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New Stability Method of a Multirate Controller for

a Three-Axis High-Q MEMS Accelerometer With

Simultaneous Electrostatic Damping

Lavinia E. Ciotirca, Olivier Bernal , Member, IEEE, Jérôme Enjalbert, Thierry Cassagnes, Hélène Tap,

Hugues Beaulaton, and Serdar Şahin

Abstract—Over the past years, cutting-edge advances in elec-
tronics and microfabrication have allowed the integration of
multiple sensors within integrated analog and digital circuits
to design microelectromechanical systems. The multiple sensor
integration or sensor fusion enables both cost and surface reduc-
tion, while maintaining high performances. This paper presents a
new control system for an underdamped three-axis accelerometer,
which allows the co-integration in the same cavity with a three-
axis Coriolis gyroscope to design a six degrees-of-freedom combo
sensor. The accelerometer analog front end consumes 300 µA
from a 1.6V power supply and is able to reach its steady
state in 800 µs compared with a 400ms open loop and no
damping configuration. The transducer control is implemented
using a simultaneous multirate electrostatic damping method.
To conclude on the closed-loop system stability, an innovative
approach based on the multirate signal processing theory has
been developed.

Index Terms—Inertial sensors, MEMS accelerometers, elec-
trostatic damping, multi-axis simultaneous damping, multirate
controller.

I. INTRODUCTION

RECENTLY, consumer electronics industry has known a

spectacular growth that would have not been possible

without pushing the integration barrier further and further.
Inertial MEMS sensors (e.g. accelerometers, gyroscopes)

provide high performance, low power, low die cost solutions
and are, nowadays, embedded in most consumer applications.

In addition, the sensors fusion has become a new trend
and combo sensors are gaining growing popularity since the
co-integration of a three-axis MEMS accelerometer and a
three-axis MEMS gyroscope provides complete navigation
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information. The resulting device is an Inertial Measure-

ment Unit (IMU) able to sense multiple DoF. Nevertheless,

the performances of the accelerometers and the gyroscopes

are conditioned by the MEMS cavity pressure: the capaci-

tive accelerometer is usually a damped system functioning

under an atmospheric pressure, while the Coriolis vibratory

gyroscope is a highly resonant system. Thus, to conceive

a combo sensor, a unique low cavity pressure is required.

The integration of both transducers within the same low-

pressure cavity necessitates a method to control and reduce

the ringing phenomena by increasing the damping factor of

the MEMS accelerometer.

The most used control configurations for the capacitive

accelerometers are the digital closed loop (61 architec-

ture) [1]–[3] and the analog loop [4], enabling artificial

damping by superimposing two electrostatic forces on the

accelerometer proof mass to produce a linear feedback char-

acteristic.

Although 61 interfaces can provide high resolution digital

output [5], [1], they have a complicated implementation for a

higher order electromechanical closed loop.

In [6] and [7] the transducer control is implemented using

electrostatic damping. The control voltage is generated using

a proportional derivative block and is applied on the sensors

middle plate. The same electrodes are used during measure-

ment and damping phases, and the circuits are designed for

sensing one single degree of freedom.

A micropower interface for a three-axis capacitive

accelerometer has been presented in [8]. The AFE architecture

enables time-multiplexed sampling in an open-loop configura-

tion, since the sensor has no ringing constraint and no control

operation is required. Moreover, in [9] each of the three-axes

has its own interface circuitry and the x, y or z accelerations

can be measured simultaneously.

Both continuous-time front-ends [10] and switched capac-

itor techniques [6]–[8], [11] have been studied in recent

years. Concerning the switched capacitor topologies, since the

MEMS accelerometer is a continuous-time system, and the

analog front-end, as well as the controller, can be discrete

time systems, a general method to analyze the overall system

operation is needed [12].

In this paper, a new electrostatic damping architecture,

which allows sensing and controlling more than one degree of

freedom, is presented. For a fully differential specific MEMS



Fig. 1. Parallel plate model of a capacitive sensor.

design that shares its middle plate between the three-axis: x , y

and z, and has only one pair of excitation electrodes for each

axis, a new interface has been designed in order to enable low

power, low surface and high-performance results. The read-

out circuit is multiplexed between the three axes to reduce

area and a new simultaneous multirate damping technique is

applied, to improve the system settling time. To assess the

method efficiency, the settling time results are compared to the

classical successive damping architecture. Using the multirate

signal processing theory, the multirate controller has been

modeled and based on the closed loop transfer function, a new

stability method is proposed.

This paper is organized as follows: Section II describes the

electrostatic damping principle. The novel system architecture

and the simultaneous damping chronograms are presented

in detail in Section III. Section IV presents the multirate

controller modeling and the stability study. Model simulation

results are discussed in Section V, followed by the conclusion

in Section VI.

II. ELECTROSTATIC DAMPING PRINCIPLE

MEMS accelerometers can be modeled using the second

order mass spring damper equation (1). In the presence of an

external acceleration aext , the proof mass m will be deflected

from its equilibrium position with a certain displacement x .

maext(t) = mẍ(t) + bẋ(t) + kx(t)

Q =
√

km

b
(1)

where k is the spring constant, b the mechanical damping

coefficient and Q the quality factor.

When the MEMS cavity pressure starts decreasing,

the quality factor Q increases, causing oscillations that can

result in measurement perturbations and even in physical part

destruction, if the oscillation amplitude is too large. To avoid

the above-mentioned inconveniencies, one would develop a

control system that reduces the quality factor Q by increasing

the damping factor b. By adding a term proportional to the

proof mass velocity ẋ(t) in (2), the damping coefficient will

be increased with a B value.

maext(t) = mẍ(t) + (b + B)ẋ(t) + kx(t) (2)

The electrostatic damping principle consists in generating

an electrical damping force (3) that will assist the mechanical

damping.

1F(t) = Bẋ(t) (3)

The proposed MEMS structure for one axis comprises three

electrodes: one movable electrode, i.e. the proof mass, and two

fixed excitation electrodes (Fig. 1); note also that this movable

electrode is shared by the three axes. In the presence of an

external acceleration, the proof mass moves, which induces

a capacitance variation between these electrodes. In addition,

when a voltage is applied on the two fixed electrodes and on

the proof mass (vex1, vex2 and Vm respectively), electrostatic

forces are generated; in particular between the proof mass and

the excitation electrodes (F1, F2).

The net electrostatic force 1F , detailed in (4), and applied

to the proof mass, is an attractive force.

1F = F1 − F2 =
1

2
ε0εr A

(

(vex1 − Vm)2

(d0 + x)2
− (vex2 − Vm)2

(d0 − x)2

)

(4)

where d0 is the gap at rest between the fixed electrodes and

the proof mass and x the proof mass displacement, A the total

sense surface, ε0 the vacuum permittivity and εr the relative

vacuum permittivity.

For a parallel plate capacitive sensor, when the voltage

difference between the fixed plates and the middle one is 0, no

electrostatic force is applied on the proof mass. Let’s suppose

for now that on the fixed plates, a differential bias ±VB is

superimposed on the common mode voltage Vm + vctrl as

in (5), then the net electrostatic force applied on the MEMS

will depend on both VB and vctrl .

vex1 = Vm + vctrl + VB

vex2 = Vm + vctrl − VB (5)

where vctrl is the control voltage generated by the control

block to damp the transducer.

Further, if the proof mass displacement is very small

compared to d0 and the control voltage vctrl is proportional to

the proof mass velocity, then the net electrostatic force applied

to the proof mass is also proportional to the velocity as a

first-order approximation. In this way, in (2) a new term is

artificially added to assist the mechanical damping. The force

generated using a control block, during a predefined damping

time tdamp within the sampling period Ts is presented in (6).

1F ∼= −
tdamp

Ts

2ε0εr A

d2
0

VBvctrl (6)

Therefore, if the design aim is to have the fastest transducer

settling time, a maximum amount of electrostatic force should

be applied to the proof mass. From (6) one can notice that

several parameters can be adjusted in order to increase the

electrostatic force: the excitation electrodes surface, the control

voltage and the damping duty cycle. Assuming that the MEMS

design parameters are fixed and the maximum control voltage

that can be applied is fixed by a certain technology power

supply and no charge pump is added, the only parameter which

can vary is the damping duty cycle or the electrostatic force

application duration.

Nevertheless, note also that the voltage controlled electro-

static actuation has several nonlinearities sources such as the

voltage to electrostatic force conversion ((6) is an approx-

imation that is good as long as the displacement is very



Fig. 2. (a) System block diagram of a closed loop capacitive accelerometer.
(b) Successive damping approach chronograms.

small compared with the gap between the electrodes). Conse-

quently, increasing the actuation voltage improves settling time

performances but also increases nonlinearity; however, for this

architecture, the induced non-linearity will be reduced by the

gain loop of the system.

III. NOVEL SYSTEM DESIGN

The novel discrete time architecture, shown in Fig. 2(a),

proposes a new method to improve the damping duty cycle

for a transducer that can sense up to three degrees of freedom.

The transducer can be modeled using the second order mass

spring transfer function Hsens (s), where ω0 is the MEMS

natural pulsation.

Hsens (s) =
1

k

ω2
0

s2 + ω0
Q

s + ω2
0

(7)

In addition, the external acceleration applied to the sensor

can be read using the capacitance variation 1C that appears

when the proof mass moves. During the measurement phase

81 (Fig. 2(b)), due to the voltage applied on the MEMS

electrodes, a charge variation 1Q is injected into a Charge

to Voltage converter (C2V) which provides the voltage v to

the control block.

The particularity of this architecture is that the C2V is

shared between the three-axis, which allows a low power and

small area architecture. However, since the C2V, as well as the

sensor middle plate, are shared, only one axis measurement

can be performed at a time. For example, if during the x-axis

measurement phase, a voltage is applied on the y-axis elec-

trodes, then parasitical charges will be injected into the C2V

and the x-axis acceleration measurement will be corrupted.

Following the C2V, a control block computing the derivative

is required in the loop, to provide an estimation of the velocity.

As the C2V output reflects the proof mass displacement,

the velocity estimation can thus be obtained with the difference

between two successive C2V output samples.

vctrl (nTs) = kd [v (nTs) − v ((n − 1) Ts)] (8)

where the derivative gain kd is a design parameter.

Fig. 3. Three-axis closed loop underdamped accelerometer.

Fig. 4. Proposed chronogams of the simultaneous damping for the x,y and
z axis.

During the damping phase, 82, the previously calculated

control voltage is applied on MEMS excitation electrodes.

The control voltage is sampled and hold by the derivative

block, thanks to a designed capacitive memory, during the

entire sampling period Ts .

Furthermore, each axis has its own control block and three

derivative signals, corresponding to each of the three axes,

are computed during the sampling period Ts . The novelty of

the system presented in this paper consists in simultaneously

damping the three axes by applying the corresponding control

voltage when the damping phase occurs.

The three-axis underdamped accelerometer MEMS, with the

read-out interface and the control blocks, is shown in Fig.3.

The MEMS charge variation can be measured using the C2V

which has a feedback capacitor C f b that will be systematically

reset between each axis measurement. The voltage applied on

the MEMS excitation electrodes, will depend on the system

operating phase (measurement or damping). Due to the C2V

feedback, Vm is applied on the MEMS middle plate during

all phases. Further, the time multiplexed electrodes structure

can be translated into a discrete system with simultaneous and

multirate damping control. We define Ts the system sampling

period or the time during which all three axes have been

measured and damped.

Each of the three derivative blocks will update their

output value, and therefore the damping force, only once per

period Ts .

A novel sequence, which optimizes the damping efficiency,

has been designed and implemented (Fig. 4). Six separate

phases can be distinguished in the same sampling period Ts .



For the three-axis: x , y and z, the system has three reading

and three damping phases.

During Phase 1, on the x-positive excitation electrode,

a 2Vm voltage is applied while the x-negative excitation elec-

trode is connected to the analog ground. In this way, the charge

variation, caused by the proof mass movement, is transferred

into the C2V. Additionally, after reading x-axis acceleration,

the Derivative x control block performs the difference between

two successive C2V output samples, and adds a ±VB voltage

to the output signal.

When Phase 2 starts, the new x-axis velocity estimation,

which has just been calculated during Phase 1, is applied on

x-axis MEMS excitation electrodes, introducing an artificial

damping coefficient B in (2), and increasing the mechanical

damping coefficient. During the same phase, the y and z

velocity estimations that have been previously calculated and

stored during the (n − 1)Ts sampling period, can be applied

on y and z excitation electrodes.

When Phase 3 occurs, the voltages applied to the y-axis

excitation electrodes are 2Vm and 0V, and a new y-axis C2V

output sample is then available.

A new damping force value is calculated and applied during

Phase 4. Furthermore, the same x damping force, which has

been first applied during Phase 2, and still stored, and the

z damping force, which has been calculated in the previous

sampling period (n − 1) Ts and hold, are applied on x and z

MEMS electrodes.

Finally, during Phase 5, a new z-axis acceleration value is

measured and a new z-axis control signal is available. This

new value will then be applied on z-axis excitation electrodes

when Phase 6 occurs.

During the same Phase 6, the x-axis damping force which

has been first applied during Phase 2 and the y-axis damping

force which has been first applied during Phase 4, are also

applied on MEMS electrodes.

In this way, when one sampling period is completed,

the three axes have been measured once and damped three

times; in addition, the electrostatic force applied to the

transducer compared to the classical successive reading and

damping approach (Fig. 10) is tripled. When the amount

of electrostatic force applied is increased so is the artificial

damping coefficient and the sensor ability to oscillate are

diminished. Consequently, the main parameter one would like

to improve is the system settling time.

IV. MULTIRATE CONTROLLER AND STABILITY STUDY

The overall system has been modeled to find the closed loop

transfer function and to conclude on the stability.

Fig. 5. presents the block diagram for a one-axis high-

Q accelerometer with multirate electrostatic damping control.

The sampling frequency of each block is shown below them.

Note that f ′
s , which is the MEMS sampling frequency, is the

fastest sampling frequency of the system. The MEMS transfer

function Hsens

(

z′) should be expressed using a high sampling

frequency f ′
s in order to improve the modeling of the contin-

uous time proof mass natural movement.

Firstly, the MEMS accelerometer’s s-domain transfer func-

tion (7) is transformed into z-domain using the Bilinear

Fig. 5. Simplified block diagram of the proposed discretized closed loop
accelerometer.

Fig. 6. Discrete model of the closed loop accelerometer architecture using
upsampling / downsampling blocks.

Transform method.

HM E M S

(

z′)

=
1

k

γ 2
(

1+z′)2

z′2
(

γ 2+ 2
Q

γ +4
)

+z′ (−8+2γ 2
)

+
(

γ 2− 2
Q

γ +4
)

(9)

where γ = ω0T ′
s , T ′

s = 1/ f ′
s and z′ = esT ′

s .

Since the C2V bandwidth is much larger than the sensor

bandwidth and no filtering is applied to the signal in the first

stage of the electronic interface, the C2V operation can be

modeled with a constant gain kc2v .

Next, to obtain the derivative transfer function, the

Z -transform is applied to (8). If the controller output is

updated once each Ts period, then

vctrl (z) = kd ∗ v (z)
(

1 − z−1
)

(10)

where z = esTs .

Finally, it has been shown in (6) that the net electrostatic

force applied to the proof mass is proportional to vctrl (z).

Therefore, G models the control voltage to electrostatic force

conversion gain and is defined as:

G =
2ε0εr A

d2
0

VB (11)

The electrostatic force is applied three times during the

sampling period Ts thus there is a 3G gain to be considered

for the voltage to electrostatic force conversion for one axis.

Due to the fact that the system shown in Fig. 5. has more

than one sampling rate: Ts and T ′
s , one will use the multirate

signal processing theory to model it. Further, since f ′
s is the

fastest sampling frequency, the blocks having another sampling

rate should change it to f ′
s . The main operations that enable



Fig. 7. Noble identities.

Fig. 8. Simplified discrete model of the multirate closed loop accelerometer.

Fig. 9. Equivalent open loop system.

such transformations are the downsampling and upsampling

operations [13].

After introducing the upsampling and downsampling, a new

block diagram of the model is derived and shown in Fig. 6,

where up/downsampling operations are described by the

↑ M/ ↓ M symbol respectively, with M = 6.

Multirate signal processing theory uses the noble identities

(Fig.7) to deal with upsampling and downsampling blocks,

where H (z) is an arbitrary transfer function.

Therefore, if H
(

z′) = kc2v × Hsens(z
′), D (z) = kd (z−1)

z

and Q
(

z′) = G × (1 + z′−2 + z′−4), where z′ = esT ′
s and f ′

s

the system fastest sampling frequency, the model from Fig. 6.

can be depicted in Fig. 8.

To analyze the system presented in Fig. 8, several methods

have been proposed in the literature [14], [15]. Due to the

downsampling and upsampling processes, this model is time-

variant and consequently, an overall transfer function does not

exist in the general case. The aim of this study is to find

an input-output relationship in the z-domain, based on which,

the system stability can be estimated.

Using the Z-Transform and the Noble identities, one can

characterize the system presented in Fig. 8, as shown in (12)

and (13) at the top of the next page.

But:

C
(

e− j2πmz′6
)

= C
(

z′6
)

Replacing (13) in (12), eq. (12) can be rewritten as shown in

the expressions next to (13), and the electrostatic force output

Fel (z
′) expression is found.

If we define K
(

z′) as:

K
(

z′) =
D

(

z′6) × Q(z′)

1 + D
(

z′6)× 1
6

5
∑

m=0

H
(

e− j2πm
6 z′

)

× Q
(

e− j2πm
6 z′

)

Then the equivalent system is represented in Fig. 9.

The transfer function K
(

z′) represents the input-to-output

relationship that best describes the discrete multirate controller.

Moreover, its stability or instability can be deducted from

K
(

z′) stability/instability [9]. It can be noticed that all the

transfer functions H
(

z′), D (z) = D
(

z′6), Q(z′) that appear

in the loop in Fig. 8 also appear in K (z)’s characteristic

equation:

1 + D
(

z′6
)

×
1

6

5
∑

m=0

H
(

e− j2πm
6 z′

)

× Q
(

e− j2πm
6 z′

)

If K
(

z′) output is bounded for all bounded inputs, though

stable, the overall system is stable. If K
(

z′) is unstable,

the overall system will be unstable.

This novel approach, validated with behavioral models

and numerical simulations, allows studying the stability

of a multirate controller for a three-axis high Q MEMS

accelerometer.

V. SYSTEM MODELING AND SIMULATIONS RESULTS

The architecture presented in Fig.3 has been fully modeled

and simulated using Matlab – Simulink. The accelerometer

MEMS movement was modeled using the equation (1) and

the capacitance variation 1C is approximated using the proof

mass displacement x .

1C ≈
ε0εr A

d0
x (14)

Sample and hold techniques have been employed to model

system sequences and depending on the phase, a different

voltage level is applied on the electrodes. The MEMS natural

frequency is f0 = 4 k H z and the open loop quality

factor Q is 2000 corresponding to a low-pressure cavity

of 0.7 torr. Note that although a higher MEMS quality factor

implies a lower MEMS Brownian noise (estimated here to be

around 1µg/
√

H z), for this architecture, the electronic noise

(≈ 200µg/
√

H z) is much higher. Consequently, the MEMS

cavity pressure advantage is not relevant for the total system

noise performances. Here, the MEMS proof mass sensitivity

is 1C = 2.5 f F/g (1g = 9.8 m/s2) of capacitance variation.

In addition, the charge to voltage converter has been

modeled and designed to achieve a sensitivity of V = 13mV/g

for a feedback capacitor C f b = 300 f F and under a 1.6V

power supply. As a result, the system has an acceleration input

range of ±8g.

However, without any additional damping applied to the

MEMS, the system settling time is approximately 400 ms.

To assess the damping efficiency, the settling time perfor-

mances of the simultaneous damping have been compared

with the classical approach, which is the successive damping.

In a classical damping approach (i.e. successive damping – see

Fig. 10.), the sampling period also comprises six phases; three

measuring phases and three damping phases and the three axes

are successively measured and damped.

Firstly, both approaches have been modeled and their

operation validated. A plot of the closed-loop electrostatic

forces for both successive and simultaneous damping is shown

in Fig. 11. The electrostatic force applied on the mass should
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(
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∑
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(
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(
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×
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1

6
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H
(
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× Fin

(
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6
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(
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Then:

5
∑

m=0

Fel

(

e− j2πm
6 z′

)

=
5

∑

m=0

Q
(

e− j2πm
6 z′

)

× C
(

e− j2πm
6 ×6z′6

)

(13)

C
(

z′6
)

= D
(

z′6
)

×
1

6

[(

5
∑

m=0

H
(

e− j2πm
6 z′

)

× Fin

(

e− j2πm
6 z′

)

)

− C
(

z′6
)

×
(

5
∑

m=0

H
(

e− j2πm
6 z′

)

× Q
(

e− j2πm
6 z′

)

)]

C
(

z′6
)

=
D

(

z′6) × 1
6

5
∑

m=0

H
(

e− j2πm
6 z′

)

× Fin

(

e− j2πm
6 z′

)

1 + D
(

z′6) × 1
6

5
∑

m=0

H
(

e− j2πm
6 z′

)

× Q
(

e− j2πm
6 z′

)

Fel

(

z′) = Q
(

z′) × C
(

z′6
)

=
D

(

z′6) × Q
(

z′) × 1
6

5
∑

m=0

H
(

e− j2πm
6 z′

)

× Fin

(

e− j2πm
6 z′

)

1 + D
(

z′6) × 1
6

5
∑

m=0

H
(

e− j2πm
6 z′

)

× Q
(

e− j2πm
6 z′

)

be null during the non-damping phases for the respective axis.

Additionally, when the proof mass reaches the steady state

and the velocity estimation is 0, the net electrostatic force

must reach also a steady state of 0N . The same sampling

period Ts = 21µs and derivative gain kd = 400 are used for

both cases. From Fig.11, one can notice the single damping

phase for the successive damping approach and the three

times application of the same electrostatic force level for the

simultaneous damping.

However, to quantify the performances in terms of settling

time, additional simulations have been performed. As stated

previously, the settling time depends both on Ts and on kd and

consequently, to check the settling performances, the sampling

period has been varied from 6µs to 42µs and kd fixed

to 600. It is desired to obtain results compatible within

a 1.6V power supply technology, therefore Vm = Vsupply

2
,

VB = Vm

2
= 0.4V and the control voltage vctrlx is limited to

−0.4V < vctrlx < 0.4V . The settling time simulation results

are presented in Figure 12.

From Fig.12, one can notice that the settling time perfor-

mances for the simultaneous damping are better. When the

sampling frequency is high, the simultaneous damping is very

efficient, and the settling time is, as expected, roughly three

times smaller than for the successive damping. Then, when the

sampling frequency starts decreasing, the successive damping

architecture can be a better choice. The intuitive explanation

of the simultaneous damping performances degradation at low

sampling frequencies is the loss of correlation between the

instantaneous velocity and the electrostatic force value during

the second and the third damping phase. When the sampling

period is large, it is expected to apply on the excitation

electrodes, during the second and the third damping phase,



TABLE I

COMPARISON OF PREVIOUS CLOSED LOOP ACCELEROMETERS WITH THIS WORK

Fig. 10. Successive damping sequence.

Fig. 11. Electrostatic force waveforms for both approaches: successive
(dashed) and simultaneous (solid) damping.

a velocity estimation which is no more related to the real mass

movement.

Next, the multirate controller presented in Fig. 6. has been

modeled and the K (z′) stability has been completed. Since the

system is discrete, if K (z′) has all its poles inside the z-domain

unity gain circle, then, the overall system is stable. That is

the condition one will impose when choosing the system

parameters: derivative gain kd and sampling frequency f ′
s .

Fig. 13 shows all the pairs (kd , Ts) that drives the system

stable when varying kd between 20 and 1000 and Ts between

8 µs and 56 µs (Ts = 6T ′
s ).

Fig. 12. Settling time simulation results for both approaches: successive
damping (dashed) and simultaneous damping (solid).

Fig. 13. Derivative gain and sampling period (kd , Ts ) pairs that ensures the
system stability.

When the system is fast, even if the loop gain is large,

this will not drive the loop instable. On the other hand, when

the sampling frequency starts decreasing, there are a limited

number of points for which the system is still stable.

The proposed method can be used, for instance, to choose

the design parameters (kd , Ts) of the associated integrated

circuit (IC) implementation of this architecture. The IC

has been designed in a 0.18µm CMOS process and its

performances are summarized in Table 1, together with



others closed loop accelerometer architectures for comparison

purpose.

VI. CONCLUSION

This paper addresses the system design of an analog control

architecture, for a three-axis underdamped capacitive MEMS

accelerometer having a common proof mass for all-three axis,

that allows its cointegration in the same low-pressure cavity

with a Coriolis vibratory gyroscope. The analog control of the

proof mass is implemented using a new electrostatic damping

sequence, which improves the damping efficiency over the

state of the art approach (successive damping) in terms of

settling time (three times smaller for a sampling time of 24us).

The overall system achieves a sensitivity of 13 mV/g for a

power consumption of 0.48 mW for the three axes using a

1.6V power supply voltage without requiring any charge pump

technique to drive the MEMS electrodes.

In addition, to check the closed loop stability which depends

on both the loop gain value and the sampling frequency, a new

method to model accurately the system based on multirate

signal processing approaches has been analyzed and devel-

oped. It also allows to determine the best tradeoff between

settling-time and sampling frequency. The proposed analysis

hence points clearly out that this method limitation is directly

related to the correlation between the measured data and the

applied feedback damping force. As expected, the slower the

system, the poorer the damping efficiency.
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