
HAL Id: hal-02092930
https://hal.science/hal-02092930

Submitted on 8 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated analysis of Stateflow models
Hamza Bourbouh, Pierre-Loïc Garoche, Christophe Garion, Arie Gurfinkel,

Temesghen Kahsai, Xavier Thirioux

To cite this version:
Hamza Bourbouh, Pierre-Loïc Garoche, Christophe Garion, Arie Gurfinkel, Temesghen Kahsai, et al..
Automated analysis of Stateflow models. 21st International Conference on Logic for Programming,
Artificial Intelligence and Reasoning (LPAR 2017), May 2017, Maun, Botswana. pp.144-161. �hal-
02092930�

https://hal.science/hal-02092930
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22654

Official URL

DOI : https://doi.org/10.29007/b8gq

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Bourbouh, Hamza and Garoche, Pierre-Loïc
and Garion, Christophe and Gurfinkel, Arie and Kahsai, Temesghen
and Thirioux, Xavier Automated analysis of Stateflow models. (2017)
In: 21st International Conference on Logic for Programming, Artificial
Intelligence and Reasoning (LPAR 2017), 7 May 2017 - 12 May 2017
(Maun, Botswana).

Automated analysis of Stateflow models∗
Hamza Bourbouh1,3,5, Pierre-Loic Garoche2, Christophe Garion1

Arie Gurfinkel4, Temesghen Kahsai5,6, and Xavier Thirioux3

1 ISAE-SUPAERO/DISC, France
2 ONERA/DTIM, France

3 ENSEEIHT/IRIT, France
4 University of Waterloo, Canada

5 NASA Ames, USA
6 CMU, USA

Abstract

Stateflow i s a w idely u sed modeling f ramework f or embedded a nd c yberphysical sys-
tems where control software interacts with physical processes. In this work, we present a
framework and a fully automated safety verification t echnique f or Stateflow mo dels. Our
approach is two-folded: (i) we faithfully compile Stateflow models i nto h ierarchical state
machines, and (ii) we use automated logic-based verification e ngine t o d ecide t he valid-
ity of safety properties. The starting point of our approach is a denotational semantics
of Stateflow. We p ropose a c ompilation p rocess u sing c ontinuation-passing s tyle (CPS)
denotational semantics. Our compilation technique preserves the structural and modal be-
havior of the system. The overall approach is implemented as an open source toolbox that
can be integrated into the existing Mathworks Simulink/Stateflow modeling framework.
We present preliminary experimental evaluations that illustrate the effectiveness of our
approach in code generation and safety verification of industrial scale Stateflow models.

1 Introduction
The widespread deployment of cyberphysical systems in safety critical scenarios like automotive,
avionics, and medical devices, has made formal and automated analysis of such systems neces-
sary. This is witnessed by the sheer number of extensive approaches proposed in the verification
community. Stateflow [22] is a widely used modeling framework for embedded and cyberphys-
ical systems where control software interacts with physical processes. Specifically, Stateflow is
a toolbox developed by MathWorks Inc. that extends Simulink [20] with an environment for
modeling and simulating reactive systems. A Stateflow diagram can be included in a Simulink
model as one of the blocks interacting with other Simulink components using input and output
signals. Stateflow is a highly complex language with no formal semantics1: its semantics is only

∗This work was partially supported by the ANR-INSE-2012 CAFEIN project, CNES project No. R-S16/BS-
0004-045 and NASA Contract No. NNX14AI09G.

1At least not provided as a reference by the tool provider.

T.Eiter and D.Sands (eds.), LPAR-21 (EPiC Series in Computing, vol. 46), pp. 144–161

described through examples on the MathWorks website [22] without any formal definition. A
Stateflow diagram has a hierarchical structure, which can be either arranged in parallel in which
all states become active whenever the diagram is activated; or sequentially, in which states are
connected with transitions and only one of them can be active.

Over the years several approaches have been proposed for the analysis of Stateflow diagrams.
Such approaches often lack one or many of the following desired features: (i) a convincing formal
semantics; (ii) a faithful compilation that preserves the hierarchical structure of the Stateflow
model; (iii) fully automated analysis engine; and last but not least (iv) an open source tool
that is easy to use and able to handle realistic models. The aim of this paper is to provide a
framework in which all those points are properly addressed. We based our work upon a series of
papers by Hamon [15, 14, 16] providing operational and denotational semantics for Stateflow,
designing interpreters for Stateflow.

A CPS semantics for Stateflow. The starting point of our approach is the expression of the
denotational semantics of Stateflow [14] as a pure continuation-passing style (CPS) denotational
semantics. CPS has been proposed in the 70s by Plotkins [24] for λ-calculus call-by-value
semantics and later developed for efficient compilation means, for example in the long line of
Danvy’s works, e.g., [18] and Appel’s book [3]. As recalled by Danvy, CPS terms can be simply
expressed yet enjoy a number of useful properties, e.g., “offering a good format for compilation
and optimization”. The following equations define the Plotkin’s call-by-value CPS rules:

JxK κ = κ x
Jλx.eK κ = κ (λx · λk · JeK k)
Je0e1K κ = Je0K (λv0.Je1K (λv1 · v0 v1 κ))

The key idea is to associate to each function an additional argument, the explicit contin-
uation κ : t → t. This continuation is an endomorphic map over t values on which control
is explicitly modeled: function calls, intermediate values, evaluation order, etc. In compila-
tion, CPS β-reduction amounts to characterize a global continuation, which, when evaluated,
produces the generated code.

Contributions. This paper makes the following contributions:

• We adapted Hamon’s denotational semantics [14] to a pure CPS semantics, solving some
of its flaws (see §2.2).

• We instantiate such CPS semantics for different uses, such as a model interpreter and a
code generator for Stateflow models. Such framework has several advantages, including a
formal semantics of Stateflow that preserves the hierarchical structure of the model.

• We implemented the general CPS semantics and the proposed instantiations in OCaml:
an interpreter and a code generator both for imperative code and Lustre automaton.

• The Lustre automaton code generator from Stateflow has been implemented and inte-
grated in CoCoSim [17] – an automated analysis framework for Simulink models. Co-
CoSim among other features provides an intuitive user interface that facilitates the mod-
eling of safety properties, code generation, verification, and graphical debugging of failed
properties.

• We used CoCoSim fitted with this new capability to address Stateflow model compilation
and verification on a set of industrial scale benchmarks and have experimentally evaluated
our approach using two evaluation scales: (i) does the tool generate faithful code (wrt.

Figure 1: Stopwatch Stateflow model (from [14]).

the intended Stateflow semantics)? and (ii) is the tool able to efficiently verify safety
properties? In Section 5 we provide evidence that answers positively both questions.

Synopsis. The paper is structured as follows. In the next two paragraphs, we first informally
illustrate the Stateflow semantics and then give an overview of related w orks. In Section 2, we
describe a CPS denotational semantics for Stateflow. In Section 3 , we i llustrate instantiations
of the CPS semantics that allow us to generate both an interpreter and a code generator. Based
on the code generator from Section 3, we describe in section 4 a compiler from Stateflow to
Lustre automaton. Finally, in Section 5, we describe an open source implementation of our
proposed technique and present the experimental evaluations that illustrate the effectiveness of
our approach.

Stateflow s emantics. Let us l ook at a concrete example that i llustrates different Stateflow
constructs. Figure 1 shows the Stopwatch model capturing a basic behavior of a stopwatch.
This system interacts with its environment via 3 signals: START, LAP and TIC. TIC models
the time increment of the system. START and LAP events model the user interaction with
the device. There are 2 top level states Run and Stop, and 4 inner states Reset, Lap_stop,
Running and Lap. The device is initialized in Stop mode and switches back and forth between
Stop and Run. When in Running state, it can be paused using the LAP signal. Each TIC signal
received when in Run state increments the timer, performing side effects on the internal timer
variables (i.e., cent, sec, min). This specific b ehavior i s modeled by a s et o f t ransitions using
only junctions and starting with an inner transition. This model is interesting since it relies on
multiple constructs of Stateflow: i nner and o uter transitions, j unctions and hierarchical states.

Related work. Despite its lack of formal semantics, Stateflow is widely used in the industry
both for modeling purposes and code generation [23]. It has been studied for formal model-
ing and verification by numerous a pproaches, e .g., t argeting a utomata [4, 1 9, 3 3], hybrid au-
tomata [2], process calculi such as CPS [6, 34], transition systems [23], tabular expressions [28]
or the synchronous language Lustre [27]. As a general remark, each of these approaches makes
some restriction on the considered language, e.g., on events, inner transitions or junctions, and
synthesizes an encoding in the target language, supported by verification t ools o r t est case
generation, independently of the code generated from the same model.

An approach related to ours is the work described in [27]. This approach translates a State-
flow model into Lustre dataflow language [5]. Since Lustre-like languages such as Scade [29] are
used in the industry to generate embedded code, the approach is compatible both with compi-
lation and verification. The approach is however very limited in respecting the full Stateflow
semantics. A tool, sf2lus, is provided and performs the translation for the considered subset.
This approach differs from ours in several ways: (i) Our translation keeps state machines struc-
ture and by consequence makes it easy to read and traces state information; (ii) sf2lus handles
events erroneously at the same time, which makes the behavior unsound wrt. Stateflow events
semantics. Events occur (and wake the chart) in an ascending order based on their port num-
bers once at a time. Such a chart can then be executed multiple times in the same time step;
(iii) sf2lus does not support newer versions of Stateflow; and last (iv) our tool is developed in
Matlab and is directly integrated into the Simulink/Stateflow environment, which allows among
other features the use of Matlab simulation tool to further investigate failed properties.

Another line of related works are developed in a series of papers by Hamon [14, 15] on
which we based our work. In these papers, a formal semantics for Stateflow is provided, either in
operational or denotational flavors. Notice that [32] starts from Hamon’s denotational semantics
to define a structural operational semantics for three Statecharts languages, including Stateflow,
but does not provide a compilation schema or analysis techniques. [30] uses a translation of
Stateflow models to pushdown systems to generate and check invariants, but does not go further
in properties to analyze. Until now, these are the only formal reference semantics available for
Stateflow.

Last, Simulink Design Verifier (SLDV) is a toolbox provided by Mathworks to perform
automated formal analysis of Simulink/Stateflow models. However, SLDV is a commercial
distributed tool, therefore details on implementation and functionality are not available to the
public.

2 Denotational Semantics for Stateflow
In this section, we describe our first contribution: a continuation-passing style denotational
semantics for Stateflow. We start from the syntax and denotational semantics2 described in [14].
However, we will revisit such semantics using a continuation-passing style (CPS). This new
formulation allows to directly and easily capture the intended semantics of Stateflow. We use
a syntactic representation of Stateflow models described by the grammar presented in Table 1.

P ::= (s, [src0, . . . , srcn])
srci ::= s : sd | j : T
sd ::= ((ae, ad, ax), To, Ti, C)
C ::= Or (T, [s0, . . . , sn])

| And ([s0, . . . , sn])
t ::= (e, c, (ac, at), d)
T ::= ∅ | t.T
d ::= p | j
p ::= ∅ | s.p

Table 1: Syntactic representation of Stateflow
models.

Syntax. A program (s, srci∈[1...n]) is com-
posed of state definitions s : sd and junctions
j : T , with a main node s. A single state
is defined by the entry, during and exit ac-
tions (ae, ad, ax), outer and inner transitions
To and Ti, as well as component content C.
A component content C is either an Or(T, sl)
state with initializing transitions T and sub-
states sl, or an And(sl) state where all sl sub-
states are run in parallel. A transition list
is an ordered sequence of transitions. Each

2This syntax and semantics does not handle additional constructs such as loops, history junctions or call to
external C functions. The restriction of covered constructs is further detailed in Sect. 5

main.run.running : ((∅a, disp = (cent, sec, min), ∅a) ,
[(START, true, ∅a, ∅a, P main.stop.reset) ;
(LAP, true, ∅a, ∅a, P main.run.lap)], [], Or ([],))

main.run.lap : ((∅a, ∅a, ∅a) ,
[(START, true, ∅a, ∅a, P main.stop.lap_stop) ;
(LAP, true, ∅a, ∅a, P main.run.running)], [], Or ([],))

main.run : ((∅a, ∅a, ∅a) , [],
[(TIC, true, cent = cent+ 1, ∅a, J j1)], Or ([], {running; lap}))

j1 : [(noevent, cent == 100, cont = 0; sec = sec+ 1, ∅a, J j2) ;
(noevent, cent! = 100, ∅a, ∅a, J j3)]

j2 : [(noevent, sec == 60, min = min+ 1, ∅a, P main.run) ;
(noevent, sec! = 60, ∅a, ∅a, J j3)]

j3 : []

Figure 2: Encoding of the Stopwatch Stateflow model using the syntax f rom Table 1.

transition is associated with an event, a con-
dition, side effect condition actions ac, transition actions at and a destination d. Destinations
could be either states or junctions leading to further transitions.

Modeling Stopwatch example. Figure 2 describes the Stopwatch model using the syntax
from Table 1. Transitions from a state s to another s′ are defined a s o uter T o a nd inner
transitions Ti of node s, depending on the target node. The transitions associated to a node
content of type Or describe the initialization transitions when entering into the node. Junctions
enable the definition of transitions combining multiple c onditions. The semantics of transitions
is far from trivial: a transition path is evaluated one segment (atomic transition) after the other,
performing side effects on the state via condition actions ac on the go, while transition actions
at are only performed when all conditions over the path are satisfied a nd t he p ath r eaches a
state not a junction. If a given path is eventually fireable, the exit actions of the original node
are performed, then the transition actions, to conclude with entry actions of the target node.

2.1 CPS Denotational Semantics for Stateflow
Motivating Continuation-passing style. The denotational semantics presented in [14]
relies on continuations to model the actions of path computation. Indeed, the actions associated
to an atomic transition (a segment) are performed either immediately for condition actions and
eventually for transition actions. Success and fail continuations allow to capture this complex
behavior in functions, representing side effects as denotations. However, values manipulated
by this denotational semantics were explicitly first order and represented by environments ρ of
type Env: ρ ::= {x0 : v0, . . . , xn : vn, s0 : b0, . . . , sk : bk}. These environments represented both
the values of variables xi and the active status of states si.

The encoding of [14] could be significantly i mproved b y r earranging a rguments s o a s to
push environments in rightmost position and defining a pure continuation-passing style (CPS)
denotational semantics, point-free wrt. environments. Indeed, in some situations, the author
would drop continuations and evaluate explicit intermediate environments.

The following definitions c haracterize o ur C PS d enotational s emantics f or S tateflow, fol-
lowing precisely the semantics of [14] while solving its flaws. T he s emantics i s h igher order
and environments are never made explicit: the evaluation of a model component acts as a
transformer.

Conditions. Transitions in Stateflow are computed based on the current environment and
an active event, evaluating conditions. Without loss of generality, we assume that the event
is part of the environment and is not made explicit in the rules. An active event e could be
checked as a regular condition using the predicate event(e). We recall that the environment
contains both variables mapped to values and active status of Stateflow states. To clarify the
expression, we made explicit the check whether a state characterized by p is active using the
predicate active(p).

Actions. The key ingredient of transition computation in Stateflow is the sequence of ac-
tions applied on the current environment, updating values of variables and changing active
and inactive states. Actions act as transformers and are the values manipulated by our CPS
denotational semantics. We denote by Den this transformer type.

Basic action constructors are left free here but typically express some imperative assign-
ment of an expression to an environment variable. In addition, we introduce the actions open
p and close p which switch the Boolean status of state p to true or false respectively.
In order to generalize the approach, we express disjunctions as actions using the constructor
Ite(condition,Den,Den).

A primitive action (assignment or open/close action) semantics, i.e., its interpretation as
a transformer, is defined using the function AJ·K : action → Den. (Actions) transformers can
be combined using the operator �: Den → Den → Den, which is associative: a1 � a2 � a3
means that action a1 is performed before action a2 followed by a3. Last, the default action,
identity, is denoted Id.

Denotational semantics as a functions map. Semantics functions are associated to state
names and a global continuation environment θ of type KEnv is defined as follows: θ ::=
{ pi : (SJpi : sdiKem θ,SJpi : sdiKd θ,SJpi : sdiKxm θ), jj : T JTjKθ, . . . , jj : T JTjKθ}. Functions
SJp0 : sd0Kem, SJp0 : sd0Kd and SJp0 : sd0Kxm denote respectively the semantics of a state when
entering it, executing it, or exiting it. Note that entry and exit actions are parametrized by a
mode m ∈ Mode = L | S. This mode, either loose (L) or strict (S), captures the difference
between inner and outer transitions for entry and exit actions. Junctions are associated to
transition list semantics function T . The θ map captures the semantics of all components of
the Stateflow model and is typically provided as argument of denotations.

Transitions semantics. Stateflow semantics is rather complex. A Stateflow transition
amounts to evaluate a sequence of atomic transitions. Depending on some dynamic conditions,
each atomic transition may be eventually fired or not. In all cases, it will impact the environ-
ment through side effects (condition actions). We introduce three continuations: success of
type k+ ::= Den modeling a fired transition, a fail continuations of type k− ::= Den modeling
an unfired one and a third case failglob of type k− capturing complex executions in which a
series of junctions ends in a terminal junction. In case of a transition leading to another state,
some entry or exit actions may be performed3. They are captured by the wrapper continuation
of type w ::= p→ Den→ Den.

The evaluation of a destination path which is a state amounts to apply the wrapper on
the success continuation. Otherwise, when the destination is a junction, the transition list
semantics is evaluated with the same continuations.
DJpK (θ : KEnv) (wrap : w) (success : k+) (fail failglob : k−) : Den = wrap p success

3Note that those actions are not performed for a transition ending in a terminal junction.

DJjK θ wrap success fail failglob = θj(j) wrap success fail failglob

Atomic transition semantics introduces an Ite action: in case of an unfeasible condition, the
(regular) fail continuation is used, otherwise a new success continuation is built, evaluating the
transition actions of the atomic transition. The action associated to the then-branch combines
the condition actions followed by the new destination evaluation and relies on the newly defined
success continuation.
τJ(et, c, (ac, at), d)K (θ : KEnv) (wrapper : w) (success : k+) (fail failglob : k−) : Den =
Ite(event(et) ∧ c,

(let success′ = success� (AJatK) in
(AJacK)� (DJdK θ wrapper success′ fail failglob)),
fail)

Evaluation of a list of transitions performs a left-to-right traversal of the list: the unfea-
sibility of the head transition leads to the evaluation of the next, involving definition of fail
continuations. As a special case, when provided with an empty list of transitions it always
evaluates to the global fail continuation.
T J∅K (θ : KEnv) (wrapper : w) (success : k+) (fail failglob : k−) : Den = failglob

T Jt.T K θ wrapper success fail failglob =

let fail′ = T JT K θ wrapper success fail failglob in
τJtK θ wrapper success fail′ failglob

State semantics. State semantics involves the opening and closing actions of states. We
introduce wrapper functions dedicated to inner, outer transitions, as well as entering of states.

Wrapper considers a source and destination paths, ps and pd, and identifies the common
prefix p of both paths. Depending on the context (inner or outer transition), it will compose
respectively the exit actions of remaining ps, the transition actions continuation, and the enter-
ing actions of the remaining pd. Outer transitions will involve loose state semantics while inner
transitions involve strict one. A specific wrapper open_pathe is introduced to enter substates
of a path.

open_pathv (θ : KEnv) (p : Path) (ps : Path) (pd : Path) : w =
if hd(ps) = hd(pd) ∧ hd(ps) 6= ∅ then

open_pathv θ p.hd(ps) tl(ps) tl(pd)
else match v with

o -> λden.θxL(p.hd(ps))� den� θeL(p.hd(pd)) tl(pd)
i -> λden.θxS(p.hd(ps))� den� θeS(p.hd(pd)) tl(pd)
e -> λden.den� θeL(p.hd(pd)) tl(pd)

This definition assumes that hd and tl functions, returning head and tail of a list, are
extended to handle empty lists, i.e., hd ∅ = ∅ and tl ∅ = ∅.

We now define the core semantics functions of states, SJ·K{e,d,x}m . Note that mode parameter
m is provided as an index. Entering or exiting a path executes the entry and exit actions of
all states in the path, respectively. Depending on the outer or inner status of a transition, the
entry or exit actions of the root node shall or shall not be evaluated. The following definitions
capture Stateflow semantics, handling specificities such as transitions from a node to a child or
parent.
SJp : ((ae, ad, ax), T0, Ti, C)KeS (θ : KEnv) (∅ : Path) : Den = (CJCKe p θ)
SJp : ((ae, ad, ax), T0, Ti, C)KeS θ s.pd = (θeL(p.s) pd)
SJp : ((ae, ad, ax), T0, Ti, C)KxS (θ : KEnv) : Den = (CJCKx p θ)

SJp : ((ae, ad, ax), T0, Ti, C)KeL θ ∅ = (AJaeK θ)� (AJopen pK) � (CJCKe p θ)
SJp : ((ae, ad, ax), T0, Ti, C)KeL θ s.pd = (AJaeK θ)� (AJopen pK) � (θeL(p.s) pd)
SJp : ((ae, ad, ax), T0, Ti, C)KxL θ = (CJCKx p θ)� (AJaxK θ)� (AJclose pK)

The definition for during actions is the following. First outer transitions are evaluated. If
none succeeds, the during action of the node is computed. Then, inner transitions apply. If no
transition can be fired at all, the components of the node are computed.
SJp : ((ae, ad, ax), To, Ti, C)Kd (θ : KEnv) : Den =

let wrapperi =open_path i ∅ p in
let wrappero =open_patho ∅ p in
let failo =

let faili = CJCKd p θ in
(AJadK θ)� (T JTiK θ wrapperi Id faili faili) in

T JToK θ wrappero Id failo failo

Component semantics definitions follow. Entry transitions associated to an Or node initiate
the component and shall not fail (the ⊥ value is unreachable). Execution or exiting of an Or
component applies on the active element. Parallel states rely on fold_right to ensure proper
function compositions.
CJOr(T, ∅)Ke p θ = Id
CJOr(T, S)Ke p θ = T JT K θ (open_pathe ∅ p) Id ⊥ ⊥
CJOr(T, ∅)Kd p θ = Id
CJOr(T, x.S)Kd p θ = Ite(active(p.x), θd(p.x), CJOr(T, S)Kd p θ)
CJOr(T, ∅)Kx p θ = Id
CJOr(T, x.S)Kx p θ = Ite(active(p.x), θxL(p.x), CJOr(T, S)K

x p θ)
CJAnd(S)Ke p θ = fold_right (λx.λres.θeL(p.x) ∅ � res) S Id
CJAnd(S)Kd p θ = fold_right (λx.λres.θd(p.x)� res) S Id
CJAnd(S)Kx p θ = fold_right (λx.λres.θxL(p.x)� res) S Id

Program semantics. The evaluation of the main program produces a transformer:
PJ(s, SrcsK : Den = Ite(active(s), θd(s), θeL(s) ∅)

where θ is built using Srcs and initial environment assumes all states are inactive, including
the main one, s.

2.2 Comparison with Hamon’s denotational semantics
The previous definitions are directly extracted from [14] but were modified to solve minor
soundness flaws and to be compatible with the pure CPS semantics we designed. Without de-
veloping much about the soundness flaws4, let us highlight the main differences in the semantics
definitions:

• we adapted the rule to match our understanding of non trivial Stateflow constructs,
as exhibited by current Stateflow simulation engine. For example sequences of actions
performed when leaving a state and entering another one follow a specific order: in [14] the
use of success and fail continuations was improperly combined. Our encoding introduced
a new argument wrapper used in D, τ and T . Open and close actions bind dedicated
wrappers that reorder actions. Our version follows current Stateflow behavior.

• regarding CPS, as explained at the beginning of the section, the ρ argument is abstracted
away and gives rise to a point-free semantics. Every dynamic access to environment as

4In fairness to this work, it is somehow difficult at the present time to figure out what the undocumented
semantics of Stateflow circa 2005 may look like and to what extent it was well specified. The appendix sections
compares the original semantics of [14] and the one we provide, both compared to the current behavior of
Stateflow simulator. Notice also that [32] corrects some flaws in Hamon’s denotational semantics.

AJopen pK(ρ) = ρ [p 7→ true]
AJclose pK(ρ) = ρ [p 7→ false]
AJv = exprK(ρ) = ρ [v 7→ JexprKρ]

Ite(cond, T,E)(ρ) = if JcondKρ then T (ρ)
else E(ρ)

(D1 � D2)(ρ) = D2 ◦D1(ρ)
Id(ρ) = ρ
⊥ = assert false

(a) Interpreter

AJopen pK = p = true

AJclose pK = p = false

AJv = exprK = v = expr
Ite(cond, T,E) = if cond then T

else E
(D1 � D2) = D1 ; D2

Id = nop

⊥ = assert false

(b) Code Generator
Figure 3: Instantiations

found in Hamon’s work is removed. For instance, dynamic if-then-else statements are
lifted to a dedicated constructor to postpone their execution; similarly action evaluation
is always introduced within computed continuations and never evaluated directly (see e.g.,
τJ·K and SJ·Kd). This brings far more flexibility in the purpose and design of semantics
functions and allows for instance to define interpreters, code generators, source to source
transformations, etc.

3 Modular code generation for Stateflow
The formal semantics presented in the previous section can be instantiated with appropriate
definitions for the primitive elements of the denotational semantics: AJ·K, Ite(·, ·, ·), �, ⊥ and
Id.

We present here different settings for the instantiation either as an interpreter or as code gen-
erator. The next section will address our main goal: generate Lustre automata from Stateflow
model while preserving the hierarchical structure model.

Interpreter instantiation. The denotational semantics of [14] can be obtained where trans-
formers modify environments: Den = Env → Env. Figure 3a details the associated defini-
tions. An environment ρ defines a map from variables to values, including active status of states.
ρ[v → c] represents the substitution of a variable v to value c in environment ρ. We assume that
JexprKρ represents the evaluation of expression expr in ρ, with a Boolean interpretation when
evaluating a condition expression. The bottom construct throws an exception, but should not
happen for well constructed models. We recall that events are part of the environment and are
accessible through predicate active(e) using in conditional expressions. Such an instantiation
provides a simulator for the model: when provided with an initial environment, it computes
the successor environment.

Code generator instantiation. One can also synthesize imperative code by synthesizing an
abstract syntax tree while evaluating transformers. Den denotes here an abstract syntax tree
(AST):

Den ::= Den;Den
| if cond then Den else Den
| v = expr | nop | assert false.

Figure 3b provides such simple instantiation. Applying the code generator on the Stopwatch
example from Fig. 1 generates a rather large program: about 800 LOC, for an overall number
of 220 actions and 135 conditions, nested up to depth 13.

Preserving hierarchical structure. Stateflow semantics is global since environment is
shared among all states. However, the transitions are attached locally to states. We can
preserve this hierarchical structure by associating a procedure to each state execution denota-
tion: each call to the denotation θe(p), θd(p) or θx(p) could be respectively substituted by a
call to a procedure thetae_p, thetad_p or thetax_p instead of executing SJp : sdKe,d,x θ. This
is possible since all arguments of these semantics functions are static (paths, modes, etc).

For a program (s, srcs), the total code generation is then performed state by state, generat-
ing procedures thetad_p for each state p declared in program sources srcs. The main procedure
being the one associated to state s. For the Stopwatch example in Fig. 1, it generates 7 pro-
cedures, for an overall number of about 270 LOC, 100 actions and 55 conditions, nested up to
depth 7. We have implemented in OCaml an interpreter and a code generator instantiation of
the CPS denotational semantics. The code can be found in [1].

In our approach, modularity is itself modular as we can choose either to turn every se-
mantics function into a procedure or on the contrary to inline its results. In this respect,
turning junction-related semantics function θj(j), which amounts to computing T Jj : T K θ into
a procedure helps in factorizing out common prefixes of transition sequences, provided one can
defunctionalize [9] its arguments wrapper, success and fail, expressing as first-order values.

For Stateflow models with complex transition sequences between junctions, this would
greatly help factorizing out common junctions occurring in many paths, avoiding combinatorial
blow-ups. This is left for future work.

4 Stateflow models as Lustre automata

In this section, we describe the compilation of Stateflow models into Lustre automata. Lustre [5]
is a dataflow language, bearing similarities with Simulink/Stateflow, but is endowed with a
synchronous semantics, which yields a more disciplined and predictable language, suited to
verification activities. Lustre programs are expressed in terms of nodes, which directly model
subsystems in a modular fashion, with an externally visible set of inputs and outputs. A node
can be seen as a mapping of a finite set of input streams to a finite set of output streams.
Operationally, a node has a cyclic behavior: at each clock tick t, it takes as input the value
of each input stream at instant t and synchronously returns the value of each output stream
at same instant t. A Lustre node is built from a set of dataflow equations of the form x = e
where x is a variable denoting an output or a locally defined stream and e is an expression, in
a certain stream algebra, whose variables are input, output, or local streams. Each variable is
assigned exactly once at each cycle. Most of Lustre operators are point-wise lifting to streams
of the usual operators over stream values. Still, a Lustre node may access to variable values at
previous cycles, up to to a bounded past.

Automata are supported since Lustre V6 [8, 7]. The overall behavior of an automaton
is pictured in Fig. 4. An automaton consists of states, each with its own set of equations
and possibly local variables. At each instant, two pairs of variables are computed: a putative
state_in and an actual state state_act and also, for both states, two booleans restart_in and
restart_act, that tell whether their respective state equations should be reset before execution.
The actual state is obtained via an immediate (unless) transition from the putative state,
whereas the next putative state is obtained via a normal (until) transition from the actual
state. Only the actual state equations are executed at each instant. Finally, a state reset
function is driven by the restart/resume keyword switches. A more complete presentation of
these constructs is given in [11].

We are able to generate a Lustre AST mimicking the execution of the previous imperative

Unless

z−1
State Eqs
+ Until

input

input

next_state_in, next_restart_in

base clock

restart_act
state_act

state_in

restart_in
output

Figure 4: Automaton as a pure dataflow.

AJopen pK in out := õut = ĩn[in_p 7→ true]

AJclose pK in out := õut = ĩn[in_p 7→ false]

AJv = exprK in out = õut = ĩn[in_v 7→ JexprKin]
AJcall pK in out := õut = thetad_p(ĩn)
(L1 � L2) in out := (L1 in nameuid) ;

(L2 nameuid out)

Id in out := õut = ĩn
⊥ in out := assert false

node thetad_p (ĩn : T̃in) returns (õut : T̃out)

let (SdJpK in out); tel

Ite(cond, T,E) in out :=
automaton nameuid
state Cond :
unless J¬condKin restart NotCond
let (T in out); tel

state NotCond :
unless JcondKin restart Cond
let (E in out); tel

Figure 5: Lustre instantiation

code. The translation is also modular: a Lustre node is built for each component and each
condition within a component is turned into an automaton. The use of intermediate local
variables in the Lustre source allows to make the control-flow e xplicit. T he d enotation is
defined as Den = (Name → Name → LustreAST) , taking two names in and out standing for
input and output variables and producing a piece of code, assigning output from input. Lustre
automata encode the very semantics of imperative conditional statements, whereas standard
Lustre conditional is a strict operator which doesn’t suit our needs. This instantiation is
presented in Figure 5, assuming a supplementary node call action call p. We denote by iñ and
out̃ the sequence of variables present in the Stateflow environment, prefixed by names in and
out respectively. Similarly, T̃in and T̃out denote their respective types.

Note that the action transformer function generates a set of Lustre flow d efinitions. Its
evaluation combines all atomic transitions of Stateflow of an end-to-end transition into a single
Lustre automaton state. No intermediate step is introduced. The language of actions is, for
the moment, limited to basic Lustre flow d efinitions, bu t is le ft fr ee in th e ge neral semantics
of [16].

Main compilation schema. We have implemented this compilation as a component of the
CoCoSim tool framework. In order to illustrate how the compiler works, let us consider a
simple example. Figure 6 presents a simple transition between two states A and B. Each state
is compiled into a corresponding Lustre automaton state (suffixed with _IDL). As Lustre only
allows computations in states, the transition between A and B is compiled into a Lustre state
that executes the transition actions. A_EXIT_B_ENTRY thus represents the transition in

En: A_En
Ex: A_Ex

A

En: B_En
Ex: B_Ex

B
E[C]{Ac}/At

automaton ab
state CENTER_POINT:

unless id=1 and E and C restart
A_EXIT_B_ENTRY;

unless id=1 restart A_IDL;
unless id=2 restart B_IDL;
let

outputs = old_outputs;
tel

state A_IDL:
let

outputs = A_during_action(old_outputs ,
inputs);

tel
until true restart CENTER_POINT;

state A_EXIT_B_ENTRY:
let

-- execute the actions: condition
action ,

-- A exit action , transition action , B
entry action

tel
until true restart CENTER_POINT;

state B_IDL:
let

outputs = B_during_action(old_outputs ,
inputs);

tel
until true restart CENTER_POINT;

Figure 6: A simple transition encoding.

our example and contains all the actions to be executed: condition actions, exiting state A,
transition actions and entering state B. id indicates the active state at the beginning of each
clock. “Set B to active” means “update id to 2”. The Lustre code associated to the previous
transition A→ B is presented in the same Figure. In order to make the presentation simpler,
nested Ite constructs as synthesized by our CPS semantics have been merged into a single
automaton with more states.

5 Experimental evaluation
In this section, we describe the implementation of our proposed approach as a component in
the CoCoSim [17] tool framework. Moreover, we report the results from our experimental
evaluation.

5.1 CoCoSim
CoCoSim [17] is an open source automated logic-based analysis framework for Simulink models.
CoCoSim consists of two main components: (i) a compiler that compiles a subset of Simulink
models to Lustre [5]; (ii) an interface to multiple model checkers based on Lustre. In this paper,
we have extended CoCoSim to support compilation and verification of Stateflow models. The
current version of CoCoSim provides capability to verify user supplied safety requirements.
The CoCoSim workflow is pretty straightforward: a user specifies a safety requirement (prop-
erty) in the Simulink/Stateflow model. This is done using a synchronous observer method.
Subsequently, CoCoSim can be called directly on the Matlab environment5 and the result of
the analysis is reported directly on the Simulink model. If the property is violated, CoCoSim
reports the set of input values that leads to the error state. Such information is then used to
simulate the model, which allows the user to debug why a property is failing.

5The implementation in Matlab provides easy access to priorities for transition, typing information and eases
the construction of traceability maps enabling the expression at model level of invariants or counter-examples.

(a) (b)

Figure 7: (a) The overall architecture of CoCoSim. (b) A screenshot of a verification scenario
of a Stateflow model u sing C oCoSim: p art (A) s hows t he S tateflow mo del; pa rt (B) is the
synchronous observer block, where the property to be verified i s s pecified; pa rt (C) is the
CoCoSim dropdown menu provided as a Matlab toolbox.

The analyzer as well as the traceability information of the CoCoSim toolchain produces
both a complete environment to simulate the model in Simulink as well as the sequence of
active Lustre states and Lustre transitions computed, leading to a violation of the property.
The computation of the associated list of Stateflow states and transitions could be rebuilt from
that information. This is left as a future work.

The verification technique via observer-based method was first introduced by Halbwachs et
al. [13], where a safety property of an I/O machine M is defined in terms of another machine
called a synchronous observer. The observer watches the inputs and outputs of M , and if
they ever violate the safety property it emits an alarm signal. Various work has been devoted
in applying the observer-based method in different areas, e.g., [31]. In [25], Rushby explains
how observer-based methods are quite versatile. For instance, they can be used to increase
expressiveness, specify assumptions and axioms, but also to generate test cases. Synchronous
observers are specified using the s ame l anguage a s the s ystem under t est. This i s means that
the user of CoCoSim can specify the desired requirements using Simulink blocks. Its main
novelties can be summarized as: (i) It decouples the input language syntax from the under-
lying verification t echnique; (ii) I t p rovides a c onvenient way t o e xpress s afety requirements;
(iii) It allows the combination of automated logic-based verification r esults w ith traditional
Matlab based tools; and finally, (iv) i t offers a convenient way t o debug f ailed p roperties. An
important aspect of CoCoSim is its ability to simplify the development and integration of new
analysis techniques targeting Simulink/Stateflow m odels. This i s accomplished v ia a modular
architecture (see Fig. 7a).

Supported Stateflow b locks Our implementation in CoCoSim version v0.1 supports most
known Stateflow constructs such a s: s tates (Exclusive (OR) and Parallel (AND) s tates), most
used state actions (entry, during and exit actions), transitions with the following transition
labels: event only, event and condition, condition only, action only or event and condition
and action combined. In addition to these constructs, CoCoSim supports default transitions,
inner and outer transitions, self-loop transitions, inter-level transitions, connective junctions

and history junctions. CoCoSim also supports basic data types (int, real and booleans) and
also arrays with static indexes (e.g., [2]). More specific charts 6 are supported such as: flow
charts, Stateflow functions (graph functions), Hierarchical states, enter, exit, send and after
operators.

The current version of CoCoSim does not support events emission in actions (state action
or transition actions); it supports instead the send operator that can replace events emission.
We also assume that the model does not have an unbound behavior (such as loop in junctions).
In addition, transitions with more than one event are not yet supported7.

Datatypes. Our work focuses on providing a global semantics to Stateflow, which we believe
is hard enough. We do not address specific details such as how to represent Simulink datatypes
in the target language Lustre. Several simple solutions nevertheless come to mind. One could
provide each of these types in the form of an external Lustre library, totally hiding their im-
plementations, at the cost of making explicit all the implicit coercions at work in the Simulink
semantics. Another solution would be for instance to map every specifically-sized integer type
to the unspecified Lustre integer type (that is what we currently do) and then to annotate the
Lustre program in order to take care of sizes when generating C code or Horn clauses.

5.2 Experimental evaluation
We have performed a set of experimental evaluations to demonstrate the effectiveness of Co-
CoSim. Our experiments are carried out in a machine with the following specifications: Intel
Core i5, 8Go RAM, 750Go HD, with Ubuntu 16.04. We used CoCoSim v0.1 which runs on
Matlab 2014b and up, however, in this experiments we used Matlab 2016a with Stateflow version
8.7.

The first experiment was performed in order to illustrate the soundness of our compilation
scheme. In particular, we would like to answer the question “how faithful is the code generated
via CoCoSim?”. In order to answer this question, we have compared the C code generated via
CoCoSim with the one generated by Mathwork’s Simulink R© CoderTM [21]. The latter is a
popular product routinely used in different industrial application for code generation. Specifi-
cally, we have used a set of randomly generated test vectors with 100 iterations to validate the
code generated by CoCoSim against the one generated by Simulink R© CoderTM . Such valida-
tion process is given as an option in CoCoSim. This allows a user to validate that the compiled
code via CoCoSim conforms at least with the code generated by Simulink R© CoderTM . It
also allowed us to demonstrate that other translation tools such as sf2lus [27] do not respect
the full Stateflow semantic comparing to ours.

In our experiments, we have used a set of 77 Stateflow models 8 to evaluate the soundness
and runtime of the compilation. Fig. 8a shows the size of the different models: number of actions
is the sum of all state actions (entry, exit and during actions), condition and transition actions
in the model. Fig. 8b illustrates the amount of time the compiler took to generate first Lustre
code and then Horn clauses (used for verification). The models are given in decreasing number
of actions, we can easily observe that generation time increases with the number of actions of
the models. On average, CoCoSim takes about 1.85s to generate Lustre code. Fig. 8c shows
the times for the validation script. On average, the validation process takes about 3.35s.

6https://github.com/coco-team/regression-test
7We are working on CoCoSim v0.2 to support: external C functions call and Matlab code, Arrays, On_event

action and others.
8https://github.com/coco-team/regression-test

https://github.com/coco-team/regression-test
https://github.com/coco-team/regression-test

(a) (b) (c)

Figure 8: Runtime and validation experiments of CoCoSim.

models #
props

safe
unsafe

#
timeout

safe
(time)

unsafe
(time)

Microwave 15 15 0 0 65.51 0
NasaDockingApproach 4 3 0 1 360 0
GPCA_System_Monitor 1 1 0 0 0.64 0
GPCA_Logging 1 1 0 0 4.88 0
GPCA_Top_Level_Mode 3 3 0 0 36 0
GPCA_CONFIG 1 0 1 0 0 19.34
GPCA_INFUSION_MGR 7 5 0 2 596.51 0
GPCA_Alarm 8 0 6 2 0 281.12

Figure 9: Experimental results of safety verification on a set of use cases.

5.3 Safety verification
The second experiment was performed in order to illustrate the effectiveness of our approach
for the verification of safety properties. We have used 3 set of use cases. The first one is
a Stateflow model of a microwave that captures the modal behavior of a typical microwave
control software 9. CoCoSim were able to verify 15 properties of this model using the backend
solver Zustre [10] as the backend solving engine. The second use case is a Stateflow model that
captures the complex behavior of the Space Shuttle when docking with the International Space
Station (ISS) [26]. As the shuttle approaches the ISS, it goes through several operational modes
related to how the shuttle is to orient itself for capture, dock with the ISS, and capture the
ISS docking latch, among several other operational modes. The model describing this behavior
is quite intricate and consists of a hierarchical and parallel state machines with three levels of
hierarchy and multiple parallel state machines, including a total of 64 states. Using CoCoSim
we were able to verify 2 out of 4 safety properties.

The third use case is the Generic Patient Controlled Analgesic infusion pump system. It
consists of four main components: Alarm, Infusion, Mode and Logging. A more detailed descrip-
tion of the model can be found in [12]. Figure 9 summarizes the safety verification experimental
evaluation results using CoCoSim.

9This model is developed by Rockwell Collins

6 Conclusion

In this paper, we have described an automated technique for the formal analysis of Stateflow
models. Our approach faithfully compiles Stateflow models into hierarchical state machines, and
uses automated logic-based verification engine to decide the validity of safety properties. We
capture the compilation process using continuation-passing style (CPS) denotational semantics.
Our compilation technique preserves the structural and modal behavior of the system, making
the safety analysis of such models more tractable. We have presented a preliminary experimental
evaluation that illustrates the effectiveness of our approach in the safety verification of industrial
scale Stateflow models.

References
[1] Continuation-passing style denotational semantics for stateflow. https://github.com/ploc/

stateflow_CPS_semantics.
[2] A. Agrawal, G. Simon, and G. Karsai. Semantic translation of simulink/stateflow models to hybrid

automata using graph transformations. Electr. Notes Theor. Comput. Sci., 109:43–56, 2004.
[3] A. W. Appel. Compiling with Continuations (corr. version). Cambridge University Press, 2006.
[4] P. Boström and L. Morel. Mode-automata in simulink/stateflow. In TUCS Technical Report No

772, September 2006, 2006.
[5] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre: A declarative language for program-

ming synchronous systems. In Conference Record of the Fourteenth Annual ACM Symposium on
Principles of Programming Languages, Munich, Germany, January 21-23, 1987, pages 178–188,
1987.

[6] C. Chen, J. Sun, Y. Liu, J. S. Dong, and M. Zheng. Formal modeling and validation of stateflow
diagrams. International Journal on Software Tools for Technology Transfer, 14(6):653–671, 2012.

[7] J. Colaço, G. Hamon, and M. Pouzet. Mixing signals and modes in synchronous data-flow systems.
In Proceedings of the 6th ACM & IEEE International conference on Embedded software, EMSOFT
2006, October 22-25, 2006, Seoul, Korea, pages 73–82, 2006.

[8] J. Colaço, B. Pagano, and M. Pouzet. A conservative extension of synchronous data-flow with
state machines. In EMSOFT 2005, September 18-22, 2005, Jersey City, NJ, USA, 5th ACM
International Conference On Embedded Software, Proceedings, pages 173–182, 2005.

[9] O. Danvy. Defunctionalized interpreters for programming languages. In Proceedings of the 13th
ACM SIGPLAN International Conference on Functional Programming, ICFP ’08, pages 131–142,
New York, NY, USA, 2008. ACM.

[10] P. Garoche, A. Gurfinkel, and T. Kahsai. Synthesizing modular invariants for synchronous code.
In N. Bjørner, F. Fioravanti, A. Rybalchenko, and V. Senni, editors, Proceedings First Workshop
on Horn Clauses for Verification and Synthesis, HCVS 2014, Vienna, Austria, 17 July 2014.,
volume 169 of EPTCS, pages 19–30, 2014.

[11] P. Garoche, T. Kahsai, and X. Thirioux. Hierarchical state machines as modular horn clauses. In
Proceedings 3rd Workshop on Horn Clauses for Verification and Synthesis, HCVS@ETAPS 2016,
Eindhoven, The Netherlands, 3rd April 2016., pages 15–28, 2016.

[12] C. Group. Generic patient controlled analgesia infusion pump project. https://crysis.cs.umn.
edu/gpca.shtml.

[13] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and the verification of reactive
systems. In M. Nivat, C. Rattray, T. Rus, and G. Scollo, editors, Algebraic Methodology and Soft-
ware Technology (AMAST ’93), Proceedings of the Third International Conference on Methodology
and Software Technology, University of Twente, Enschede, The Netherlands, 21-25 June, 1993,
Workshops in Computing, pages 83–96. Springer, 1993.

https://github.com/ploc/stateflow_CPS_semantics
https://github.com/ploc/stateflow_CPS_semantics
https://crysis.cs.umn.edu/gpca.shtml
https://crysis.cs.umn.edu/gpca.shtml

[14] G. Hamon. A denotational semantics for stateflow. In EMSOFT 2005, September 18-22, 2005,
Jersey City, NJ, USA, 5th ACM International Conference On Embedded Software, Proceedings,
pages 164–172, 2005.

[15] G. Hamon and J. M. Rushby. An operational semantics for stateflow. In FASE 2004, pages
229–243, 2004.

[16] G. Hamon and J. M. Rushby. An operational semantics for stateflow. STTT, 9(5-6):447–456,
2007.

[17] T. Kahsai. CoCoSim – automated analysis framework for simulink. https://github.com/
coco-team/cocoSim.

[18] J. L. Lawall and O. Danvy. Separating stages in the continuation-passing style transformation. In
Conference Record of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Charleston, South Carolina, USA, January 1993, pages 124–136, 1993.

[19] M. Li and R. Kumar. Recursive modeling of stateflow as input/output-extended automaton. IEEE
Trans. Automation Science and Engineering, 11(4):1229–1239, 2014.

[20] Mathworks. Simulink. http://www.mathorks.com/products/simulink/.
[21] MathWorks. Simulink coder. https://www.mathworks.com/help/dsp/ug/

generate-code-from-simulink.html.
[22] MathWorks. Stateflow. http://www.mathworks.com/products/stateflow/.
[23] P. J. Pingree, E. Mikk, G. J. Holzmann, M. H. Smith, and D. Dams. Validation of mission critical

software design and implementation using model checking [spacecraft]. In Digital Avionics Systems
Conference, 2002. Proceedings. The 21st, volume 1, pages 6A4–1–6A4–12 vol.1, Oct 2002.

[24] G. D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor. Comput. Sci.,
1(2):125–159, 1975.

[25] J. Rushby. The versatile synchronous observer. In S. Iida, J. Meseguer, and K. Ogata, editors,
Specification, Algebra, and Software, A Festschrift Symposium in Honor of Kokichi Futatsugi,
volume 8373 of Lecture Notes in Computer Science, pages 110–128, Kanazawa, Japan, Apr. 2014.
Springer-Verlag.

[26] M. Sampson and V. Derevenko. Interface definition document (idd) for international space station
(iss) visiting vehicles (vvs). NASA Technical Report, 2000.

[27] N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi. Defining and translating a "safe"
subset of simulink/stateflow into lustre. In EMSOFT 2004, pages 259–268, 2004.

[28] N. K. Singh, M. Lawford, T. S. E. Maibaum, and A. Wassyng. Stateflow to tabular expressions.
In H. Q. Thang, L. A. Phuong, L. D. Raedt, Y. Deville, M. Bui, T. T. D. Linh, N. T. Oanh, D. V.
Sang, and N. B. Ngoc, editors, Proceedings of the Sixth International Symposium on Information
and Communication Technology, Hue City, Vietnam, December 3-4, 2015, pages 312–319. ACM,
2015.

[29] E. Technologies. Scade.
[30] A. Tiwari. Formal semantics and analysis methods for Simulink Stateflow models. Technical

report, SRI International, 2002. http://www.csl.sri.com/users/tiwari/html/stateflow.html.
[31] M. Westhead, S. Nadjm-tehrani, and F. H. E. U. K. Verification of embedded systems using

synchronous observers. In In Proceedings of the 4th International Conference on Formal Techniques
in Real-time and Fault-tolerant Systems, LNCS 1135, pages 405–419. Springer Verlag, 1996.

[32] M. Whalen. A parametric structural operational semantics for stateflow, uml statecharts, and
rhapsody. Technical report, UMSEC, 2010. https://www.umsec.umn.edu/sites/www.umsec.umn.
edu/files/Parametric%20SOS%202_1.pdf.

[33] Y. Yang, Y. Jiang, M. Gu, and J. Sun. Verifying simulink/stateflow model: timed automata
approach. In Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering, ASE 2016, pages 852–857, 2016.

[34] L. Zou, N. Zhan, S. Wang, and M. Fränzle. Formal verification of simulink/stateflow diagrams. In

https://github.com/coco-team/cocoSim
https://github.com/coco-team/cocoSim
http://www.mathorks.com/products/simulink/
https://www.mathworks.com/help/dsp/ug/generate-code-from-simulink.html
https://www.mathworks.com/help/dsp/ug/generate-code-from-simulink.html
http://www.mathworks.com/products/stateflow/
http://www.csl.sri.com/users/tiwari/html/stateflow.html
https://www.umsec.umn.edu/sites/www.umsec.umn.edu/files/Parametric%20SOS%202_1.pdf
https://www.umsec.umn.edu/sites/www.umsec.umn.edu/files/Parametric%20SOS%202_1.pdf

B. Finkbeiner, G. Pu, and L. Zhang, editors, Automated Technology for Verification and Analysis
- 13th International Symposium, ATVA 2015, volume 9364 of Lecture Notes in Computer Science,
pages 464–481. Springer, 2015.

A Semantics of stopwatch example
We illustrate here the output of the stopwatch example as defined in Figures 1 and 2 when used
with our Ocaml interpreter.

Interpreter. When provided with a simple sequence of events [NO_EV ENT ;START ;TIC],
it produces the following changes of active states. Note that a first step without provided event
setup the model in its initial active state. We call ./sf_sem -model stopwatch -eval 2
###1
main -> false
main.run -> false
main.run.lap -> false
main.run.running -> false
main.stop -> false
main.stop.lap_stop -> false
main.stop.reset -> false

###2
– Event none –
– no action performed –

main -> true
main.stop -> true
main.stop.reset -> true

###3
– Event START –
– no action performed –
main.run -> true
main.run.lap -> false
main.run.running -> true
main.stop -> false
main.stop.reset -> false

###4
– Event TIC –
– action performed –
cent+=1
cent==100
cont=0;sec+=1
sec==60
sec=0; min+=1
disp=(cent,sec,min)

« no state changed »

Code generator. We can also produce imperative-like code using the instianciation of Fig-
ure 3b. In our prototype, the modularity is tuned at three different levels: (i) no modu-
larity at all, generating about 600 lines of code; (ii) modular with respect to Sd, ie. for
each state of the automaton, generating about 270 lines of code including seven functions fo-
cused on each state behavior; (iii) last, modular for each element: entry, during, exit actions,
generating about 328 including 23 functions for each set of actions: entry, during or exit ac-
tion of each state. We present here an excerpt of the code obtained with the second option:
./sf_sem -model stopwatch -modular 1 -gen_imp
principal =
if Active(main) then <CallD(main)>
else <Open(main)>;

if true then <Open(main.stop)>;
if true then <Open(main.stop.reset)

>
else bot

endif
else bot

endif
endif
...
component CallD(main.stop.reset) =
begin

if Event(START) then

if Active(main.stop.reset)
then <Close(main.stop.reset)>
else if Active(main.stop.lap_stop)

then <Close(main.stop.lap_stop
)>

else <Nil > endif
endif;
<Close(main.stop) >;
<Open(main.run)>;
<Open(main.run.running)>

else if Event(LAP) then <reset
counter >

else <Nil > endif
endif

end

The generation of Lustre is even more verbose: 2713 loc for inline calls, 1154 loc for state
modular Lustre generation and 1132 with the fully modular model. We do not present here
such generated code but refer the reader for the tool website to evaluate it. The generated is
compatible with our tool LustreC and therefore can be used either to generate embeddable C
code or to perform model-checking analyzes with our tool Zustre.

	Introduction
	Denotational Semantics for Stateflow
	CPS Denotational Semantics for Stateflow
	Comparison with Hamon's denotational semantics

	Modular code generation for Stateflow
	Stateflow models as Lustre automata
	Experimental evaluation
	CoCoSim
	Experimental evaluation
	Safety verification

	Conclusion
	Semantics of stopwatch example

