Romain Deveaud
email: romain.deveaud@gmail.com

Josiane Mothe
email: josiane.mothe@irit.fr

Zia Ullah
email: mdzia.ullah@irit.fr

Md Z Ullah

J.-Y Nie
email: nie@iro.umontreal.ca.

Learning to Adaptively Rank Document Retrieval System Configurations

Keywords: Information systems, information retrieval, learning to rank, retrieval system parameters, adaptive information retrieval, query features, data analytics

Modern Information Retrieval (IR) systems have become more and more complex, involving a large number of parameters. For example, a system may choose from a set of possible retrieval models (BM25, language model, etc.), or various query expansion parameters, whose values greatly in uence the overall retrieval effectiveness. Traditionally, these parameters are set at a system level based on training queries, and the same parameters are then used for di erent queries. We observe that it may not be easy to set all these parameters separately, since they can be dependent. In addition, a global setting for all queries may not best t all individual queries with di erent characteristics. The parameters should be set according to these characteristics. In this article, we propose a novel approach to tackle this problem by dealing with the entire system con gurations (i.e., a set of parameters representing a n IR system b ehaviour) instead of selecting a single parameter at a time. The selection of the best con guration i s c ast a s a p roblem o f r anking di erent possible con gurations given a query. We apply learning-to-rank approaches for this task. We exploit both the query features and the system con guration f eatures i n t he l earning-to-rank m ethod s o t hat the selection of con guration i s q uery d ependent. T he e xperiments w e c onducted o n f our T REC a d h oc collections show that this approach can signi cantly outperform the traditional m ethod t o tune system conguration g lobally (i.e., g rid s earch) a nd l eads t o h igher e ectiveness th an th e to p pe rforming sy stems of the TREC tracks. We also perform an ablation analysis on the impact of di erent f eatures o n t he model learning capability and show that query expansion features are among the most important for adaptive systems.

INTRODUCTION

Modern Information Retrieval (IR) systems involve more and more complex operations, which require setting a large number of parameters. For example, at the very basic preprocessing level, we have to choose among di erent options of word stemming. Then a retrieval model should be chosen. This latter often involves a set of parameters as well-language models require smoothing parameters and BM25 has another set of parameters. Finally, the pseudo-relevance feedback step requires yet another set of parameters: the number of expansion terms to be added to the query, their weighting scheme, the number of feedback documents to consider, and so on [START_REF] Buckley | Optimization of relevance feedback weights[END_REF][START_REF] Cao | Selecting good expansion terms for pseudorelevance feedback[END_REF]. Over the years, and through evaluation forums such as TREC, 1 CLEF, 2 and NTCIR, 3 the IR community has produced an abundant eld of knowledge, however scattered in the literature, on setting the appropriate values of these parameters to optimise the performance of the retrieval systems. For example, we know that the number of pseudo-relevance feedback documents used in IR experiments typically varies between 10 and 50, and the number of expansion terms is in the range of 10 to 20 [START_REF] Carpineto | A survey of automatic query expansion in information retrieval[END_REF][START_REF] Harman | Relevance feedback revisited[END_REF]. BM25 or a language model is often chosen, and they are believed to be e ective on most test collections. When a speci c retrieval method involves some parameters (e.g., the parameters related to query expansion), one typically tunes them on a set of training queries to maximise the global e ectiveness. The typical method for parameter tuning is through grid search [START_REF] Taylor | Optimisation methods for ranking functions with multiple parameters[END_REF]: A set of possible values is de ned for each parameter, and grid search determines the best value for each parameter to maximise the e ectiveness of the retrieval system on a set of training queries.

To be more robust, one also test di erent settings on several test collections. For example, Reference [START_REF] Zhai | A study of smoothing methods for language models applied to ad hoc information retrieval[END_REF] analysed the in uence of the smoothing function in Language Modelling (LM) on several test collections, and some speci c range of the smoothing parameter is recommended. Alternatively, it is possible to optimize the studied parameter value using a collection and observe its e ects on other collections [START_REF] Goswami | Exploring the space of information retrieval term scoring functions[END_REF], which is a form of transfer learning.

These methodologies for parameter tuning assume that the same selected parameters would t all the queries. In practice, even if the selected system con guration is the best for a set of queries, it has been often observed that it behaves di erently on di erent queries: It may excel on some queries while failing miserably on some others [START_REF] Alemayehu | Analysis of performance variation using query expansion[END_REF][START_REF] Harman | Overview of the reliable information access workshop[END_REF][START_REF] Ogilvie | On the number of terms used in automatic query expansion[END_REF]. This fact indicates a critical problem in the usual way to set system parameters: It is done once and for all queries. It is desirable that we choose the appropriate parameters for each query at hand, thus avoiding the problem of the one-size-ts-all solution.

There is an abundant literature on the e ects of individual system parameters on retrieval results. Indeed, for any new method proposed, it is required that an analysis is made in depth to evaluate the e ect of parameter setting [START_REF] Zobel | Writing up[END_REF], e.g., how the method behaves along with the changes of its inherent parameters. However, there have been few studies trying to determine the parameters automatically for a given query.

There are also only a few descriptive analyses of cross parameter e ects [START_REF] Bigot | Learning to choose the best system con guration in information retrieval: The case of repeated queries[END_REF][START_REF] Compaoré | Mining information retrieval results: Signi cant IR parameters[END_REF][START_REF] Ferro | What does a ect the correlation among evaluation measures?[END_REF], which examine the results and the e ects of various parameter settings. In Reference [START_REF] Compaoré | Mining information retrieval results: Signi cant IR parameters[END_REF], the authors analysed the in uence of indexing and retrieval parameters on retrieval e ectiveness; while the authors of Reference [START_REF] Bigot | Learning to choose the best system con guration in information retrieval: The case of repeated queries[END_REF] analysed an even larger set of parameters. The authors of Reference [START_REF] Ferro | What does a ect the correlation among evaluation measures?[END_REF] analysed the correlation between e ectiveness measures and system parameters. However, none of these studies attempted to determine automatically the best parameters at the query level for new queries.

The study presented in this article is built on the results and conclusions of the previous descriptive analysis studies but moves a step further by performing a predictive analysis: We investigate how system parameters can be set to t a given query, i.e., a query-dependent setting of system parameters. We assume that some parameters of the system can be set on the y at querying time, and a retrieval system allows us to set di erent values for the parameters easily. This is indeed the case for most IR systems nowadays. Retrieval platforms such as Terrier4 [START_REF] Ounis | Terrier: A high performance and scalable information retrieval platform[END_REF], Lemur5 [START_REF] Strohman | Indri: A language model-based search engine for complex queries[END_REF], or Lucene 6 [START_REF] Mccandless | Lucene in Action: Covers Apache Lucene 3[END_REF] allow us to set parameters for the retrieval step. For example, one may choose between several retrieval models (e.g., BM25, language models), di erent query expansion schemes, and so on. We target this group of parameters that can be set at query time. In contrast, we assume that an IR system has already built an index that cannot be changed easily. For example, it would be di cult to choose between di erent stemmers at query time, unless we construct several indexes using di erent stemmers. We exclude these parameters that cannot be set at query time in this study.

The problem we tackle in this article is query-dependent parameter setting. A complete set of parameters of a system (that can be set at query time) forms a system con guration. In theory, some parameters such as the number of expansion terms can vary in a large range. However, the existing studies provide su cient evidence that there is a smaller preferred range for them. Therefore, we only allow the parameters to vary in a much smaller range, based on our prior knowledge of the literature to reduce the complexity. Having all the parameters grouped in system con gurations, our problem then boils down to selecting the best system con guration, among all the possible ones, for a given query. This problem could be seen as a performance prediction problem: Given a query, we predict the performance of a con guration and we pick up the con guration corresponding to the highest predicted performance. However, the prediction of system performance is known to be hard. Alternatively, the problem can be cast as a con guration ranking problem: We could rank the con gurations according to their expected performance on a given query and we choose to use the rst con guration for the query. This approach does not require us to predict system performance explicitly. It could be solved using a learning-to-rank [START_REF] Liu | Learning to rank for information retrieval[END_REF] approach. This is what we propose in this article. Our utilisation of learning-to-rank (LTR) in this article is di erent from its traditional utilisation for document ranking, where features are extracted for document-query pairs. In our case, for each query, we aim at ranking system con gurations. Thus in our setting, features are extracted from query-con guration pairs. Given the number of parameters and their possible domains, our candidate space is formed of tens of thousands of possible system con gurations, each of which sets a speci c value for each of the system parameters.

In our approach, the LTR models are trained to rank con gurations with respect to a target effectiveness metric (such as nDCG@k), thus emphasising the importance of ranking "good" system con gurations higher in the ranked list. Our nal choice is the con guration ranked at rst. Compared to tuning each parameter at a time, this approach has the advantage of taking all the system parameters into account at the same time, which allows them to in uence each other implicitly within the same con guration. However, we do not address the problem of mutual in uence among parameters explicitly in this study. Our main focus is put on making a query-dependent setting of the system con guration using LTR. To our knowledge, this problem has not been studied extensively before. In particular, no attempt has been made using LTR approaches.

The main contributions of this article are as follows:

• We propose a novel approach to set IR system parameters based on the learning-to-rank technique by exploiting query and con guration features, • we develop a method that adaptively selects the best system parameters according to the query, and show that this approach is e ective and feasible in practice, • we carry out extensive experiments on several standard test collections, which show the superiority of our proposed method over the state-of-the-art methods.

RELATED WORK

We aim at solving the problem of automatic parameter selection by using learning-to-rank techniques in an original way. Our work is thus at the intersection of several trending topics in IR including parameter analysis, adaptive IR systems, and learning-to-rank.

Parameter Analysis

A few pieces of work performed descriptive analysis to understand better the results obtained with various system con gurations.

In Reference [START_REF] Banks | Blind men and elephants: Six approaches to TREC data[END_REF], the authors analysed past TREC results on the TREC-6 collection-the average precision values and systems-on a per query basis. They carried out analysis of variance, cluster analysis, rank correlation, beadplot, multidimensional scaling, and item response analysis. When considering an analysis of variance, they focused on two factors only: topic and system, and one performance measure (average precision). They also used cluster analysis to cluster systems according to AP they obtained on the various queries. However, the authors stated that the results were inconclusive and that none of these methods had yielded any substantial new insights.

Dinçer [START_REF] Taner | Statistical principal components analysis for retrieval experiments: Research articles[END_REF] compared performances of various search strategies by means of principal component analysis (PCA). The authors showed the PCA method can reveal implicit performance relations among retrieval systems across topics. They considered 100 topics from TREC 12 Robust collection, the 44 submitted runs, and showed that PCA can highlight the peculiarities of some runs and of some topics. Some applications have also been suggested based on the results of such analysis. Mizzaro and Robertson [START_REF] Mizzaro | Hits hits TREC: Exploring IR evaluation results with network analysis[END_REF] used data analysis to distinguish good systems from bad systems by de ning a minimal subset of queries. Based on the analysis, the authors concluded that "easy" queries perform the best in this task. Bigot et al. [START_REF] Bigot | Fusing di erent information retrieval systems according to query-topics: A study based on correlation in information retrieval systems and TREC topics[END_REF] used the results of the similar type of analysis as Dinçer but using Benzecri's χ 2 correspondence analysis to suggest a system fusion method.

In the above studies, the authors did not analyse system parameters nor query/topic features. In the studies described below, these elements have been analysed.

Compaoré et al. [START_REF] Compaoré | Mining information retrieval results: Signi cant IR parameters[END_REF] analysed indexing parameters and retrieval models to determine which parameters signi cantly a ect search engine performance. They found that the retrieval model is the most important parameter to be tuned to improve the performance. More interestingly, they showed that the most signi cant p arameters d epend o n t he t opic d i culty. Whi le the retrieval model remains the most important parameter for easy queries, the query expansion model is the most important for hard queries. The study in Reference [START_REF] Bigot | Learning to choose the best system con guration in information retrieval: The case of repeated queries[END_REF] was signi cantly enlarged with regard to the number of parameters: Eighty thousand di erent system con gurations in total have been tested, covering 4 di erent stemming algorithms, 21 retrieval models, 7 topic elds in queries, 6 query expansion models, and other query expansion parameters. These con gurations have been applied to the 100 topics from TREC7-8 adhoc collections. The authors concluded that the parameters that have the largest impact on system effectiveness across queries are the retrieval model and the expansion model. However, the best parameters change according to queries. This study provides clear experimental evidence that the parameters should be set in a query-dependent manner. Also using various system con gurations, Reference [START_REF] Ferro | What does a ect the correlation among evaluation measures?[END_REF] analysed the correlation among the e ectiveness measures of systems con gured by combining system parameters including 6 di erent stop lists, 6 types of stemmers, 7 avours of n-grams, and 17 IR models. He considered the correlation between di erent evaluation measures and found that they change depending on the system con guration.

Fusi and Elibol tackled the problem of robustness of system setting: They suggested to use Probabilistic Matrix Factorization to automatically identify high-performing pipelines across a wide range of datasets [START_REF] Fusi | Probabilistic matrix factorization for automated machine learning[END_REF].

All these studies are limited to the descriptive analysis: Given the parameters and results, these studies focused on understanding the impact of parameters on system performance and their correlations. In this article, we focus rather on a predictive analysis: We aim at constructing prediction models from the relationships among query-system-performance triplets. These models can predict the best con guration for a given query. Our study is a natural extension of the previous ones and is built on the latter.

Adaptive Systems

Many factors a ect system performance. These include factors related to the query. It is thus intuitive to design adaptive systems that can t the system to the characteristics of the query. The characteristics of the user can also impact the speci c choice of system parameters. The adaptation to users has been implemented in most search engines. Typically, the past interactions with the user are leveraged to build a user pro le so that the retrieved documents or recommended items can better t the user [START_REF] Sugiyama | Adaptive web search based on user pro le constructed without any e ort from users[END_REF]. In this study, we only consider system adaptation to the query.

Selective query expansion (QE) is probably the most studied topic among the adaptive techniques. The motivation of selective QE stems from the observation that pseudo-relevance feedback QE improves the e ectiveness on some queries but deteriorates on some others. In selective QE, the system decides whether QE should be applied or not [START_REF] Cronen-Townsend | A framework for selective query expansion[END_REF]. This is based on feature analysis and learning models: Queries are characterized by a set of features and the learning is based on a set of examples for which the impact of query expansion decision is known. The system learns to make a binary decision on the use of QE. It is shown that the trained model is able to selectively apply QE to new queries [START_REF] Yom-Tov | Learning to estimate query di culty: Including applications to missing content detection and distributed information retrieval[END_REF].

In Reference [START_REF] Cao | Selecting good expansion terms for pseudorelevance feedback[END_REF], adaptive QE is cast as a problem of selecting appropriate expansion terms from pseudo-relevant feedback documents. The features used to make the selection include querydependent features, making the selection query dependent. More recently, Xu et al. [START_REF] Xu | Assessment of learning to rank methods for query expansion[END_REF] proposed a learning-to-rank based query expansion. It re-ranks a set of potential terms for expanding query by exploiting the top retrieved documents and the collection statistics.

In the studies on selective QE mentioned above, one focused on determining the useful expansion terms rather than a system con guration. While the selection of appropriate expansion terms is shown to be important, we believe that selecting the appropriate expansion parameters is equally important, and it is complementary to the studies mentioned above.

A study that is related to ours is in Reference [START_REF] Bigot | Learning to choose the best system con guration in information retrieval: The case of repeated queries[END_REF], in which, after a descriptive analysis on how parameters a ect e ectiveness, the authors presented a method to automatically decide which system con guration should be used to process a query. The meta-system learns the best system con guration to use on a per query basis similar to what we intend to do. This method was developed for the case of repeated queries. In comparison, we investigate the problem of con guration selection for any query, including new queries that have never been seen before. Therefore, our scope is larger, since the model learns from query features rather than from past queries.

Another related work to ours is Reference [START_REF] Mothe | Predicting the best system parameter con guration: The (per parameter learning) PPL method[END_REF], which proposed a per-parameter learning (PPL) method to predict the best value for a set of system parameters for optimal retrieval. It learns a classi cation model for each system parameter and uses this classi er to predict the best value of that parameter for an unseen query. However, the separate tuning for each parameter has the potential drawback that it will fail to cope with the possible dependencies among the parameters. In practice, many parameters are dependent. For example, the number of expansion terms to be used may depend on the number of feedback documents considered. In our study, instead of learning for each parameter separately, we learn to rank the complete con gurations combining all system parameters. The parameters may interact within the same con guration. This is a way to implicitly cope with the dependencies among parameters.

A key di erence between our study and the previous ones is the technique used to make the selection. We use LTR techniques, which have not been used before for this task. Our hypothesis is that con gurations can e ectively be ranked according to their characteristics facing a given user's query and that we can train a model to rank con gurations for any query.

We carried out a preliminary study on learning-to-rank system con gurations in a short article [START_REF] Deveaud | Learning to rank system con gurations[END_REF], in which the principle was laid down, and the rst set of experiments were presented. This article presents a substantial extension of our previous article.

Learning to Rank

Nowadays, commercial live search engines reportedly utilise ranking models that have been learned over thousands of features. Learning-to-rank is a document ranking technique [START_REF] Liu | Learning to rank for information retrieval[END_REF] that surfaced when researchers started to use machine-learning algorithms to learn an appropriate combination of features into e ective ranking models. It is composed of a training phase and a prediction phase. The training phase aims at learning a model that optimizes the document ranking. The capability of the model to correctly rank documents for new queries is evaluated during the prediction phase on test data. Interested readers can nd more details about the techniques of LTR for IR in Reference [START_REF] Liu | Learning to Rank for Information Retrieval[END_REF].

In learning-to-rank, the training data consist of query-document pairs represented by feature vectors. These features include those that describe the query (e.g., TF and IDF of query terms, query length), the document (e.g., TF and IDF of document terms, document length, PageRank score), as well as the relationship between them (e.g., BM25 score). A relevance judgement between the query and the document is given as the ground truth. For example, the Letor 3.0 and Letor 4.0 collections [START_REF] Qin | LETOR: A benchmark collection for research on learning to rank for information retrieval[END_REF] provide around one hundred query-document pair features that have been shown to be useful for learning the document ranking function [START_REF] Liu | Learning to Rank for Information Retrieval[END_REF]. An exhaustive list of these features can be found at http://www.microsoft.com/en-us/research/project/mslr. However, the set of features can be reduced for this purpose to about 10 features without losing too much accuracy, depending on the collection [START_REF] Lai | Sparse learning-to-rank via an e cient primal-dual algorithm[END_REF][START_REF] Laporte | Nonconvex regularizations for feature selection in ranking with sparse svm[END_REF].

Di erent approaches have been developed to solve the learning-to-rank problem in IR, including pointwise, pairwise, and listwise approaches.

In the pointwise approach, each instance is a vector of features x i , which represents a querydocument pair. The ground truth can be either a relevance score s ∈ R or a class of relevance (e.g., "not relevant," "partially relevant," and "highly relevant"). In the former case, learning-to-rank can be solved as a regression problem while in the latter case, it is considered as a classi cation problem or as an ordinal regression problem, depending on whether there is an ordinal relationship between the classes of relevance [START_REF] Laporte | Nonconvex regularizations for feature selection in ranking with sparse svm[END_REF].

In the pairwise approach or preference learning [START_REF] Fürnkranz | Preference Learning[END_REF], each instance is a pair of feature vectors (x i , x j) for a given query q. The ground truth is given as a preference ∈ {-1, 1} between the two documents and is also considered as a classification problem. Various algorithms have been proposed such as RankNet [START_REF] Burges | Learning to rank using gradient descent[END_REF] based on neural networks, RankBoost [START_REF] Freund | An e cient boosting algorithm for combining preferences[END_REF] based on boosting or RankSVM-Primal [START_REF] Chapelle | E cient algorithms for ranking with SVMs[END_REF], and RankSVM-Struct [START_REF] Joachims | Optimizing search engines using clickthrough data[END_REF] based on SVM.

Finally, the listwise approach considers the whole ranked list of documents as the instance of the algorithm and employs a listwise loss function to train the model. Several articles have suggested that listwise learning-to-rank algorithms, including ListNet [START_REF] Cao | Learning to rank: From pairwise approach to listwise approach[END_REF], ListMLE [START_REF] Xia | Listwise approach to learning to rank: Theory and algorithm[END_REF], and Lamb-daMart [START_REF] Wu | Adapting boosting for information retrieval measures[END_REF] perform better than pairwise approach on the problem of document ranking.

In practice, learning-to-rank is often used to re-rank a list of top-ranked documents for a given query to promote the documents that the ranking model learnt as relevant [START_REF] Macdonald | The whens and hows of learning to rank for web search[END_REF]. The list of documents to be re-ranked, from a few hundred to a few thousand [START_REF] Chapelle | Future directions in learning to rank[END_REF][START_REF] Macdonald | The whens and hows of learning to rank for web search[END_REF][START_REF] Qin | LETOR: A benchmark collection for research on learning to rank for information retrieval[END_REF], are initially ranked by a standard retrieval model such as BM25 [START_REF] Robertson | Okapi at TREC[END_REF] or Language Modelling [START_REF] Hiemstra | Using Language Models for Information Retrieval[END_REF][START_REF] Ponte | A language modeling approach to information retrieval[END_REF].

A key advantage of LTR models, compared to the traditional models, is its ability to incorporate any type of feature related to query-document pairs. In principle, the same methods can apply to rank any objects, provided that similar features can be extracted. In other words, the framework is exible enough to be used to rank system con gurations for a query. The di erence is that, for a given query, we rank a set of system con gurations rather than documents. Another di erence with the traditional utilisations of LTR is that we are not interested in determining the whole ranking of di erent system con gurations. We are only interested in selecting the rst one. It is thus possible that an LTR method that works well for document ranking works poorly for con guration ranking. Indeed, we will observe this phenomenon in our experiments.

The problem of selecting a good system con guration for a query can be considered as a prediction (or regression) problem: Given a candidate con guration, we try to predict its e ectiveness on a query. It can also be cast as a ranking problem: We have a large set of choices, and we have to rank them so that the best one can be selected. This forms a larger category of problem, to which the principle of LTR naturally applies. An LTR approach to rank system con guration is more general than the selective QE that decides whether to use QE or not. In our case, we have much more choices than just a binary one. Moreover, the binary decision of selective QE is included in our approach as a special case, because "no expansion" is among the possible choices. Our LTR approach is also more suitable to the problem of selecting system con gurations than a selection on the per parameter basis, because we do not assume independence between parameters.

The approach is also feasible in practice, because we can derive a large set of training examples from assessed queries. For each query, it is possible to obtain a system performance measure using each of the system con gurations. Of course, the more assessed queries we have, the more we could expect that the trained LTR model will be able to deal with new queries. However, in our experiments, we will show that a small number of assessed queries (100) can already result in highly e ective models.

What is unknown is which features are useful for con guration selection. Therefore, in our study, we will extract all features that may deem useful and test their impact on the nal results. We also do not know if listwise models will be the best methods as for document ranking. So we will test the three types of LTR models.

LEARNING-TO-RANK SYSTEM CONFIGURATIONS

In this section, we describe our proposed approach for ranking system con gurations based on the learning-to-rank techniques for IR [START_REF] Liu | Learning to rank for information retrieval[END_REF]. We will rst formulate the problem in the next subsection. Then the features will be speci ed. Finally, the training of LTR models will be described.

Model

We assume that an IR system involves a set P of parameters. Each parameter p i ∈ P can take a value from its domain D i . Therefore, we have at most i |D i | possible con gurations (without Because of the enormous number of con gurations, we selected the 7 retrieval models for which the results where the best in average over the topics and collections when using the initial queries and we then combined these 7 retrieval models with the expansion variations. For the other 14 retrieval models (italic font in the table), we only kept the con guration with no expansion.

considering the fact that some con gurations are impossible). This number could be very large, given the quite large number of system parameters used in modern IR systems and their possible values. Moreover, the large number of system parameters could be mutually inclusive [START_REF] Ferro | The CLEF monolingual grid of points[END_REF], which makes the problem of choosing a globally optimised set of parameters challenging.

We cast the problem of setting the optimal system parameter value as a con guration ranking problem using a learning-to-rank approach, where, for each query, we rank system con gurations to nd the most appropriate one. Let us denote by C the set of all feasible con gurations of i |D i | system con gurations. We also assume that we have a set Q of queries with corresponding relevance judgements on a document collection, which can be used to generate training examples for LTR models. Given a query q k ∈ Q and a con guration c j ∈ C, we can run the IR system to obtain the search result R and generate a measure of performance such as Average Precision. We hypothesize that a good con guration is generalizable to queries with similar characteristics. Therefore, the LTR model will be able to select a suitable con guration for a query based on the characteristics.

In this work, we consider a set of common system parameters often used in IR studies (see Table 1), mainly for query expansion, query di culty prediction or learning-to-rank. As we mentioned earlier, we only consider the parameters that can be set at query time and exclude those related to indexing, as well as those that are not found to be in uential on results [START_REF] Ayter | Statistical analysis to establish the importance of information retrieval parameters[END_REF]. We considered one parameter for retrieval model and four parameters for pseudo-relevance feedback.

For each of the parameters, a set of possible values is de ned. These values correspond to those that are often used in IR experiments. The set of possible values can certainly be further extended later; but this is beyond the scope of this study, whose primary goal is to demonstrate that feasibility and e ectiveness of a new method to set system parameters. In theory, we could have 22,050 (21 × 7 × 6 × 5 × 5) combinations of parameters, but some of the combinations are invalid. For example, when "nil" is selected for Expansion model, the choices in Expansion documents, Expansion terms, and Expansion min-docs become irrelevant. In the end, we have more than 10,000 valid system con gurations, which form the set of candidate con gurations C.

For a training query q, a run is made according to each con guration c ∈ C to obtain the search results. The search results are contrasted with the gold standard to obtain the performance measure (e.g., AP). In this way, we obtain a large set of < q k , c j , performance > triples. In our experiments, we used Terrier [START_REF] Ounis | Terrier: A high performance and scalable information retrieval platform[END_REF] as the retrieval system.

To train our con guration ranking models, we extracted a set of features from the query q k and the con guration c j . Usually, in learning-to-rank approaches, the features are related to the query, the document (and sometimes the document collection), as well as the relationships between them. For example, LETOR associates many scores related to query-document pairs. In our case, we de ned features relating to the query q k and to the con guration c j . It can be costly to de ne features on the relationships between the query and the con guration, because this requires us to run a retrieval operation for each system con guration and to extract some features according to the retrieved results. In a realistic setting, this would be prohibitively expensive. Therefore, we do not include these features in this study and leave them to future work. However, we do include some post-retrieval features (e.g., query di culty) that are extracted from a standard con guration (standard BM25), which can be obtained at a reasonably low cost (only one run per query). These features do not re ect the relationships between a con guration and a query but are part of the features of the query.

The performance obtained for the query using the con guration will be used as labels during the training (see Section 3.3). Training examples are composed of features and a label to learn; we describe both in the next subsections.

Our approach aims at training a ranking function f : R n → R that minimises:

R emp [f] = 1 Q Q q=1 L(π (f , C q), q), (1)
where π (f , C q) is the ranking of IR system con gurations C q by f for the query q. L is the loss function, measuring the discrepancy between the predicted ranking π (f , C q) and the actual ranking of con gurations q . In the experiments of this article, we will test several learningto-rank algorithms that employ di erent types of loss functions: pointwise, pairwise, and listwise.

Features for Each Combination of ery-Configuration

As we explained earlier, it would be di cult to extract features about the relation between con guration and query in a realistic context. Therefore, we only considered query features and con guration features.

The extracted features are further divided into four groups, two associated with queries and two associated with con gurations. More speci cally, there are 46 features covering the statistical characteristics of the query (S), 30 features describing the linguistic properties of the query (L), 1 feature for the retrieval model (R M), and 4 features related to query expansion parameters (E). The last two groups of features are the same as shown in Table 1.

Configuration Features.

A con guration possesses a set of parameters. The parameters are considered as system con guration features. We considered two types of con guration features: the retrieval model and four parameters related to query expansion (the expansion model, the number of documents used during expansion, the number of terms used to expand the initial query, and the minimum number of documents in which a term should occur to be a candidate for query expansion). For example, one of the con gurations c j ∈ C is as follows: Retrieval Model = BM25, Expansion Model = KLComplete, Expansion documents = 50, Expansion terms = 20, and Minimum docs = 10.

3.2.2

ery Features. Query features have mainly been used in the literature for predicting query di culty [START_REF] Carmel | Estimating the query di culty for information retrieval[END_REF]. In that context, these features are often categorized into pre-retrieval and post-retrieval features; the former can be extracted from the query itself prior to any search on the document collection, whereas the latter are both query and collection dependent. We extracted both pre-and post-retrieval query features, where some of them convey statistical properties of the query and others refer to linguistics features. Overall, we extracted a set of 76 query features covering the statistical and linguistic properties of the query. The details about the features are described in Reference [START_REF] Molina | IRIT-QFR: IRIT query feature resource[END_REF]. For the sake of completeness, we also describe them in the Appendix in Tables 15 and16 at the end of this article; however, we describe them as S and L features in the following. We consider features that are extracted from queries by statistical means. In the IR literature, these features take into account term weighting and document score. We group them into a category named S . These features have often been used in IR for query and document matching for automatic query expansion [START_REF] Carpineto | A survey of automatic query expansion in information retrieval[END_REF][START_REF] Francis | A prospect-guided global query expansion strategy using word embeddings[END_REF], for learning-to-rank documents, and for query di culty prediction.

In addition to statistical features, natural language processing techniques have also been frequently used in IR. Some linguistic cues have been proposed for di erent purposes. For example, semantic relationships between terms in WordNet have been used to expand users' queries [START_REF] Lu | Query expansion via wordnet for e ective code search[END_REF], for term disambiguation [START_REF] Raganato | Word sense disambiguation: A uni ed evaluation framework and empirical comparison[END_REF], or for query di culty prediction. We thus consider another group of features named L that are based on these linguistic cues.

• S : these features are extracted using either pre-or post-retrieval approaches. As pre-retrieval features, we extracted inverse document frequency (IDF) of the query term and estimated two variants of IDF over the query terms using the mean and standard deviation aggregation functions. In addition, we also extracted the term frequency (TF) of the query term in the corpus and estimated the same two variants over the query terms. Post-retrieval query features are extracted from the query-document pairs after a rst retrieval. These features were previously used in both query di culty prediction [START_REF] Carmel | Estimating the query di culty for information retrieval[END_REF][START_REF] Chifu | Query performance prediction focused on summarized letor features[END_REF][START_REF] Hau | A survey of pre-retrieval query performance predictors[END_REF] and learning-to-rank [START_REF] Liu | Learning to rank for information retrieval[END_REF][START_REF] Macdonald | The whens and hows of learning to rank for web search[END_REF]. For example, the BM25 score has been used as a feature on the query-document pair. The other post-retrieval features that we estimated are term frequency (TF) in the top retrieved documents, TF-IDF, Language Modelling with Dirichlet smoothing (µ = 1,000 and 2,500), Language Modelling with Jelinek-Mercer smoothing (λ = 0.4), and document length (DI). Moreover, post-retrieval features are extracted separately from either the document title, body or whole document. We used the Terrier IR platform 9 to calculate the post-retrieval features using the FAT component, 10 which facilitates to compute many post-retrieval features in a single run [START_REF] Macdonald | About learning models with multiple querydependent features[END_REF]. We used standard BM25 with no reformulation although any run implemented in the platform could have been used. To make the post-retrieval features usable as query features, we aggregated them over the retrieved documents for a given query. For example, we calculated the mean of the BM25 scores over the retrieved document list for the considered query. Similarly to pre-retrieval statistical query features, we employed the same two aggregation functions namely mean [START_REF] Hau | A survey of pre-retrieval query performance predictors[END_REF][START_REF] He | Query performance prediction[END_REF], and CLARITY [START_REF] Cronen-Townsend | Predicting query performance[END_REF].

40 Letor features with mean and standard deviation variants (0 stands for Title, 1 for Body and 2 for both) SFM(DL,0/1/2), SFM(TF,0/1/2), SFM(IDF,0/1/2), SFM(SUM_TF,0/1/2), SFM(MEAN_TF,0/1/2), SFM(TF_IDF,0/1/2), SFM(BM25,0/1/2), SFM(LMIR.DIR,0/1/2), SFM(LMIR.JM.λ-C-0.4,0/1/2), Pagerank_prior, Pagerank_rank 3 Query di culty predictors WIG [START_REF] Zhou | Query performance prediction in web search environments[END_REF], QF [START_REF] Zhou | Query performance prediction in web search environments[END_REF], and NQC [START_REF] Shtok | Predicting query performance by query-drift estimation[END_REF]. 1).

L
Mean and standard deviation are used as aggregation functions. LETOR feature notations are consistent with the ones Terrier give and details are provided in References [START_REF] Macdonald | About learning models with multiple querydependent features[END_REF][START_REF] Molina | IRIT-QFR: IRIT query feature resource[END_REF][START_REF] Qin | LETOR: A benchmark collection for research on learning to rank for information retrieval[END_REF].

and standard deviation. Moreover, one of the post-retrieval features is PageRank, which can be calculated for linked documents only. Furthermore, we estimated some state-of-theart query di culty predictors, including Query Feedback [START_REF] Zhou | Query performance prediction in web search environments[END_REF] features using various numbers of feedback documents, WIG [START_REF] Zhou | Query performance prediction in web search environments[END_REF], and a variant of the Normalized query commitment (NQC), which is based on the standard deviation of retrieved documents scores [START_REF] Shtok | Predicting query performance by query-drift estimation[END_REF].

•

L : These are collection-independent pre-retrieval query features and focus on modelling the linguistic properties of the query. We extracted some linguistic features by exploiting di erent types of relationship in WordNet [START_REF] Miller | WordNet: A lexical database for english[END_REF], including Synonym, Hyponym, Hypernym, Meronym, Holonym, and Sister-terms. Given a query, we counted the related terms of each relationship type of a query term and employed the same two aggregation functions over the set of terms in a query (mean and standard deviation). Moreover, we also extracted the features de ned in Reference [START_REF] Mothe | Linguistic features to predict query di culty[END_REF], such as the number of WordNet synsets for a query term, average number of morphemes per word, and so on (see Table 2).

Note that all the training examples of a given query share the same query features but have different con guration features. Query features aim to inform the learning-to-rank technique about the characteristics of the query, thus allowing us to select di erent system con gurations on a per-query basis.

Labels for Each Example

For each example, we calculated a label that corresponds to the e ectiveness of the con guration c j ∈ C when treating a query, q k . This label is used for the training. More speci cally, various e ectiveness measures for each example (including AP, P@10, P@100, nDCG@10, nDCG, and R-Prec) will be used for di erent experiments. When one of the measures is used, the con gurations will be ranked according to it for the given query. This will be further detailed in the experiments.

Training

As our goal of this study is to investigate if the LTR approach for con guration selection is e ective, we use all the reasonable features at our disposal without performing any feature selection, leaving this aspect to future work.

In principle, any LTR approach could be used for our task: It would rank system con gurations in such a way that the best con guration will be ranked rst. This is the con guration that we want to select. Notice, however, that the relative positions of the elements at lower positions are also important in learning-to-rank models (for document ranking). The optimisation of an LTR model takes into account all the elements in the ranked list to some depth. The ranking of con gurations at lower positions seems intuitively less critical for our task. Therefore, our learning objective could be di erent. Intuitively, for our task, we should use nDCG@1 as the objective function to optimize in the training process, because we are only interested in selecting the rst con guration.

However, optimising for a very short result list (1 con guration) may make the model unstable and subject to the variation in the features of the query. Therefore, we also consider nDCG@k (k > 1) to keep the best top ranked con gurations rather than a single one. Details are provided in the evaluation sections.

3.4.1

Learning-to-Rank Techniques. Since this is the rst time LTR is used for selecting the system con guration for a given query, we have no clear idea on which LTR method ts best to the problem. We know that with LTR for document ranking, the pointwise methods perform slightly lower than the pairwise and listwise methods. However, the situation in ranking system con gurations could be di erent. Thus, we consider the three types of methods for this new task. We experimented with a large selection of the existing learning-to-rank techniques made available in the RankLib 11 and the SVM r ank12 toolkits. For linear regression, we used the linear model in scikitlearn. 13 Our goal was to experiment the three types of LTR models, namely, pointwise (of which the standard linear regression can be considered as a special form), pairwise, and listwise. We will see that the performance varies largely among the models. We rst performed a preliminary analysis (see Table 4 Section 4.3.1) to make a rst selection of the most promising LTR models for further experiments: Standard linear regression, Random Forests [START_REF] Breiman | Random forests[END_REF], Gradient Boosted Regression Trees (GBRT) [START_REF] Friedman | Greedy function approximation: A gradient boosting machine[END_REF], Coordinate Ascent [START_REF] Metzler | Linear feature-based models for information retrieval[END_REF], SVM r ank [START_REF] Joachims | Optimizing search engines using clickthrough data[END_REF], RankNet [START_REF] Burges | Learning to rank using gradient descent[END_REF], RankBoost [START_REF] Freund | An e cient boosting algorithm for combining preferences[END_REF], AdaRank [START_REF] Xu | Adarank: A boosting algorithm for information retrieval[END_REF], ListNet [START_REF] Cao | Learning to rank: From pairwise approach to listwise approach[END_REF], and LambdaMART [START_REF] Wu | Adapting boosting for information retrieval measures[END_REF]. From these initial results, in the evaluation section, we kept ve of these algorithms. These selected techniques cover all three categories of approaches of learning-to-rank: Linear regression, GBRT, and Random Forests are pointwise techniques, SVM r ank is pairwise, and LambdaMART uses both pairwise and listwise criteria. 14LTR algorithms use positive and negative examples during training. To help convergence, we used 10% of the best con gurations as positive examples and 10% of the least performing con gurations as negative examples.

Optimization

Criteria. It refers to the criterion that is optimized for a ranked list when training the model. This criterion re ects how well the ranked list ranks the most performing con gurations (measured by an evaluation metric) on top. As stated previously, the normalized discounted cumulative gain at the cut-o rank 1 (nDCG@1), which optimizes the top 1 con guration, appears the most intuitive option. However, we will also examine several other choices and consider deeper ranked lists.

In the experiments, we mainly focus on nDCG@1 to train the ranking algorithms but we will also show the results with other alternative optimization criteria: nDCG@k (k ∈ {1, 2, . . . , 10}), expected reciprocal rank at n (err@n), and precision at n (P@n) (see Section 4.4.4 and Figure 8).

The optimization criterion should not be confused with the evaluation metric that measures the retrieval e ectiveness.

Evaluation Metric.

The evaluation metric is used to measure the retrieval e ectiveness for a query with a speci c con guration. This measure is used to label the con gurations for each training query and to evaluate the retrieval e ectiveness one can obtain for test queries using a trained LTR model to select con gurations. We considered several common evaluation metrics including mean average precision (MAP), precision at the cut-o "n" (P@n and we chose P@10 and P@100), nDCG@10, nDCG, and precision after "R" documents have been retrieved (RPrec). We chose these measures, since these measures combine both (1) widely used measures in IR and (2) complementary measures in the sense that they are weakly correlated [START_REF] Baccini | How many performance measures to evaluate information retrieval systems?[END_REF].

EXPERIMENTS AND EVALUATION

In this section, we describe the collections, experimental setup, and results that we obtained by running our proposed approach on the collections and comparing with the baselines.

TREC Collections

The experiments carried out in this article are on four Text REtrieval Conference (TREC) 15 test collections listed in Table 3: TREC7-8, WT10G, GOV2, and Clueweb12. The TREC7-8 collection is an aggregation of two ad hoc test collections (TREC7 and TREC8) with approximately 500,000 newspaper articles like the Financial Times, the Federal Register, the Foreign Broadcast Information Service, and the LA Times [START_REF] Voorhees | The TREC robust retrieval track[END_REF]. The WT10G collection is composed of approximately 1.6 million Web/Blog page documents [START_REF] Hawking | Overview of the TREC-9 web track[END_REF]. The GOV2 collection includes 25 million web pages, which is the crawl of the .gov domain [START_REF] Charles | Overview of the TREC 2004 terabyte track[END_REF]. For Clueweb12, we opted to the smaller subset Clueweb12-B13, 16 which contains approximately 50 million web pages [START_REF] Collins-Thompson | TREC 2013 Web Track Overview[END_REF][START_REF] Collins-Thompson | TREC 2014 Web Track Overview[END_REF].

Each of the TREC collections consists of di erent numbers of representative topics. The "standard" format of a TREC topic statement comprises a topic ID, a title, a description, and a narrative. The title contains two or three words that represent the keywords a user could have used to submit a query to a search engine. In our experiments, a query is composed of the topic title only. In the rest of the article, we will use term "query" to refer to the title part of the topic. TREC7-8 collection is composed of 100 topics (i.e., merged of queries 351-400 for TREC07 and queries 401-450 for TREC-8). Similarly, we have 100 topics for WT10G, 150 topics for GOV2, and 100 topics for Fig. 1. Density plots of AP for four illustrative queries using the all set of configurations. In each sub-figure, the X-axis corresponds to AP while the Y-axis corresponds to the number of configurations that got the corresponding AP value. From le to right, queries are 400, 403, 438, and 447 from the TREC7-8 collection. Dash lines represent the value of grid search for the considered query.

Clueweb12 (i.e., 50 from TREC web track 2013 [START_REF] Collins-Thompson | TREC 2013 Web Track Overview[END_REF] and 50 from 2014 [START_REF] Collins-Thompson | TREC 2014 Web Track Overview[END_REF]). Moreover, each of the test collections provides a qrels le, which contains the relevance judgments for each query on a document collection. This qrels le is used by the evaluation program trec_eval to calculate the system e ectiveness (e.g., MAP, P@100, etc.).

Insights about Configuration Selection Importance

Before using an LTR model to select a system con guration, we show how important it is to select a good con guration. Figure 1 reports the density of AP for four individual queries from TREC7-8. In each of the sub-gures, the X-axis corresponds to the e ectiveness measurement (in bins from 0 to 1), while the Y-axis corresponds to the number of con gurations that obtained the corresponding e ectiveness. We used the con gurations as depicted in Section 3.

The four queries we show have very di erent distributions, but we can see that for each of them the selection of one con guration has a huge impact on AP. For example, for the rst query on the left side, most of the con gurations get AP between 0.3 and 0.6, but it is possible to nd a con guration for which the AP is as high as 0.8136. Automatically picking up that specific configuration Fig. 2. Density plots of AP for hard and easy queries using the whole set of configurations. In each subfigure, the X-axis corresponds to AP, while the Y-axis corresponds to the number of configurations that yield the corresponding AP value. Hard queries from the TREC7-8 collection are displayed on the le side of the figure while easy queries from the same collection are displayed on the right side. The dashed line is the mean AP value. Results are from five hard and five easy queries where queries were first sorted in ascending or descending order based on the third quartile values.

would be tremendously interesting. The same holds for the last query, on the right side of the gure: While most of the con gurations get low performance, a few get high AP (e.g., the highest AP for the query 447 is 0.9676). The selection is probably easier for query 403 for which most of the con gurations get high AP. In this gure, we also report the AP obtained using the grid search method, which selects a con guration for the whole set of queries. Obviously, for some queries, this method fails to generate an e ectiveness score close to the best (e.g., 447 on the right side part of the gure).

The above examples show the large impact of selecting a system con guration for di erent queries. We also know from past evaluation campaigns that there is not a single con guration that is the best for all the queries, and this is indeed the case in Figure 1: The best con guration for the four queries is not the same. Therefore, the selection of system con guration should be query dependent, which is what we intend to do: selecting for each query the best con guration.

To go a step further, we also had a look at two groups of queries for which it is easy or hard to pick a good con guration. Let us consider a set of ve queries for which most of the con gurations performed well (75% of con gurations got AP higher than 0.74 across these queries) and a set of ve queries for which most of the con gurations performed poorly (75% of con gurations got AP lower than 0.01). We can see that (see Figure 2) con gurations do not make a big di erence in results for hard queries while they can make a huge di erence for easy queries. These results are consistent with previous ndings [START_REF] Mizzaro | Hits hits TREC: Exploring IR evaluation results with network analysis[END_REF].

We also had a look at the relationship between query features and con guration features. Figure 3 illustrates this relationship when considering nDCG@10 measure. This gure visualizes a matrix where a column (X-axis) corresponds to a query feature, while a row (Y-axis) corresponds to a con guration. Each value in the matrix corresponds to the canonical correlation when considering nDCG@10 as the measure of the e ectiveness for a given con guration for all the queries. Fig. 3. Visualizing the canonical correlation between the system configurations and query features for evaluation metric nDCG@10 on TREC7-8 collection. The X-axis represents the query features and the Y-axis represents the system configurations. Here, a configuration "1_5_2_5_20_18" refers to "Param free expansion," " ery expansion model," "Number of Expansion documents," "Number of expansion terms," "Minimum number of expansion documents," "Retrieval model," respectively. While we provide the values of the features and se ings, this figure is intended to show their overall correlations.

Columns and rows have been ordered to display the strongest correlations. To make the gure more readable, we did not plot all the features but rather a selection of them. The highest correlations (either positive in red or negative in blue) show that some query features are closely related to the e ectiveness of the con gurations. We also see redundancy either in terms of con gurations (similar rows) or in terms of query features (similar columns). The fact that there are complementary query features and complementary con gurations which can be clearly seen in di erent rows or di erent columns.

Experimental System Architecture

We depicted the schematic diagram of our proposed approach in Figure 4, which is composed of four main components: pre-processing, training, ranking, and evaluation. Each of the components is described as follows: • Pre-processing: Given a collection, rst, we determine all feasible system con gurations C.

Second, we index the documents corresponding to the collection using a Terrier retrieval system with default parameters including the stop word removal. Third, given the title of a TREC topic, we obtain a run based on each of the system con gurations c j ∈ C. Finally, we estimate the evaluation metrics using trec_eval tool for each run. The metric value is considered as the relevance label of the training example for the underlying run generated by a query and a con guration.

• Training: This step makes use of the training examples constructed from the query features, system con guration features, and relevance labels measured by the respective evaluation metric (see the part in grey in Figure 4) and a learning-to-rank algorithm using an optimization criterion (e.g., nDCG@1). Once the training is done, a learned model is generated. • Document Ranking: In the ranking (testing) step, we consider a new query that has not been seen during training and apply our trained model to rank the system con gurations for the current query. • Evaluation: The nal step is the evaluation of our method in which we calculate the system performance measure by applying the top con guration predicted by the learning-to-rank model for each query using an evaluation metric (e.g., AP).

Following our architecture depicted in Figure 4, we use a vefold cross validation for all experiments, where each fold has separate training (3/5), validation (1/5), and test sets (1/5). The training queries are used to train the learning-to-rank models, the validation queries are used to minimise the over-tting, and the test queries are used to evaluate the learned models. Since a quite large number of LTR algorithms exist, we performed a preliminary evaluation on TREC7-8 to select the most interesting models for further investigation.

Preliminary Results

. Table 4 presents our preliminary results on TREC7-8 collection with vefold cross-validation. In this table, we considered di erent LTR algorithms of each type for a total of nine algorithms, nDCG@1 optimization functions used to learn the model on the training queries, and six di erent I R s ystem e ectiveness me asures. Th ese re sults ar e ob tained fo r test queries where each query is run using the con guration our trained model predicts.

Table 4 shows that when considering nDCG@1 as the optimization function, thus considering the rst r anked c on guration, po intwise Ra ndom fo rests al gorithm co nsistently pe rforms the best across performance measures. Linear regression and GBRT, other pointwise algorithms also consistently perform well across performance measures. Also quite close in terms of performance are SVM r ank and RankNet for pairwise and LambdaMART for listwise.

Based on these preliminary results, we kept three pointwise (linear regression, Random forests, and GBRT), one pairwise (SVM r ank), and one listwise (LambdaMART) LTR algorithms for further evaluations in this article.

These preliminary results also show that our LTR methods can highly improve the results with grid search. These preliminary results need to be con rmed and the next section details the experiment design we set up for that.

Experiment Design.

To evaluate our approach to select system con guration, we examine ve research questions (R1-R6):

RQ1: How e ective is our proposed approach using learning-to-rank to select system con guration? Is it able to select the best con guration for a query or a con guration close to it?

We compare our proposed learning-to-rank system with the BM25 and parameter tuning with the grid search as baselines. The grid search is a well-known technique for optimal parameter search, which selects the best con guration on a set of training queries and uses it on the test queries. In this experiment, we use all the 81 features related to Linguistic (L), Statistical (S), Retrieval (R M), and Query expansion (E) aspects. We also report Oracle result where for each query the best con guration is systematically selected. Finally, we go deep into the results to understand better the results.

RQ2: What LTR model is the most e ective for the task?

We have di erent classes of LTR approaches: pointwise, pairwise, and listwise approaches. We intend to determine which class of approaches is the most suitable for our task.

RQ3: Are the di erent groups of features deem necessary in the learning-to-rank system con guration?

To evaluate the e ect of di erent groups of features on the trained model, we conducted a feature ablation study. We removed one group of features to see how this a ects the system performance.

RQ4: What is the impact of the optimization criteria at di erent rank positions?

Learning to rank algorithms use di erent optimization criteria while in our case nDCG@1 is used as a natural choice. The optimization criteria may have an impact on the trained model. We studied the impact of the di erent optimization criteria and at di erent rank depths.

RQ5: How in uential are the query expansion parameters?

Query expansion parameters are the most crucial part of system con gurations in C, because they lead to varying di erent system performances. We evaluate the in uence of expansion features only on the learned model by conducting an ablation study of the expansion parameters. It is thus a more detailed analysis compared to RQ2 that looked at the whole set of expansion features together.

RQ6: What would be the cost of implementing the method in a commercial search engine?

Our model considers several query features and several con gurations. We discuss the cost of implementing our model on the training phase and on using the trained model or running phase.

Experimental Results

To address the research questions de ned in the previous section, we conducted several experiments and reported the outcome in this section.

E ectiveness of the Learning to Rank System Configurations.

While in learning-to-rank documents, the pointwise methods usually yield lower e ectiveness than the pairwise and listwise methods, we need to compare the three approaches, since we are dealing with a di erent task. There are two major di erences: [START_REF] Alemayehu | Analysis of performance variation using query expansion[END_REF] We are interested in the rst ranked system con guration while the standard LTR is interested in the full document list; (2) our labels are continuous variables while document ranking uses discrete ratings. It is thus worth comparing the results from the three categories of LTR methods. We compared the performance of our proposed learning-torank system con guration approach to two baselines. One baseline is the grid search method, which selects the best con guration of a set of training queries (we used both the training and the validation queries here) and uses it on the test queries. This corresponds to the common practice in IR for setting multiple parameters. Notice that this con guration is query independent. A second baseline is Random search [START_REF] Bergstra | Random search for hyper-parameter optimization[END_REF]. It has been recently introduced as an alternative to manual and grid searches for hyper-parameter optimization. Random search has been shown to be e ective even when using 64 trials only [START_REF] Bergstra | Random search for hyper-parameter optimization[END_REF]. In the experiments, we considered 1,000 trials and report the Legend and settings are identical to Table 5.

result for the most e ective con guration. Moreover, for an easy comparison, we also provided the performance of a standard BM25 run (without query expansion), using the default con guration provided by Terrier.

The training step makes use of many query features as presented in Table 2. The models have been learned using the full set of 81 features related to Linguistic (L), Statistical (S), Retrieval (R M), and Query expansion (E). Given a test query, we used the system con guration that has been ranked rst by the learned models. We report the average performance on the test queries in Tables 5, 6, 7, and 8 for all four collections TREC7-8, WT10G, GOV2, and Clueweb12, respectively. We also report in Tables 5 to 8 the upper bound of our method, which used the best possible system con guration for each query in the test set (i.e., the Oracle performance).

From Tables 5 to 8, we see that all learning-to-rank techniques can reasonably learn to rank system con gurations for most evaluation measures and test collections. The results are generally better than with grid search or random search. These results clearly indicate the bene t of using Legend and settings are identical to the Table 5.

a learning-to-rank model to select an appropriate system con guration for a query rather than setting a unique con guration globally. Among the learning-to-rank models, the pointwise models, especially Random Forests, produce the best results. The second best is the standard linear regression, another pointwise algorithm. The pairwise SVM r ank follows. The listwise LambdaMART performs the worst. The performances obtained with the con guration selected by LambdaMART are sometimes lower than that determined by grid search.

This observation di ers from the traditional use of learning-to-rank models for document ranking, where pairwise and listwise models are found to perform better than pointwise models [START_REF] Liu | Learning to rank for information retrieval[END_REF]. A possible explanation of this is in the di erence of the optimization process used in learning-torank and our nal goal. In pairwise and listwise learning-to-rank methods, the optimization takes into account the relative positions of con gurations at lower ranks, while this is not important for our task, which only selects the best con guration. Thus, the changes of other con gurations at lower positions do not a ect our nal choice but will impact the objective functions used in these learning-to-rank algorithms.

The learning-to-rank models also compared favourably to the best-performing systems of the TREC-7 and TREC-8 AdHoc Tracks, TREC-9 Web Track (WT10G), TREC-2004, TREC-2005, and TREC-2006 Terabyte Tracks (GOV2).

The best system that uses the title only at TREC-7 ("ok7as") [START_REF] Robertson | Okapi at TREC-7: Automatic ad hoc, ltering, VLC and interactive track[END_REF] and TREC-8 ("pir9At0") [START_REF] Kwok | TREC-8 Ad-Hoc, query and ltering track experiments using PIRCS[END_REF] obtained 0.2614 and 0.3063, respectively, while the Random Forests model can produce 0.3121 and 0.3809 in MAP on the two separate sets of queries.

The best performance from the participants of TREC-9 Web Track was 0.2011 in MAP, while the Random Forests model can produce 0.3371, which is signi cantly better. The best systems at TREC 2004TREC , 2005TREC , and 2006 Terabyte Tracks obtained 0.2840, 0.3885, and 0.3392 in MAP, respectively. Our Random Forests model achieves 0.3786, 0.4464, and 0.4076 in MAP in the respective Tracks, which is statistically signi cantly better than the best participants' method (the MAP is 0.4109 when AP is averaged over the three sets of queries).

Di erences b etween Good and Bad C onfigurations.

To understand what distinguishes a good con guration from a bad con guration, we analyse the parameter values in the best 10% and worst 10% con gurations, which have been used as positive and negative examples to train our LTR models. In this analysis, we focused on GOV2 collection.

Figure 5 shows the distribution of the parameter values used for each query: (a) among the 10% best con gurations and (b) among 10% worst con gurations for GO V2. The top part of the gure reports the number of con gurations that use a speci c retrieval model. They are ordered according to the number of times they are in the 10% best con gurations for a query. Only the rst 7 retrieval models have been used for query expansion, that is why the 14 others have smaller bars. We can see that the rst model "DFRee" appears twice more in best con gurations than in the worst ones. This is clearly the overall best retrieval model.

With regard to expansion models, "Bo2" is more frequent in the best con gurations than the worst while, except "KL complete" and "Information" expansion models. On the number of expansion terms, the number of expansion documents, and the minimal number of documents the expansion terms should appear in, we see more mixed pictures: There is not a clear winner. In fact, these numbers strongly depend on the retrieval model and the expansion model used. It is impossible to select a good number independently from the models.

It is also interesting to compare the parameter values between the selected con gurations and the Oracle con gurations t o s ee h ow c lose t he s elections a re t o t he b est. F igure 6 r eports the distribution of the parameters on GOV2 testing set (from the vefold cross-validation) both for the Oracle and for our trained model when using Random Forests LTR algorithm with nDCG@1 as the objective function and AP as e ectiveness measure. We can see that for retrieval model, the distributions of the Oracle and of our model are very close to each other. This suggests that our LTR model is able to select good retrieval models. However, we observe more di erences on the other parameters. These results indicate that it is more di cult to determine the good parameters for expansion than the retrieval model.

In the next section, we will carry out further analysis on the impact of each parameter through ablation.

Ablation Analysis of Di erent

Group of F eatures. Not all the features are of the same importance. Since we de ned s everal g roups o f f eatures, i t i s w orth k nowing w hich o nes a re the most important. This may have an impact on costs. To evaluate the e ect of each group of features presented in Section 3.2 (S , L , R M , and E) for selecting the con guration, we performed the feature ablation analysis. We removed one group of features at each time, performed again the training, and testing steps as before. If we observe a large decrease in retrieval e ectiveness, then this would indicate that the ablated features are very important for the learner, while an increase in results would suggest that the features confuse the learner.

We rst report the main ndings in Figure 7 to make a fast and easy read. In that gure, we reported the performance of feature ablation for Random Forests on TREC7-8 collection. The shape for the other collections is similar. We can clearly see that expansion features are the most important con guration features, since when removing them from the model, the results decrease drastically.

To provide more details, we also report the average performance on the test queries of the features ablation study in Tables 9, 10, 11, and 12 for collections TREC7-8, WT10G, GOV2, and Clueweb12, respectively. Table 9 should be read as follows: When considering the MAP, for example, the model trained using all the features and Random Forests achieves 0.335. When training the model without the linguistic features associated with the query, MAP increases by 3% to 0.345. Thus linguistic features seem to penalise the e ectiveness. Reversely, when training the model without expansion features, MAP decreases of more than 31.9% to 0.228, thus expansion features are very useful in the model. Fig. 6. Distribution of the configurations for a given value of the various parameters of the configurations for GOV2: retrieval model on the top part, then the four expansion parameters; both for the Oracle (black bars) and for our trained model (grey bars) using Random Forests, nDCG@1 as the objective function, and AP as e ectiveness measure.

When analysing Table 9, we can make the following observations. First, we observe that ablating the E group of features always signi cantly decreases the performance of the learned models, hinting the huge importance of these features for learning an e ective model. This observation is in agreement with what we observed in the previous section (Section 4.4.2): The best values for query expansion parameters vary a lot across queries. So, when the expansion features are removed, the nal selection will pick a random value among them, leading to large variations in retrieval e ectiveness.

The ablation of the other groups of features has less marked impact. When we remove the R M feature, the performances can increase or decrease slightly. This may seem surprising. However, comparing with Figure 5, this observation can be explained by the following facts: (1) The Fig. 7. The performance of feature ablation for Random Forests on TREC7-8 collection. We can observe degradation of the results when removing expansion features and increase when removing eryStat features.

seven models that are used in combination with expansion parameters (thus can be selected) are all good models that can produce quite high retrieval e ectiveness; therefore, any of them could be a reasonable choice, and (2) it is possible that the other features may provide some information to determine the appropriate retrieval model. To con rm this, it would be necessary to examine the correlation between di erent features. We leave this to future work.

We also observe that the ablation of query-dependent features, namely S and L (A means both S and L), produces variable e ects. In some cases, we can observe that removing some groups of features leads to even better performance than using the full set of 81 features (rst line named (All) for each LTR model). Therefore, it would be desirable to perform a feature selection to keep a subset of useful features. This will be part of our future work. 4.4.4 Impact of the Optimisation Criteria in Learning to Rank Technique. Learning to rank algorithms use di erent optimization criteria such as ERR@n, nDCG@n, and so on, to train a model. On the intuition that optimisation criteria may have an impact on the trained model, we experimented with di erent optimization criteria at the di erent rank position in training the learning-to-rank models.

In the rst set of experiments that we carried in Section 4.4.1 and 4.4.3, the models learned by Random Forests, LambdaMART, and GBRT all used nDCG@1 optimisation criterion. This choice Legend and settings are identical to Table 9.

makes sense, since we always choose the top-ranked system con guration. However, we also experimented with several other optimisation criteria to see whether they impact the quality of the learned models. In addition to nDCG with di erent depths, we also experimented with expected reciprocal rank (ERR) and Precision and varied the di erent cut-o ranks from 1 to 10. Apart from this change, the experimental set-up is identical to what we described in Section 4.4.1, and the results are reported in Figure 8 (SVM is excluded from this analysis, since it uses Kendall's tau as optimisation criteria or loss function). When analysing the Figure 8, we observe di erent patterns for di erent learning-to-rank techniques. In Figure 8(a), we see very little variation in the performance of Random Forests, for all collections and all optimisation criteria, which suggests that this LTR model is very stable and can achieve strong results regardless of the optimisation method. These results also make sense in the light of the results of Section 4.4.1 and 4.4.3, which show that Random Forests achieves the best results overall. These strong performances seem to be linked to the adaptability of this learner. When analysing the Figure 8(b), we observe the same stability for GBRT, except on the WT10G collection for the nDCG@n and P@n metrics. Finally, we see on Figure 8(c) that the performance uctuates more for LambdaMART for both nDCG@n and P@n criteria, suggesting that this LTR model is unstable and might not be the most suitable for our speci c task. These observations confirm the results in Section 4.4.1 and 4.4.3, where LambdaMART achieved the lowest performance in comparison to the other LTR models. The uctuation of the performance with di erent depths can again explain by the fact that LambdaMART takes into account the whole ranked list to determine the quality of the list. The depth of the ranked list will have some impact on the model. In particular, it will take into account the relative positions of con gurations at lower ranks, which are not important for our task.

Influence of ery Expansion

Features. Since the query expansion parameters exhibit the largest impact on the retrieval e ectiveness, we conducted a more detailed feature ablation Fig. 8. MAP results when varying the optimisation criteria of Random Forests, GBRT, and LambdaMART. The X-axis represents di erent ranks of the optimisation criterium (i.e., ERR@1, ERR@2, etc.). S VM Rank is not included in this analysis, since the implementation we used does not allow such se ings.

experiment on some individual features of this group, with the aim of identifying the single features that have the highest impact on the quality of the learned model.

In this experiment, we compared the performance of the models that have been learned with all features to those of the models that have been learned after removing each of the four E features (see Table 1) individually. More speci cally, we calculate the ∆ µ , where µ ∈ {MAP, P@10, nDGC@10, RPrec}, which represents the di erence between the µ metric after and before ablation. Hence, a positive ∆ µ means that removing the feature has improved the quality of the learned model (i.e., the feature is harmful) and a negative ∆ µ means that removing the feature harms performance (i.e., the feature is bene cial).

We reported the results of µ = MAP in Figure 9. The results with other evaluation metrics are similar. When analysing this gure, we see that the largest changes in results occur for Lamb-daMART (highest bars either with a positive or a negative change), which con rms our observations in previous experiments that this LTR model appears to be more sensitive to features than others on this speci c task. However, the SVM r ank , GBRT, and Random Forests techniques are less sensitive to the variation, which highlights their stability and their e ectiveness for this task. Furthermore, we see that the expansion model (ExpModel) appears to be a strong feature for SVM r ank , GBRT, and Random Forests on the four collections. When this feature is removed, the e ectiveness generally decreases (except LambdaMART). This observation sounds intuitive: Without specifying the expansion model, the choice of other expansion parameters may not be meaningful.

However, the other features like the number of expansion documents or the number of expansion terms seem to be less important and have more variable e ects, as seen on Figure 9. We see that removing the number of expansion documents from the features can even lead to improvements on WT10G and GOV2 for LambdaMART and GBRT, respectively. O -line cost: Since the trained system can predict the best system con guration for the given query without going through all the con gurations, the number of con gurations only a ects the cost of the training phase.

The more con gurations the meta system can choose among, the higher the probability to have a con guration that is e ective for a given query, since we have an enlarged con guration space. The o -line cost can, in turn, be decomposed into two parts: pre-processing and training. In the pre-processing step, we have to design the set of con gurations, run the queries with each con guration, evaluate the runs to generate e ectiveness metrics, and, nally, prepare the features for the training stage. Therefore, the more con gurations we have in pre-processing stage, the higher the cost to build the runs.

Suppose that we have to build runs in C con guration s ettings f or e ach q uery, e valuate the e ectiveness, and prepare the features for the training stage. Given a collection with a set Q of queries, the cost to build all the runs isC × cost (run, Q, c i), where cost (run, Q, c i) is a function that returns the cost of retrieving a batch run for the set of Q queries under a particular con guration c i ∈ C. At training stage, as we explore a large number of con gurations (which could probably be reduced) with varying degree of e ectiveness, we used a sampling process to reduce it to 20%, which helps to train a LTR model quickly and leads to a set of globally e ective con gurations.

During the training process of a LTR model (e.g., Random Forests), the time complexity is O (Nt × N f × Nc × log(Nc)), where Nt is the number of trees, N f is the number of features at each node, and Nc is the number of training samples. In our case with default parameters, Nc = C × 20% and Nt = 300, N f = 23 (since the feature sampling rate is 30% and the total number of features is 78). Thus, in the worst-case scenario, the cost to train a Random Forest would be O (300 × 23 × Nc × log(Nc)). This is a training cost which only occurs at an o -line stage.

On-line cost: The cost that matters the most at the on-line stage is related to the selection of a con guration, which has a complexity of O

(Nt × N f × log(N f)) ≈ O (N f) (since N f ≫ N t and N f ≫ log(N f))
, a linear time complexity. We can further lower the cost of training and prediction by sampling the training examples (i.e., a smaller N f) while maintaining a good predictive performance.

However, the number of query features a ects both the training phase (o -line) and the running phase (on-line). In principle, the more features we have, the better the trained model could be. However, experimentally we found that ablating some features helps the training and improves Notice also that the cost of feature extraction is not the same for all features. It depends on the type of feature: pre-retrieval features are less costly than post-retrieval features, since the latter need to process the query to be calculated. For example, the cost of extracting id f features is fairly low, as the system only needs to retrieve statistics from the inverted-index for each query term and to aggregate the values. However, the post-retrieval QF (query feedback) feature, which is the percentage of overlap at some rank between the documents retrieved for the original query and the expanded query, requires a costly two-stage processing. Some other post-retrieval features and query performance predictors (QPP) such as those used in Letor, e.g., BM25 or NQC, are obtained from the documents retrieved at the rst stage. They require less computation than QF . It is possible to make the feature extraction faster. For example, we could replace QF predictors by another QPP such as the weighted product model (WPM) [START_REF] Haggai Roitman | Enhanced mean retrieval score estimation for query performance prediction[END_REF], which was shown to be e ective and requires only the documents from the rst retrieval stage. In addition, given that the average length of the queries is small, 4.1 words [START_REF] Arampatzis | A study of query length[END_REF], the cost of estimating the considered query features is not prohibitively high in practice.

We see in the above analysis that the cost depends on the number of features we use. As we showed earlier in Figure 3, the features could be redundant (i.e., rows or columns that are similar). We could limit the number of features without degrading the overall performance of our method. We will leave investigation on this aspect to future studies.

The additional cost of implementing a strategy as we proposed in this article in the existing Lemur and Terrier platforms is relatively small if we consider a limited number of features and a limited number of con gurations. With regard to query features, Terrier has already implemented in its FAT [START_REF] Macdonald | About learning models with multiple querydependent features[END_REF] component a number of post-retrieval features that could be easily used. Lemur provides the clarity feature.

With regard to con guration parameters as stated in Table 13, Lemur has several con gurations of language modelling and non-language modelling based retrieval models, with various strategies of reformulation made possible by the λ parameter [START_REF] Lavrenko | Relevance based language models[END_REF]. In Terrier, con guration parameters could be easily set, since it has already implemented an extensive list of retrieval models, expansion models, and so on. Therefore, our method can be directly implemented on top of the existing platforms. We compare the initial results when learning is made on the same collection as testing (using vefold cross-validation on queries) and when using transfer learning from two collections to the third one. BM25 and Random search, as well as Oracle performance (upper bound) are also reported. ↑ indicates statistically signi cant improvement over the Random search baseline, according to a paired t-test (p < 0.05). We used nDCG@1 as optimization function and four di erent e ectiveness measures.

Transfer Learning

Transfer learning refers to the principle of training a model on one dataset and using it on other datasets.

In our case, transfer learning can be applied as follows: learning on one collection and testing on the others. Since the collections di er both in terms of queries and in terms of document collection, the result of transfer learning will give a good cue on how generalisable the model is. If transfer learning works well, then it would mean that the model does not need to be trained again for new document collections (or when new documents are added), and thus there is no training cost apart from the initial one. Reversely, if the model should be trained for any new document collection before being applicable, then its implies additional o -line cost for training.

In Table 14, we report the results for Random Forests, since it performed best in our previous experiments. We consider three of the four collections, because these three collections shared exactly the same features once we removed page rank features. We train on two collections and tested on the third one. For each combination, we report the BM25 and Random search baselines as well as Oracle which uses the best con guration, as in the previous experiments. We then report the initial results using Random Forests when the model is trained on the current collection using fivefold cross-validation and when using transfer learning.

In Table 14, we can see that transfer learning is better than the Random search baseline, which is the best of our three baselines. However, cross-validation on the same collection works better than transfer learning.

This result shows that while transfer learning could help choosing better con gurations compared to Random search, the document and query collections are very di erent in nature so that a model learned from one collection could be hardly transferred to another collection. A better solution is to train a model using a set of training queries on the same collection. This result indicates that transfer learning for choosing system con gurations are di cult because of the large di erences between collections.

CONCLUSIONS AND DISCUSSIONS

Main results. In this article, we proposed a new approach to set system con guration using learning-to-rank methods. This work is motivated by the intuition that selecting a good system con guration boils down to rank the candidate con gurations. Thus, LTR methods can be used. In this article, we showed that this approach is feasible, and it can produce performance superior to the state of the art, speci cally to the traditional grid search method and to the best results submitted to TREC. Our approach can be seen as a generalisation of selective query expansion (SQE) that implements a binary decision: A model decides whether the query should be expanded or not [START_REF] Amati | Query di culty, robustness, and selective application of query expansion[END_REF][START_REF] Cronen-Townsend | A framework for selective query expansion[END_REF][START_REF] Zhao | Automatic term mismatch diagnosis for selective query expansion[END_REF]. In SQE, the state-of-the-art models use quite simple features and methods to make the decision.

The method we proposed in this article uses much more complex features and learning algorithms to make the decision. In addition, our decision is also more complex: We have to decide not only the number of feedback documents and terms to use but also several other system setting parameters.

Globally, our study proposes to see a search system no longer as a system with pre-set parameters, but as a system with parameters settable according to the query. Thus, this study paves the way to a new research direction-IR as an adaptive service. Depending on the characteristics of the query, di erent con gurations can be used.

Among the three families of LTR approaches, the best and most stable (across collections and measures) are the pointwise approaches, in particular Random Forests. The two other families of approaches tend to be less e ective. The worst ones are the listwise methods. This observation is di erent from that on document ranking, where listwise approaches produce the best results. This di erence could be explained by the di erence between our task and that of document ranking: In our case, we are interested in selecting one best con guration (and indeed we optimized the model on ndcg@1), while in document ranking, one aims to rank a list of documents. In the latter case, the relative positions of documents at lower ranks matter, but not in our case of conguration selection. Therefore, a pointwise approach (or, similarly, a regression approach) is more suitable.

Our experiments also showed the importance and bene ts to make query-dependent con guration setting. Using any LTR method, we were able to select a better con guration than the Grid or Random search methods, which make query-independent selections.

The feature ablation analysis demonstrated various impacts of di erent features. In particular, the features of query exhibited lower impact than we initially thought. More investigations are needed to fully understand the reasons.

Selection and costs. This is the rst study on utilising LTR to select system con gurations and we have limited its scope to several aspects. For example, we did not make a selection of the features to be used and simply used all the features proposed in the literature that sound relevant. However, we observed that the relevance of some of the features to our task may be low. The features can also be redundant, providing similar or even contradictory information. We think that we should apply some feature selection to help the algorithms focusing on the most important features. It is also useful to carry out an analysis of the correlation between features to understand their interactions. This aspect will be very important for real computational cost. Indeed, feature extraction may incur a signi cant cost that should not be neglected for concrete use of our method in a search engine. A more extensive investigation is needed to select the most in uential features of each type and the ones that are common across collections. The tradeo between e ectiveness and feature calculation needs to be investigated in future studies.

Impact of LTR algorithms. The main application of learning-to-rank in IR is to rank documents. The literature of the domain has shown that listwise algorithms are the best [START_REF] Lin | Learning to rank using multiple loss functions[END_REF][START_REF] Tax | A cross-benchmark comparison of 87 learning to rank methods[END_REF]. In this article, however, our observation is di erent. Overall, pointwise approaches, and speci cally, Random Forests, performs the best. This result is based on global performance on the set of queries, which as usual hide some epiphenomenon or speci c behaviour. It is necessary to carry out a detailed analysis to understand why there is such a di erence between leaning to rank system con gurations and learning-to-rank documents.

The focus in optimising system performance. The need for a careful selection of con guration is di erent from one query to another.

As we reported in this article, queries that have a broad range of e ectiveness values require more a careful selection than queries that have a limited range of performance values. Indeed, when there is a limited range of e ectiveness values, any con guration can be picked up, even randomly, without decreasing user's satisfaction; while with a large range of e ectiveness values, the selection is more di cult and should be done more carefully.

This observation suggests that in trying to optimise system performance, we should focus on queries for which the range of e ectiveness v alue i s l arge f or w hich i t i s c rucial t o s elect the appropriate con guration. This is di erent from the previous studies which suggested to focus on "hard" queries [START_REF] Compaoré | Mining information retrieval results: Signi cant IR parameters[END_REF] that have low e ectiveness values.

Other research directions. Although we included the most relevant features available, the feature set can be further enlarged. In particular, the features re ecting the relationships between a query and a speci c con guration could be very informative. However, we need to nd a tractable way to extract such features. Considering the number of con gurations we used, these speci c features would have been costly to obtain.

We created a quite large set of candidate con gurations based on the results of previous studies. It may be more appropriate to design a way to determine the values of parameters dynamically rather than choosing among the xed candidate set.

Another open question is the e ectiveness o f o ur m ethod w hen c onsidering d iversity a s for Clueweb12 TREC task, for example. In that speci c task, the idea is that the relevance of documents may depend on the aspects or sub-queries underlying the general query. Intuitively, di erent con gurations could answer di erent sub-queries and thus their combination could be helpful in diversity task. From Reference [START_REF] Qin | LETOR: A benchmark collection for research on learning to rank for information retrieval[END_REF], calculated using Terrier module [51] Name Detail SFM(DL,0) or 1 or 2

APPENDIX A DETAILS ON THE QUERY FEATURES

The score for the language model with Dirichlet smoothing for the query and the document title or body or both. SFM(TF,0) or 1 or 2

The value of the TF for the query and the document title or body or both. SFM(TF_IDF,0) or 1 or 2

The value of the TF• IDF score for the query and the document title or body or both. sum_tf_idf_full mean_tf_idf_full

The sum or mean of TF• IDF values for the query terms sum_tf_full mean_tf_full

The sum or mean of TF values for the query terms JM.colλ0.4.docλ0.0 and .1

The score value for the language model with Jelinek-Mercer smoothing, with a collection lambda of 0.4. SFM(BM25,0) or 1 or 2

The value of BM25 model for the query and the document title or body or both.

From Reference [START_REF] Qin | LETOR: A benchmark collection for research on learning to rank for information retrieval[END_REF], calculated using Lemur pagerank_rank and The the pagerank score and log probability of it (Inlink count within the retrieved pagerank_prior document set). Query di culty predictors Name Detail IDF Query terms IDF (inverse document frequency). Clarity [START_REF] Cronen-Townsend | Predicting query performance[END_REF] The entropy between a query and the collection language models. WIG [START_REF] Zhou | Query performance prediction in web search environments[END_REF] Weighted information gain QF [START_REF] Zhou | Query performance prediction in web search environments[END_REF] Query feedback NQC [START_REF] Shtok | Predicting query performance by query-drift estimation[END_REF] Normalized query commitment

Fig. 4 .

 4 Fig. 4. The four steps of our approach for learning-to-rank system configurations. Steps 1 and 2 are only performed once. Step 1 is covered in this article by Section 3.1; Step 2 is covered by Sections 3.2, 3.3, and 3.4. Steps 3 and 4 are parts of the experiments we detail in the subsequent sections.

Fig. 5 .

 5 Fig.5. Distribution of the configurations for a given value of the various parameters of the configurations for GOV2: retrieval model on the top part, then the four expansion parameters when considering the 10% best configurations (black bars) and when considering the 10% worst (grey bars) for each query.

Fig. 9 .

 9 Fig.9. Absolute changes in MAP when removing individual E features, with respect to models that use all features. This plot is best viewed in colour. Bars above 0.00 line mean that results decreased.

4. 4 . 6

 46 Cost Aspect. Two main factors in uence the cost of the proposed method: (1) the number of candidate con gurations and (2) the number of features. Moreover, cost should be distinguished between o -line and on-line. O -line cost is for training while on-line is for processing a new user's query. The latter is more critical. Most of the costs of our method are o -line costs as we detail below.

Table 1 .

 1 Description of the System Parameters That We Considered When Constructing System Configurations

	Parameter	Description	Values 7
	Retrieval model	21 di erent retrieval models	BB2, BM25, DFRee, DirichletLM,
			HiemstraLM, InB2, InL2, JsKLs, PL2, DFI0,
			XSqrAM, DLH13, DLH, DPH, IFB2, TFIDF,
			InexpB2, DFRBM25, LGD, LemurTFIDF, and
			InexpC2.
	Expansion model	7 query expansion models	nil 8 , KL, Bo1, Bo2, KLCorrect, Information,
			and KLComplete.
	Expansion documents	6 variants of number of documents	2, 5, 10, 20, 50, and 100.
		used for query expansion	
	Expansion terms	5 variants of number of expansion	2, 5, 10, 15, and 20.
		terms	
	Expansion min-docs	5 variants of minimal number of	2, 5, 10, 20, and 50.
		documents an expansion term	
		should appear in	

Table 2 .

 2 The Four Groups of Features for a ery-Configuration Pair:

	Q	S	, Q	L , R M	, and E
	Group	Variants				Features
	3 Pre-retrieval features with mean and	IDF
	standard deviation variants of IDF		
	S				

Table 3 .

 3 Statistics of the Collections Used in the Experiments

	Collection	Number of documents Number of topics (Range)
	TREC7-8	528,918	100 (350-450)
	WT10G	1,692,096	100 (451-550)
	GOV2	25,205,179	150 (701-850)
	Clueweb12B	52,343,021	100 (201-300)

Table 4 .

 4 Preliminary Results (Nine Di erent LTR Models of Di erent Types) Considering nDCG@1 Objective Function Using Six Di erent Evaluation Measures MAP, P@10, NDCG@10, NDCG, P@100, and RPREC

			MAP	P@10 NDCG@10 NDCG P@100 RPREC
		Grid search	0.262	0.469	0.498	0.546	0.243	0.299
				nDCG@1			
		Linear Regression 0.319 △ 0.579 △	0.612 △	0.619 △ 0.275 △ 0.349 △
	Pointwise Random Forests	0.335 △ 0.575 △	0.614 △	0.634 △ 0.289 △ 0.371 △
		GBRT	0.334 △ 0.546 △	0.565 △	0.616 △ 0.289 △ 0.359 △
		SVM r ank	0.315 △	0.542	0.533	0.606 △ 0.268 △ 0.346 △
	Pairwise	RankNet	0.311 △	0.447	0.443	0.479 ▽ 0.274 △	0.298
		RankBoost	0.198 ▽	0.395	0.401 ▽	0.559	0.243	0.195 ▽
		LambdaMART	0.310 △	0.539	0.338 ▽	0.592 △	0.228	0.329
	Listwise	Coordasc	0.200 ▽ 0.316 ▽	0.366 ▽	0.479	0.269 △ 0.199 ▽
		ListNet	0.195 ▽	0.386	0.343 ▽	0.353 ▽ 0.110 ▽ 0.221 ▽
		Oracle	0.4117	0.7700	0.8022	0.7073	0.3449	0.4484

TREC7-8 collection is used with vefold cross-validation.

Table 5 .

 5 Comparative Performance of Our Proposed Learning-to-Rank System Configuration Approach Using Five Di erent Learning to Rank Models on TREC7-8 Collection to Three Baselines: BM25, Grid Search, and Random Search

		MAP	nDCG@10	P@10	RPrec
	BM25 (Baseline)	0.211	0.465	0.431	0.255
	Grid search (Baseline)	0.262	0.498	0.469	0.299
	Random search (Iter: 1000)	0.263	0.507	0.441	0.301
	Linear Regression	0.319 △ ↑	0.612 △ ↑	0.579 △ ↑ 0.349 △ ↑
	Random Forests	0.335 △ ↑	0.614 △ ↑	0.575 △ ↑ 0.371 △ ↑
	GBRT	0.334 △ ↑	0.565 △	0.546 △ ↑ 0.359 △ ↑
	SVM r ank	0.315 △ ↑	0.533	0.542 ↑	0.346 △ ↑
	LambdaMART	0.310 △ ↑	0.338 ▽ ↓	0.539 ↑	0.329
	Oracle performance	0.412	0.802	0.770	0.448

Oracle performance (upper bound) is also reported when the best con guration for any individual query is used. △ indicates statistically signi cant improvement over the grid search baseline, whereas ↑ indicates statistically signi cant improvement over the Random search baseline, according to a paired t-test (p < 0.05). We used nDCG@1 as optimization function and four di erent e ectiveness measures.

Table 6 .

 6 Comparative Performance of Our Proposed Learning to Rank System Configuration Approach on WT10G Collection

		MAP	nDCG@10	P@10	RPrec
	BM25 (Baseline)	0.199	0.364	0.340	0.243
	Grid search (Baseline)	0.245	0.396	0.361	0.273
	Random search (Iter: 1000)	0.244	0.367	0.384	0.273
	Linear Regression	0.260	0.453 △ ↑	0.416 △ ↑	0.301
	Random Forests	0.319 △ ↑	0.452 △ ↑	0.437 △ ↑ 0.325 △ ↑
	GBRT	0.303 △ ↑	0.400	0.401 ↑	0.214 ▽ ↓
	SVM r ank	0.228	0.447 △ ↑	0.410 ↑	0.296
	LambdaMART	0.210	0.321 ▽	0.285 ▽	0.200 ▽ ↓
	Oracle performance	0.406	0.657	0.638	0.443

Table 7 .

 7 Comparative Performance of Our Proposed Learning to Rank System Configuration Approach on GOV2 Collection

		MAP	nDCG@10	P@10	RPrec
	BM25 (Baseline)	0.279	0.477	0.542	0.345
	Grid search (Baseline)	0.357	0.535	0.629	0.390
	Random search (Iter: 1000)	0.353	0.519	0.624	0.384
	Linear Regression	0.410 △ ↑	0.651 △ ↑	0.770 △ ↑ 0.441 △ ↑
	Random Forests	0.411 △ ↑	0.659 △ ↑	0.767 △ ↑ 0.446 △ ↑
	GBRT	0.396 △ ↑	0.642 △ ↑	0.760 △ ↑ 0.448 △ ↑
	SVM r ank	0.363	0.634 △ ↑	0.741 △ ↑ 0.433 △ ↑
	LambdaMART	0.324 ▽	0.312 ▽ ↓	0.618	0.280 ▽ ↓
	Oracle performance	0.478	0.813	0.910	0.515
	Legend and settings are identical to the Table 5.			

Table 8 .

 8 Comparative Performance of Our Proposed Learning to Rank System Configuration Approach on Clueweb12 Collection

		MAP	nDCG@10	P@10	RPrec
	BM25 (Baseline)	0.026	0.151	0.210	0.068
	Grid search (Baseline)	0.032	0.167	0.259	0.071
	Random search (Iter: 1000)	0.031	0.156	0.223	0.066
	Linear Regression	0.042 △ ↑	0.232 △ ↑	0.313 △ ↑ 0.080 △ ↑
	Random Forests	0.043 △ ↑	0.235 △ ↑	0.336 △ ↑	0.076 ↑
	GBRT	0.040 △ ↑	0.227 △ ↑	0.349 △ ↑ 0.079 △ ↑
	SVM r ank	0.040 △ ↑	0.235 △ ↑	0.324 △ ↑ 0.078 △ ↑
	LambdaMART	0.025 ▽	0.175	0.278 ↑	0.072
	Oracle performance	0.059	0.321	0.420	0.096

Table 9 .

 9 Results with the Five Di erent Learning-to-Rank Models and Feature Ablations on TREC7-8 △↑ -3.9% 0.596 △↑ +5.5% 0.564 △↑ +3.3% 0.353 △↑ -1.7% -S 0.311 △↑ -6.9% 0.601 △↑ +6.4% 0.561 △↑ +2.8% 0.345 △↑ -3.9% -R M 0.316 △↑ -5.4% 0.577 △ +2.1% 0.559 △↑ +2.4% 0.333 △↑ -7.2% -E 0.223 -33.2% 0.330 ▽↓ -41.6% 0.348 ▽↓ -36.3% 0.212 ▽↓ -41.0% -A 0.320 △↑ -4.2% 0.618 △↑ +9.4% 0.616 △↑ +12.8% 0.361 △↑ +0.6% SVM @1 as optimization function (for all but SVM, which uses Kendall's τ as optimization function). △ and ↑ indicate statistically signi cant improvements over the Grid search and Random search baselines respectively, according to a paired t -test (p < 0.05).indicates statistically signi cant decreases induced by a feature ablation with respect to the corresponding (All) models.

			MAP	nDCG@10	P@10	RPrec
	Grid search (Baseline)	0.262	0.498	0.469	0.299
	Random search (Iter: 1000) 0.263	0.507	0.441	0.301
	Linear Regression (All)	0.319 △ ↑	0.612 △ ↑	0.579 △ ↑	0.349 △ ↑
	-	L	0.321 △↑ +0.6% 0.612 △↑ 0.0% 0.560 △↑ -3.3% 0.349 △↑ 0.0%
	-	S	0.312 △↑ -2.2% 0.622 △↑ +1.6% 0.581 △↑ +0.3% 0.334 △ -4.3%
	-R M	0.308 △↑ -3.5% 0.511	-16.5% 0.538 ↑ -7.1% 0.340 △↑ -2.6%
	-E	0.152 ▽↓ -52.4% 0.289 ▽↓ -52.8% 0.303 ▽↓ -47.7% 0.200 ▽↓ -42.7%
	-	A	0.338 △↑ +6.0% 0.632 △↑ +3.3% 0.554 △↑ -4.3% 0.345 △↑ -1.1%
	Random Forests (All)	0.335 △ ↑	0.614 △ ↑	0.575 △ ↑	0.371 △ ↑
	-	L	0.345 △↑ +3.0% 0.595 △↑ -3.1% 0.585 △↑ +1.7% 0.357 △↑ -3.8%
	-	S	0.325 △↑ -3.0% 0.599 △↑ -2.4% 0.572 △↑ -0.5% 0.379 △↑ +2.2%
	-R M	0.326 △↑ -2.7%	0.561	-8.6% 0.564 △↑ -1.9% 0.350 △↑ -5.7%
	-E	0.228 -31.9% 0.407 ▽↓ -33.7% 0.364 ▽ -36.7% 0.223 ▽↓ -39.9%
	-	A	0.330 △↑ -1.5% 0.611 △↑ -0.5% 0.600 △↑ +4.3% 0.358 △↑ -3.5%
	GBRT (All)	0.334 △ ↑	0.565 △	0.546 △ ↑	0.359 △ ↑
	-	L 0.321 r ank (All) 0.315 △ ↑	0.533	0.542 ↑	0.346 △ ↑
	-	L	0.314 △↑ -0.3% 0.582 △↑ +9.2% 0.545 ↑ +0.6% 0.344 △↑ -0.6%
	-	S	0.308 △↑ -2.2%	0.524	-1.7% 0.533 △↑ -1.7% 0.322 -6.9%
	-R M	0.313 △↑ -0.6%	0.563	+5.6% 0.557 △↑ +2.8% 0.332 -4.0%
	-E	0.152 ▽↓ -51.8% 0.272 ▽↓ -49.0% 0.280 ▽↓ -48.3% 0.200 ▽↓ -42.2%
	-	A	0.299 △↑ -5.1% 0.577 △ +8.3% 0.537 ↑ -0.9% 0.329 -4.9%
	LambdaMART (All)	0.310 △ ↑	0.338 ▽ ↓	0.539 ↑	0.329
	-	L	0.333 △↑ +7.4% 0.383 ▽↓ +13.3% 0.498 -7.6% 0.371 △↑ +12.8%
	-	S	0.271 -12.6% 0.344 ▽↓ +1.8% 0.372 ▽ -31.0% 0.316 -4.0%
	-R M	0.257 -17.1% 0.363 ▽↓ +7.4% 0.470 -12.8% 0.338 △↑ +2.7%
	-E	0.152 ▽↓ -51.0% 0.340 ▽↓ +0.6% 0.305 ▽↓ -43.4% 0.196 ▽↓ -40.4%
	-	A	0.279 -10.0% 0.381 ▽↓ +12.7% 0.488 -9.5% 0.245 ▽↓ -25.5%
	Oracle performance	0.410	0.801	0.775	0.449

nDCG

Table 10 .

 10 Results with the Five Di erent Learning-to-Rank Models and Feature Ablations on WT10G

			MAP	nDCG@10	P@10	RPrec
	Grid search (Baseline)	0.245	0.396	0.361	0.273
	Random search (Iter: 1000) 0.244	0.367	0.348	0.273
	Linear Regression (All)	0.260	0.453 △ ↑	0.416 △ ↑	0.301
	-	L	0.272 +4.6% 0.453 △↑	0.0% 0.409 ↑ -1.7% 0.310 △↑ +3.0%
	-	S	0.280 △↑ +7.7% 0.453 △↑	0.0% 0.411 △↑ -1.2% 0.303 ↑ +0.7%
	-R M		0.250 -3.9% 0.377	-16.8% 0.354 -14.9% 0.255 -15.3%
	-E		0.159 ▽↓ -38.9% 0.355	-21.6% 0.321 -22.8% 0.207 ▽↓ -31.2%
	-	A	0.252 -3.1%	0.441	-2.6% 0.410 ↑ -1.4% 0.302 △↑ +0.3%
	Random Forests (All)	0.319 △ ↑	0.452 △ ↑	0.437 △ ↑	0.325 △ ↑
	-	L	0.308 △↑ -3.5% 0.477 △↑ +5.5% 0.399 -8.7% 0.336 △↑ +3.4%
	-	S	0.301 △↑ -5.6%	0.438	-3.1% 0.421 △↑ -3.7% 0.316 △↑ -2.8%
	-R M		0.282 △↑ -11.6% 0.338	-25.2% 0.345 -21.1% 0.264 -18.8%
	-E		0.133 ▽↓ -58.3% 0.356	-21.2% 0.291 ▽ -33.4% 0.216 ▽↓ -33.5%
	-	A	0.295 △↑ -7.5%	0.421	-6.9% 0.431 △↑ -1.4% 0.320 △↑ -1.5%
	GBRT (All)	0.303 △ ↑	0.400	0.401 ↑	0.214 ▽ ↓
	-	L	0.285 △↑ -5.9%	0.420	+5.0% 0.436 △↑ +8.7% 0.286 +33.6%
	-	S	0.247 -18.5% 0.451 △↑ +12.8% 0.397 -1.0% 0.264 +23.4%
	-R M		0.252 -16.8% 0.329 ▽ -17.8% 0.359 -10.5% 0.209 ▽↓ -2.3%
	-E		0.158 ▽↓ -47.9% 0.371	-7.2% 0.302 -24.7% 0.210 ▽↓ -1.9%
	-	A	0.290 △↑ -4.3% 0.468 △↑ +17.0% 0.429 △↑ +7.0% 0.314 △↑ +46.7%
	SVM r ank (All	0.228	0.447 △ ↑	0.410 ↑	0.296
	-	L	0.237 +4.0%	0.438	-2.0% 0.415 △↑ +1.2% 0.285 -3.7%
	-	S	0.253 +11.0% 0.440	-1.6% 0.412 ↑ +0.5% 0.293 -1.0%
	-R M		0.247 +8.3% 0.381	-14.8% 0.372 -9.3% 0.248 -16.2%
	-E		0.159 ▽↓ -30.3% 0.355	-20.6% 0.321 -21.7% 0.207 ▽↓ -30.1%
	-	A	0.237 +4.0%	0.413	-7.6% 0.437 △↑ +6.6% 0.304 △↑ +2.7%
	LambdaMART (All)	0.210	0.321 ▽	0.285 ▽	0.200 ▽ ↓
	-	L	0.147 ▽↓ -30.0% 0.364	+13.4% 0.334 +17.2% 0.229 +14.5%
	-	S	0.200 -4.8% 0.263 ▽↓ -18.1% 0.296 +3.9% 0.173 ▽↓ -13.5%
	-R M		0.230 +9.5% 0.228 ▽↓ -29.0% 0.311 +9.1% 0.232 +16.0%
	-E		0.135 ▽↓ -35.7% 0.241 ▽↓ -24.9% 0.347 +21.8% 0.200 ▽↓ 0.0%
	-	A	0.296 △↑ +41.0% 0.310 ▽ -3.4% 0.300 +5.3% 0.202 ▽↓ +1.0%
	Oracle performance	0.406	0.657	0.638	0.443

Table 11 .

 11 Results with the Five Di erent Learning to Rank Models and Feature Ablations on GOV2

			MAP	nDCG@10	P@10	RPrec
	Grid search (Baseline)	0.357	0.535	0.629	0.390
	Random search (Iter: 1000) 0.353	0.519	0.624	0.384
	Linear Regression (All)	0.410 △ ↑	0.651 △ ↑	0.770 △ ↑	0.441 △ ↑
	-	L	0.390 △↑ -4.9% 0.627 △↑ -3.7% 0.779 △↑ +1.2% 0.427 △↑ -3.2%
	-	S	0.384 △↑ -6.3% 0.650 △↑ -0.1% 0.759 △↑ -1.4% 0.433 △↑ -1.8%
	-R M		0.382 △↑ -6.8% 0.512	-21.4% 0.613 -20.4% 0.374 -15.2%
	-E		0.127 ▽↓ -69.0% 0.378 ▽↓ -41.9% 0.528 ▽↓ -31.4% 0.212 ▽↓ -51.9%
	-	A	0.398 △↑ -2.9% 0.626 △↑ -3.8% 0.762 △↑ -1.0% 0.423 △↑ -4.1%
	Random Forests (All)	0.411 △ ↑	0.659 △ ↑	0.767 △ ↑	0.446 △ ↑
	-	L	0.418 △↑ +1.7% 0.650 △↑ -1.4% 0.799 △↑ +4.2% 0.449 △↑ +0.7%
	-	S	0.407 △↑ -1.0% 0.653 △↑ -0.9% 0.766 △↑ -0.1% 0.447 △↑ +0.2%
	-R M		0.356 -13.4% 0.493	-25.2% 0.581 -24.2% 0.382 -14.3%
	-E		0.213 ▽↓ -48.2% 0.528	-19.9% 0.578 -24.6% 0.247 ▽↓ -44.6%
	-	A	0.411 △↑ 0.0% 0.649 △↑ -1.5% 0.771 △↑ +0.5% 0.447 △↑ +0.2%
	GBRT All)		0.396 △ ↑	0.642 △ ↑	0.760 △ ↑	0.448 △ ↑
	-	L	0.412 △↑ +4.0% 0.627 △↑ -2.3% 0.777 △↑ +2.2% 0.439 △↑ -2.0%
	-	S	0.396 △↑ 0.0% 0.629 △↑ -2.0% 0.758 △↑ -0.3% 0.440 △↑ -1.8%
	-R M		0.352 -11.1% 0.493	-23.2% 0.573 -24.6% 0.357 ▽ -20.3%
	-E		0.180 ▽↓ -54.5% 0.456 ▽ -29.0% 0.580 -23.7% 0.271 ▽↓ -39.5%
	-	A	0.409 △↑ +3.3% 0.658 △↑ +2.5% 0.788 △↑ +3.7% 0.447 △↑ -0.2%
	SVM r ank (All)	0.363	0.634 △ ↑	0.741 △ ↑	0.433 △ ↑
	-	L	0.345 -5.0% 0.617 △↑ -2.7% 0.762 △↑ +2.8% 0.414 △↑ -4.4%
	-	S	0.336 -7.4% 0.626 △↑ -1.3% 0.756 △↑ +2.0% 0.405 -6.5%
	-R M		0.375 +3.3% 0.516	-18.6% 0.610 -17.7% 0.372 -14.1%
	-E		0.127 ▽↓ -65.0% 0.378 ▽↓ -40.4% 0.528 ▽↓ -28.7% 0.212 ▽↓ -51.0%
	-	A	0.342 -5.8% 0.599 △↑ -5.5% 0.746 △↑ +0.7% 0.393	-9.2%
	LambdaMART (All)	0.324 ▽	0.312 ▽ ↓	0.618	0.280 ▽ ↓
	-	L	0.362 +11.7% 0.365 ▽↓ +17.0% 0.573 -7.3% 0.296 ▽↓ +5.7%
	-	S	0.300 ▽↓ -7.4% 0.394 ▽↓ +26.3% 0.384 ▽↓ -37.9% 0.269 ▽↓ -3.9%
	-R M		0.362 +11.7% 0.445 ▽↓ +42.6% 0.577 -6.6% 0.358 +27.9%
	-E		0.149 ▽↓ -54.0% 0.408 ▽↓ +30.8% 0.444 ▽↓ -28.2% 0.205 ▽↓ -26.8%
	-	A	0.376 +16.1% 0.389 ▽↓ +24.7% 0.485 ▽↓ -21.5% 0.407 +45.4%
	Oracle performance	0.478	0.813	0.910	0.515
	Legend and settings are identical to Table 9.		

Table 12 .

 12 Results with the Five Di erent Learning to Rank Models and Feature Ablations on Clueweb12 Collection

			MAP	nDCG@10	P@10	RPrec
	Grid search (Baseline)	0.032	0.167	0.259	0.071
	Random search (Iter: 1000) 0.031	0.156	0.223	0.066
	Linear Regression (All)	0.042 △ ↑	0.232 △ ↑	0.313 △ ↑	0.080 △ ↑
	-	L	0.044 △↑ +4.8% 0.229 △↑ -1.3% 0.318 △↑ +1.6% 0.079 △↑ -1.2%
	-	S	0.043 △↑ +2.4% 0.214 △↑ -7.8% 0.319 △↑ +1.9% 0.079 △↑ -1.2%
	-R M		0.041 △↑ -2.4% 0.157	-32.3% 0.214 ▽ -31.6% 0.071 -11.2%
	-E		0.020 ▽↓ -52.4% 0.190	-18.1% 0.249 -20.4% 0.041 ▽↓ -48.8%
	-	A	0.044 △↑ +4.8% 0.210 △↑ -9.5% 0.301 △↑ -3.8% 0.081 △↑ +1.2%
	Random Forests (All)	0.043 △ ↑	0.235 △ ↑	0.336 △ ↑	0.076 ↑
	-	L	0.042 △↑ -2.3% 0.235 △↑ 0.0% 0.325 △↑ -3.3% 0.080 △↑ +5.3%
	-	S	0.043 △↑ 0.0% 0.239 △↑ +1.7% 0.317 △↑ -5.7% 0.078 ↑ +2.6%
	-R M		0.038 △↑ -11.6% 0.162	-31.1% 0.216 -35.7% 0.059 ▽ -22.4%
	-E		0.025 ▽↓ -41.9% 0.203 △↑ -13.6% 0.278 ↑ -17.3% 0.061 -19.7%
	-	A	0.043 △↑ 0.0% 0.234 △↑ -0.4% 0.337 △↑ +0.3% 0.079 △↑ +4.0%
	GBRT (All)	0.040 △ ↑	0.227 △ ↑	0.349 △ ↑	0.079 △ ↑
	-	L	0.041 △↑ +2.5% 0.232 △↑ +2.2% 0.322 △↑ -7.7% 0.073 -7.6%
	-	S	0.044 △↑ +10.0% 0.231 △↑ +1.8% 0.316 △↑ -9.5% 0.076 ↑ -3.8%
	-R M		0.040 △↑ 0.0%	0.149	-34.4% 0.216 -38.1% 0.061 ▽ -22.8%
	-E		0.032 -20.0% 0.203 △↑ -10.6% 0.292 ↑ -16.3% 0.051 ▽↓ -35.4%
	-	A	0.042 △↑ +5.0% 0.233 △↑ +2.6% 0.331 △↑ -5.2% 0.080 △↑ +1.3%
	SVM r ank (All)	0.040 △ ↑	0.235 △ ↑	0.324 △ ↑	0.078 △ ↑
	-	L	0.042 △↑ +5.0% 0.234 △↑ -0.4% 0.326 △↑ +0.6% 0.079 △↑ +1.3%
	-	S	0.042 △↑ +5.0% 0.231 △↑ -1.7% 0.308 △↑ -4.9% 0.076 ↑ -2.6%
	-R M		0.038 △↑ -5.0% 0.155	-34.0% 0.227 -29.9% 0.073 -6.4%
	-E		0.010 ▽↓ -75.0% 0.190	-19.1% 0.249 -23.1% 0.041 ▽↓ -47.4%
	-	A	0.043 △↑ +7.5% 0.227 △↑ -3.4% 0.321 △↑ -0.9% 0.078 ↑ 0.0%
	LambdaMART (All)	0.025 ▽	0.175	0.278 ↑	0.072
	-	L	0.026 +4.0%	0.181	+3.4% 0.246 -11.5% 0.055 ▽ -23.6%
	-	S	0.038 △↑ +52.0% 0.189 ↑ +8.0% 0.280 ↑ +0.7% 0.051 ▽↓ -29.2%
	-R M		0.039 △↑ +56.0% 0.143 -18.3% 0.159 ▽↓ -42.8% 0.063 -12.5%
	-E		0.021 ▽↓ -16.0% 0.177	+1.1% 0.246 -11.5% 0.047 ▽↓ -34.7%
	-	A	0.026 +4.0% 0.210 △↑ +20.0% 0.274 ↑ -1.4% 0.067 -6.9%
	Oracle performance	0.059	0.321	0.420	0.096
	Legend and settings are identical to Table 9.		

Table 13 .

 13 Availability of the O -the-Self Parameters in the Open-Source IR Systems Such as LEMUR and TERRIER In this article, we only ablated groups of features, a ner study would be needed to detect which are the most important features of each group and which ones are common across collections.

	Parameter	LEMUR	TERRIER
		BM25, TF• IDF, VSM,	BB2, BM25, DFRee,
		Language model (Dirichlet,	DirichletLM, HiemstraLM,
	Retrieval model	Jelinek-mercer, Two-stage),	XSqrAM, DPH, IFB2, TFIDF,
		KL-divergence, and so on.	and InexpC2, and so on. 17
	Pseudo relevance feedback	Yes	Yes
		RMExpander,	KL, Bo1, Bo2, KLCorrect,
	Expansion model	PonteExpander,	Information, and
		TFIDFExpander	KLComplete 18
	Expansion documents	Yes	Yes
	Expansion terms	Yes	Yes
	Minimum documents	No	Yes
	the performance of the model.		

Table 14 .

 14 Transfer Learning Using Random Forests

	Training on WT10G and GOV2 collections; testing on TREC7-8 collection
		MAP	nDCG@10 P@10	RPrec
	BM25	0.211	0.464	0.431	0.255
	Random search	0.174	0.406	0.391	0.234
	RF 5-fold CV	0.329 ↑	0.612 ↑	0.604 ↑	0.367 ↑
	RF transfer	0.249 ↑	0.492	0.474	0.298 ↑
	Oracle	0.412	0.802	0.770	0.448
	Training on TREC7-8 and GOV2; testing on WT10G collection
		MAP	nDCG@10 P@10	RPrec
	BM25	0.199	0.363	0.340	0.243
	Random search	0.227	0.341	0.342	0.251
	RF 5-fold CV	0.307 ↑	0.443 ↑	0.427 ↑	0.333 ↑
	RF transfer	0.269	0.441 ↑	0.420	0.265
	Oracle	0.406	0.657	0.638	0.443
	Training on TREC7-8 and WT10G; testing on GOV2 collection
		MAP	nDCG@10 P@10	RPrec
	BM25	0.279	0.476	0.542	0.345
	Random search	0.321	0.456	0.540	0.353
	RF 5-fold CV	0.411 ↑	0.652 ↑	0.788 ↑	0.452 ↑
	RF transfer	0.366	0.601 ↑	0.722 ↑	0.390
	Oracle	0.478	0.813	0.909	0.515

Table 15 .

 15 Q S Features

Table 16

 16

	. Q	L	Features

Text REtrieval Conference; http://trec.nist.gov.

Conference and Labs of the Evaluation Forum; http://www.clef-initiative.eu.

NII Testbeds and Community for Information Access Research; http://research.nii.ac.jp/ntcir/index-en.html.

http://terrier.org/.

https://www.lemurproject.org/indri.php.

https://github.com/lucene4ir/lucene4ir.

Details can be found at terrier.org/docs/v4.2/javadoc.

nil means that no expansion has been used; in that case the other expansion parameters are set to 0.

http://terrier.org/docs/v4.0/learning.html.

The Terrier FAT component calculates multiple query dependent features. It "is so-called because it 'fattens' the result set from the initial ranking (known as the sample[START_REF] Liu | Learning to rank for information retrieval[END_REF]) with the postings of matching terms from the inverted index"[START_REF] Macdonald | About learning models with multiple querydependent features[END_REF].

sourceforge.net/p/lemur/wiki/RankLib/ as for the label which needs to be integer, we discretise the metric by x 10,000 to make it integer.

www.cs.cornell.edu/people/tj/svm_light/svm_rank.html.

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model. LinearRegression.

The implementation of LambdaMART we used is listwise; https://sourceforge.net/p/lemur/wiki/RankLib%20How%20to% 20use/.

trec.nist.gov.

ACM Transactions on Information Systems, Vol. 37, No. 1, Article 3. Publication date: October 2018.

http://terrier.org/docs/v4.2/javadoc/org/terrier/matching/models/package-summary.html.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their valuable comments that helped in improving the quality of this article.

This article is supported by ANR Agence nationale de la recherche CAAS project, ANR-10-CORD-001 01.