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A Fresh Look at Z-numbers – Relationships with Belief 
Functions and p-boxes

Didier Dubois and Henri Prade

IRIT, CNRS and University of Toulouse, Toulouse, France

ABSTRACT

This paper proposes a new approach to the notion of Z-number, i.e., 
a pair of fuzzy sets modelling a probability-qualified fuzzy statement. 
Originally, a Z-number is viewed as the fuzzy set of probability func-
tions stemming from the flexible restriction of the probability of a 
fuzzy event by a fuzzy probability. This representation leads to com-
plex calculations and does not reduce to the original fuzzy event 
when the attached probability is 1. Simpler representations are pro-
posed, that avoid these pitfalls. We note that when both fuzzy sets 
forming the Z-number are crisp, the generated set of probabilities is
representable by a special kind of belief function that corresponds
to a probability box (p-box). Two proposals are made to generalise
this approach when the two sets are fuzzy. One approach consid-
ers a Z-number as a weighted family of crisp Z-numbers, obtained by
independent cuts of the two fuzzy sets. In the alternative approach, a
Z-number can be turned into a pair of possibility distributions form-
ing a generalized p-box. In that case, the probability of each cut of
the fuzzy event is upper and lower bounded by two probability val-
ues. Then computation with Z-numbers come down to uncertainty
propagation with random intervals.
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1. Introduction

In order to account for uncertainty attached to fuzzy statements, Zadeh [1] introduced the 
notion of a Z-number (see also [2]). It was one of the last proposals made by him, that trig-
gered a significant amount of literature. A Z-number is a pair (A, B), where A is a fuzzy subset 
of U and B is a fuzzy subset of [0, 1] modelling a fuzzy restriction on the probability of A. Infor-
mally it tries to formalise the meaning of a statement of the form ‘(X is A) has probability B’, 
like the statement ‘it is probable that my income will he high this year’. Zadeh introduced this 
kind of probability-qualified statements much earlier, when introducing a general frame-

work for the mathematical representation of linguistic statements (the PRUF language [3]). 
The pair (A, B) was then modelling a probability-qualified statement, interpreted as a family 
of probability distributions obtained by fuzzily restricting the probability of the fuzzy event 
A by the fuzzy set B. The latter is viewed as a possibility distribution restricting the possible 
values of an ill-known probability. So a Z-number can be viewed as a fuzzy set of probability
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measures, more specifically a possibility distribution over them. In his paper, Zadeh [1] out-
lines a method to make computations with Z-numbers. This question has been taken up 
by other authors, most noticeably Aliev and colleagues [4–6], with a view to provide prac-
tical computation methods with Z-numbers. However, these methods seem to need the 
extensive use of linear programming even for solving small problems.

This research trend seems to have developed on its own with no connection with other 
generalised probabilistic frameworks for uncertainty management, like belief functions [7] 
and imprecise probabilities [8]. Yet, in those frameworks, the idea of a second-order possi-
bility distribution over probability functions has been envisaged as a finer representation of 
convex probability sets by Moral [9] or Walley [10], with a view to represent linguistic infor-
mation [11]. A full-fledged behavioural approach to the fuzzy probability of a crisp event 
(understood as partial knowledge about an objective probability) has been even studied in 
this spirit by De Cooman [12].

In this short paper, we reconsider Z-numbers and their interpretation by Zadeh in the 
light of belief functions and imprecise probabilities, questioning some choices made. First 
we characterise crisp Z-numbers where both A and B are crisp sets. This seems not to have 
been done yet. However, it is quite important to do it so as to put Z-numbers in the gen-
eral perspective of uncertainty modelling. We show that a crisp Z-number can be exactly 
represented by a belief function [7], more specifically a p-box [13]. On such a basis, we 
first propose alternative interpretations of Z-numbers, which may sound more natural and 
make them easier to process in computations. Basically, we show that a Z-number can be 
represented, or at least approximated, by a belief function. As a consequence, computing 
with Z-numbers come down to computing with random intervals.

The paper is organised as follows. Section 2 recalls the original definition of a Z-number 
and highlights some limitations of this representation. Section 3 shows that in the crisp 
case, a Z-number is equivalently represented by a special kind of belief function. The next 
section presents the main results of the paper. First we try to extend the belief function view 
to the case when only one of the elements of the pair (A, B) is crisp. Finally, we deal with the 
general case, proposing two different approaches.

2. Z-numbers

Consider two fuzzy sets A and B, where A is a fuzzy subset of the real line, typically a fuzzy 
interval, that stands for a fuzzy restriction on the value of some quantity X, and B is a fuzzy 
interval on [0, 1] that stands for a fuzzy probability. After Zadeh [1], a Z-number (A, B) rep-
resents the fuzzy set P̃(A,B) of probability measures P such that the probability P(A) of the 
fuzzy event A is fuzzily restricted by the fuzzy set B. 

∫ 1
By definition, the scalar probability of fuzzy event A is P(A) = 0 µA(x)p(x) dx [14], where 

p is the density of probability measure P. So the Z-number (A, B) represents a second-order 
possibility distribution over probability measures defined by

∀P : π(A,B)(P) = µB(P(A)).

which is the membership function of P̃(A,B). On this basis, one may compute the probability 
of some other fuzzy event C as the fuzzy probability P̃(C) such that

µP̃(C)
(p) = sup

P:P(C)=p

π(A,B)(P) = sup
P:P(C)=p

µB(P(C))



which defines an inferred Z-number (C, P̃(C)). Zadeh [1] calls Z + -number, or bimodal dis-

tribution, the pair (A, P)where the probability distribution ismade precise. It represents the

statement ‘the probability that X is A is P(A)’.

This interpretation of Z-number meets a difficulty: it seems we cannot recover as a spe-

cial case the statement X is A expressed with full certainty, which should correspond to the

Z-number (A, 1), i.e. P(A) = 1. Indeed if A is a genuine fuzzy interval, P(A) = 1 if and only

if the support of P lies in the core of A, Â = {x : µA(x) = 1}. Indeed, it is clear that with-

out this restriction, we always have P(A) < 1. To make sense of Zadeh’s interpretation of

the Z-number, one should then accept the equivalence between (A, 1) and (Â, 1), the latter

being crisp. In other words, the original interpretation of Z-numbers loses themembership

function of A on the way.

Zadeh [1] puts an additional restriction on the set of probability functions compati-

ble with a Z-number, namely that the mean value of P be equal to the centroid of A.

However, this restriction is questionable because the centroid of A, of the form cent(A) =
∫ 1
0 xµA(x)/

∫ 1
0 µA(x) comes down to considering the membership function as a probabil-

ity distribution, the mean value of which is the centroid of A, thus doing away with the

possibilistic understanding of A as representing incomplete information.

Zadeh [1] also deals with the computation of a Z-number (AZ , BZ) such that Z = f (X , Y)

where the information on X is (AX , BX), and on Y is (AY , BY). Zadeh proposes to apply the

extension principle to AZ = f (AX ,AY):

µf (AX ,AY )(z) = sup
z=f (x,y)

min(µAX (x),µAY (y)),

and to define a possibility distribution π(AZ ,BZ) over the set of probability functions PZ =

PX ◦f PY obtained by probabilistic f -convolution of PX and PY using the extension principle:

π(AZ ,BZ)(PZ) = sup
PX ,PY :PZ=PX◦f PY

min(µBX (PX(AX)),µBY (PY(AY)))

where PZ((−∞, z]) =
∫ z
−∞(

∫

(x,y):u=f (x,y) pX(x)pY(y)dx dy)du (again requesting that E(PX)

= Cent(AX), E(PY) = Cent(AY)).

Then the recovering of a fuzzy probability BZ is obtained by projection

µBZ (b) = sup
PZ :PZ(A)=b

π(AZ ,BZ)(PZ)

This computation scheme is further studied by Yager [15] and Aliev et al. [4–6].

However, the proposed approach looks a bit questionable as (i) it is very complicated

to implement and (ii) its formal justification is questionable. On the latter point, the fuzzy

interval A represents the family of compatible probability functions P(A) = {P : P(C) ≤

5A(C) = supu∈C µA(u),∀C} [16]. The above approach seems to consider that if probabil-

ity measures P1, P2 are, respectively, compatible with fuzzy intervals A1 and A2, then PZ =

PX ◦f PY will be compatiblewith the fuzzy intervalAZ = f (AX ,AY), which is quite unclear. For

instance, it is well-known that the two conditions P1 ∈ P(AX), P2 ∈ P(AY) do not imply that

P1 ◦f P2 ∈ P(f (AX ,AY)) [17, 18]. It is then dubious whether E(P1) = Cent(AX) and E(P2) =

Cent(AY) imply E(P1 ◦f P2) = Cent(f (AX ,AY)).

The above discussion motivates the search for a different interpretation of Z-numbers,

where the idea that it represents a set or a fuzzy set of probability measures is kept, but the

use of a probability of fuzzy events is given up.



3. Crisp Z-numbers

Define a crisp Z-number to be a Z-number (A, B) where A is an interval on the real line1 and 
B is a probability interval [b−, b+]. It is of interest to see what becomes of Zadeh’s 
modelling of Z-numbers in this crisp case. It is clear that it yields the convex probability 
family P(A, B) = {P : b− ≤ P(A) ≤ b+} and π(A,B) is the characteristic function of this 
probability family. This set of probabilities can actually be described by a belief function 
on R.A belief function on a set U is defined by a mass assignment, that is an assignment m :

F → (0, 1] of positive numbers to a finite family F of subsets of U, whose elements E are

called focal sets (m(E) > 0), and such that
∑

E∈F m(E) = 1. m is a probability distribution

over 2U, namely over possible statements of the form X is E. The degree of belief Bel(C) in

an event C induced bym is defined by Bel(C) =
∑

E∈F ,E⊆C m(E). It is the probability that X

is C can be inferred from some statement X is E for E ∈ F . The degree of plausibility of an

event C is Pl(C) = 1 − Bel(C̄) ≥ Bel(C), where the overbar denotes set-complementation.

A belief function defined bym characterises a convex set of probabilities (called credal

set) P(m) = {P : P(C) ≥ Bel(C),∀C ⊆ U} in the sense that Bel(C) = inf{P(C) : P ∈ P(m)} is

the lower probability induced by P(m). Given a crisp Z-number (A, [b−, b+]), consider the

mass function defined by

m(A,B)(A) = b−; m(A,B)(Ā) = 1 − b+; m(A,B)(U) = b+ − b−.

In this model, the weight m(A,B)(A) is the probability of knowing that X is A, the weight

m(A,B)(Ā) is the probability of knowing that X is Ā, the weightm(A,B)(U) is the probability of

not knowing anything. The coincidence between this interpretation of the crisp Z-number

with Zadeh’s approach is summarised by the following easy-to-check proposition:

Proposition 3.1: P(m(A,B)) = P(A, B).

Proof: This because in this case, Bel(C) ∈ {0, Bel(A), Bel(Ā)} if C 6= U. Hence Bel(C) ≤

P(C) ≤ Pl(C) either trivially holds or comes down to Bel(A) = b− ≤ P(A) ≤ Pl(A)

= 1 − b+. �

A belief function Bel1 is said to be more committed (informative) than Bel2 if and only

if Bel1 6= Bel2 and Bel1 ≥ Bel2, which is clearly equivalent to P(m1) ⊂ P(m2). The belief

function induced by (A, B) viam(A,B) is clearly the least committed belief function such that

Bel(A) ≥ b− and Pl(A) ≤ b+. This is in conformity with Zadeh’s intuition of Z-numbers. The

Z-number is also akin to Shafer’s view of belief functions as coming from an unreliable tes-

timony [7]. Suppose a witness declares X is A, but you consider the statement as irrelevant

withprobability 1 − b−. Itmeans that in the latter case the statementbringsno information.

This can be represented as a special case of a Z-number with b+ = 1. The Z-number is then

of the form (A, [b−, 1]), which corresponds to a simple support belief function. The general

case of a Z-number corresponds to an unreliable testimonywhere thewitnessmay not only

be irrelevant, but also has possibility of lying. Then, the probability that the witness is a liar

is 1 − b+, while the probability that the information is irrelevant (brings no information) is

b+ − b−. See Pichon et al. [19] for a study in the combination of such kind of testimonies,

that can be useful for the merging of Z-numbers coming from several sources.

1 More generally, A can be any subset of a referential set.



The crisp Z-number can be actually represented by a special family of belief functions

that coincide with p-boxes [13]. A p-box is the set of probability measures on a totally

ordered set whose cumulative function is limited by an upper and a lower cumulative

function: there are distribution functions F∗ ≥ F∗ that define the probability family {P :

F∗(u) ≥ P([inf U, u]) ≥ F∗(u)}. The focal sets of the corresponding belief function are in the

form Eα = [inf{u : F∗(u) ≥ α}, inf{u : F∗(u) ≥ α}], (that is, if the cumulative functions are

continuous bijections, [(F∗)−1(α), (F∗)
−1(α)]), 0 < α ≤ 1). To see it, let A = [a−, a+] ⊂ U =

[a−, u+]. Then we have:

F∗(x) = Bel([u−, x]) =















0 if x < a+

b− if a+ ≤ x < u+

1 if x = u+

,

F∗(x) = Pl([u−, x]) =

{

b+ if a− ≤ x < a+

1 if a+ ≤ x ≤ u+
.

We recover the three focal sets ofm(A,B) as A for 0 ≤ α < b−, U for b− ≤ α < b+, and Ā

for b+ ≤ α < 1. Note that for finite U, it is always possible to rank-order the n elements of

U such that A = {u1, . . . , uk}, and Ā = {uk+1, . . . , un} so that the focal sets are of the form

A = [u1, uk], U = [u1, un], Ā = [uk+1, un].

However, requesting the additional condition E(P) = Cent(A) comes down to restrict-

ing to probability distributions in P(m(A,B)) such that the mean value E(P) is the midpoint

of interval [a−, a+]. This linear constraint, notwithstanding its lack of natural justification

(it does not even imply the symmetry of the density of P), leads to a smaller credal set

that cannot generally be represented by a belief function, which significantly increases the

complexity of handling Z-numbers in practice.

Proposition 3.1 makes the computation with crisp p-boxes quite easy to perform. Let

mX and mY be the mass functions induced by two independent crisp Z-numbers (AX , BX)

and (AY , BY), respectively. We can apply the random set propagation method (Yager [20],

Dubois and Prade [21, 22]) to compute the mass function for f (X , Y) as

mf (X ,Y)(G) =
∑

EX∈FX ,EY∈FY :G=f (EX ,EY )

mX(EX) · mY(EY).

This is not computationally extensive as each belief function only has three focal sets. How-

ever, it is easy to figure out that in general the result will not always be represented by a

Z-number as the result potentially has nine focal sets.

For instance, consider the sum on R of two crisp Z-numbers ([a−
1 , a

+
1 ], [b

−
1 , b

+
1 ]), and

([a−
2 , a

+
2 ], [b

−
2 , b

+
2 ]). Suppose without loss of generality that a

−
1 + a+

2 < a+
1 + a−

2 . Note that

Āi = (−∞, a−
i ) ∪ (a+

i ,+∞). Computing EX + EY yields focal sets

• A1 + A2 = [a−
1 + a−

2 , a
+
1 + a+

2 ] with mass b−
1 b

−
2 .

• Ā1 + A2 = (−∞, a−
1 + a+

2 ) ∪ (a+
1 + a−

2 ,+∞), with mass (1 − b+
1 )b−

2

• R otherwise, with mass 1 − b−
2 (1 + b−

1 − b+
1 )

It does not correspond to a Z-number because Ā1 + A2 6= A1 + A2 in general. However, it

is possible to extract a Z-number (A′, B′) from the result, where the idea is to compute the



probability interval B′ given A′. For instance, in the above example, we get the Z-number

(A1 + A2, [b
−
1 b

−
2 , 1]) since Bel(A1 + A2) = b−

1 b
−
2 , and Pl(A1 + A2) = 1 since the two first

focal sets overlap. It is clear that the latter Z-number is only part of the whole information 
obtained by computing the sum X + Y .

4. Interpreting Z-numbers : Various Proposals

In the following, we see to what extent general Z-numbers can be interpreted by belief 
functions, and whether this point of view on Z-numbers is in agreement or not with Zadeh’s 
approach relying on probabilities of a fuzzy event. We first deal with cases where one of the 
components of (A, B) is crisp, the other being fuzzy.

4.1. Crisp Probability Qualification of Fuzzy Events: (A, [b−, b+])

Consider the case of a fuzzy statement X is A whose probability is considered to lie in [b−, b
+]. After Zadeh [1], it corresponds to a probability set P(A,B) = {P : b− ≤ P(A) ≤ b+}, where 
P(A) is the probability of a fuzzy event A. It is a convex probability set characterised
by linear constraints. For instance, A could be a fuzzy subset of a finite set U = {u1, . . . , un}

and the constraint is of the form b− ≤
∑n

i=1 µA(ui)pi ≤ b+ on probability assignments

(p1, . . . , pn). It does not characterise a belief function at all [8].

Z-number and fuzzy belief structures. However, there is another interpretation of the

Z-number, whereby the weight b− is assigned not to the fuzzy event A, but to the fact of

knowing that X is A and nothing more. Then what we get is a fuzzy belief structure, first

proposed by Yen [23], which is a belief function whose focal sets are fuzzy and form a fam-

ily F̃ . Formally, we still have a mass function m̃ such that m̃(A) = b−, m̃(Ā) = 1 − b+ and

m̃(U) = b+ − b− where the fuzzy focal set Ā has membership function µĀ = 1 − µA. Then

the definitions or belief and plausibility functions are extended as follows:

Bel(C) =
∑

F∈F̃

(

min
x 6∈C

1 − µF(x)

)

m̃(F); Pl(C) =
∑

F∈F̃

(

max
x∈C

µF(x)

)

m̃(F).

Here,

Bel(C) =

(

min
x 6∈C

1 − µA(x)

)

m̃(A) +

(

min
x 6∈C

µA(x)

)

m̃(Ā) (1)

=

(

min
x 6∈C

1 − µA(x)

)

b− +

(

min
x 6∈C

µA(x)

)

(1 − b+); (2)

Pl(C) =

(

max
x∈C

µA(x)

)

b− +

(

max
x∈C

1 − µA(x)

)

(1 − b+) + b+ − b− (3)

If the fuzzy focal sets have a finite number of membership grades α1 = 1 > α2 >

· · · > αk > 0, and the αi-cut of the focal set F is Fαi = {u : µF(u) ≥ αi}, it can be

checked that the belief and plausibility functions defined above derive from the

mass assignment whose focal sets are α-cuts of fuzzy focal sets: they form the fam-

ily F =
⋃

F∈F̃
{Fαi : i = 1, . . . , k} with mass m(Fαi) = m̃(F)(αi − αi+1) for all fuzzy focal



sets F. Then
∑

i=1,k m(Fαi) = m̃(F) and it is easy to verify the following

claim.

Proposition 4.1: Bel(C) =
∑

F∈F̃
(minx 6∈C 1 − µF(x))m̃(F) =

∑k
i=1

∑

F∈F̃ ,Fαi
⊆C

m(Fαi).

Under this view, the Z-number (A, [b−, b+]) can be expressed by the belief func-

tion with mass assignment m that allocates weight m(Fαi) = b−(αi − αi+1) to cuts

Fαi of F and m(F̄αi) = (1 − b+)(αi − αi+1) to the cuts F̄αi of their complements, while

m(U) = m̃(U).

The natural question is whether P(m) = {P : P(C) ≥ Bel(C)} = P(A,[b− ,b+]) namely if the

credal set induced according to Zadeh’s view is in agreement with the belief function

approach. In other words, does Proposition 3.1 still hold when A is fuzzy? The answer is no

since as pointed out above,P(A, [b−, b+]) is not induced by constraints on the probabilities

of events only, but by linear constraints [8].

Besides, consider again the special case where the interval [b−, b+] reduces to the

value 1. As seen earlier, P(A, 1) is equivalent to the set P(Â, 1), where Â is the core of A.

Thus, Zadeh’s approach toZ-numbers interprets (A, 1) as the statementX is Â, which sounds

questionable. In contrast, the present approach interprets (A, 1) as a belief function whose

focal sets are the cuts of A (a necessity measure based on a possibility distribution π = µA

in the spirit of Zadeh [24]). Using the fuzzy belief structure view, one has that (A, 1) natu-

rally reduces to the statement X is A, and the probability family isP(A), the one induced by

π = µA previously defined in Section 2.

Z-number as a parametric belief function. An alternative interpretation of the Z-number

(A, [b−, b+]) can be a fuzzy set of standard belief functions: we consider the Z-number

(A, [b−, b+]) as a parameterised set of crisp Z-numbers Zα = (Aα , [b
−, b+]),α ∈ (0, 1]. Each

Zα gives a mass function mα with focal sets Aα ,Aα ,U with respective weights b−, 1 −

b+, b+ − b−. Note that each value α corresponds to a single belief function Belα , i.e. this

construction rather yields a gradual element (in the sense of [25]) of the set of belief

functions.

In practice, rather than selecting a value α, one may average out the family of belief

functions and build Bel(C) =
∫ 1
0 Belα(C)dα. It comes down to allocating masses m(Fαi) =

b−(αi − αi+1) to Fαi and m(Fαi ) = (1 − b+)(αi − αi+1) to its complement. Note that this 
approach differs from the previous one (Bel 6= Bel) because Aα 6= (Ā )α . It is clear that the 
difference between the two approaches based on belief functions is due to the difference 
between a fuzzy bipartition in Ruspini sense (a fuzzy set and its complement) used in the 
fuzzy belief structure, and a fuzzy partition seen as a gradual partition (in the sense of [25]) 
that to each α ∈ (0, 1] associates the crisp partition (Fα , Fα), a point of view adopted to 
define a parametric belief function.

4.2. Crisp Statements with Fuzzy Probabilities

Let us consider the opposite case, namely (A, B), where A = [a−, a+] is a crisp interval and 
B is a fuzzy set of probability values (a fuzzy interval on [0, 1]). In this situation, Zadeh’s 
definition looks natural: it yields a fuzzy set of probability functions: π(A,B)(P) = µB(P(A)), 
where P(A) is the usual probability of [a−, a+]. It is actually a higher-order possibility



distribution over probability functions, as studied in [10]. Alternative approaches may be

considered in the spirit of belief functions.

Fuzzy-valued mass assignment. One possibility is to see ([a−, a+], B) as a belief function

with a fuzzy mass function m̆ [33]: the mass function m̆ associates a fuzzy interval m̆(E)

to each focal set E. Such a fuzzy mass assignment m̆ is interpreted as a fuzzy set of belief

functions as follows:

µm̆(m) = min
E⊆U

µm̆(E)(m(E)).

Then the Z-number (A, B) is viewed as the fuzzy mass function with focal sets A, Ā defined

by m̆(A) = B and m̆(Ā) = 1 ⊖ B, using the fuzzy subtraction based on the extension princi-

ple. Note that this definition is not consistent with the interpretation of the crisp Z-number

(A, [b−, b+]), whereA is crisp. Itwould assume that the latter defines an interval-valuedmass

function m̆(A) = [b−, b+], m̆(Ā) = [1 − b+, 1 − b−], which is too complex to be attractive.

Z-number as a parametric belief function. Another option is to consider ([a−, a+], B) as

a set of crisp Z numbers ([a−, a+], Bβ) parameterised by β . Let Bβ = [b−(β), b+(β)]. Each

([a−, a+], Bβ) can be represented by a parametric belief function with mass function mβ ,

lettingmβ(A) = b−(β),mβ(Ā) = 1 − b+(β) andmβ(U) = b+(β) − b−(β), for each choice

of β . Averaging out this fuzzy set of belief functions comes down to replacing the fuzzy

probability B by its interval average E(B) computed as the Aumann integral
∫ 1
0 Bβ dβ =

[
∫ 1
0 inf Bβ dβ ,

∫ 1
0 sup Bβ dβ] [26, 27]. For instance, consider the discrete case, with mem-

bership levels β1 > · · · > βℓ > 0. The overall weight assigned to A is then
∑ℓ

j=1(βj −

βj+1)b
−(β) = inf E(B) indeed. This approach is the counterpart to the one in the second 

part of Section 4.1.

4.3. Handling Full-fledged Z-numbers

Suppose now that both A and B are fuzzy intervals (i.e. their α-cuts are closed intervals). It 
is not easy to propose an interpretation different from the one of Zadeh, that agrees with 
the preceding cases. We can suggest two approaches.

4.3.1. Hybridising the Previous Cases
One is to put together the fuzzy belief structure of Section 4.1 and the cut approach of
Section 4.2. Then we can view both A and B as sets of α-cuts. To each Aαi is associated a 
weight b−(β)(αi − αi+1), Aαi is assigned weight (1 − b+(β))(αi − αi+1), and U is assigned 
weight b+(β) − b−(β). We then get a parameterised family of belief functions, with param-

eter β selecting a probability interval from B, which may sound hard to use in practice if 
there is no criterion to select a value β .

However, we can average β out as well. Suppose that B is a discrete fuzzy set with mem-

bership levelsβ1 > · · · > βℓ > 0 for eachβj the above approach yields abelief functionBelj,

and we can compute Bel =
∑ℓ

j=1(βj − βj+1)Belj as the representation of the Z-number. It

could be proved that this approach comes down to interpreting (A, B) as a set of kℓ crisp

Z-numbers (Aαi , Bβj) each yielding a belief function Belij with mass function

mij(Aαi) = inf Bβj , mij(Aαi) = 1 − sup Bβj , mij(U) = sup Bβj − inf Bβj ,



and to computing the weighted average

Bel =

k
∑

i=1

ℓ
∑

j=1

(αi − αi+1)(βj − βj+1)Belij.

Again it comes down to interpreting (A, B) as a crisply qualified fuzzy set (A, E(B)) by the 
fuzzy belief structure approach of Section 4.1, using the interval average of B.

4.3.2. The p-box Approach
Another simpler approach is to interpret (A, B) as a unique belief function representing a 
generalised p-box. One first idea is to not only view A as its α-cuts, but simultaneously use 
the end-points of the α-cuts [b−(α), b+(α)] of B to derive bounds on P(Aα). However, since if 
α > β we get P(Aα) ≤ P(Aβ ), it is fruitless to interpret (A, B) as the set of constraints b−(α) ≤ 
P(Aα) ≤ b+(α), 0 < α ≤ 1. Indeed, b−(α) increases with α, while P(Aα) decreases, so that 
the lower bounds b−(α) are redundant when α < 1: the set of constraints come down to 
b−(1) ≤ P(Aα) ≤ b+(α), 0 < α ≤ 1.

One way out is to consider b−(1 − α) as the lower bound of P(Aα), that is we interpret B 
as a p-box on [0, 1] using the pair of decumulative functions

5([b, 1]) = max
x≥b

µB(x), N([b, 1]) = min
x<b

1 − µB(x)

associated to B. Using a continuous membership function for B we have that

5([b+(α), 1]) = µB(b
+(α)) = α and N([b−(α), 1]) = 1 − µB(b

−(α)) = 1 − α.

The set of constraints b−(1 − α) ≤ P(Aα) ≤ b+(α),α ∈ (0, 1] forms a generalised p-box

onU, since it is a nested family of subsetswhose probabilities are upper and lower bounded

[28]. It can be characterised by two possibility distributions (π+ and π−) built from A and B

such that 1 − π− ≤ π+ and 1 − π−,π+ are comonotonic functions [29], as we shall detail

below. The ordering onU for generating the cumulative distributions is the one induced by

the membership function µA.

Namely, the set of constraints b−(1 − α) ≤ P(Aα),α > 0 is representable by a possibility

distribution π+ on U such that [16]

π+(u) = min
u6∈Aα

1 − b−(1 − α)

In fact, it is easy to see that letting Aα = [a−(α), a+(α)], we have that π+(a−(α)) =

π+(a+(α)) = 1 − b−(1 − α). If 5+(C) = supu∈C π+(u) is the possibility measure with dis-

tribution π+, then the convex set of probabilities captured by the set of constraints

b−(1 − α) ≤ P(Aα),α > 0 is P(π+) = {P : P(C) ≤ 5+(C),∀Cmeasurable}.

Likewise the set of constraints P(Aα) ≤ b+(α),α ∈ (0, 1], once written as P(Aα) ≥ 1 −

b+(α),α ∈ (0, 1] is representable by a possibility distribution π− on U such that

π−(u) = min
u∈Aα

b+(α).

Again, we have that π−(a−(α)) = π−(a+(α)) = b+(α), and the corresponding set of

probabilities is P(π−).

We can describe π+ and π− more precisely:



Proposition 4.2: If the support of B is [0, 1] and µB is continuous and concave (in the usual

sense) then π+(u) ≥ µA(u) ≥ 1 − π−(u) and inf π−(u) = b+(1).

Proof: Indeed suppose µA(u) = α and, say, u = a−
α (the lower bound of the α-cut of A).

Then π+(u) = π+(a−
α ) = 1 − b−(1 − α) ≥ α since from the assumptions on the support

and concavity ofµB, function 1 − µB(·) is convex on [0, b−(1)], hence under the line 1 − α,

so b−(1 − α) ≤ 1 − α, hence α = µA(a
−
α ) ≤ π+(a−

α ). Likewise, due to the assumptions on

µB,π
−(a−

α ) = b+(α) ≥ 1 − α = 1 − µA(a
−
α ). Functionb+(α) is decreasingwithα andgoes

from b+(0) = 1 (since the support of B is [0, 1]) down to b+(1). Hence inf π−(u) = b+(1),

when u in the core of A. �

Proposition 4.3: IfµA(u) = 0, π+(u) = 1 − b−(1), π−(u) = 1.

Proof: Suppose u is out of the support ofA. Hence u 6∈ Aα , ∀α > 0. Soπ−(u) = 1 as it is the

minimumonanempty set. Besides function 1 − b−(1 − α) is increasingwithα (since b−(α)

is increasing) and its minimum is attained for α = 0, which is the case if µA(u) = 0. �

Note that the bracketing property π+(u) ≥ µA(u) ≥ 1 − π−(u) no longer holds if the

support of B is not [0, 1]. In particular, if there is a value α∗ ∈ (0, 1] such that 1 − b−(1 −

α∗) = α∗, then π+(a−
α∗) = µA(a

−
α∗) = α∗. We shall generally have that 1 − b−(1 − α) > α

for α > α∗ so that the α-cut of π+ is contained in the α-cut of A (as shown in Figure 1 in the

case when A and B are trapezoidal fuzzy numbers).

We can express the two possibility distributions induced by (A, B) as follows.

π+(u) =















1 ifµA(u) = 1,

1 − b−(1 − µA(u)) if 0 < µA(u) < 1,

1 − b−(0) ifµA(u) = 0.

π−(u) =















1 ifµA(u) = 0,

b+(µA(u)) if 0 < µA(u) < 1,

b+(1) ifµA(u) = 1.

Figure 1. p-box associated with Z-number (A, B) (•: point included; ◦: point excluded).



Even if π+ and 1 − π− will not always bracket µA, we do have the inequality π+ ≥ 1 −

π− since it comes down to noticing that 1 − b−(1 − α) ≥ 1 − b+(1 − α).

The following result can also be established:

Proposition 4.4: The two functions π+ and δ = 1 − π− are comonotonic.

Proof: Indeed as both A and B are fuzzy intervals, we have that if α > β , then

[b−(α), b+(α)] ⊆ [b−(β), b+(β)]. Hence the functions b+(α) and b−(1 − α) are comono-

tonic. Now suppose π+(u) > π+(v) where 1 > µA(u) > 0 and 1 > µA(v) > 0. Then

π+(u) = 1 − b−(1 − µA(u)) > π+(v) = 1 − b−(1 − µA(v)). Hence b+(µA(u)) ≤

b+(µA(v)) and we get 1 − π−(u) = 1 − b+(µA(u)) ≥ 1 − π−(v). �

As explained in [29], the pair (π+, 1 − π−) forms a comonotonic cloud [30] correspond-

ing to a set of probabilitiesP = P(π+) ∩ P(π−), whereP(π) = {P : P(C) ≤ 5(C),∀Cmea-

surable }. This credal set generates a belief function whose focal sets are of the form

Eα = {u : π+(u) ≥ α} \ {u : 1 − π−(u) ≥ α}. More specifically, in the case of a continuous

Z-number, the focal sets obtained are of the following form:

(1) A1 with massm(A1) = b−(0);

(2) {u : π+(u) ≥ α} with (infinitesimal) mass dα for 1 − b−(0) ≥ α > 1 − b−(1);

(3) U with mass b+(1) − b−(1);

(4) {u : 1 − π−(u) < α} with (infinitesimal) mass dα for 1 − b+(1) ≥ α > 1 − b+(0);

(5) Supp(A) with mass 1 − b+(0).

What we obtain is a (partially) continuous belief function [31].

There are interesting special cases to be noticed.

• In case A and B are crisp intervals, the result of the p-box approach degenerates in the

belief function of subsection 3. Namely the continuous parts of π+ and π− disappear

since 1 − b−(0) = 1 − b−(1) and 1 − b+(1) = 1 − b+(0);

• If the support of B is [0, 1], some discrete parts of the mass assignment (cases 1 and 5)

disappear, and the comonotonic cloud brackets µA.

• Ifb+(1) = 1 (Bexpresses a formof certainty) then1 − π−(x) = 0andonly theupperpos-

sibility distribution π+ remains. If moreover b−(1) = 1 then the support of π+ is inside

the support of A (and is equal to it if b−(0) = 0).

• IfµB(x) = x (what could be a genuine gradual representation of probabilistic certainty),

it is easy to see that π+ = µA and 1 − π−(x) = 0. In this case, (A, B) just reduces to

the sure statement X is A. This is reminiscent of Zadeh’s truth qualification (X is A is

τ ) by the fuzzy truth-value τ , he called ‘u-true’ [3], where µτ (x) = x and the result of

truth-qualification is of the form µτ (µA). Also in this case, the inequalities b−(1 − α) ≤

P(Aα) ≤ b+(α),α ∈ (0, 1] reduce to 1 − α ≤ P(Aα),α ∈ (0, 1], which is well-known to be

a faithful account of the fuzzy number A (see [32]).

• IfµB(x) = 1 − x (what couldbe agenuinegradual representationof negative probabilis-

tic certainty, namely thatX isA is improbable), it is easy to see thatπ+ = 1 (sinceb−(0) =

b−(1) = b+(0) = 0 and b+(1) = 1) and π−(u) = 1 − µA(u) since b+(α) = 1 − α. It



corresponds to the sure statement X is Ā, which is the negation of statement X is A. In

turn, µB(x) = 1 − x is reminiscent of Zadeh’s truth-qualifier ‘u-false’ [3].

• If A is an interval and B is fuzzy, the inequalities b−(1 − α) ≤ P(Aα) ≤ b+(α),α ∈ (0, 1]

reduce to the inequalities b−(1) ≤ P(A) ≤ b+(1), which is equivalent to the crisp Z-

number (A, B̂) using the core of B.

• if B is an interval and A is fuzzy, the inequalities b−(1 − α) ≤ P(Aα) ≤ b+(α),α ∈ (0, 1]

reduce to the inequalities b− ≤ P(Aα) ≤ b+,α ∈ (0, 1], which is equivalent to the crisp

Z-number (Supp(A), B) using the support ofA. In particular, if B = [0, 1] (expressing igno-

rance), it is easy to see that π+ = π− = 1, which corresponds to complete ignorance

about A.

We notice that we do not retrieve the solutions proposed in Sections 4.1 and 4.2 for cases 
when only one of A, B is fuzzy. It suggests that it is not so natural to assign a fuzzy probability 
to a crisp event or a precise probability to a fuzzy event (in some sense the p-box approach 
assumes that the gradual nature of B reflects the gradual nature of A).

5. Conclusion

The notion of a Z-number is rather naturally found when collecting uncertain information 
in a linguistic format. It is thus important to propose faithful mathematical representations 
of this kind of information. In this paper, Z-numbers have been examined in the light of pos-
sibility theory, imprecise probabilities and belief functions, in order to provide more solid 
foundations to this concept. The main message is that it is possible to interpret a Z-number 
(A, B) as a special kind of belief function (or random set) on the universe of A (namely, a 
p-box), provided that we give up the use of the probability of a fuzzy event, as well as con-
straints involving the centroid of A. Indeed the original approach yields a convex (fuzzy) set 
of probabilities that seems to be very hard to handle in practice. On the contrary, it is much 
easier to use random sets than convex sets of probabilities induced by any kind of linear 
constraints. Using the approaches described in this paper, we can compute the uncertainty 
pervading expressions of the form f (X , Y) where X and Y are Z-numbers by means the ran-
dom set propagation principle recalled in Section 3 using Monte-Carlo methods (see for 
instance [18]). Note that the result will not generally be equivalent to another Z-number, but 
a more general random set, contrary to what some works are presupposing, which does not 
prevent other Z-numbers on quantities of interest from being extracted from the resulting 
random set obtained via computation.
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