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Abstract: Accurate analysis and interpretation of stained biopsy images is a crucial step in the cancer diagnostic rou-

tine which is mainly done manually by expert pathologists. The recent progress of digital pathology gives

us a challenging opportunity to automatically process these complex image data in order to retrieve essential

information and to study tissue elements and structures. This paper addresses the task of tissue-level segmen-

tation in intermediate resolution of histopathological breast cancer images. Firstly, we present a new medical

dataset we developed which is composed of hematoxylin and eosin stained whole-slide images wherein all 7

tissues were labeled by hand and validated by expert pathologist. Then, with this unique dataset, we proposed

an automatic end-to-end framework using deep neural network for tissue-level segmentation. Moreover, we

provide a deep analysis of the framework settings that can be used in similar task by the scientific community.

1 INTRODUCTION

Cancer is still a leading cause of death worldwide.

When a suspicious lesion is detected in the breast

during a physical examination or a mammogram, ad-

ditional tests are needed to determine whether it is

a cancer or not and, if so, which kind of cancer it

is. During biopsy, pathologists examine histological

structures in order to provide an accurate diagnosis

and several prognostic clues. Practically, pathologists

need not only to observe the entire tissue slide at low

magnification but also to navigate through different

resolutions to be able to combine architectural and cy-

tological information in order to produce their medi-

cal diagnosis. This process requires a lot of time and

concentration and can be hampered by some inter and

intra-individual variability (Loukas, 2013).

Latest technological advances in whole slide

imaging and the availability of considerable computa-

tional power have enabled digitizing pathology slides

at microscopic resolution. This process makes pos-

sible the evaluation of breast cancer stained sections

helped by computer vision. These approaches can

guide some of the diagnostic routine tasks in order

to assist pathologists in the medical decision-making

process. This assistance can reduce the workload of

the experts by saving time, reducing costs and, most

importantly, improving diagnostic (Cruz-Roa et al.,

; Janowczyk and Madabhushi, 2016). e In the con-

text of breast cancer, several machine learning algo-

rithms have been developed and applied to increase

the effectiveness in pathological tasks. For instance,

researchers have proposed methods to detect nuclei,

mitosis (Janowczyk and Madabhushi, 2016) and lym-

phocytes (Janowczyk and Madabhushi, 2016). These

previous studies show several limitations that we ad-

dress in this work. First, images used in the cited

approaches are only small samples of breast cancer

or Tissue Micro Arrays (TMA) histological images

at full resolution (Beck et al., 2011). Each image

captures only a small sample of the full tumor ex-

tend, which is not representative of the whole slides

images (WSIs) used in routine diagnostic pathology

This problem has partially been addressed by dis-

tinguishing tumor-patches from non-tumor-patches

(Wang et al., 2016).

Another limitation is that related work studies

consider two categories of tissue only (tumor and non

tumor) which is not representative of the complex

structure of histological images. A typical section of



solid tumor is a very heterogeneous structure. Also

a single sub-type of breast cancer carcinoma which

is Invasive carcinoma (IC) (Cruz-Roa et al., ). Previ-

ous studies do not take into account the non-invasive

breast cancer type called ”in situ carcinoma” despite

its frequency (20 to 25% of newly diagnosed breast

cancers). Reporting the presence of both invasive

and/or in situ carcinoma is a challenging part of a di-

agnostic pathology workup since there is a significant

difference of treatment options of the disease.

There are very few whole slide breast cancer

datasets with pixel-level annotations. Regarding

breast cancer pathological dataset Spanhol et al in-

troduced The Breast Cancer Histopathological Im-

age Classification (BreakHis) wich is composed of

2,480 benign and 5,429 malignant samples of mi-

croscopic images of breast tumor tissue (Spanhol

et al., ). However, these two categories of tissues

are not enough because it does not reflect the com-

plexity of tissue diversity. To tackle this shortcoming,

Grand Challenge on Breast Cancer Histology Images

(BACH) had launched an annotated Whole-slide im-

ages dataset (Aresta et al., 2018). The organization

provided 10 pixel-wise annotated regions for the be-

nign, in situ and invasive carcinoma classes present

in a entire sampled tissue which represent a partially

annotated masks.

In recent years, deep learning models, especially

convolutional neural networks (CNNs) (LeCun et al.,

) have emerged as a new and more powerful model

for automatic segmentation of pathological images.

The power of a CNN based model lies in its deep

architecture which allows for learning relevant fea-

tures at lower levels of abstraction. (Hou et al., 2016)

proposed a patch-based CNN and to train a decision

fusion model as a two-level model: patch-based and

image-based model to classify WSIs into tumor sub-

types and grades. Chen et al. proposed an encoder-

decoder architecture to gland segmentation in benign

and malignant (Chen et al., 2016a). Cruz et al. pre-

sented a classification approach for detecting pres-

ence and extent of invasive breast cancer on WSIs us-

ing a ConvNet classifier (Cruz-Roa et al., ).

The greatest challenge in the medical imaging do-

main especially in pathology is to deal with small

datasets and limited amount of annotated samples,

especially when employing supervised convolutional

learning algorithms that require large amounts of la-

beled data for the training process. Previous studies

that investigated the problem of breast cancer patho-

logical images analysis, did not provide a proper

quantitative and qualitative parameters evaluation for

training deep CNN from scratch with few annotated

samples only.

Contributions

The contribution of this paper is two folds: first since

there is no publicly available annotated data for this

task we developed a new dataset; second we con-

ducted a set of experiments to evaluated several CNN

architectures and settings on that new type of data.

More precisely, we:

• developped a new dataset of WSIs with different

subtypes of breast cancer. The data set consists in

11 whole-slide images fully annotated.

• proposed a fully automatic framework. We ap-

plied machine learning algorithms to extract the

predictive model, and more precisely, we applied

and adapted a patch-based deep learning approach

on our new dataset. While our model relies on ex-

isting architectures (SegNet (Badrinarayanan and

Kendall, 2017), U-Net (Ronneberger et al., ), FCN

(Long et al., 2015) and DeepLab (Chen et al.,

2016b)), the originality of our work resides in a

deep analysis of the parameters of the model.

• conducted several experiments to evaluate the set-

tings of each step of the proposed framework in

order to get the optimal set of parameters when

dealing with this new data for a tissue-level seg-

mentation task.

The paper is organized as follows: in Section 2, we

present the new data set that we built. Section 3

presents the framework we developed as well as an

overview of the experiments and evaluation measures.

Section 4 presents the details of the experiments and

their results. Section 5 provides the main recommen-

dations related to the influence of the model parame-

ters.Section 6 concludes this paper and discusses fu-

ture work.

2 NEW ANNOTATED DATASET

This work involved anonymized breast cancer

slides from the archives of the pathology depart-

ment of the Toulouse University Cancer Institute.

The breast cancer images waere acquired with a

Panoramic Digital Slide Scanners 3DHISTECH. This

selection was reviewed by an expert pathologist to

confirm the presence of at least one of the two cited

categories of carcinoma considered in this study.

To describe the complexity of the tissue structures

present in the image of breast cancer, the pathologist

selected seven relevant types of tissue which are iden-

tified and analyzed during the biopsy routine of breast

cancer pathology (Table. 1). To alleviate the bur-

den of manual annotation and save time and effort for



Table 1: Tissues categories characteristics and correspond-
ing average area present in the dataset.

Tissue label Avg. area Tissue description

Invasive car-

cinoma (IC)

8.11% (±
7.2%)

carcinoma that

spreads outside the

ducts and invade the

surrounding breast

tissue.

Ductal Carci-

noma In situ

(DCIS)

0.75%

(±1.89%)

carcinoma confined

to the ducts.

Benign

epithelium

1.77%

(±1.9%)

non-malignant

lesions in the tissue.

Simple

stroma

18.57%

(±8.58%)

homogeneous com-

position, includes

tumor stroma and

fibrosis

Complex

stroma

8.57%

(±6.2%)

heterogeneous com-

position, a mixture of

fibrous and adipose

tissue

Adipose tis-

sue

21.5%

(±11.31%)

monotonous tis-

sue, comprised

mostly of adipocytes,

fat-storing cells.

Artifacts 1.15%

(±1.09%)

random noise due to

the staining proce-

dure and folds of tis-

sue slices

Background 43.96%

(±8.53%)

absence of tissue

the pathologist to produce ground truth masks, firstly

the annotation of the whole images was performed

by a non-expert with basic knowledge of the breast

cancer histology. During this process, super-pixels

were created using the multi-resolution segmentation

function provided by the image analysis environment

Definiens Developer XD software, and often, there

was manual intervention to modify the shape of the

super-pixels in order to obtain an annotation as accu-

rate as possible. Then, each super-pixel was manually

labeled with the corresponding type of tissue. After-

wards, an expert pathologist validated and corrected

the wrongly classified tissues to finally produce the

ground truth multi-class masks (Figure. 1). We ob-

tained 11 whole-slide images which have been val-

idated by an expert pathologist. It should be noted

that 6 hours are required to annotate an entire breast

cancer slide with 7+Background classes and about 2

hours for validation, which underlines the tedious and

time-costly nature of this task.

figures/Annotations.png

Invasive carsinoma Carsinoma In situ Begnin

epithelum Simple stroma Complex stroma

Adipose tissue Background

Figure 1: (A) is an example of whole-slide pathological im-
age (I1) from the dataset and (B) is its respective manual
annotation provided by an expert pathologist.

3 A FRAMEWORK FOR TISSUE

SEGMENTATION

3.1 Overview of the framework

The breast cancer segmentation approach we devel-

oped adopts an end-to-end convolutional neural net-

work framework (Figure. 2). In this paper, we have

implemented a machine learning workflow for multi-

class segmentation applied on new WSI images which

can be divided into several steps:

1. Pre-processing: all images are normalized to re-

duce the color variability within the dataset.

2. Learning: patches are randomly extracted from

each image of the training dataset and injected

into the network adapted for multi-class semantic

segmentation.

3. Prediction and reconstruction: After a close ex-

amination of the networks behaviour, we observed

that the accuracy at the border area is not pre-

cise compared to the central area of the patches.

To overcome this problem, we decided that the

test image is downsampled by sliding windows

with a fixed stride. Then, we reassemble all over-

lapped predicted patches by applying a pixel-wise

argmax over all the classes probabilities to obtain

the whole predicted mask.

4. Evaluation: in order to understand and optimize

each step of the framework, we evaluated the out-

come of the framework using segmentation met-

rics.

In section 4, we re-evaluate each step and their associ-

ated parameters in order to characterize this complex

medical task.

3.2 Network architectures

Inspired from the work of (Long et al., 2015), many

recent studies have shown the effectiveness of fully

convolutional neural networks FCN for this task.

As one of the most popular pixel-level classification

method, the DeepLab models make use of the fully

connected conditional random fields CRF as a post-

treatment step in their work-flow to refine the seg-

mentation result. Deeplab model overcomes the poor



Figure 2: Workflow of the training and test phases of CNN classifiers for breast cancer image segmentation.

localization property of deep networks by combin-

ing the responses at the final FCN layer with a CRF.

Introducing skip connections has been shown to im-

prove spatial recovery in the decoding features pro-

cess, and assists with gradient flow to decoder path.

The segmentation network SegNet architecture uses

these maxpooling connections to gradually recover

the feature details and size thanks to its symmetrical

architecture. The well-known U-shaped network U-

Net features several steps of downsampling convolu-

tions, followed by upsampling deconvolution layers.

Unlike SegNet, whole feature maps from each down-

sampling layer are passed across the intermediate lay-

ers and concatenated with corresponding upsampling

layers.

3.3 Expriments setup

Evaluation metrics We evaluate the performance

of the evaluated models by measuring the overlap be-

tween automated and manual segmentation. We use

the two following segmentation metrics: the Dice co-

efficient (DC), also called the overlap F1-score, and

the Jaccard index (JI). Global metrics are not always

adequate evaluation measures when class occurrences

are unbalanced, which is the case in most of the medi-

cal applications, since they are biased by the dominant

class(es). To avoid this, the metrics above are usually

evaluated per-class and their result is averaged over

the number of labeled classes.

Training and implementation details All experi-

ments were performed using Keras with tensorflow

backend. We used same-padding in convolutional

layers in all evaluated architectures so output chan-

nels have the same dimensions as the input. We

also used rectified linear units (ReLUs) as activation

function. To reduce the number of parameters and

speed up training, instead of the last fully connected

layer we used a convolutional layer, with the number

of feature maps equal to the number of predicted

classes for the loss function based on the cross

entropy.

In every evaluation, we considered up to 9 images

for the training with a 20% separate validation split.

We used the remaining 2 images to evaluate the

models. We kept these sets of images all along this

study so we could compare our models. Each model

was optimized by Adam (Kingma et al., 2014) for a

pre-determined number of iterations fixed arbitrarily

to 10, a batch size of 5 and exponential decaying

learning rate initialized at 1e5. Both classifiers were

trained from scratch.

4 PARAMETERS SETTINGS

For each step of the workflow, we evaluate the pa-

rameters and answer the challenging questions we en-

counter when we started to deal with the new data (see

Figure 2). For our experiments, our review of the lit-

erature convinced us to explore and evaluate two of

the cited above CNN models : U-Net and SegNet.

4.1 Variability of H&E stained images

Is a normalization step necessary ? Previous work

(Vahadane et al., 2016; Macenko et al., ; Sethi et al., )

has shown that the standardization of colors brings a



clear improvement in the results of image segmenta-

tion and proposed color normalization algorithms that

standardize image appearance in order to minimize

variability and undesirable artifacts within the im-

age. As a pre-processing step, we applied two of the

most used normalizations on pathological data: Ma-

cenko normalization, and Vahadane normalization.

We chose these approaches because initial empiri-

cal results showed Macenko-normalized images ob-

tained high discrimination between the two sub-types

of cancer classes whereas Vahadane-normalized im-

ages showed high differentiation between the epithe-

lium and non-epithelium classes. One stained image

in our dataset was chosen by an expert according to

the quality of its coloring to be a target image and

we normalized the other images into its color appear-

ance. After evaluation of the prediction, we observed

that both normalizations slightly improve the results,

specifically the epithelium regions (Table 2).

Does a large spectrum of colors contribute or mis-

lead the learning process ? Because of the con-

trast that appears more strongly in the grayscale, we

wanted to evaluate how well the H&E grayscale im-

ages can improve the performance of our model.

Because gray levels can facilitate the differentiation

of epithelium tissue structures from non-epithelium

structures . However, based on our experiments (Ta-

ble 2), we found that our framework improves the

identification of tissues more on raw RGB normalized

images than on grayscale images. The reason could

be that grayscale images miss some relevant informa-

tion that might be helpful for discriminating between

different tissues with similar nuclei distribution, for

example invasive and in situ classes.

What is the minimum of necessary H&E images to

represent the diversity of the characterized tissues

? In this section, we answer the following question:

what the minimum amount of data to solve a semantic

segmentation problem by training CNN from scratch

is ? This crucial question was not explored in the re-

cent deep learning based medical image studies and

in particular in image pathology publications. To ad-

dress this question, we evaluated both, SegNet and

U-Net, by varying the number of training images and

randomly picking images from our dataset for each

run. During the training phase, we observed two dif-

ferent behaviors: a consistent DC improvement for

SegNet, as the number of training images increases

whereas U-Net seems to converge faster (see Figure.

3). On the opposite, during the prediction evaluation

on WSIs, SegNet converges very fast to the almost

optimal result, whereas U-Net needs at least 6 images

Figure 3: Comparison of different number of images on
SegNet and U-Net model during the training phase and the
prediction evaluation

to get there. The main conclusion of this observa-

tion which can be applied to any dataset for probably

various domains, reveals the importance of the cho-

sen model according to the number of inputs which is

consistent with results of similar work (Ronneberger

et al., ). In this study we decided to keep SegNet as the

optimal model as the baseline for other experiments

considering that it gives better results after a training

phase on 9 images.

4.2 Optimal tilling for large images

How much data augmentation improves the learn-

ing process ? In a segmentation learning task,

data augmentation consists of applying various im-

age transformations simultaneously on the raw im-

ages and the validated images. In order to preserve

breast tissue characteristics we avoided transforma-

tions that cause texture deformation (like shearing,

mirroring). H&E images are obviously invariant by

rotation, and thus we first considered the rotation

transformation. In this paper, we applied a slightly

different method in this study which consists in simul-

taneously extract and rotate the original sample at ran-

dom angles. This method allows rotation-invariance

and prevents over-fitting of the model. We evaluated

the impact of this rotation augmentation method and

we did not observe any improvement during the train-

ing (DC=0.706 with rotation and DC=0.703 without).

However, when evaluating the 2 test WSIs, the im-

provement using the data augmentation based on ro-

tation is very important (DC=0.876 with rotation and



Table 2: Quantitative comparison of 3 normalization methods applied on two test H&E images: Original (not normalized),
Grayscale, Macenko and Vahadane normaizations. This table represents the pixel-wise evaluation per class and global in
terms of DC and JI.

Tissues
Original Greyscale Macenko Vahadane
JI DC JI DC JI DC JI DC

IC 0.28 0.43 0.26 0.41 0.37 0.55 0.35 0.51

DCIS 0.12 0.10 0.0 0.0 0.0 0.12 0.07 0.1

Begnin epi 0.21 0.34 0.05 0.07 0.20 0.32 0.22 0.33

Stroma 0.76 0.86 0.71 0.83 0.79 0.88 0.79 0.88

Complex stroma 0.33 0.5 0.28 0.43 0.29 0.45 0.32 0.48

Adipose 0.74 0.85 0.74 0.85 0.75 0.86 0.76 0.86

Artifacts 0.25 0.39 0.19 0.33 0.30 0.45 0.28 0.43

Background 0.95 0.97 0.95 0.97 0.96 0.97 0.96 0.97

Global 0.74 0.85 0.73 0.84 0.77 0.87 0.78 0.88

Table 3: Dice Coefficicent(DC) evaluation per tissue for 2 test images (I1 & I2) with 9 training images using four different
segmentation neural networks.

Tissues

U-Net SegNet FCN DeepLab

I1 I2 I1 I2 I1 I2 I1 I2

DC DC DC DC DC DC DC DC

IC 0.72 0.39 0.57 0.43 0.66 0.33 0.65 0.39

DCIS 0.02 0.0 0.13 0.0 0.07 0.0 0.01 0.07

Begnin epi 0.51 0.11 0.53 0.16 0.50 0.10 0.54 0.19

Simple stroma 0.84 0.90 0.85 0.90 0.83 0.89 0.85 0.90

Complex stroma 0.41 0.58 0.40 0.53 0.32 0.57 0.37 0.55

Adipose 0.88 0.81 0.88 0.85 0.87 0.82 0.87 0.82

Artifacts 0.41 0.30 0.42 0.51 0.13 0.24 0.40 0.48

Global 0.86 0.86 0.87 0.88 0.86 0.86 0.86 0.87

DC=0.433 without). Secondly, we applied elastic de-

formations (Simard et al., 2003) to the original ex-

tracted training samples. We chose this particular

type of deformation because it seemed to be the most

adequate to represent the natural variation of texture

among the tissues. Due to the large number of patches

(Np =5000) extracted from the raw images, we ob-

served that elastic deformation did not improve the

learning process either during the training phase or

the prediction evaluation. This study confirms the

importance of an appropriate data augmentation ap-

proach, and considering the large dimension of our

WSIs, the overlap of patches extracted from each im-

age combine with rotation is sufficient for data aug-

mentation.

What the minimum amount of labeled data is?

We evaluated two correlated parameters which are

the size Sp and the number Np of randomly extracted

patches per WSI. Regarding the size of patches, we

looked at a large range from 96 to 384 pixels, using

R as a ratio where Sp = 96 ∗R with R ∈ {1,2,3,4}.

Figure. 4 shows the train and prediction DC of our

2 chosen networks. Obviously, both models demon-

strate different behavior when Sp and Np vary. Seg-

Net shows a constant increase of training curve be-

cause its architecture includes batch normalization.

But, starting fromNp = 2500, the DC remains con-

stant. A larger random samples could lead to a lot

of redundancy due to overlapping patches. Secondly,

there is a trade-off between localization accuracy and

the use of context. Larger patches require more max-

pooling layers that reduce the localization accuracy,

while small patches allow the network to see more

details but only little context.

5 RESULTS

Among the 11 WSIs in our data set, we choose

two representative WSIs for test (Figure. 1) to eval-

uate the final prediction performance of our frame-

work. Table 3 shows global as well as class-wise

performance on the test images of the four networks

predictions for the 8 classes as presented in Section

3. Even if the global score of the entire images do

not vary much, SegNet slightly outperforms the other

networks. Thus, giving the diversity and the num-

ber of tissue categories, it is more interesting to ana-

lyze the classes-wise metrics (Table 3) to capture the



Figure 4: The train accuracy over number of training samples per image and sample size of two classifiers: (a) U-Net and (b)
SegNet.

difference between the evaluated models. The class-

wise accuracy clearly shows that larger classes have

reasonable accuracy and smaller classes have lower

accuracy. Epithelium classes and, in particular, the

two carcinoma subtypes are more challenging for the

models to segment than the non-epithelium classes,

many of which occupy a small part of the whole im-

age and appear infrequently as shown in Figure. 4. It

is important to emphasize that U-Net displays better

performance on invasive carcinoma IC where SegNet

was surpassed by 15%, FCN by 8% and DeepLab by

9% respectively in terms of DC score.

Visual results Figure 5 shows the visual results

of our framework with optimal setting using the four

models. Even if we examined two test images with

roughly equal DC and JI scores, we obtained different

segmentation qualities.

6 CONCLUSIONS & DISCUSSION

We proposed an end-to-end framework for a med-
ical multi-classes segmentation task. We first intro-
duced a dataset of 11 H&E stained breast cancer im-
ages captured at intermediate resolution (20x mag-
nification). We annotated WSIs into 7 tissues plus
background categories that an expert pathologist de-
termined important for the medical task. We pro-
posed a deep analysis of network settings for image
segmentation in order to determine the optimal con-
figuration that can be used in similar task. The final
results was evaluated using pixel-wise metrics. Re-
sults of U-Net, SegNet, FCN and DeepLab got com-
parable scores with DC of 0.86, 0.87, 0.86 and 0.86
respectively. The current study retains several limita-
tions that we want to address in future work: Epithe-
lium classes and artifacts remains a challenge to be
detected due to the huge tissue variability among the
WSIs. This may be improved with larger datasets and
class distribution aware labeling training techniques.
A reason for poor performance of carcinoma classes
prediction could lie in the encoder-decoder architec-
ture. More network architectures that capture the ep-

ithelium details may improve the segmentation per-
formance. A new metric is necessary to reflect the
medical information since the classical metrics cap-
ture the detection quality without taking into account
the importance of some classes over the others.

REFERENCES
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