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Abstract

In Nature, gene regulatory networks are a key mediator between the

information stored in the DNA of living organisms (their genotype) and

the structural and behavioral expression this finds in their bodies, surviv-

ing in the world (their phenotype). They integrate environmental signals,

steer development, buffer stochasticity and allow evolution to proceed. In

Engineering, modeling and implementations of artificial gene regulatory
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networks has been an expanding field of research and development over

the past few decades. This review discusses the concept of gene regula-

tion, the current state-of-the-art in gene regulatory networks, including

modeling and simulation, and reviews their use in artificial evolutionary

settings. Here, we provide evidence for the benefits of this concept in

natural and the engineering domains.

Keywords: Gene regulatory networks Evolutionary algorithms Mor-

phogenesis Control Dynamics Neuromodulation
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1 Introduction

Ever since the seminal paper by King & Wilson [88], the biological community

has been aware that there is more to the genome than nucleic acid sequences

translated into amino acid sequences. While the apparatus for transcription and

translation of DNA information into protein function has been studied since the

1950s, leading to the “Central Dogma” of Molecular Biology [26, 27], already

Schroedinger in his famous work on life [128] alluded to the possibility of an

executing role, i.e. more than an information template role for his “aperiodic

crystal” at the foundation of life. With the development of the operon model,

Jacob and Monod [71] had already firmly established the idea of regulation in

our understanding of the life-organizing functions of DNA.

The central challenge that gene regulatory networks address is the “trans-

lation” between spatial patterns of information, as provided by different types

of macromolecules such as oligo- and poly-mers, or the configuration of matter

in space, and the dynamical processes in time necessarily underlying any type

of behavior. With regulation, the study of objects in Biology is enlarged by the

study of processes. Spatial arrangements of objects (the material of life) are

replaced by temporal arrangements of processes as the core principles of living

systems. While space remains an important aspect of life (natural life without

spatial embodiment is unthinkable), it is the dynamic aspects of entities that

play the dominant role. With regulation, the notion of time, dynamics, tran-

sients and steady states becomes of utmost importance in our understanding of

organisms.

The simplest self-contained genetic regulatory element (or motif) is a feed-

back loop. A completely new phenomenon (oscillations in time) can emerge in

such an otherwise dull behavioral landscape. Since as soon as there is a mix of

positive and negative feedback connections in the loop, the tiniest amount of
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noise can cause oscillations to emerge, bringing about a “new behavior” of this

system with an intrinsic time-scale. Thus, it is to be expected that larger gene

regulatory networks, consisting of many genes, contain a variety of network mo-

tifs with both positive and negative feedback connections [111]. Between these

motifs, weaker connections can accumulate causes and distribute effects.

Additionally, we can immediately see that many different behaviors should

be expected to “emerge” from such networks. While the details of these behav-

iors are the result of possibly delicate network interactions and therefore difficult

to predict, the fact that networks allow a richness of behaviors to emerge is im-

portant for adaptivity of living organisms. For example, the growth of the body

of an organism and the behavior of its parts in different phases of its develop-

ment does not obey strict rules directly able to generate these elements. Rather,

we have to assume a set of processes that obey their own internal logic of regu-

lation and develop in phases, influenced by the environment and controlled by

different subsets of the genetic regulatory network. In multi-cellular organisms,

there are many precursor cell phases until a final cell state is reached, and de-

velopment can be seen as a process of gradual approach to the state of maturity

of a body, rather than its immediate “instantiation”.

We can finally see that noise and stochastic events are likely playing a key role

in promoting variety [122]. First off, regulation is sensitive to single molecule ac-

tivities, bringing about the possibility of stochastic quantum effects influencing

the outcome. However, the Brownian motion underlying diffusion that we are

used to average out from underlying cause-effect relationships brings another

type of stochasticity into these systems, providing additional time scales which

correspond to the spatial organization of the organisms and their environment.

This paper is aimed at providing a brief overview of the phenomena and

models of gene regulatory networks and delving into the applicability of these
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concepts in man-made artifacts. Thus Section 2 discusses some of the most im-

portant phenomena in biological gene regulatory systems, Section 3 provides an

overview of the modeling efforts that have been made over the years to describe

and understand these phenomena. Section 4 is then dedicated to a discussion

of the internal dynamics of artificial regulatory network models, and Section

5 reviews the current applications of these approaches. The paper concludes

with a discussion of the future of artificial gene regulatory network research in

Section 6.

2 Gene Regulation in Nature

Regulation in general refers to the control of the flow of certain quantities by

signals from another entity. If we consider the multitude of flows that have to be

arranged for a living organism to “properly function”, it becomes clear that the

first target of gene regulation has to be the control of metabolic fluxes. From

the intake of nutrients to the expulsion of waste, the energy household of cells

needs to be organized and controlled. Enzymes and their expression levels are

the material patterns that have to be arranged in time to make this possible.

However, this is just the most basic regulatory need of organisms. The

sophisticated weaving together of behaviors to produce the life cycle of a cell or

organism, or that allow it to survive under adverse circumstances stand to gain

as much from regulation as energy fluxes do [57].

All of this leads to the conclusion that the control of gene expression levels

that in turn control the interaction of the organism with its environment, is the

most basic function one can imagine for a gene. But in addition, gene products

can interact with other genes and their products, thus forming a network that

allows intrinsic time-scales and autonomy (self-regulation) to emerge [33]. The

following subsections discuss these topics more in details.
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2.1 Gene Expression, Cell Function and Differentiation

The behavior and type of a cell are characterized by the gene expression pat-

terns of the cell. This is because the gene expression patterns describe the

components of the cell that have been constructed. By construction we mean

the transcription of DNA into RNA, and its possible subsequent translation

into protein. RNA expression levels therefore can be used to identify specific

cell types. One speaks of the “fingerprint” of a cell, revealed in its expression

pattern [2, 54] through RNA sequencing techniques.

However, as always in Biology, individual cells vary a lot. Therefore, while

the characterization of cell types is a convenient way of clustering cell behaviors

into classes, there is nevertheless substantial variation between different cells

even in the same cell class (or type). Historically, this was difficult to examine

in the laboratory, since most techniques could only be used to analyze cell

mixtures. With the advent of single cell transcriptomics, however, the situation

has changed and differences down to the individual cell level can be resolved

[46, 136].

It is also becoming clear that not only do individual cells of the same type

have differences in their expression profile, but cells vary their expression levels

depending on circumstances and age [87]. No wonder, cells are open systems,

best characterized at any time as in steady state or in transition. This confirms

the intuitive ideas first proposed by Waddington in 1957 [144], as depicted in

Figure 1.

2.2 Genomic and Protein Aspects

Gene expression happens through a process of gene activation and subsequent

generation of protein and/or RNA products. The activation and control of gene

expression is the focus of genetic regulation, where multiple mechanisms influ-
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Figure 1: The trajectory of a cell, after [136]. A: Idealized regulatory

network with two genes inhibiting each other. B: Three resulting dis-

tinct stable states (attractors) with their attractor basins indicated

by arrows. C: Gene expression levels of the components over time

can be considered as trajectories through expression space. Time

quantified in arbitrary units and indicated in colors.
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ence the rate of gene expression. While the machinery of gene expression is

complex and varies across organisms, some features are consistent. Gene ex-

pression requires the recruitment of a RNA polymerase to a gene’s region of the

DNA sequence which will then transcribe the gene into mRNA by forming RNA

polymers from nucleotides. Promoter sequences are used to initiate transcrip-

tion of a gene by recruiting the polymerase. Transcription factors modulate

the rate of expression by inhibiting or enhancing the rate of transcription of

genes. Transcription factors are themselves the products of gene expression,

serving as a source of feedback for the regulation of genetic networks. While

the transcription of genes yields mRNA, in the case of protein products, an

additional step of translation must be performed to produce a protein product

from a given mRNA molecule. However, mRNA itself can spawn other types of

RNA (iRNA, etc) which take on their own regulatory or interaction role in the

processes leading to protein production.

As mentioned above, the products of gene expression are protein and RNA

molecules, some of which are transcription factors while others directly con-

tribute to the metabolism and behavior of cells. The behavior and function of a

cell is the result of the gene expression that has contributed to the current state

of the cell. That is to say, the size, membrane composition, and structure of

a cell are defined by, among other things, the gene products that reside within

the cell. As a consequence the state and function of a cell is defined by the com-

position of the cell, which is the integral of gene expression, degradation, etc.

Readers interested by these mechanisms can find an extended review in [67].

2.3 Significance of GRNs in Cellular Physiology

The cell cycle is fundamental to biological organisms, as it governs the process of

cell division and therefore of replication. One of the classic model organisms for
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studying the cell cycle is fission yeast. Regulation of the cell cycle in fission yeast

has been well characterized [140]. The cell cycle in fission yeast is controlled by

3 modules of its gene-regulatory network that operate at different phases of the

cell cycle: G1/S, G2/M, and mitosis. In the G1/S phase, cells grow and replicate

DNA. There are 4 key control elements involved in this process (see Figure 2):

cdc2 and cdc13, two proteins shared throughout all 3 phases of the cell cycle

pair to form complexes that activate key pathways, and ste9 and rum1 which

maintain bottlenecks via degradation and inhibition of cdc13 and the cdc2-

cdc13 complex. In turn, cdc2-cdc13 acts to reduce the activity of ste9 and

rum1. As the cycle proceeds through G2/M and mitosis, other players take part

in the control of the cell cycle through similar feedback mechanisms. In the cell

cycle of yeast and mammalian cells, a number of these interactions involve the

explicit control of transcription factors, such as e2f and p53 [47], where p53 is

well known for its role as a tumor suppressor [120]. The interested reader will

find ample literature to review on the intricate details of the regulation of the

cell cycle starting from [140]. The key feature that we hope to convey to the

reader is that the dynamic feedback between the activity of regulatory elements

(as manifested by their concentration and localization within the cell) allows

the gene-regulatory network to transition between different modes of activity.

In the case of fission yeast, this interplay manifests itself as distinct modules

that operate at different phases of the cell cycle.

2.4 Significance of GRNs in Developmental Biology

We now consider the evolutionarily conserved Delta-Notch signaling pathway

present in metazoans [3]. Delta-Notch signaling was initially studied because

if its role in neurogenesis, growth of the nervous system. The intercellular sig-

naling of this system exhibits a lateral inhibition dynamic, where a cell that
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Figure 2: Cell cycle network of fission yeast from [140].

commits to neural differentiation inhibits its neighbors from doing so. This in-

creases the sparseness of cells that commit to a neural fate. The Delta-Notch

signaling pathway is regulated by a suite of achaete-scute genes that produce

transcription factors which both control and are themselves controlled by lateral

inhibition [98]. Again, we see that feedback loops are involved in the control of

genetically-regulated networks. The Delta-Notch pathway is not only evolution-

arily conserved, but plays many roles beyond neurogenesis in development, such

as embryonic segmentation in Drosophila [99], wing patterning in Drosophila

[70], and blood vessel formation in mouse [12] and zebrafish [142].

While the Delta-Notch pathway represents a well-studied pathway, genetic

regulation is fundamental throughout developmental biology. The patterning

of positional cues in Drosophila development, such as Bcd, a key determinant

of anterior-posterior polarity is regulated by multiple transcription factor bind-

ing sites with varying binding strengths [114]. Eight key transcription factors
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are involved in providing positional information during Drosophila development

(including Bcd), and recent work has shown that it is possible to predict the

resultant patterning by modeling the interactions of regulatory elements based

upon the underlying regulatory sequences [129]. The role of transcription fac-

tors in the patterning of Drosophila even transcends the individual organism

itself, where maternal inclusion of localized transcription factors in the embryo

expedite segmental patterning.

2.5 Significance of GRNs in Evolution

The two primary forms of genetic regulation that have evolved are: transcrip-

tion factors and microRNAs (miRNAs). While transcription factors are proteins

with variable binding affinities to particular regulatory sequences, miRNAs are

more simple. miRNAs are short RNA sequences that can bind to regulatory se-

quences and repress gene products [9]. Both miRNAs and transcription factors

are known to be highly conserved throughout evolution; however, a key dif-

ference between the two regulatory mechanisms is their binding affinity. Tran-

scription factors can generally bind to a range of sequence patterns with variable

binding strength while miRNAs have almost exact binding specificity due to nu-

cleotide complementarity. As a result the rates of evolution of miRNA (slow

due to exact binding) and transcription factors (fast due to reduced specificity)

have been predicted to differ by approximately 4 orders of magnitude [21].

A fascinating evolutionary mechanism that has played a significant role in

the evolution of GRNs is the occurrence of transposable elements. Transposable

elements (TEs) are sequences that move and replicate throughout the genome,

and are commonly described as genomic parasites [17]. TEs have been clearly

shown to be beneficial to hosts in some cases, such as the upregulation of factors

leading to pesticide resistence [23]. The dynamics of replicating TEs contribute
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to the establishment of sequence motifs that have related sequence patterns.

TEs serve as a source of novel and derivative genetic material that can be

recycled into regulatory sequences and binding elements [51]. The molecular

mechanisms underlying the evolution of gene-regulatory networks are diverse,

ranging from protein to RNA binding elements, and effectively form a genomic

ecosystem.

2.6 Significance of GRNs in Epigenetics

The expression of genes not only relies upon genetic sequences, but also on the

accessibility of the genes. Epigenetics is concerned with heritable traits that

are not encoded within the sequence of the genome. Most forms of epigenetics

involve altering the physical structure of the sequence, such as wrapping DNA

around histones and methylation of nucleotides. Chromatin is a collection of

DNA, RNA, and protein that condenses the structure of these molecules, which

allows for increased stability, density, and organization. Within chromatin, DNA

is wrapped around histones to form nucleosomes. The accessibility of DNA

sequences in these nucleosomes has a significant impact on the expression of

genes located within the nucleosome [62]. Furthermore, modification of histones

further alters gene expression to the extent that gene expression can be predicted

from the known modifications [82].

DNA methylation is another form of epigenetic regulation that involves

structural modification of nucleotides in the sequence itself. One of the key

mechanisms of DNA methylation is physically blocking enhancer and/or pro-

moter regions, thus altering the expression of a gene [80]. Methylation itself is

the addition of 1 carbon with 3 hydrogens to an existing structure, in the case of

DNA methylation the existing structures are nucleotides. This additional struc-

ture is sufficient to modify binding sites to the point of prohibiting interactions
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with regular binders of a regulatory sequence. Methylation can be induced by

environmental factors [72]. The methylated state of a DNA sequence can be

transmitted through multiple cell divisions, as well as across generations [56].

In this way the evolution of GRNs can be impacted by epigenetic modifications,

which may be derived from environmental factors that were experienced as a

result of genetically-regulated behaviors.

In summary, gene regulation has emerged as a key player in translating

the information provided by an organism’s inherited DNA into the structure

(via growth and development) and behaviour of that organism. Time-scales

range from seconds (in case of the regulation of metabolism in neurons [102]) to

thousands of years (in case of evolutionary processes). Gene regulatory networks

have been compared to the compilers of computer languages that translate code

into behaviour of the underlying machine. However, there is much more to the

computational modelling of gene regulation and this brings us to our next topic.

3 Computational Gene Regulatory Networks

Artificial gene regulatory networks are a complex example of systems biology

[89]. Comprehensive models of the gene-regulatory process would require a

large range of complexity, from molecular dynamics to morphogenetic coupling,

making complete and exact models prohibitively expensive. As a result GRN

models generally focus on particular aspects of genetic regulation, for example,

the Gillespie algorithm [58] attempts to capture the stochasticity of genetic

regulation without modeling stochastic molecular dynamics. While we primarily

focus on computational and evolutionary models of gene regulatory networks in

this review, we will also touch on mathematical studies and analyses of the

dynamics of GRNs.
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3.1 Biological Models

There are a number of approaches that are used for modeling gene regulatory

networks [16, 36]. These approaches include differential equations, stochastic

simulations, Petri nets, flux balance analysis, graphical models, and more. A

number of reviews modeling genetic regulation have been written, many of which

primarily focus on biological modeling [81]. We begin our discussion of biological

models by introducing the steps of gene regulation and how they are modeled,

but ultimately focus on how these models are subjected to evolution.

Gene regulatory networks are commonly modeled with Hill kinetics, which

models the cooperative binding of two or more proteins to promoters, enhancers,

silencers, and other regulatory regions of a gene. These kinetics are formulated

using reaction rules that describe the rates of association/dissociation of a gene

and regulatory proteins to form a complex as a function of the cooperativity of

multiple binding proteins. The complexes formed by the binding of regulatory

proteins are used in conjunction with additional reactions to either directly pro-

duce protein products or, more realistically, model the transcription of mRNA

which is later translated into protein products.

While the initial approaches to analyzing gene regulatory networks focused

on deterministic models, such as ordinary differential equation-based mean-field

approximations, the use of stochastic models has been increasing in recent re-

search. Heightened attention to stochastic gene expression has been strongly

supported by observations of stochasticity-driven differences between cells with

identical genetic background, and by single-molecule experiments [50, 124, 123].

The cornerstone of stochastic simulation of chemical kinetics is the Gillespie

algorithm [58], and its extensions for adaptive time steps [59].

It is well known that GRNs are stochastic systems where noise can have a

significant impact on resulting cellular behaviors [50]. The occurrence of noise is
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generally discussed in conjunction with the common observation of small num-

bers of some molecular species acting in a GRN, where fluctuations in the con-

centration of such species can lead to significant changes in network dynamics.

However, biological mechanisms have evolved not only to control and eliminate

such effects of molecular noise, but also to amplify and exploit it [116]. In a

more detailed study of noise cascading through a GRN, [115] show that even in

networks that do not involve small concentrations of some molecular species it

is possible for noise to have significant effects due to global network modulation

and upstream effects.

Biophysical models focus on capturing aspects of genetic regulation that

extend beyond the scope of simulating chemical kinetics. This has been heavily

utilized in computational models of Drosophila segmentation [69, 104], neural

development of zebrafish [150], and vascular biology [12], where GRNs tuned

to biological networks interact with cytoskeletal and chemotactic behaviors to

predict the temporal behavior of vascular dynamics [94]. The same model has

also been utilized to show how the bistable dynamics of a GRN can be used to

regulate pattern formation for healthy angiogenesis [11, 141].

3.2 Dynamics and Analysis

Mathematical studies of genetic regulation have been driven primarily by the

dynamical systems community. As a result, the majority of analytical work has

focused on the stability and attractor dynamics of gene regulatory networks.

It is important to address these mathematical foundations of gene-regulatory

dynamics, as they inform researchers of the capabilities of GRN representations.

For example, in the Delta-Notch signaling system discussed in Section 2.4 the

previous belief had been that cells would decide on an environmental preference

then move to favor that preference. Through a dynamical systems study focus-
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ing on the bistable nature of a genetically-regulated model, it was shown that

the decisions to move and for location preference operate in parallel [11]. This

conclusion was reached by evaluating the dynamic stability of cellular behav-

iors as a function of cellular phenotype and environmental inputs to the cell’s

gene-regulatory network. Similarly, the synthetic biology community has begun

to use models of GRNs to develop hypotheses for experimental validation [67].

The theoretical biology community has been studying the dynamics of GRNs

for many years, beginning with Boolean networks, where genes are defined by

on-off states [83, 85]. Mathematical methods have extended this class of mod-

els with tools for the analytical discovery of steady states, attractors that the

GRNs will tend towards without external stimuli [110]. Such analysis led to the

prediction that evolution will drive single cell genetic network dynamics toward

greater dynamic stability [84]. In detailed analysis of a Boolean GRN derived

from the biology of the cell cycle, [38] show that this ubiquitous GRN is inher-

ently modular with a switch that triggers the completion of the cell cycle after

passing a restriction point. These analytical and dynamical studies of Boolean

GRNs have led to concrete predictions that can be experimentally verified.

Information theoretic approaches to the analysis of gene regulatory networks

often draw upon techniques from statistical mechanics that describe the state

space for molecular arrangements, and allow one to relate distributions of bio-

physical states to information in terms of the entropic cost of molecular config-

urations. [135] use information theory to show that, given biologically observed

noise levels in gene expression, it is possible for genes to encode more than one bit

of information (”on” or ”off”), a point that becomes particularly pertinent when

addressing the representation of GRNs. Through a combined experimental and

analytical study [22] show how negative feedback of signaling and transcription

can suppress noise, thus facilitating communication between collections of cells.
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By drawing upon methodologies from information theory, these studies have

shown how cells can regulate the otherwise confounding noise of the biological

environment to store and transmit meaningful information.

3.3 Representations

Boolean models of GRNs capture the on-off nature of genes, switching when

concentration of proteins crosses threshold values that represent the transition

between on and off states [83]. Early studies of this Boolean model investigate

the stability and oscillatory dynamics of random Boolean GRNs [85], and later

studies show support for the validity of the Boolean GRN model [131]. Ar-

guments for the use of Boolean GRN models often draw upon the quantity of

information available from biological experiments, suggesting that the amount

of information made available by gene expression profiling is only adequate for

training Boolean GRN models [95]. Furthermore, the simplicity of Boolean

models makes it easier to map out the state space of a GRN, thus facilitating

analysis.

Petri Nets (PNs) are a formalism commonly used in modeling distributed

systems [118]. PNs are graphical models that use nodes and edges to repre-

sent places and transitions, where places can contain variable numbers of to-

kens. When used to model GRNs, places represent molecules (proteins, mRNA,

complexes), transitions represent possible reactions (excitation and inhibition,

including reversibility), and tokens represent concentrations. There is a wide

range of PN models that incorporate features such as stochasticity; as a result,

PNs have direct relations to Boolean GRNs and the Gillespie algorithm. [108]

present an application of PNs to modeling λ-phage gene expression that readily

incorporates key relevant molecular species and transition types. The interested

reader is directed to [19] for an extensive review of PNs for biochemical models.
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To study the network structure effects of a GRN one of the authors of this

review in [5] developed a model that uses a sequence of bits to represent a

genome, with mobile protein elements that bind based on bit patterns, similar

to transcriptional footprints [14]. The features of the model are demonstrated by

showing a wide variety of dynamic characteristics, the effects of genetic pertur-

bations, and the evolution of the model with an evolutionary strategy. This bit-

string matching representation was simplified to an integer-based representation

[31], which has been shown to be effective in numerous applications discussed

in Section 5.

3.4 Evolution

While we have focused our discussion on features of gene regulatory networks

that are being modeled and analytical approaches to modeling, one of the most

powerful approaches to understanding gene regulatory networks is by using evo-

lutionary methods. Gene regulatory networks are evolved reaction networks,

and the existence of a naturally observed GRN is prefaced by an evolutionary

process that transformed the GRN into its observed state. An understanding

of the evolvability of GRNs serves as a basis for understanding why particular

gene regulatory mechanisms have emerged.

The ability to evolve the simplified bitstring-based GRN model of [5] to

fit multiple mathematical expressions was explored in [93], where oscillatory,

sigmoid, and exponential decay functions were successfully matched.

In a stochastic simulation model using the Gillespie algorithm [96] show

that a comprehensive GRN model with first-order and second-order reactions,

and homodimer formations can be evolved to obtain oscillatory dynamics. A

particular challenge of this evolutionary problem is compensating for the noisy

dynamics, which can shift the period and amplitude of observed oscillations;
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this leads to a need for evaluating each simulation trajectory and aggregating

over the results as opposed to observations.

It has been shown that in Boolean GRNs evolving under a gene duplica-

tion/divergence model, functionality can be well conserved even under extreme

evolutionary conditions [1]. Long term evolution of biologically plausible GRNs

using agent-based models show the emergence of evolutionary sensors, genes

that sense evolutionary pressures, that allow for rapid evolutionary change in

response to environmental variation [28]. In a related study it was shown that

under variations in fitness, such as environmental variation, the ability of GRNs

to adapt to new environments can be enhanced [45]. In Section 5 we discuss a

number of evolutionary methods and genetic representations which have been

used in applications of GRNs.

4 Internal dynamics of GRNs

Before applying gene regulation to agent control, researchers have focused on

the understanding on the internal dynamics of gene regulation. In 1999, Reil

was one of the first to present a biologically plausible model used in an artificial

life context [117]. In his work, he randomly generated a set of variable size

binary genomes in which each gene started with the particular sequence 0101,

named “promoter”. Promoters exist in living systems: a very specific sequence

of nucleotides, the TATA1 box, is known to identify a gene’s starting position.

As presented in Fig. 3, Reil used a simple visualization technique to observe

gene activation and inhibition over time with randomly generated networks.

He obtained several activation patterns such as stable, chaotic, or oscillatory

patterns. Reil also pointed out that after random genome deteriorations, the

system was able to rebuild the same pattern through an oscillation period.

1T=Thymine and A=Adenine
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(a) Ordered (b) Chaotic (c) Cyclic

Figure 3: Graphical representation of gene activation with Reil’s ar-

tificial regulatory network. Each line represents one gene activation

level: Dot means that the gene is activated; white space means it is

disabled. Image from [117].

The artificial gene regulatory network proposed in [5] is strongly inspired by

real gene regulation. In this work, the genome is coded as a set of 32-bit integer

(in other words a bit string). Each gene of a genome starts with a “promoter”

coded by the sequence “XYZ01010101” where XYZ is any bit sequence to com-

plete a 32-bit integer. The combination “01010101” has a probability of 2−8 in

a bit string equivalent to a TATA box from a real DNA sequence. The gene

coded after a promoter has a fixed size of five integers (160 bits, each integer

having 32 bits). Upstream from the promoter, two integers code for an enhanc-

ing site and for an inhibiting site, thus regulating gene expression activity. In

this model, all DNA transcription mechanisms are omitted to focus on gene

regulation dynamics itself. This kind of genome can produce various activation

dynamics, as presented in Figure 4. Randomly generated genomes were used in

these experiments.

A key property observed in these networks is heterochrony [6]. As depicted

by Figure 5, small changes in the network structure or concentration only imply

small changes in network dynamics. This behavior is crucial when the net-

work is evolved for artificial life applications: heterochrony smoothes the fitness
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Figure 4: Examples of protein concentration dynamics obtained

with the artificial gene regulatory network of [5].

landscape, making it more evolvable. This model has also been used in [18]

to analyze the inner temporal dynamics of gene regulatory networks using pole

balancing and signal processing benchmarks and its capacity to reproduce input

signals within a delayed timeframe.
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Figure 5: Example of heterochronic control in gene regulatory net-

works: by mutating one bit of a protein, the regulation dynamics

only slightly changed.

Pictures and videos have been employed to visualize the dynamics of GRNs

and observe the complexity of the behaviors generated. In a contribution by

another author of this review [32] the GRN, cloned to every pixel of the pic-

ture, computed the RGB components of each pixel of the picture. Each GRN

used the pixel coordinates (input proteins) to compute the color component

(output proteins). GRNs were evolved using interactive evolution: users were

tasked with selecting the most beautiful images, and GRNs were mutated and
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(a) (b) (c) (d) (e)

Figure 6: Examples of pictures generated with a gene regulatory

network. Image from [32].

recombined based on this selection mechanism. Some of the generated pictures,

representing a snapshot of the network dynamics, are presented in Fig. 6, while

Fig. 7 presents screenshots of videos2. This work allowed to explore possible

behavioral structures generated by gene regulatory networks. For example, in

picture (b) of Fig. 6, repetitive patterns can be observed with some modifica-

tions. That shows the capacity of gene regulatory networks to produce modular

patterns. Pictures (b-d) also show the ability of the GRN to produce both

smooth or abrupt variation as codified here in color transitions. Finally, pic-

ture (e) depicts the GRN’s capacity to produce extremely complex behavior,

with very different outputs for close input values. More details about properties

highlighted in these pictures can be found in [32].

Videos can capture the temporal aspect of gene regulation. As presented

on Figure 7, oscillatory behaviors can be easily visualized. Other videos show

chaotic and steady-state behaviors, which are the two other main behaviors of

gene regulatory networks in addition to oscillations.

The computability of gene regulatory networks has been been studied ex-

tensively over the past years. An full review of computability in GRNs can be

found in [103]. Artificial GRNs have also been used to investigate a number

of questions in the context of evolution. Using Reil’s DNA-like model, Rohlf

2More examples and the software to generate pictures and videos can be found online:

http://www.irit.fr/~Sylvain.Cussat-Blanc/ColorfulRegulation/index_en.php

22



Figure 7: Examples of videos generated with a gene regulatory net-

work.

and Winkler studied the evolvability of GRNs and showed a strong relationship

between their robustness against noise and their robustness against genetic ma-

terial deletions due to the evolutionary process [119], which are key properties

in real-world applications. Schramm et al. investigated the role of redundancy

in artificial gene regulatory networks [127], showing that genetic redundancy

can enhance evolvability up to a point, after which greater redundancy becomes

deleterious. Genetic networks were able to evolve modular genotypes when sub-

jected to dynamic fitness landscapes [100]. Recent work has shown that evolved

GRNs can achieve greater hierarchical modularity than neural networks [107].
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Numerous studies remain to be performed regarding the evolution of GRNs, and

some of those can be approached from the perspective of artificial life which is

our next topic.

5 Gene Regulatory Networks and Artificial Life

Similar as in Nature, the role of (artificial) gene regulatory networks in artificial

life and evolutionary computing systems is manifold. In general terms, GRNs

impact our understanding and implementation of the genotype-phenotype map

in those systems, notably the non-linearity between those representations. In

this section, we shall discuss some of the most important applications.

The phenomena produced by GRNs can be classified into (i) interactions

between genes through their expression products, (ii) spatial patterning of ex-

pression, and (iii) temporal structuring of expression. There is a close connection

between those phenomena and applications, where spatial structuring enables

embryogenesis and design, temporal structuring allows for development and

dynamic control of agents, and interaction among genes (and their products)

allows for neuromodulation and indirect encoding of various structures.

This section presents the main application work using artificial gene reg-

ulatory networks. Their use started in artificial embryogenesis, described in

section 5.1, which aims at reproducing the development of multicellular organ-

isms. These models are perfect theoretical frameworks to develop, improve and

understand gene regulation in a set up comparable to or inspired by biologi-

cal examples. Following this period, researchers started to use these models to

solve real world problems. Due to their intrinsic ability to control behaviors

of cells, artificial gene regulatory networks were first transferred to agent-based

systems, discussed in section 5.2 in more detail. In this case artificial GRNs are

used to produce agent behavior by using an agent’s sensors as input proteins
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to an AGRN and using an agent’s actuators to be controlled by the AGRN’s

output proteins. First real world applications were taken from evolutionary

robotics. Successful applications in virtual agents then led to more recent work

using AGRNs as neuromodulators in neural network based learning systems (see

section 5.3 or as indirect encoders for neural networks or genetic programming

trees (see section 5.4).

5.1 Artificial GRNs in Artificial Embryogenesis

The previous section provided an explanation of the dynamics and properties

emerging from gene regulation. In this section we discuss applications of ar-

tificial gene regulatory networks. One of the most obvious ones is artificial

embryogenesis. Artificial embryogenesis draws inspiration from biological mech-

anisms involved in the growth of a living organism, from the initial single cell

zygote to a whole mature organism. In this process, gene regulation is a central

mechanisms that controls a wide range of interactions between the cells and

their micro-environment. Therefore, artificial gene regulatory networks have

frequently been used in artificial embryogenesis. They have been employed

to control cells, their cell cycle regulation (when to divide), their migration

strategy, and their specialization (color or function). This section provides an

overview of existing models of embryogenesis that are based on artificial gene

regulatory networks.

5.1.1 Background on Pattern Generation

Turing produced the first work on modeling morphogenetic development in 1952.

He suggested that a reaction/diffusion model could capture cell development

from a chemical point of view [138]. In his model, a set of differential equations

governs the dynamics of morphogen concentrations in an environment. Even
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Figure 8: Example of a dappled system obtained with Turing’s re-

action/diffusion system. Image from [138]

though this seminal work did not include any discrete form of cells or genetic

regulation, Turing’s model has served as the basis for most of the past and

current models of artificial embryogenesis and patterning [109].

Turing’s model was mainly used to describe lower level phenomena such as

chemical substance diffusion in the environment (see Fig. 8). Bio-inspired mech-

anisms have been used to add cells interacting with this environment, mainly

for the diffusion of morphogens produced by organisms such as in [53, 48, 117,

5, 92, 133, 75, 31, 90].

At the cellular level, cellular automata, proposed by von Neumann in the

1950s, are considered a key contribution. At the time von Neumann was work-

ing on self-replicating machines. He stated the hypothesis that a system able

to manipulate elementary components could be capable of constructing a copy

of itself. Due to the technical complexity of building such a machine, he imag-

26



ined a universal automaton able to pick up and to assemble arbitrary compo-

nents. During the same period of time, the mathematician Ulam was working

on recursively-defined objects. Recursive objects are defined as cells in an infi-

nite matrix, which can have two states: active or passive. Cells evolve over time

following rules based on their neighborhood. Ulam proposed von Neumann to

use this kind of an environment to avoid technical problems with his ”univer-

sal constructors”. Von Neumann was successful with a proof for his universal

constructor and in 1966 the theory of von Neumann’s self-replicating machines,

implemented as “cellular automata” was posthumously published in [143].

Figure 9: Example of shape produced by the Conway’s game of life.

Shown here is a glider, able to move in its environment across the

grid, time step after time step.

In 1970, Conway defined the famous “game of life” cellular automaton [25]

in which cells have only two states (dead or alive) and two simple rules using

a Moore neighborhood. Depending on the initial environment configuration

(repartition of living and dead cells at the beginning of the simulation), several

shapes emerged and were able to move, to reproduce, or to merge (see Fig.

9). In 1999, de Garis encoded the transition rules of a cellular automaton into

a genome evolved with a genetic algorithm [35]. He observed that, using a

von Neumann neighborhood, only 14 states were possible for a cell in a 2-D

environment at each time step. This allowed a simple coding of the rules in a

genome, enabling evolution with a standard genetic algorithm. With this setup,

de Garis was able to produce several simple shapes, e.g., triangles and squares,
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etc., or more complex shapes like letters, turtles, and snowmen, as illustrated

in Figure 10.

Figure 10: Examples of shapes produced with cellular automata.

Image from [35]

5.1.2 Simulating Cell Differentiation

While the previous work was focused on developing shapes, cell differentiation

is one of the key aspects for simulating artificial embryogenesis. In a natural

developmental process, cell differentiation dictates the specialization of a cell

type. Starting from a unique cell, it allows the creation of various cell types, such

as neurons, muscle cells, liver cells, etc. which will have very different functions

in organisms. In 1969, Kauffman introduced Random Boolean Networks (RBN)

[85] to simulate this feature. The interpretation of this regulatory network was

simple: each node controls a gene and the node state represented the gene

activity (activated or inhibited). The genome transcription produced the cell’s

final function.

In 1994, Dellaert and Beer proposed a developmental model using this net-

work [37]. In his model, a Boolean network represented an artificial regulatory

network for cell differentiation control. Boolean networks were at the time (and

still are) classical approaches in computational biology to simulate gene regu-

latory networks of real living systems. In this work, the authors used a 2-D

matrix that allowed simple cell divisions: the initial organism was made of only
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Figure 11: Illustration of Dellaert’s developmental model. A random

boolean network was used as an artificial gene regulatory network in

order to produce user-defined shapes and cell differentiations (col-

ors). Image from [37]

one cell that was covering the entire grid; during the first division, the grid was

split into two horizontally or vertically (division plane orientation was controlled

by the genome) and the new cell could differentiate. The aim was to visually

observe cell differentiation by a modification of the cell color and explore the

capacity of Boolean networks to produce various shapes with the help of a ge-

netic algorithm. Dellaert obtained several shapes, such as presented in Figure

11.

In 1997, Eggenberger-Hotz explored asymmetric division and division plan

control with a model able to produce a simple creature with a user-defined

shape. This creature was able to move in the environment actuated by an

artificial gene regulatory network [48]. With this purpose, the model was able

to simulate natural mechanisms of asymmetric cell division [68]. This kind of

division allowed cell differentiation by producing daughter cells with different

proteins. The regulatory network produced a specific protein used to adjust the

orientation of the cell division plane and the division timing. The regulatory

network also controlled cell physical dynamics and its own gene regulation that

corresponded to adhesion coefficients between cells. Cells periodically emitted
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Figure 12: Eggenberger-Hotz’s ’T’ creature, able to move in the

environment by modifying it morphology, induced by the artificial

gene regulatory network. Image from [49].

molecules that modified adhesion parameters between cells and the environment.

With this set-up, Eggenberger-Hotz produced a growing creature with a ‘T’

shape. It was able to move in the environment by modifying its morphology

[49].

In 2004, Bentley used fractal AGRNs, in which genes are expressed as frac-

tal protein subsets of the Mandelbrot set, with the proteins interacting through

a fractal chemistry, to show that this structure can produce complex growing

shapes with a very small amount of genetic material [13]. The system demon-

strated the capacity of GRNs – when associated with a developmental process

– to compress the data necessary to generate shapes and behaviors. Krohn

studied the dynamics involved in this process and applied a fractal AGRN to

classical control problems such as mountain car driving and pole balancing [91].

In 2005, Flann et al. used a graph implementation of an artificial regula-

tory network to develop pictures composed of differentiated cells (illustrated by

Figure 13 [52]). Similar to Dellaert, the aim was to explore differentiation mech-

anisms in cells but here with an increased level of complexity in terms of shapes

produced. In the graph in the lower third of the figure, each node represents

the expression level of a distinct protein, and each edge represents the interac-

tion between proteins. In this model, cell coloration (see upper panels of the

figure) revealed the cellular differentiation. Whereas simple shapes were easily
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Figure 13: Examples of shapes produced by Flann’s regulation net-

work. The first line of images shows desired patterns, the second line

shows the best obtained patterns after genetic evolution. The lower

half shows the corresponding regulation networks. Images from [52].

produced with this kind of network, the use of multiple networks in parallel was

necessary to produce more complex shapes. In this case, protein concentration

levels had to be combined to determine the global gene activity.

Chavoya and Duthen developed an artificial gene regulatory network model

in 2008 to solve the French flag problem [20] that was inspired by the model in

[5]. The goal was to explore the coevolution of shape and color, i.e. cell differ-

entiation, both controlled by the same AGRN. Illustrative results are presented

in Figure 14. The authors used a cellular automaton to generate the shape,

based on de Garis’ work, where rules were enabled or disabled by the artifi-

cial gene regulatory network. Moreover, morphogen gradients, pre-positioned

in the environment, gave localization information to cells and generated further

information for the artificial gene regulatory network. The authors obtained per-
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fectly scalable flags and furthermore several shapes such as multicolor squares,

triangles, polyhedrons (3-D), etc.
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Figure 14: Chavoya’s French flag and its protein concentration

curves. This problem puts to the test cell differentiation capaci-

ties of developmental models. Here, differentiation is indicated by

color shifts. Image from [20]

Also in 2008, Knabe et al. proposed a model close to Chavoya’s. Their

approach employed an artificial regulatory network in which Chavoya’s cellular

automaton was replaced by a cellular growth system [90], Cellular Potts models

[61], which were en vogue at that time in biological simulations of cell prolifer-

ation. Cells acted in a pixel matrix. They grew by absorbing free pixels and

following a development axis controlled by an artificial gene regulatory network.

The latter mechanism indicated its growth direction to the cell with its ratio
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height

width
and its current shape. When a cell was composed of 24 pixels, it started

its mitosis by dividing according to an axis orthogonal to the last division axis.

This division axis could also be modified by the regulatory network. Here, two

morphogens were used to determine cell color. However, in this model, mor-

phogens were not pre-positioned but produced by the cells. Therefore, cells had

to regulate the morphogen production to obtain the appropriate concentration

according to the final shape given by the user. Knabe tested his model with

the French flag problem and used a genetic algorithm with a fitness function

that evaluates the difference d between the tested individual T and the expected

pattern Ri of size wxh:

d(Ri, T ) =
1

wh

h−1∑

x=0

h−1∑

y=0

|sgn(Ri
xy − Txy)|

The results obtained (illustrated in Figure 15) were close to the expected pattern

in 75% of cases.

In his study of complex systems, Doursat used a model based on gene ex-

pression levels to simulate the developmental process of complex shapes [42, 43].

An artificial regulatory network composed of three layers was used:

• A first layer used positioning data given by morphogens.

• A central layer contained “boundary” nodes which allowed a horizontal

and vertical segmentation of the embryo. Gene regulation was also man-

aged with this layer thanks to the production of activator and inhibitor

proteins.

• A third layer determined the regulatory protein production thanks to the

concentrations of activator and inhibitor proteins produced by the second

layer.
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Figure 15: Example of French flag growth with Knabe’s model. Top:

Organism development status can be observed at simulation step 45

with this organism itself (on the left) and the morphogen gradient

produced by the organism (on the right). Bottom: Final organism,

at the end of its growth (simulation step 200). Various cell shapes

can be observed and cells are correctly differentiated to produce a

pattern close to the expected one. Images from [90].

This regulatory network depended on a developmental model built with two

simple rules:

1. Cell division allowed each cell of the organism to divide with a particular

probability,

2. Intercellular adhesion forces, based on a mass/spring, kept the global con-

sistency of the organism.

In this developmental system, a 2-D environment contained two kinds of mor-

phogens that allow cell positioning. Starting from an initial cell cluster, Doursat
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produced an organism in which several differentiated areas appeared due to cell

differentiation. Many shapes were produced like the salamander presented in

Figure 16(a). In the salamander morphology, several differentiated areas, high-

lighted with different cell colors, are observable: legs, abdomen (divided up in

six pieces) and the head (also divided up in ten pieces). Doursat was able to ma-

nipulate an organism’s morphology simply by modifying experimental param-

eters (especially weights and functions implicated in the regulatory network).

The same initial cell cluster was used with different parameters to produce an

eight-legged organism at the end of the developmental process (Figure 16(b)).

(a) A salamander (b) A eight-legged
organism

Figure 16: Developed shapes and an overview of corresponding ar-

tificial gene regulatory network of Doursat’s developmental model.

Images from [42].

Joachimczak and Wròbel proposed, also in 2008, to step up to the third

dimension and into continuous space, substantially increasing the complexity

of the models [75]. Every cell had an artificial gene regulatory network and

regulated a quantity of morphogens produced on its own. These morphogens
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led the development of daughter cells in the environment. Cells had various

sizes, depending on their stage of evolution. The organism’s genome was one

of the strengths of this model because of its capacity for complexification over

generations. It was composed of a list of “genetic elements” where each element

has a specific type with different functions during the genome parsing stage.

The main types are:

• Regulatory elements, also called promoters, that regulate the activation of

genes,

• Genes were products or substrates produced by the cell and are used

to give pieces of information to the regulatory elements. They could be

internal (intracellular), external (extracellular, also called morphogens) or

receptors (interact with external products and influence the cell division

axis), and

• Special elements that coded the outputs of the regulatory network.

Affinities (the concentration value of the morphogens) were computed between

promoters and products. They created connections between the regulatory ele-

ments that finally built a regulatory network. Simple shapes like screw nut or

dumbbell could be produced with this model. The same authors showed in their

most recent work the differentiation capacity of cells by extending the French

flag problem to the third dimension [76]. Figure 17 illustrates these experiments.

Self-repairing was a further property of this model: When a certain number of

cells were killed at the beginning of the development, the organism was able to

regenerate a shape to the desired pattern.

In 2011, one of us with co-authors used a discrete developmental model in

which cells were controlled by an artificial gene regulatory network in order to

produce 2-D colored shapes [29]. In contrast to the previous model, the growing
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organism was required to develop a metabolism based on an artificial chemistry

defined in the environment. The model was based on the coevolution of a bit-

string artificial gene regulatory network that controlled the cell specialization

into different colors, and a rule set that controlled the proliferation of the cells.

Both were evolved using an evolutionary algorithm: the rule set to produce a

shape and the necessary metabolism to survive, and the artificial gene regulatory

network to specialize the cells as targeted by the user. The authors showed

how morphogen gradients guided the AGRN to the regionalization of the cells.

Figure 18 illustrates this model.

The models described in this section inspired many researchers to develop

their own artificial regulatory networks or to apply such systems to specific

problems. As one of many possible examples, Bongard and Pfeifer used a model

close to Reil’s model to develop modular robots [15]. These robots had a neural

network that controlled each module (for rotation, elongation, etc.). The genetic

expression of the artificial gene regulatory network allowed the activation or the

inhibition of 23 phenotypically predefined transformations, such as module size

growth, module division, parameter modifications, neural network topology, etc.

Figure 17: Example of organisms produced with Joachimczak’s

model: On the left, a dumbbell; on the right, a 3-D French flag.

Images from [75, 76].
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Figure 18: Multicellular organism with metabolism growing in a

chemical environment with specialization skills. On the right, the

artificial gene regulatory network obtained and interaction between

its genes. Images from [29].

5.1.3 Morphology and Controllers

Based on their previous work, Schramm et al. used an artificial gene regulatory

network to evolve both the morphology and the controller of virtual animats

[126, 78, 73, 74]. The morphology was grown from a single cell using a de-

velopmental model comparable to the one presented above. The artificial gene

regulatory network was then used to control the cell behavior (cell division, divi-

sion plane orientation, etc.). After a given developmental time, the morphology

was frozen. The cells were transferred to a simulated aquatic environment and

the cell aggregate was transformed using Delaunay triangulation to a set of

masses (centers of the cell) and springs (cell connections). The artificial gene

regulatory network previously used to control the growth of cells was now used

to control the spring stiffness in order to move the animat in the environment.

AGRNs were evolved to reach the maximum distance. Figure 19 presents one

of the animats obtained with such a method.

Such approaches bring artificial creatures closer to resembling living systems.
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Figure 19: Animats first grown with AGRNs controlling cells in a

developmental model and then moving in their simulated environ-

ment. Image from [74].

Living systems learn locomotion and everything else during their entire life, from

the very few first cells to the end of their lives; however, most previous work does

not take this into consideration and uses a fixed morphology. In this domain,

AGRNs paired with a developmental model can be exhibit powerful solutions,

given their capacity of adaptation to changing environments. The oscillatory

behavior of AGRNs has been used to control ATRON’s modular robots [149]:

the robot, possessing a snake-like structure, can be successfully controlled by

an artificial gene regulatory network with the fractal representation [13].

In all previous work, artificial gene regulatory networks and developmental

models have been used with a specific objective described by a fitness func-

tion of the evolutionary algorithm. However, living beings do not act in the

environment with an explicit life-long objective function. While using a fitness

function helps to quickly obtain interesting results and simplify the analysis of

the creatures obtained, it can trap the system in a local optimum due to the

engineering of the fitness function itself.

In 2014, Doursat and Sánchez gave an overview on how co-evolution of mor-

phology and controller using evolution and development can help to generate

multicelluar soft robots [44]. After classifying existing approaches in modu-

lar/soft robotics into four different categories of morphogenetic engineering3,

from human assembly (constructing) to rewriting/inserting (generating), pass-

3The science of engineering growing systems.
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Figure 20: Example of robot ”grown” using MapDevo3D. (a) The

robot morphology; (b) Its modular organization; (c-g) the robot

immersed in a physics engine. Image from [44].

ing through syncing/swarming (coalescing) and growing/aggregating (develop-

ing), they present the three key components of their system, MapDevo3D, a

multicellular soft-robot-growing platform:

• Cells (represented as a swarm) can adhere through elastic forces,

• Positional information (morphogenes) can diffuse in the environment for

cell-cell communication,

• An artificial gene regulatory network can control cells.

With this system, the authors grew a 3D multicellular organism composed of

hundreds of cells of 27 different types, organized in “tissues” (i.e. modules)

able to walk across the environment and climb stairs. Figure 20 illustrates this

experiment.

Disset et al. proposed in 2014 to simplify this fitness function and build a

virtual environment complex enough in order to allow creatures with complex

behaviors to emerge [39]. The fitness function was extremely simple: The arti-
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ficial creature (and thus the artificial gene regulatory network that controls its

cells) was evaluated based on its survival duration. The evolutionary algorithm,

which evolves the AGRN, could explore all the possible strategies to reach this

aim. In these first experiments, the authors proposed to evolve 2D creatures

fighting against harmful particles. Cells could, in addition to classical division

and communication with morphogens, specialize into two different types: nutri-

tive (capacity to extract energy from the environment) and protective (capacity

to resist to the particles). Cells had to self-organize in order to survive as long

as possible.

In 2016, this work was extended to the third dimension and explored the

developmental strategies in a more realistic environment in which cells must

proliferate both in soil that contains nutritive resources and in the air where

sunlight transform the nutriment into energy [40]. Once again, the fitness func-

tion only consisted of the survival duration of the organism. In this experiment,

the results were first deceptive: evolution was stuck in a local optimum. The

authors explored novelty search strategies in order to surpass this deceptive re-

sult. While novelty search has already been used in previous work on artificial

embryogenesis [79], authors obtained complex growth strategies as, for instance,

the one presented in Figure 21, with simple diversity measures balancing the

survival duration objective.

5.1.4 Bridging the Gap to Reality

While up to this point computational simulations of GRNs have advanced be-

yond the reach of synthetic biology, biological engineering has been rapidly

catching up, with applications from recording images [97] and basic image pro-

cessing [134] using engineered microbes to quorum-sensing regulated drug de-

livery [151]. A number of computational elements have been developed using

synthetic biology [66], and the development of BioBricks [130] has stimulated a
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Figure 21: Example of creatures obtained with an AGRN controlling

growing animats without an explicit fitness function in the evolu-

tionary algorithm.

movement in synthetic biology akin to the early days of electronic engineering.

The limits of phenomena that can be understood from the perspective of bio-

logical circuit engineering have yet to be discovered [65]. The field and future of

synthetic biology is well beyond the scope of this review, and so we direct the

interested reader to some of the extensive reviews of the field [86, 24, 55].

5.2 Agent Control

Artificial embryogenesis was one of the first applications of artificial gene regu-

latory networks. Because AGRNs serve as the central controller of living cells,

artificial embryogenesis was a perfect and natural framework to develop the

models and explore their capabilities. Once they reached a “satisfying” level

of quality, researchers started to evaluate possible use of these controllers in

different types of applications, more oriented towards real world problems. This

section presents the use of artificial gene regulatory networks of different kinds

in the control of virtual agents.

One of the first application of artificial embryogenesis was to use an artificial

gene regulatory network to control a pole cart [113, 91]. This experiment is a

42



typical benchmark in the evolutionary computation community which consists

of balancing a pole on top of a cart. The cart’s motion (left or right, with

no possibility to stay put) is in a one dimensional continuous environment of

limited space. The controller senses the position of the cart, the pole angle, the

cart velocity, and the angular velocity of the pole. This benchmark has been

solved with multiple machine learning approaches [10, 146].

In 2010, Nicolau et al. used a bit-string artificial gene regulatory network

based on the model in [6]. The model included input and output proteins con-

nected to the sensors and the effectors of the cart. These proteins had specific

hand-designed signatures and their concentrations were updated differently than

regulatory proteins: input protein concentrations were not regulated by the net-

work but fed by the cart sensors and output proteins were regulated but did

not regulate other proteins. In order to evolve the GRN to find the optimal

controller, a (250+250) evolution strategy (ES) with up to 50 generations was

used with a mutation consisting of mutating 1% of the genome bits with a 1/5

adaptation rule. The authors showed rapid convergence of the ES-evolved GRN

with very good generalization capability of the network. Using the generaliza-

tion test from [146], the evolved AGRNs showed close to optimum generalization

behavior. With the same model, Nicolau et al. demonstrated later a decision

making system for index trading. The system decides to buy, sell or do nothing

according to the fluctuations of trading indices provided [112].

A similar experiment was developed by Trefzer et al. in 2010 in which an

artificial gene regulatory network was used to solve various obstacle-avoidance

tasks (cave, maze, distributed obstacles) [137]. Interestingly, the problem was

implemented on an E-Puck robot, which shows the capacity of AGRNs to bridge

the gap to reality. This work was recently extended with artificial epigenetic

networks, in which artificial gene regulatory networks are used as the central
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system to dynamically distribute control tasks [139].

AGRN models have been employed to control agents in ecosystems for for-

aging tasks. [77] presented AGRNs were expressing rich dynamics and motion

patterns. In [63] evidence was presented to suggest that competitive dynam-

ics in an ecology of genetically-regulated agents can stimulate the evolution of

complex behavior.

In a complex environment, Sanchez and Cussat-Blanc used an artificial gene

regulatory network to control a virtual car in TORCS, a simulated car environ-

ment [125]. In this work, an artificial gene regulatory network’s input proteins

were connected to the car sensors (distance to the track border and longitudi-

nal and lateral speeds, see Figure 22) and the output proteins to the actuators

(wheel, accelerator and brake). After evolution on asphalt tracks only, the best

network obtained was able to drive on any kind of tracks (turn shapes, etc.) and

on other surfaces (asphalt, ice, rocks, etc.). Figure 22 shows the best AGRN ob-

tained after evolution. This approach was extremely competitive with another

approaches from the literature: it was able to win the Simulated Car Racing

Championship4 in 2015 against 8 other competitors of various kinds (neural

networks, optimized scripts, etc.).

5.3 Neuromodulation

Recent work has begun to make a connection between learning and genetic regu-

lation. In [64], the authors studied a robot navigation problem with a robot con-

trolled by a temporal-difference reinforcement learning agent. By introducing a

neuromodulatory system governed by a GRN to control the agent’s learning and

memory, the robot was able to outperform traditional reinforcement learning.

In a follow-up study, the ability of the genetically-regulated neuromodulation

system was utilized under a multi-task setting, where agents had to solve an ar-

4http://cs.adelaide.edu.au/~optlog/SCR2015/index.html
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Figure 22: Gene regulated car driving. Left: Inputs of the artifi-

cial gene regulatory network from the car sensors. Right: Evolved

artificial gene regulatory network. Image from [125].

ray of different problems with both discrete and continuous state spaces, as well

as one-shot and continuous rewards [30]. Agents were required to learn to solve

a series of problems, while the same AGRN was used to regulate the learning

parameters for each problem. It was shown that an evolved GRN could accel-

erate the learning of multiple tasks, and general problem solving GRNs could

improve learning beyond traditional reinforcement learning.

5.4 AGRN as Indirect Encoders

By exploiting previously developed algorithms for the genetic programming of

register machines, [7] realized an artificial chemistry implementation of genetic

programming. The asynchronous evaluation of the evolved program represented

an alternative approach to genetic programming based on the parallel nature of

chemical systems.
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In 2012, Lopes and Costa implemented a similar idea of using a bit-string

artificial gene regulatory to indirectly encode a GP tree [105]. The AGRN was

evolved using an evolution strategy. Before evaluation, genes following promoter

sites expressed operators of the GP tree and the inhibitor and enhancer sites

were used to connect the operators one to each others. This indirect encoding

was used by the same author in 2015 to evolve programs in symbolic regression

problems (n-bit parity, squares, Fibonacci series, etc.) with promising results

in term of quality of solution and very small programs generated[106].

In the same period, Wróbel et al. proposed to use artificial gene regulatory

networks to encode artificial neural networks [147, 148]. Using a leaky integrate-

and-fire model of a spiking neural network [34], regulatory units (equivalents to

regulatory proteins) were encoding for the neurons of the regulatory network,

connections between neurons were given by protein connections through in-

hibiting and enhancing sites and the protein concentrations were providing the

potential of each neuronal membrane. With this encoding, the authors showed

the capacity of the produced SNN, after evolution of the AGRN, to reproduce

spikes when input stimuli were of high enough frequencies. Recently, indirect

encoding of recurrent neural networks into genetic networks were used to solve

dynamic problems such as state space targeting in a numerical dynamical sys-

tem, the inverted pendulum, and orbit transfer control in a gravitational system

[139].

The approaches introduced here are still in the early stages of their devel-

opment, yet they are growing in complexity. The main objective of them is to

use an AGRN’s very compact encoding to evolve large networks: An AGRN

possesses a small genome in comparison to the millions or billions of parameters

needed to optimize a deep neural networks, for example. This compact encoding

is expected to reduce the computation cost of optimization, as in Nature.
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5.5 Summary of the Applications

Artificial Gene Regulatory Networks have been studied in a variety of contexts

and applications, from dynamical systems to circuit design. In Table 1 we have

listed key references for applications of AGRNs of which we are aware. Early

research on AGRNs focused on the study of dynamic behaviors of networks using

a wide range of representations. Recently, advanced applications of AGRNs have

favored the use of bit strings and ODE-based models. As research on AGRNs

continues, we expect that applications will continue to utilize and extend such

models.

Figure 23 presents the partitioning of citations of the papers from Table 1 in

the different categories of dynamics study, evo-devo, i.e. artificial embryogene-

sis, agent control, neuromodulation and indirect encodings over the years. We

take this as an indicator of research interest in each topic. The publication year

of a publication is calculated backward from 2017 in 5-year bins. Interestingly,

we can observe a massive increase of publications at the beginning of 21st cen-

tury and the appearance of first applications. Evo-Devo has been a dominant

Problem AGRN Representations
ODEs RBN Bit strings

Dynamics analysis [100] [31] [32]
[127] [91] [107]

[83] [85] [110]
[84] [38] [131] [1]
[28] [45]

[117] [5] [6] [93]
[96] [119] [18]

Morphogenesis [138] [48] [49]
[13] [52] [75] [42]
[76] [43][29] [15]
[73] [74] [126]
[39] [40]

[37] [20] [90]

Agent control [77] [91] [4] [149]
[125] [73] [74]
[63]

[113] [137] [112]
[139]

Neuromodulation [64] [30]
Indirect encoding [147] [148] [7] [105] [139]

Table 1: Summary of references for applications of AGRNs
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approaches over the years.

benchmark to support the theoretical development of artificial gene regulatory

networks (certainly due to the fact that it is a very natural use of these net-

works) up until very recently (2012). However, since 2012, Evo-Devo topics

seem to be decreasing in frequency5 and the field appears to be transitioning

to more real-world applications of gene regulation (agent control, neuromod-

ulation and indirect encoding). This seems due to a certain maturity of the

technology and a better understanding of AGRN functioning. It also has to be

noted that theoretical publications are still necessary to further develop artifi-

cial gene regulatory networks, since knowledge of their biological counterpart is

still expanding very quickly and transfer between both communities (ALife and

genetics/bioinformatics) is recurrent due to the strong links existing between

the models.

5The Evo-Devo community is now also moving to application domains such as computa-

tional biology, soft robotics, etc.
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6 Conclusion

In this paper we have reviewed existing work on the use gene regulatory networks

for computational purposes. We first introduced how genetic regulation works in

living systems, followed by a discussion of existing computational models. This

shows the diversity of encodings and dynamics that are currently being used;

however, a rigorous comparison of models has yet to be performed. Recently,

an initial study has been conducted in order to compare various encodings and

dynamics [41]. Without doubt, the community would benefit from standardized

benchmarks to facilitate the comparison of various models of gene regulation,

as well as other optimizable models, such as artificial neural networks, genetic

programming, hand-written scripts, etc.. The increasing frequency of competi-

tions organized at conferences is one step in this direction, and serves as a good

basis of comparison.

In our past experience of presenting artificial gene regulatory networks and

applications to various real world control problem, we are often asked about the

difference between artificial gene regulatory networks and artificial neural net-

works. While artificial gene regulatory networks and artificial neural networks

can be used for similar purposes, AGRNs utilize a compact genetic represen-

tation: For instance, instead of encoding connection weights between neurons,

which can mean the need to optimize millions of variables in recent deep neural

networks, artificial gene regulatory networks only encode the “3-D structure”

of proteins that codes for the dynamic interaction between them. This drasti-

cally reduces the number of variables to a few hundred. This has widespread

consequences, especially in the age of deep learning [60]. While applications of

evolutionary algorithms to DL have just started to appear [121, 101], we expect

that evolving DL neural networks with AGRNs will be a major application area

in the future.
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For a direct comparison between AGRNs and ANNs, however, the recurrent

connectivity of AGRNs allows them to be best compared to recurrent neural

networks. While there is significant work to be done in relating artificial gene

regulatory networks to artificial neural networks, initial steps have been taken

in [145]. There, Watson et al show that evolving simple artificial gene regula-

tory networks is equivalent to the associative learning of weights in a Hopfield

network. However, this observation has not been extended to artificial gene reg-

ulatory networks with more complex genetic representations. Also, Baran et al.

recently proposed the use of AGRNs to study the evolution of social behavior

and, more precisely, the underlying development of the brain’s neural circuitry

[8]. This opens new perspectives for studies of the connection between artificial

neural networks and artificial gene regulatory networks.

Two other properties of AGRNs that are, in our opinion, particularly in-

teresting and not yet fully used and understood are temporal dynamics and

heterochrony. The first, temporal dynamics, allows a certain memory to emerge

in the network: concentrations can be updated constantly, at every time step of

the simulation or problem resolution, while actions are executed once in a while.

This provides the network with all the history of a given state of the environ-

ment, which is naturally kept by protein concentrations and provides a memory

system of the GRN. Not yet mathematically studied or fully understood, these

dynamics could be beneficial for long-term decision making.

The second, heterochrony, is a crucial property of these networks. As de-

scribed previously in this paper, this mechanism allows a slow modification of

the network dynamics when mutation occurs. This mechanism is not yet suf-

ficiently employed in current mutation operators of genetic algorithms. While

crossover operators have been recently improved in [30], mutation is still cru-

cial in artificial gene regulatory network optimization, since most approaches
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use very high mutation rates (7̃5%), if not exclusively mutation. Whereas the

NEAT algorithm has strongly impacted the evolution of neural networks [132],

improving the evolutionary algorithm is a central question in order to find the

best possible network for a given problem. More work is necessary in this do-

main in order to generate better results with artificial gene regulatory networks.

Finally, one domain in which artificial gene regulatory networks could excel

but have not been well tested is online learning. Thanks to their easy-to-modify

structure based on protein affinities, slight changes of proteins tags while the

agent is acting in the environment should be possible. A mechanism, compara-

ble to back-propagation in artificial neural networks, will have to be designed

in order to intelligently change these values according to the rewards obtained

by the agent. The architecture of artificial gene regulatory networks should be

helpful here due to the small number of parameters to modify in order change

entire networks. One could easily imagine particle-swarm-optimization-like mo-

tion, in which the AGRN’s proteins would move in a 3D space (for a model

based on 3 tags such as Cussat-Blanc et al.’s model), attracted and repelled by

other proteins based on the efficacy of the networks for a given task.

Possibilities opened by gene regulatory networks are numerous. Whereas bi-

ologists have made significant progress in understanding the inner mechanisms

of gene regulation in living systems, much remains to be discovered and un-

derstood. These mechanisms produce extremely complex behaviors in living

organisms, from embryogenesis to the regulation of every-day life. Computer

Science and more specifically artificial intelligence will benefit from these dis-

coveries and, with gene regulatory networks, could produce more intelligent

behaviors for artificial agents in the near future.
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[79] Joachimczak, M., & Wróbel, B. (2012). Open ended evolution of 3d multi-

cellular development controlled by gene regulatory networks. In C. Adami,

D. M. Bryson, C. Ofri, & R. T. Pennock (Eds.) Artificial Life XIII: Pro-

ceedings of the 13th International Conference on the Simulation and Syn-

thesis of Living Systems, (pp. 67–74). Cambridge, MA, USA: MIT Press.

[80] Jones, P. A., & Takai, D. (2001). The Role of DNA Methylation in Mam-

malian Epigenetics. Science, 293 (5532), 1068–1070.

[81] Karlebach, G., & Shamir, R. (2008). Modelling and analysis of gene

regulatory networks. Nature Reviews Molecular Cell Biology , 9 (10), 770–

780.

62



[82] Karli, R., Chung, H.-R., Lasserre, J., Vlahoviek, K., & Vingron, M. (2010).

Histone modification levels are predictive for gene expression. Proceedings

of the National Academy of Sciences, 107 (7), 2926–2931.

[83] Kauffman, S. (1969). Homeostasis and Differentiation in Random Genetic

Control Networks. Nature, 224 (5215), 177–178.

[84] Kauffman, S., Peterson, C., Samuelsson, B., & Troein, C. (2004). Genetic

networks with canalyzing Boolean rules are always stable. Proceedings of

the National Academy of Sciences, 101 (49), 17102–17107.

[85] Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly

constructed genetic nets. Journal of Theoretical Biology , 22 (3), 437–467.

[86] Khalil, A. S., & Collins, J. J. (2010). Synthetic biology: Applications

come of age. Nature Reviews Genetics, 11 (5), 367.

[87] Kim, J., & Eberwine, J. (2010). Rna: state memory and mediator of

cellular phenotype. Trends in Cell Biology , 20 (6), 311–318.

[88] King, M., & Wilson, A. (1975). Evolution at two levels in humans and

chimpanzees. Science, 188 , 107–116.

[89] Kitano, H. (2002). Systems biology: A brief overview. Science, 295 (5560),

1662–1664.

[90] Knabe, J., Schilstra, M., & Nehaniv, C. (2008). Evolution and mor-

phogenesis of differentiated multicellular organisms: autonomously gener-

ated diffusion gradients for positional information. In S. Bullock, J. No-

ble, R. Watson, & M. Bedau (Eds.) Artificial Life XI: Proceedings of

the Eleventh International Conference on the Simulation and Synthesis of

Living Systems. Cambridge, MA, USA: MIT Press.

63



[91] Krohn, J. P. (2013). A Gene Regulatory Network Model for Control . Ph.D.

thesis, University College London.

[92] Kumar, S., & Bentley, P. (2003). Biologically inspired evolutionary de-

velopment. In A. Tyrrell, P. Haddow, & J. Torresen (Eds.) Proceedings

of the 5th international conference on Evolvable systems: from biology to

hardware, (pp. 57–68). New York City, NY, USA: Springer.

[93] Kuo, P. D., Leier, A., & Banzhaf, W. (2004). Evolving dynamics in an

artificial regulatory network model. In X. Yao, et al. (Eds.) International

Conference on Parallel Problem Solving from Nature VIII , (pp. 571–580).

New York City, NY, USA: Springer.

[94] Kur, E., Kim, J., Tata, A., Comin, C. H., Harrington, K. I., da F Costa,

L., Bentley, K., & Gu, C. (2016). Temporal modulation of collective cell

behavior controls vascular network topology. eLife, 5 , e13212.

[95] Lähdesmäki, H., Shmulevich, I., & Yli-Harja, O. (2003). On learning gene

regulatory networks under the Boolean network model. Machine Learning ,

52 (1-2), 147–167.

[96] Leier, A., Kuo, P. D., Banzhaf, W., & Burrage, K. (2006). Evolving noisy

oscillatory dynamics in genetic regulatory networks. In P. Collet, et al.

(Eds.) European Conference on Genetic Programming EuroGP-2006 , (pp.

290–299). New York City, NY, USA: Springer.

[97] Levskaya, A., Chevalier, A. A., Tabor, J. J., Simpson, Z. B., & others

(2005). Engineering Escherichia coli to see light. Nature, 438 (7067), 441.

[98] Lewis, J. (1996). Neurogenic genes and vertebrate neurogenesis. Current

Opinion in Neurobiology , 6 (1), 3–10.

64



[99] Liao, B.-K., Jrg, D. J., & Oates, A. C. (2016). Faster embryonic segmen-

tation through elevated Delta-Notch signalling. Nature Communications,

7 , 11861.

[100] Lipson, H., Pollack, J. B., & Suh, N. P. (2002). On the origin of modular

variation. Evolution, 56 (8), 1549–1556.

[101] Liu, H., Simonyan, K., Vinyals, O., Fernando, C., & Kavukcuoglu,

K. (2017). Hierarchical representations for efficient architecture search.

ArXiv , 171100436v1 , 1–13.

[102] Loaiza, A., Porras, O. H., & Barros, L. F. (2003). Glutamate triggers

rapid glucose transport stimulation in astrocytes as evidenced by real-

time confocal microscopy. Journal of Neuroscience, 23 (19), 7337–7342.

[103] Lones, M. A. (2016). Computing with artificial gene regulatory networks.

In H. Iba, & N. Noman (Eds.) Evolutionary Computation in Gene Regu-

latory Network Research, (pp. 398–424). John Wiley & Sons.

[104] Lopes, F. J., Vieira, F. M., Holloway, D. M., Bisch, P. M., & Spirov, A. V.

(2008). Spatial bistability generates hunchback expression sharpness in the

drosophila embryo. PLoS Computational Biology , 4 (9).

[105] Lopes, R. L., & Costa, E. (2012). The regulatory network computational

device. Genetic Programming and Evolvable Machines, 13 (3), 339–375.

[106] Lopes, R. M. L. (2015). A Computational Model Inspired by Gene Regu-

latory Networks. Ph.D. thesis.

[107] Lowell, J., & Pollack, J. (2016). Developmental Encodings Promote the

Emergence of Hierarchical Modularity. In C. Gershenson, T. Froese, et al.

(Eds.) Artificial Life XV: The 15th International Conference on the Syn-

65



thesis and Simulation of Living Systems, (pp. 344–351). Cambridge, MA,

USA: MIT Press.

[108] Matsuno, H., Doi, A., Nagasaki, M., & Miyano, S. (2000). Hybrid Petri

net representation of gene regulatory network. In Pacific Symposium on

Biocomputing , vol. 5, (p. 87). Singapore: World Scientific Press Singapore.

[109] Meinhardt, H. (2009, 4th edition). The Algorithmic Beauty of Sea Shells.

New York City, NY, USA: Springer.

[110] Mestl, T., Plahte, E., & Omholt, S. W. (1995). A mathematical frame-

work for describing and analysing gene regulatory networks. Journal of

Theoretical Biology , 176 (2), 291–300.

[111] Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon,

U. (2002). Network motifs: simple building blocks of complex networks.

Science, 298 (5594), 824–827.

[112] Nicolau, M., O’Neill, M., & Brabazon, A. (2014). Dynamic Index Trading

Using a Gene Regulatory Network Model. In A. I. Esparcia-Alczar, &

A. M. Mora (Eds.) European Conference on the Applications of Evolu-

tionary Computation, (pp. 251–263). New York City, NY, USA: Springer.

[113] Nicolau, M., Schoenauer, M., & Banzhaf, W. (2010). Evolving genes to

balance a pole. In A. Esparcia-Alcazar, et al. (Eds.) European Conference

on Genetic Programming EuroGP 2010 , (pp. 196–207). New York City,

NY, USA: Springer.

[114] Ochoa-Espinosa, A., Yucel, G., Kaplan, L., Pare, A., Pura, N., Oberstein,

A., Papatsenko, D., & Small, S. (2005). The role of binding site cluster

strength in Bicoid-dependent patterning in Drosophila. Proceedings of the

National Academy of Sciences, 102 (14), 4960–4965.

66



[115] Pedraza, J. M., & van Oudenaarden, A. (2005). Noise propagation in gene

networks. Science, 307 (5717), 1965–1969.

[116] Rao, C. V., Wolf, D. M., & Arkin, A. P. (2002). Control, exploitation and

tolerance of intracellular noise. Nature, 420 (6912), 231–237.

[117] Reil, T. (1999). Dynamics of gene expression in an artificial genomeimpli-

cations for biological and artificial ontogeny. In D. Floreano, J.-D. Nicoud,

& F. Mondada (Eds.) European Conference on Artificial Life, (pp. 457–

466). New York City, NY, USA: Springer.

[118] Reisig, W. (2012). Petri Nets: An Introduction, vol. 4. Springer Science

& Business Media.

[119] Rohlf, T., & Winkler, C. R. (2009). Emergent network structure, evolvable

robustness, and nonlinear effects of point mutations in an artificial genome

model. Advances in Complex Systems, 12 , 293–310.

[120] Ryan, K. M., Phillips, A. C., & Vousden, K. H. (2001). Regulation and

function of the p53 tumor suppressor protein. Current Opinion in Cell

Biology , 13 , 332–337.

[121] Salismans, T., Ho, J., Chen, X., Sidor, S., & Sutskever, I. (2017). Evolu-

tion strategies as a scalable alternative to reinforcement learning. ArXiv ,

170303864v2 , 1–13.

[122] Samoilov, M. S., Price, G., & Arkin, A. P. (2006). From fluctuations to

phenotypes: the physiology of noise. Science STKE , 2006 (366), re17–

re17.

[123] Sanchez, A., & Golding, I. (2013). Genetic determinants and cellular

constraints in noisy gene expression. Science, 342 (6163), 1188–1193.

67
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Figure 1: The trajectory of a cell, after [136]. A: Idealized regulatory

network with two genes inhibiting each other. B: Three resulting dis-

tinct stable states (attractors) with their attractor basins indicated

by arrows. C: Gene expression levels of the components over time

can be considered as trajectories through expression space. Time

quantified in arbitrary units and indicated in colors.
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Figure 2: Cell cycle network of fission yeast from [140].
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(a) Ordered (b) Chaotic (c) Cyclic

Figure 3: Graphical representation of gene activation with Reil’s ar-

tificial regulatory network. Each line represents one gene activation

level: Dot means that the gene is activated; white space means it is

disabled. Image from [117].
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Figure 4: Examples of protein concentration dynamics obtained

with the artificial gene regulatory network of [5].
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Figure 5: Example of heterochronic control in gene regulatory net-

works: by mutating one bit of a protein, the regulation dynamics

only slightly changed.
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(a) (b) (c) (d) (e)

Figure 6: Examples of pictures generated with a gene regulatory

network. Image from [32].
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Figure 7: Examples of videos generated with a gene regulatory net-

work.
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Figure 8: Example of a dappled system obtained with Turing’s re-

action/diffusion system. Image from [138]
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Figure 9: Example of shape produced by the Conway’s game of life.

Shown here is a glider, able to move in its environment across the

grid, time step after time step.
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Figure 10: Examples of shapes produced with cellular automata.

Image from [35]
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Figure 11: Illustration of Dellaert’s developmental model. A random

boolean network was used as an artificial gene regulatory network in

order to produce user-defined shapes and cell differentiations (col-

ors). Image from [37]
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Figure 12: Eggenberger-Hotz’s ’T’ creature, able to move in the

environment by modifying it morphology, induced by the artificial

gene regulatory network. Image from [49].
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Figure 13: Examples of shapes produced by Flann’s regulation net-

work. The first line of images shows desired patterns, the second line

shows the best obtained patterns after genetic evolution. The lower

half shows the corresponding regulation networks. Images from [52].
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Figure 14: Chavoya’s French flag and its protein concentration

curves. This problem puts to the test cell differentiation capaci-

ties of developmental models. Here, differentiation is indicated by

color shifts. Image from [20]
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Figure 15: Example of French flag growth with Knabe’s model. Top:

Organism development status can be observed at simulation step 45

with this organism itself (on the left) and the morphogen gradient

produced by the organism (on the right). Bottom: Final organism,

at the end of its growth (simulation step 200). Various cell shapes

can be observed and cells are correctly differentiated to produce a

pattern close to the expected one. Images from [90].
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(a) A salamander (b) A eight-legged
organism

Figure 16: Developed shapes and an overview of corresponding ar-

tificial gene regulatory network of Doursat’s developmental model.

Images from [42].
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Figure 17: Example of organisms produced with Joachimczak’s

model: On the left, a dumbbell; on the right, a 3-D French flag.

Images from [75, 76].
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Figure 18: Multicellular organism with metabolism growing in a

chemical environment with specialization skills. On the right, the

artificial gene regulatory network obtained and interaction between

its genes. Images from [29].
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Figure 19: Animats first grown with AGRNs controlling cells in a

developmental model and then moving in their simulated environ-

ment. Image from [74].
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Figure 20: Example of robot ”grown” using MapDevo3D. (a) The

robot morphology; (b) Its modular organization; (c-g) the robot

immersed in a physics engine. Image from [44].
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Figure 21: Example of creatures obtained with an AGRN controlling

growing animats without an explicit fitness function in the evolu-

tionary algorithm.
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Figure 22: Gene regulated car driving. Left: Inputs of the artifi-

cial gene regulatory network from the car sensors. Right: Evolved

artificial gene regulatory network. Image from [125].
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Problem AGRN Representations
ODEs RBN Bit strings

Dynamics analysis [100] [31] [32]
[127] [91] [107]

[83] [85] [110]
[84] [38] [131] [1]
[28] [45]

[117] [5] [6] [93]
[96] [119] [18]

Morphogenesis [138] [48] [49]
[13] [52] [75] [42]
[76] [43][29] [15]
[73] [74] [126]
[39] [40]

[37] [20] [90]

Agent control [77] [91] [4] [149]
[125] [73] [74]
[63]

[113] [137] [112]
[139]

Neuromodulation [64] [30]
Indirect encoding [147] [148] [7] [105] [139]

Table 1: Summary of references for applications of AGRNs
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Figure 23: Partition of citations of artificial gene regulatory network

approaches over the years.
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