved by the same 

idea of Section 4, i.e., transforming it into a single-level maximization problem by considering the dual 

of the inner-level problem. 

Finally, the exponential increase in computational time with the size of the problem is a common 

feature of branch-and-cut algorithms when addressing MIP problems (Y. Fang & Sansavini, 2017; 

Ouyang & Fang, 2017). Although current commercial companies routinely solve MIP problems 

involving millions of variables and hundreds of thousands of constraints, more sophisticated techniques 

might also be required to ensure the applicability of the proposed restoration planning problem to large-

scale power systems with thousands of nodes and lines. To this aim, the study of efficient solution 

methodologies for two-stage robust optimization is an active field of research in mathematical 

optimization (Bertsimas et al., 2011). Promising solution methods, such as the column-and-constraint 

decomposition (Zeng & Zhao, 2013), can be applied to the proposed problem in our future study. 
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