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Abstract—Vehicles in urban city are equipped with more and
more sensing units, which brings about great potentials to the
intelligent and green city traffic management. In this paper
we propose a filter-based framework called FERA (Filter-based
Efficient Request Answering) that combines the concept of fog
computing and vehicular sensing. FERA combines the pull/push
strategies to adaptively and efficiently gather the requested data
in vehicular ad hoc networks. Filters are adopted to control
the passage or blockage of the data readings, and requests are
directed down to edge nodes or ordinary nodes to further search
the requested data. FERA sets and adjusts filters according
to their ratio of cost between the push and the pull methods,
which effectively pushes the matched data readings upward and
blocks the unmatched data readings, saving a large number of
message transmissions. Experiments based on real-world road
network demonstrate the effectiveness of the proposed scheme in
vehicular sensing applications. Up to 85% of the requests could
be successfully processed in the proposed scheme, which is better
than existing schemes while at the same time with a relatively
low transmission cost.

Index Terms—push/pull, request answering, filters, edge com-
puting, VANET

I. INTRODUCTION

Vehicular nodes are equipped with more and more sensing

units, and large amount of sensing data such as GPS locations,

speeds, video clips, and so on are generated [1]. These data

are shared or uploaded as an input for applications aiming

at more intelligent transportation, emergency response, and

reducing pollution and fuel consumption [2], [3]. This has

led to the emergence of a new kind of system, i.e. the

Vehicular Ad-hoc Sensing System [4], [5]. Vehicles traveling

along roads exchange information with encountered vehicles

or nodes through V2V(vehicle to vehicle) or V2I (vehicle to

infrastructure) communications, and data can be disseminated
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and reach a far distance by using moving vehicles as interme-

diates, following multi-hop routing protocols. Recently, IEEE

802 committee defined wireless communication standard IEEE

802.11p [6] that serves specifically for V2I communication.

The Federal Communications Commission has allocated 75

MHz of bandwidth, which operates on 5.9 GHz channel for

short range communications.

One key and challenging issue in VANET is the vehicular

sensing and data gathering. On one hand, vehicular nodes are

limited to road topology while moving, and under various road

conditions and high moving speed the network usually suffers

rapid topology and density changes. On the other hand, The

vehicular sensed data is in large amount and characterized as

continuous generation. The sensed data should be filtered and

preprocessed before being shared or uploaded. Data filtering

and query processing technologies tailored to the VANET

environment are highly needed. Generally speaking, there are

two strategies to gather data: the push and the pull model,

which are similar to those considered in the field of distributed

and mobile databases. In a push model, each vehicle senses the

data and proactively uploads data to a central server through

V2V or V2I communications, and requests or queries are

directed to the server to fetch the requests [7]–[9]. The push

model incurs larger overheads when duplicate messages or

irrelevant data are pushed. In a pull model, a query is issued

from a node or the cloud [10], [11]. Vehicles are able to

resolve, route, and process those queries, and finally route

back the query result to the query requester. Pull-based model

provides more flexibility in terms of the types of queries

[12], which could in principle be diffused far away to retrieve

remote data. There are three steps in the query processing: 1)

query requester diffuses the request to different data sources,

either directly or by using multi-hop relaying techniques, 2)

each node that receives the request computes a partial result

based on its local data, and 3) the nodes deliver the result to

the requester. However, most of existing pull-based schemes
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assume no fixed data server available in the VANET, and only

the resource of the in-network vehicular nodes is considered

[11]–[13]. Inevitably, those approaches incur relatively large

delays, especially in the VANET environment. The delay,

on the other hand, would result in the failures of query

result deliveries because vehicular nodes would move to other

locations during that period of time.

This paper aims to propose an adaptive and efficient data

gathering system based on the pull/push request answering

model. Specially, the concept of fog/edge computing and

vehicular sensing are adopted for the system design. Fog

computing extends the traditional cloud computing paradigm

to the edge of networks [5], [8], [14], where fog nodes are a

new kind of nodes that are capable of carrying out a substantial

amount of storage (rather than storing primarily in cloud

data centers), communication (rather than routing over the

internet backbone), control, configuration, measurement and

management. Fog nodes, also called edge nodes, are able to

gather and maintain metadata about the network, requests, and

vehicles. These gathered metadata are then used to generate

filters that adaptively control the passages of data readings and

requests, pruning unnecessary data transmissions. The main

contributions of this paper are as follows:

1) We propose a filter-based framework called FERA

(Filter-based Efficient Request Answering) that com-

bines the pull/push strategies to adaptively and effi-

ciently process the requests in VANET. Data readings

that could pass through the filters are forwarded to

higher layers, and those blocked are stored at the current

layer. Requests are forwarded up to edge nodes and the

cloud to extract matched data. If a request is satisfied,

the results will be forwarded back to the source of the

request. If a request is unsatisfied, i.e. it does not find any

matched data, it will be directed and forwarded down

to edge nodes and ordinary nodes to further search the

requested data.

2) We conduct experiments based on simulations to demon-

strate the effectiveness of the proposed scheme in ve-

hicular sensing and request answering applications. Up

to 85% of the queries could be successfully processed

in the proposed scheme, which is higher than existing

query schemes and at the same time with a relatively

low transmission cost.

The rest of the paper is structured as follows. Section II

describes the related work; section III introduces some prelim-

inaries and defines the filters and the network model; section

IV presents the overall procedures and cost analysis of the

request answering framework; section V describes the details

of updating filters; section VI describes the environmental

setup and analyzes the simulation results; finally, section VII

concludes the paper.

II. RELATED WORK

Vehicles could be viewed as powerful mobile sensors, and

numerous recent research works in vehicular networks have

addressed the problem of data gathering or request answering.

In this section we review three categories of related works to

position our work in the research community.

The solutions of queries and request answering could

roughly be categorised into three types: the push based, the

pull based, and the pull/push based. Push means to install

conditions within the network and trigger data transmission

when these conditions are met. Lee et al. [7] proposed the

MobEyes system for proactive urban monitoring. The system

exploits the vehicle mobility to opportunistically diffuse con-

cise summaries of the sensed data, harvests these summaries,

and builds a low-cost distributed index of the stored data

to support various applications. Palazzi et al. [9] proposed

a delay-bounded vehicular data gathering approach, which

exploits the time interval to harvest data from the region

of interest satisfying specified time constraints, and properly

alternates the data muling and multi-hop forwarding strategies.

Muhammad et al. [15] proposed a proactive data dissemination

scheme for pushing critical content to one-hop neighbours in

VANET. It treated content categorically and allowed pushing

of content when necessary.

Pull means to have the data requester or query requester

to request particular data, where the query processing belongs

to this type. Mehul et al. [10] proposed the PeopleNet that

relies on the existence of a fixed network infrastructure to

send a query to an area that may contain relevant information,

and extract the query results. Abadi et al. [16] proposed the

REED framework in wireless sensor networks, which is based

on the TinyDB to store filter conditions in tables, and then

distribute those tables throughout the network to extract the

query results. Lee et al. [11] proposed a mobility assisted

query dissemination scheme called FleaNet, where the node

that submitted the query periodically advertises it only to

its one-hop neighbors, which will see if they can provide

some answers from information stored on their local storage.

Similar to FleaNet, Zhang et al. [13] proposed a content

sharing scheme called Roadcast, where a vehicular queries

other encountered vehicles on the way. The keyword-based

queries are submitted by the users and the scheme tries to

return the most popular content relevant to the query. The

researches use a “delay tolerant” strategy to handle the pull-

alike requests, they can not meet the time requirements at

streaming environment.

The push and pull strategy is to strike a balance between the

two strategies to achieve better efficiency. It is first introduced

in the area of wireless sensor network [16]–[18]. Adam [17]

presented an overview of sensor network query processing and

characterized it in the context of push versus pull techniques

for data extraction. Lai et al. [19] proposed a partition-

based algorithm for the external join processing in sensor

networks. It organizes the sensory data of the network through

an optimized “value-to-storage” mapping/filter, through which

tuples can choose their joining point that incurs the least

communication cost. Delot et al. [12] proposed the GeoVanet

scheme, where data readings are pushed to a DHT-based fixed

geographical locations that allow the user to retrieve his/her

results in a bounded time.



Most of the above push/pull schemes work in a two tier

static sensor networks. Their main focuses are on the routing

and message forwarding mechanisms. And filters are usually

assumed to be static and not adaptive, which downgrades

their performances. The proposed scheme has three layers in

VANET, and adaptively adjusts the states of filters according to

the cost ratio to achieve better performance. The most related

work is the CEB architecture (Cloud, Edge and Beneath)

proposed by Yi et al. [20], which adopts the concept of

optimal push/pull envelope to dynamically adjust the base

push and pull rates for each sensor. However, CEB solely

adjusts the push/pull based on the setting of data rates that are

assumed prerequisite knowledge. On the contrary, in this paper

we mainly focus on the design and setting of filters, which

captures and reflects the pattern of match between requests

and data readings.

III. PRELIMINARIES

A. Requests and Data

We assume a three layered VANET consisting of ordinary

nodes, the edge nodes and the cloud. Each vehicle, vi,
monitors the road condition and surrounding environment

through periodical sensing. Edge nodes provide storage and

networking services between the vehicular nodes and the

cloud. Data readings at ordinary nodes are denoted as data
(s, t, d), where s is the source node, t is the timestamp of the

data, d = 〈d1, ..., dK〉 is a K-dimensional data reading. Data

requests are submitted by users to get desired results. Without

loss of generality, we assume requests are only issued from

the vehicular nodes, and a request is denoted as req(s, t, f,Γ),
where s is the source node that generates the request, t is

the time when request is issued, f is a filter describing the

requested data, and Γ is the time interval of the requested

data. On one hand, vehicular nodes push their readings to

the edge nodes, and the edge nodes would further push some

of the readings to the cloud to answer requests quickly and

efficiently. On the other hand, the requests are forwarded to

edge nodes and the cloud, and then forwarded down to the

edge nodes or ordinary nodes to pull the matched data.

B. Filter

In this research, filters are assumed to be metadata that

describe the ranges of data dimensions. A basic filter is

denoted by f(a1, a2, ..., aK), where ai is the value range

or set of elements at the ith dimension. ai is either a value

range when dimension di is continuous, or a set of elements

when dimension di is categorical. A reading data(s, t, 〈d1, d2,
..., dK〉) is compatible to filter f(a1, a2, ..., aK) if the follow-

ing conditions are satisfied:

di ∈ ai, i = 1, 2, ..,K (1)

denoted as f(data) = true. Data readings are routed to their

compatible filters, and the states of filters determine whether

these readings could pass through or not. A basic filter has two

states: “open” and “close”. If the filter is at “open” state, the

data compatible to this filter would pass through the filter, else
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Fig. 1. Flow of requests, data, and results in request answering, where the
thickness of lines indicates the amount of requests or data.

the data would be blocked. A reading data(s, t, d) answers

request req (s, t, f,Γ), denoted by match(req, data) = true,

if condition f(req.f, data) = true holds.

C. Sliding Window

Requests and data arrive sequentially in a streaming en-

vironment. In this study we maintain a sliding window to

process the data requests within a time interval Γ. Window

W is denoted by 〈t1, t2, .., tm〉, where ti is the ith time slot.

The set of requests and data within W are denoted by R and

D respectively.

Requests and data readings are matched within W to extract

the requested data, where R ⋉D denotes the set of matched

requests, and D ⋉R denotes the set of matched data:

R⋉D = {r|r ∈ R, ∃d ∈ D s.t. match(r, d) = true} (2)

D ⋉R = {d|d ∈ D, ∃r ∈ R s.t. match(r, d) = true} (3)

IV. FILTER-BASED EFFICIENT REQUEST ANSWERING

There are three layers in VANET: the ordinary nodes, the

edge nodes, and the cloud. Filters are installed on ordinary

nodes and the edge nodes to suppress unnecessary push of

data readings.

Fig. 1 depicts the request answering procedures based on

the pull/push strategy. On one hand, vehicular nodes push their

readings to the edge nodes. Those that could pass through the

filters are forwarded to higher layer, and those that are blocked

are stored at the current layer. On the other hand, requests are

forwarded to edge nodes and the cloud to extract the matched

data. If a request is satisfied, i.e. finding its matched data,

it will be stopped at the layer and the requested results are

forwarded back to the source node of the request. If a request

does not find its matched data, it will be forwarded down to the

edge nodes and ordinary nodes to further query the requested

data. The thickness of lines in Fig. 1 indicates the amount of

requests or data.

In this section we present the overall description and cost

analysis of the request answering framework, and in the next

sections we will discuss the update mechanisms of filters and

filter cubes.



Algorithm 1: Messages handling in the procedure of data

push.

1 for all d generated at node s do

2 store d at s;

3 f = map(d); updateX(d, f);
4 if f.state == “open′′ then

5 forward d to Edge;

6 for all d received at Edge e do

7 store d at e;

8 f = map(d); updateX(d, f);
9 if f.state == “open′′ then

10 forward d to Cloud;

11 for all d received at Cloud do

12 store d at Cloud;

A. Overall Description

Algorithm 1 depicts the procedures of data push strategy.

Data readings are generated and stored at ordinary nodes (line

2). The map function returns compatible filter for data d, and

function updateX(d, f) updates the statistics of data about

the filter (line 3). If the filter is at “open”state, data could

pass through the filter and be forwarded to the edge node that

currently covers the vehicular node (lines 1-5). Similarly, when

the edge node receives data from ordinary nodes, it stores

them, and updates the filter statistics and forwards the data to

the cloud if the filter is at “open” state (lines 6-10). When the

cloud receives data readings from edge nodes, it just stores

them (line 12).

Algorithm 2 depicts the procedures of the data pull strategy.

A request message is represented by 〈r, x〉, where r is the

request and x ∈ {UP,DOWN} denotes the direction of the

request diffusion. When an ordinary node receives a request

〈r, x〉, it first gets the compatible filter and updates the request

statistic of the filter (line 2). If there are data readings in local

storage that could answer the request, the data are routed to

the source of the request, and the matching statistics about

the filter are updated (lines 4). If there are not matched data

and the direction of message is UP, the request is forwarded

to the edge node that covers the vehicular node (line 6).

Similarly, when an edge node receives a request, it checks

its local storage, and data readings in the storage that could

answer the request are extracted and routed to the source of the

request, and the matching statistics about the filter are updated

(line 8-10). If there are no matched data for the request, the

request is handled according to the direction parameter. If the

request is diffused up the network layer, it is forwarded to the

cloud (line 12). If it is diffused down the layer, the request

is broadcasted within the nodes covered by the edge node to

search the matched data (line 14). When the cloud receives

a request, it first searches its local storage for the match. If

there are data readings that could answer the request, the data

is routed back to the source of the request (line 17); otherwise,

Algorithm 2: Messages handling in the procedure of data

pull.

1 for all 〈r, x〉 at Node s do

2 f = map(r); updateY (r, f);
3 if d ∈ s.D matches r then

4 route 〈r, d〉 to source of r;

5 else if x==UP then

6 forward 〈r, x〉 to Edge;

7 for all 〈r, x〉 received at Edge e do

8 f = map(r); updateY (r, f);
9 if d ∈ e.D matches r then

10 route 〈r, d〉 to source of r;

11 else if x==UP then

12 forward msg〈r, x〉 to Cloud;

13 else if x==DOWN then

14 broadcast msg〈r, x〉 to nodes;

15 for all 〈r, x〉 received at Cloud do

16 if d ∈ Cloud.D matches r then

17 route 〈r, x〉 to source of r;

18 else

19 for all e in Edge Nodes do

20 if match(r, e.f) == true then

21 forward 〈r,DOWN〉 to Edge e;

Algorithm 3: Procedure of sliding the window.

1 for each time slot do

2 slide forward window W ;

3 for all filter f at nodes and edges do

4 calculate cost ratio of f according to Eq. (5);

5 update state of f ;

6 for all e at edges do

7 route update of filter to the cloud;

the request is forwarded down to edge nodes to search for the

results (lines 19-21). Note that FERA maintains a copy of

filters of all edge nodes in the cloud, so it could calculate a

set of edge nodes whose filters could match the request, and

the request is forwarded to these edge nodes.

The push and pull of data depends on the setting of filters

installed in ordinary nodes and edge nodes. FERA adopts a

sliding window to maintain statistics and states of the filters.

Algorithm 3 is the pseudocode of the window sliding. At each

time slot window W is slid forward with two operations. First,

the cost ratio of the filters at the node and edge nodes is

calculated and the states of the filters are updated (lines 3-

5). The cost ratio is calculated distributively among ordinary

nodes and edge nodes based on the statistics of the data and

requests. The calculation is performed according to Eq. 5 at



section 5, where the update operations are also discussed.

Second, the update of the filter at each edge node is sent to

the cloud (line 7), so the cloud has the knowledge of the latest

distributions of data in the edge nodes.

V. UPDATE OF FILTERS

In real applications it is unknown whether the requests

and data readings would match or not beforehand, yet we

could estimate the matches through filters. Filters determine

the passage or blockage of data readings at each layer of the

network, so it strikes a balance between the push and pull of

the data readings. The mechanism of filter design and update

plays an important role for the performance of the request

answering. In this section we present the details of the update

of filters.

A. Cost of a Filter

Data readings would pass through a filter if the data are

compatible with the filter and the filter is in the “open” state.

Some of these data answer requests, and some might not match

any requests. However, when the filter is at the “close” state,

all its compatible data are blocked and not forwarded to the

upper layer. So requests that are not matched at current layer

have to be routed down to lower layers to extract the requested

data.

We denote the set of data and the set of requests that are

compatible with filter f within the time window as Df and

Rf respectively. Then the cost of state for filter f is calculated

as follows:
{

cost(f, “open”) = w0 ∗ |Df |

cost(f, “close”) = w0 ∗ |Df ⋉Rf | + w1 ∗ |Rf |
(4)

where w0 is the factor for one-time data transmission, and

w1 is the factor for one-time request transmission and request

broadcasting. Df⋉Rf denotes the set of data that are matched

with the requests in Rf , and |X| denotes the total amount of

data in set X .

B. Criteria of State Change

The state of a filter is set and updated according to a

cost metric. If cost(f, “close”) > cost(f, “open”), it is more

efficient for f be in the “open” state, else it is better for f to

be in the “close” state. In other words, if the cost ratio meets

the following condition:

cost ratio(f) =
cost(f, close)

cost(f, open)

=
w0 ∗ |Df ⋉Rf | + w1 ∗ |Rf |

w0 ∗ |Df |

=
|Df ⋉Rf |

|Df |
+

w1

w0

∗
|Rf |

|Df |
> 1

(5)

then f is set “open” within a period of time. Here we define

the data match ratio ϕ(Rf , Df ) and the request-to-data ratio

ρ(Df , Rf ) as follows:

ϕ(Df , Rf ) =
|Df ⋉Rf |

|Df |
, ρ(Df , Rf ) =

|Rf |

|Df |
(6)

Formula 5 could be rewritten as:

cost ratio(f) = ϕ(Df , Rf ) +
w1

w0

∗ ρ(Df , Rf ) > 1 (7)

If formula 7 holds, filter f is set to “open” state, else it is set

to “close” state. In formula 6, the set Df and Rf is assumed

not empty. Yet when |Df | = 0 or |Rf | = 0, the state of f is

simply set to “close” without further calculation.

C. Review Operation

The numbers of data and requests compatible with filter f
are recorded at each time slot of a window, e.g. W . Sequences

that indicate the amount of data and requests are denoted by

Xf = [x1, x2, ..., xk] and Yf = [y1, y2, ..., yk] respectively,

where k is the size of the window, xi and yi are the amount

of data contained in the data readings and requests at the ith

time slot respectively. When W moves a time slot forward, the

latest numbers are added as xk, yk, the oldest element x1, y1
are removed, and other elements are updated accordingly:

xi = xi−1, yi = yi−1. These update operations are denoted

by the functions updateX(d, f), updateY (r, f), which are

illustrated in Algorithm 1 and 2.

Given a time window W , the data match ratio and request-

to-data ratio defined at formula 6 are calculated as follows:

ϕ(Df , Rf ) =
k

1
min(xi, xi ∗ yi)

k

1
xi

, ρ(Df , Rf ) =
k

1
yi

k

1
xi

(8)

Here when there is not matched request at the ith time

slot, i.e. yi = 0, min(xi, xi ∗ yi) would return zero. Hence

the unmatched data readings are pruned when calculating

ϕ(Df , Rf ). For each time slot, the algorithm recalculates the

cost ratio defined at formula 7 and determines whether to reset

the filter state.

TABLE I
EXAMPLE OF SLIDING A WINDOW FORWARD AND CONDUCTING THE

REVIEW OPERATIONS (w0 = 1, w1 = 2). ẑ IN Xf AND Yf MEANS THERE

ARE DATA READINGS OR REQUESTS OF SIZE z AT CURRENT TIME SLOT.

Time t t+1 t+2

Xf [058̂] 0[588̂] 05[886̂]

Yf [004̂] 0[040̂] 00[404̂]
ϕ(Df , Rf ) 8/13 8/21 14/22

ρ(Df , Rf ) 4/13 4/21 8/22

cost ratio 16/13 16/21 30/22

state “open” “close” “open”

Table I is an example that illustrates moving the window

forward when conducting the review operation, where ẑ in

Xf and Yf means there are z readings or requests at current

time slot. Given w0 = 1 and w1 = 2, the ratios of filter

f are calculated according to formula 8, and the cost ratio at

t, t+1, t+2 are calculated as: 16/13 = 8/13+(2/1)∗(4/13),
16/21 = 8/21 + (2/1) ∗ (4/21), 30/22 = 14/22 + (2/1) ∗
(8/22) in time t, t+1, t+2. So according to formula 7, the

state of f is set as “open”, “close”, “open” during the time

period.



D. Storage of Filter Cube

The generation and update of filters, which we have dis-

cussed in previous sections, also needs an efficient storage

structure. In this study we adopt a lazy storage strategy that

uses hash tables [21] to store filters within a cube.

Filter cube F is split to segi segments on dimension di, i =
1...,K. So each cell is represented by an entry of a hash table

H, i.e. 〈key : [h1, h2, .., hK ], value : {state,Xf , Yf , S}〉,
where hi is the index for filter f on dimension di in cube

F , Xf , Yf are data sequence and request sequence defined at

section V-C, and S is data structure that stores how f is split

when f is at “more” state. A filter is only created when there

are some data to be added to Xf or Yf . For filters or cells

that don’t have compatible data readings or requests, no entry

is needed at the hash table, so large number of storage space

could be saved. It is worth noting that other data structures

that handle sparse data are also feasible for the storage of

filter cubes, yet the detailed description of the data structure

is out of the scope of this paper.

Filters are stored in a cube with equal cells. A data reading

could mapped to dimensional indexes that are used to access

the filter quickly. When a data reading or request arrives to

a filter cube, it needs O(1) to locate the compatible filter.

Moreover, a filter cube achieves two aspects of efficiency

compared to the set of individual basic filters when doing

the request answering. First, A filter cube F is built based

on the basic cube Fb. The number of filters that it maintains

is reduced by a ratio of
||F ||
||Fb||

=
∏K

1

|Di|
msi

, where the splits

at dimension Di is smaller than or equal to the maximal

split msi. In the cube building procedure we could also see

that ||F || << ||Fb|| holds. Second, a lazy and spare storage

strategy is adopted for the cube storage. A large proportion of

filters within a filter cube are “empty” filters because no data

readings or requests are compatible to them. So they do not

need any storage structure to maintain their statistics of the

readings or requests.

VI. EXPERIMENTAL STUDY

A. Environment Setup

We conduct experiments on the ONE platform [22] with

real-world road network to verify the performance of the

proposed algorithm. The ONE is a popular simulation envi-

ronment that is capable of generating node movement using

different movement models and routing messages between

nodes with various routing algorithms.

1) Trajectory Dataset and Network Setting: The Xiamen

Taxi Dataset1 is used for the simulation. The dataset contains

trajectories of about 5,000 taxis in Xiamen city, China during

July 2014. The region is limited to [118.066E,118.197E] ×
[24.424N ,24.561N ], and maps provided from OpenStreetMap

is used to build a road network. In the simulation, the most

active 300 taxis are selected to act as vehicular nodes. Each

vehicle moves along the historic trajectory. The moving speed

1http://mocom.xmu.edu.cn/xmdata

Fig. 2. Snapshot of the simulation field in Xiamen Island. The blue texts
denote vehicular nodes, and green circles denote the coverage areas of RSUs.

ranges from 0 to 72 KM/h, which differs according to road

segments and time periods.

There are 81 edge nodes (RSUs) evenly deployed in the

map, and each edge node periodically updates its filters in

the cloud every 60 seconds. The communication range of I2I

or I2V used by the vehicles to exchange data is set to 200

meters. The total simulation time is 6 hours within a day,

from 8:00 to 14:00. The size of sliding window is 5 minutes,

and each time slot is 30 seconds. The ratio of unit cost w1

w0

defined in formula 7 is 1/2 by default. As the proposed scheme

belongs to the application layer of the network protocol stack,

we assume ideal links when two nodes encounter and establish

a connection. The size of a message is set 1024 Byte and

the metadata are wrapped in one message per request. The

bandwidth of the V2V or V2I channel is 500 Kbps/250 Kbps

for the down/up links.

2) Data and Request Generator: Data reading is in the

form (s, t, lat, lon, type, size), where s is the id of the node

that generates the data, t is the time, lat, lon are the latitude

and longitude of the location, and type denotes the type of the

generated data, and size is the detailed sampled data whose

size corresponds the type of the data. In the experiment there

are five types of data with a size within the set {16 K, 64 K,

512 K, 1024 K, 18 M}. Each vehicle periodically reports one

data reading every 150 seconds, and we construct a request

data generator to synthesise the data readings.

A request is in the form req(s, t, f,Γ), where s is the source

node that generates the request, t is the time when request

is issued, f is a filter describing the requested data, and Γ
is the time interval of the requested data. Here, the filter is

defined as 〈type, lat, lon〉), where type denotes the type of

the requested data, lat, lon are the latitude and longitude of

the position to which the requested data belong. Also, the

requests are generated from two ways: 1) each O-D pair is

mapped to a request that is generated from the origin and

targets the data readings from the destination, so the real-

world origin-destination dataset is integrated into the request

answering. Existing research [23] has disclosed that there

are some spacial-temporal patterns in the OD pairs, which



(a) Success Ratio (b) Messages

Fig. 3. Impact of queries intervals.

matches the request answering scenarios in this paper; 2)

requests are generated in the form of Zipf’s law [24], where

a skewness parameter determines where target locations of

the requests. We construct a request generator to control the

generation process of requests, and the query rate, skewness,

and deadlines are defined as parameters of the generator.

For both the data and requests, the domain of the latitude

and longitude dimensions are [118.066 E, 118.197 E], [24.424

N, 24.561 N] respectively, as showed in Fig. 2. The deadline of

query is five minutes, and the queries are generated according

to uniform distribution from 2 to 5 seconds by default.

B. Performance Analysis

We compare the proposed FERA scheme with other

schemes. Yet to the best of our knowledge, there are few

research directly related to the request answering schemes in

VANET, so for the performance comparison, we implement

other four request schemes as follows:

• CLOUD: all sensed data are uploaded to a centralized

cloud server. Requests are processed at the cloud and

results are routed back to the requested node;

• REED [16]: a pull based method where the sensed data

are stored locally, and all requests are forwarded to RSUs

and broadcasted to search the requested data readings;

• EDGE: all the sensed data are stored in the edge nodes

(RSUs), and requests are forwarded to all edge nodes to

search for the requested data readings;

• GeoVanet [12]: data readings are first pushed to a DHT-

based fixed geographical locations, and requests are for-

warded to this location to extract the matched data within

a bounded time interval.

We vary the parameters to study their impacts on these

schemes. The ratio of successful requests, the amount of mes-

sage transmissions, and the time delay of request answering

are used as the main metrics for the performance analysis.

1) Rate of Request: Queries are generated periodically by a

query interval, where a smaller interval means a larger number

of queries. Fig. 3 depicts the impact of the query interval. From

3(a) we could see that the CLOUD approach achieves the best

success query ratio, as high as 0.98, and the REED approach

has the lowest query ratio that is around 0.07. The success

ratios of FERA, EDGE and GeoVant are in the middle. Most

of the failed requests are due to the fact that the vehicular node

that issues the request will move to other places, and when the

query results are returned, they can not find the requester. Also,

(a) Success Ratio (b) Messages

Fig. 4. Impact of request deadlines.

when the request is outdated, the request would be failed. Yet

for the CLOUD approach, as all the data are uploaded to the

centralized server, the query processing time is relatively small

so the query results could be routed back to the requester

just before they are moving out of the coverage of RSUs.

However, the CLOUD approach also incurs large number of

message transmissions, as depicted in Fig. 3(b). The success

ratio of FERA is about 0.84 when the interval is (0.5,1], yet it

decreases as the interval of queries increases. This is because

when there are more queries, the pattern of the queries would

be captured by the filters, which would adaptively adjust the

states of filters and push more data readings to upper layers of

the networks. In this way, the request processing time would

be reduced and increase the success ratio of the requests.

Fig. 3(b) depicts the number of the messages. From the

figure we could see that amount of messages decrease as

the request interval increases. This is easy to explain as

there are fewer requests when the request interval is larger.

The GeoVant and the CLOUD have the largest amount of

message transmissions. The message transmissions of the

proposed FERA and EDGE are about 48-52 percent of those

in the CLOUD and GeoVant. This is because in the former

approaches only part of the data readings are pushed to upper

layer of the network, yet in the latter approaches all the data

readings are routed to the cloud or a hashed point, which incurs

the largest transmission cost. It is worth noting that although

the CLOUD has higher success ratio, due to the large number

of vehicles, where each has to establish a connection with

the cloud to upload its data readings, the CLOUD is actually

infeasible in request answering scenarios.

2) Deadline of Request: Fig. 4 depicts the impact of the

request deadlines. From the figure we could see that for all

the approaches except CLOUD the success ratio increases as

the request deadline increases. This is understandable as when

the deadline of requester are larger, fewer requests would be

outdated and failed. The success ratio of FERA increase from

0.728 to 0.802. The request deadline has a relatively small

impact on the number of message transmissions.

3) Skewness of Requests: Request generator has a skew-

ness parameter that determines where target locations of the

requests. In the experiment the map is split into 81 grids,

and requests are generated in the form of Zipf’s law [24],

where the skew parameter determines the skewness of requests

targeting the grids. From Fig. 5, we could see that the success

ratio of FERA increases from 0.72 to 0.86 when the skewness



Fig. 5. Impact of query skewness. Fig. 6. Impact of sliding window.

parameter increases from 0.1 to 3. Higher skewness means

more requests are routed to the same grids, hence it facilitates

the filters to control their states effectively. The message trans-

missions first increase with the skewness, and then decrease

with the skewness factor. When skewness is low, the requests

are distributed among grids. Each RSU would receive smaller

amount of requests, and the filters would be more likely to be

in the“close” state. So the message transmissions are smaller

compared with that when the skewness is larger.

4) Size of Sliding Window: FERA uses a sliding window

to control the states of the filters. So in the experiment we

vary the window size to study its impact on the performance.

As showed in Fig. 6, the success ratio achieves the best

performance at 0.86 when the size is 10 minutes. A window

size either too smaller (e.g. 2 minutes) or too larger (e.g. 15

minutes) does no good for utilising the patter of requests,

which harms the success ratio. The size of sliding window

has a relatively smaller impact on the message transmissions.

The number of messages decreases a little when the window

size is large. This is because a larger window makes it harder

to change the states of filters, and hence the data readings

would be blocked by the “closed” filters.

VII. CONCLUSIONS

In this paper we propose a filter-based framework called

FERA (Filter-based Efficient Request Answering) that com-

bines the pull/push strategies to adaptively and efficiently

process the requests in VANET. Data readings that could pass

through the filters are forwarded to higher layer, and those

blocked are stored at the current layer. Requests are forwarded

up to edge nodes and the cloud to extract matched data. Ex-

periments based on simulations are conducted to demonstrate

the effectiveness of the proposed scheme in vehicular sensing

and request answering applications. Up to 85% of the queries

could be successfully processed in the proposed scheme, much

higher than existing query schemes, while at the same time

with a relatively low transmission cost.

For the future work, we are going to further optimise the

structure of filters, e.g. the dynamic update and propose data

structures that could store and update the filters efficiently.
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