
HAL Id: hal-02092915
https://hal.science/hal-02092915

Submitted on 8 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hierarchical State Machines as Modular Horn Clauses
Pierre-Loïc Garoche, Temesghen Kahsai, Xavier Thirioux

To cite this version:
Pierre-Loïc Garoche, Temesghen Kahsai, Xavier Thirioux. Hierarchical State Machines as Modular
Horn Clauses. 3rd Workshop on Horn Clauses for Verification and Synthesis (HCVS 2016), Apr 2016,
Eindhoven, Netherlands. pp.15-28. �hal-02092915�

https://hal.science/hal-02092915
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/226513

Official URL

DOI : https://doi.org/10.4204/EPTCS.219.2

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Garoche, Pierre-Loïc and Kahsai, Temesghen and
Thirioux, Xavier Hierarchical State Machines as Modular Horn Clauses.
(2016) In: 3rd Workshop on Horn Clauses for Verification and Synthesis
(HCVS 2016), 3 April 2016 (Eindhoven, Netherlands).

doi:10.4204/EPTCS.219.2

Hierarchical State Machines as Modular Horn Clauses ∗

Pierre-Loïc Garoche
DTIM, UFT, Onera – The French Aerospace Lab

Temesghen Kahsai
NASA Ames / CMU

Xavier Thirioux
IRIT/ENSEEIHT, UFT, CNRS

In model based development, embedded systems are modeled using a mix of dataflow formalism, that
capture the flow of computation, and hierarchical state machines, that capture the modal beahviour of
the system. For safety analysis, existing approaches rely on a compilation scheme that transform the
original model (dataflow and state machines) into a pure dataflow formalism. Such compilation often
result in loss of important structural information that capture the modal behaviour of the system. In
previous work we have developed a compilation technique from a dataflow formalism into modular
Horn clauses. In this paper, we present a novel technique that faithfully compile hierarchical state
machines into modular Horn clauses. Our compilation technique preserves the structural and modal
behavior of the system, making the safety analysis of such models more tractable.

1 Introduction

Model-based development is a leading technique in developing software for critical embedded systems
such as automotive, avionics systems, train controllers and medical devices. Typically such systems
are modeled using a mix of dataflow formalism and hierarchical state machines. For instance, Matlab
Simulink [20] or Esterel SCADE [9] diagrams are typically used to specify aspects of a system that
can be modeled by differential equations relating inputs and outputs (i.e., dataflow), while Matlab State-
flow [21] charts or Esterel SCADE automata usually model the control aspects. The extensive use of
the aforementioned formalism in the development of safety-critical systems, associated with certification
standards [8] that recommend the use of formal methods for the specification, design, development and
verification of software, makes a formal treatment of these notations extremely crucial.

For the purpose of safety analysis, Simulink/SCADE models are compiled to a lower level modeling
language, usually a synchronous dataflow language such as Lustre [5]. Preserving the original (hierar-
chical and modular) structure of the model is paramount to the success of the analysis process. In [10]
we have illustrated a technique to preserve such structure via a modular compilation process. Specif-
ically, we presented a technique that consists of compiling in a modular fashion Lustre programs into
constrained Horn clauses. In this paper, we extend our previous compilation schema to handle hierar-
chical state machines (i.e. Stateflow diagrams or SCADE automata). Hierarchical state machines allows
to capture the complex modal behavior of a reactive system. In these systems, the modes (or state) of
the software drive the behavior of the device. For example, in a car cruise controller, it could be a state
machine describing how the controller engages and disengages depending on a number of parameters
and actions.

Existing approaches compile hierarchical state machines into “pure” dataflow formalism (such as
Lustre). While this approach is rather general, it has the disadvantage that the structure of state ma-
chine gets lost in the translation. This can have crucial consequences for verification methods based on
inductive arguments, such as k-induction[17] or property directed reachability[16], because the logical
encoding ends up creating a state space with states that do not correspond to any state of the original state

∗This work was partially supported by the ANR-INSE-2012 CAFEIN project and NASA Contract No. NNX14AI09G.

http://dx.doi.org/10.4204/EPTCS.219.2

machine, and so are unreachable by the resulting transition system. These states are problematic because
they typically lead to spurious counter-examples for the inductive step of the verification process.

In this paper, we propose a technique to faithfully compile hierarchical state machines expressed
as automata in the Lustre language into modular Horn clauses. Our compilation technique preserves
the structural and modal behavior of the system, making the analysis of such models more tractable.
Specifically, this paper makes the following contributions:

• a state-preserving encoding of hierarchical state machines as pure clocked-dataflow models. This
encoding is inspired by the work described in [4]. Our technique differ in how we encode the state
of each automaton, which gives a more flexible encoding.

• a compilation of hierarchical state machines into modular Horn clauses.

• finally, an implementation of the proposed compilation in LUSTREC [11] – an open source com-
piler for Lustre programs.

The rest of the paper is structured as follows: in the next sub-section, we give an overview of the
synchronous dataflow language Lustre. In Section 2 we describe the semantics of the hierarchical state
machines that we consider in this paper. In Section 3 we describe our structure preserving compilation
scheme. In Section 4 we illustrate the extensions of the compiler to handle the compilation of automata
in to Horn clauses. Finally, in Section 5 we illustrate our compilation approach on a simple yet represen-
tative example.

1.1 Background

Synchronous languages are a class of languages proposed for the design of so called “reactive systems”
– systems that maintain a permanent interaction with physical environment. Such languages are based
on the theory of synchronous time, in which the system and its environment are considered to both view
time with some “abstract” universal clock. In order to simplify reasoning about such systems, outputs
are usually considered to be calculated instantly [2]. Examples of such languages include Esterel [3],
Signal [1] and Lustre [5, 12]. In this paper, we will concentrate on the latter. Lustre combines each data
stream with an associated clock as a way to discretize time. The overall system is considered to have a
universal clock that represents the smallest time span the system is able to distinguish, with additional,
coarser-grained, user-defined clocks. Therefore the overall system may have different subsections that
react to inputs at different frequencies. At each clock tick, the system is considered to evaluate all
streams, so all values are considered stable for any actual time spent in the instant between ticks. A
stream position can be used to indicate a specific value of a stream in a given instant, indexed by its clock
tick. A stream at position 0 is in its initial configuration. Positions prior to this have no defined stream
value. A Lustre program defines a set of equations of the form: y1, . . ., yn = f(x1,. . ., xm) where yi are
output or local variables and xi are input variables. Variables in Lustre are used to represent individual
streams and they are typed, with basic types including streams of Real numbers, Integers, and Booleans.
Lustre programs and subprograms are expressed in terms of Nodes. Nodes directly model subsystems in
a modular fashion, with an externally visible set of inputs and outputs. A node can be seen as a mapping
of a finite set of input streams (in the form of a tuple) to a finite set of output streams (also expressed as
a tuple). The top node is the main node of the program, the one that interface with the environment of
the program and can never be called by another node.

At each instant t, the node takes in the values of its input streams and returns the values of its output
streams. Operationally, a node has a cyclic behavior: at each cycle t, it takes as input the value of

type run_mode = enum { Sta r t , Stop } ;

f unc t i on sw i t ch (mode_in : run_mode) r e tu rn s (mode_out : run_mode) ;
l e t mode_out = i f mode_in = S t a r t then Stop e l s e S t a r t ; t e l

node count (t i c k : bool) r e tu rn s (s econds : i n t) ;
l e t s econds = 0 −> pre s econds + 1 ; t e l

node s topwatch (t i c k : bool ; s t a r t_s t op : bool ; r e s e t : bool) r e tu rn s (s econds : i n t) ;
var run : run_mode c l o c k ;
l e t run = Stop −> i f s t a r t_s t op then sw i t ch (pre run) e l s e pre run ;

s econds = merge run (S t a r t −> count (t i c k when S t a r t (run)) every r e s e t)
(Stop −> (0 −> pre s econds) when Stop (run)) ;

t e l

Figure 1: A simple Lustre program.

each input stream at position or instant t, and returns the value of each output stream at instant t. This
computation is assumed to be immediate in the computation model. Lustre nodes have a limited form of
memory in that, when computing the output values they can also look at input and output values from
previous instants, up to a finite limit statically determined by the program itself.

Typically, the body of a Lustre node consists of a set of definitions, stream equations of the form
x = t (as seen in Figure 1) where x is a variable denoting an output or a locally defined stream and t is
an expression, in a certain stream algebra, whose variables name input, output, or local streams. More
generally, x can be a tuple of stream variables and t an expression evaluating to a tuple of the same type.
Most of Lustre’s operators are point-wise lifting to streams of the usual operators over stream values. For
example, let x = [x0,x1, . . .] and y = [y0,y1, . . .] be two integer streams. Then, x+ y denotes the stream
[x0 + y0;x1 + y1, . . .]; an integer constant c, denotes the constant integer stream [c,c, . . .]. Two important
additional operators are a unary shift-right operator pre (“previous”), and a binary initialization operator
→ (“followed by"). The first is defined as pre(x) = [u,x0,x1, . . .] with the value u left unspecified. The
second is defined as x→ y = [x0,y1,y2, . . .]. Syntactical restrictions on the equations in a Lustre program
guarantee that all its streams are well defined: e.g. forbidding recursive definitions hence avoiding
algebraic loops.

Figure 1 illustrate a simple stopwatch example using Lustre enumerated clocks and node reset. Enu-
merated clocks are an advanced form of the traditional Lustre clocks. They allow to sample a value of a
flow depending on the value of a clock. For example, the expression “ tick when Start(run) ” denotes
a signal that is only defined when the clock flow run has value Start. The sampled flows can be gathered
together using the merge operator as in the definition of variable “seconds” in node stopwatch. More-
over, a node call can be reset to its initial state when a given boolean condition is set to true. For example,
in Figure 1 the expression “count (..) every reset” will return the initial state of the node count. The
function switch is a memoryless node, hence is declared with the keyword function.

2 Automaton as hierarchical state machines

Synchronous semantics of hierarchical state machines and their compilation to imperative code has been
investigated in different articles, e.g. [14, 15, 22, 13], which resulted in a vast number of different
incompatible semantics. Furthermore, the challenges of mixing state machines and dataflow formalism
has also been the subject of intensive studies, from [19] to [7, 6]. In our setting, we follows the approach

Unless

z−1

State Eqs
+ Until

input

input

next_state_in, next_restart_in

base clock

restart_act
state_act

state_in

restart_in
output

Figure 2: Automaton as a pure dataflow

developed in [7, 6], which is to the best of our knowledge the most disciplined and simple approach.
This technique is also implemented in the commercial KCG Scade/Lustre compiler [9].

Informally, the modular compilation scheme developed in [7, 6] is enforced at the expense of raw
(and somehow undesired) expressivity, disallowing for instance transitions that go through boundaries of
hierarchical state machines or the firing of an unbounded number of transitions per instant (e.g. in Matlab
Simulink and Stateflow). For instance, in Figure 2, at each instant, two pairs of variables are computed:
a putative state_in and an actual state state_act and also, for both states, two booleans restart_in and
restart_act, that tell whether their respective state equations should be reset before execution. The ac-
tual state is obtained via a strong (unless) transition from the putative state, whereas the next putative
state is obtained via a weak (until) transition from the actual state. Only the actual state equations are
executed at each instant. Finally, a reset function is driven by the restart/resume keyword switches.
As transition-firing conditions may have their own memories, they can be reset if needed before being
evaluated. Specifically, unless conditions are reset according to restart_in, whereas until and state
equations altogether are reset according to restart_act. To recapitulate, a transition is evaluated as fol-
lows: unless conditions of the initial active state – the putative state – are evaluated. In case of a valid
one, we jump to the associated state. Then, the state equations are evaluated: either the ones of the puta-
tive state in case of no unless transitions activated, or the ones of the new state obtained. Then, as a last
step, the until transition of the active state are evaluated and characterize the next state for the following
transition. At most one unless and one until transitions are evaluated, in this order, at each time step.

Our approach, builds on top of the aforementioned compilation scheme. In our setting, we promote
the computation of strong transition, state equations and weak transition to independent auxiliary Lustre
nodes. This allows a certain flexibility: (i) independent scheduling and optimization of different state
equations; (ii) addition of code contracts to different states. Those features are not supported by the
commercial KCG suite. Another benefit of our approach is that we don’t modify state equations to take
clock constraints, nor local variables or the reset operation. Local state information is only recovered
through clock calculus and is not structural any more, as generated code may be optimized and scattered.
We rather only encapsulate state equations in new node definitions and generate new equations for calling
these nodes, greatly facilitating the management of local state invariants for instance. Yet, this comes at
the expense of a rather limited loss in expressivity, due to possible causality issues1. Note that inlining
these auxiliary nodes is already an available option that fully recovers the original semantics.

We illustrate in Listings. 1a, 1b and 1c, the differences between our approach and [7], from a user’s

1We recall that the classical causality analysis in modern Lustre doesn’t cross boundaries of nodes, hence the conservative
rejection of some correct programs.

node f a i l u r e (i : i n t) r e tu rn s (o1 , o2 : i n t) ;
l e t

(o1 , o2) = i f i = 0
then (o2 , i)
e l s e (i , o1) ;

t e l
(a) Scheduling failure

node s o l u t i o n (i : i n t) r e tu rn s (o1 , o2 : i n t) ;
l e t

automaton c o n d i t i o n
un l e s s i <> 0 resume KO
s ta te OK:
l e t

(o1 , o2) = (o2 , i) ;
t e l
s ta te KO:
un l e s s i = 0 resume OK
l e t

(o1 , o2) = (i , o1) ;
t e l

t e l
(b) Automaton based solution

node t r i a n g l e (r : bool) r e tu rn s (o : i n t) ;
l e t

automaton t r i v i a l
s ta te One :
un l e s s r | | p r e o = 100
l e t

o = 0 −> 1 + pre o ;
t e l

t e l
(c) Causality issues

Listing 1: Examples comparing our approach with the one developed in [7]

viewpoint. Example 1a is a typical program that cannot be statically scheduled and produces a compi-
lation error in both approaches. A solution may be devised as in Example 1b, using an automaton to
encode the boolean switch i = 0. Even if scheduling is done prior to other static analyses (and thus is un-
aware of exclusive automaton states for instance), we succeed in generating a correct code whereas KCG
fails. Example 1c is non-causal and won’t compile if we remove the pre occurring in the unless clause.
But if we keep it, KCG will handle it correctly whereas our causality analysis will reject this program.
Generally speaking, we forbid unless clauses that would refer to putative state memories (such as o).
Accepting these clauses appear problematic or at least confusing as it makes the putative state visible
and distinct from the actual state, thus duplicating state variables.

As a result our encoding is not strictly comparable with Scade or Lustre v6 automaton. For instance,
we are unable to type check and compile automaton with memories within unless conditions. This is pos-
sible in our setting. In summary, our encoding does not flatten the automaton into a single Lustre node
but preserves the structure by associating a Lustre node for each automaton state. This structure preserv-
ing encoding enables us to analyze these models and compute local invariants associated to automaton
states.

3 Synchronous dataflow programs as Horn clauses

In [10] we have developed a compilation technique that translate Lustre programs into modular Horn
clauses. In order to accommodate the compilation of automaton we have updated such compilation
scheme. In this section, we briefly describe the different stages of the compilation process. For a formal
treatment of the compilation stages the reader can refer to [10]. Figure 3 illustrate the compilation stages
implemented in LUSTREC.

Automaton compilation. The first phase, which is new w.r.t. [10], compiles the hierarchical states
machines as pure dataflow expression in Lustre. A detailed description of this phase will be presented in
Section. 4.

Figure 3: Compilation Stages

Normalization. This phase infers types and clock for each signal. Each expression is recursively
normalized: node calls, pre constructs, tuples, . . . are defined as fresh variables. Each function call
f oo(args) is associated to a unique identifier f oouid(args). Once normalized, no function calls occurs
within expressions, nor arrows nor definitions of memories through a pre construct.

Machine code. In the main compiler process, intended to generate embedded code, the next phase
generates the machine (or imperative) code: its flows definitions are replaced by an ordered sequence of
imperative statements. The state of a node instance is characterized by its memories, i.e. expressions
defining memories such as x = pre e, and the node instances that appear in its expressions such as
x = foo(. . .).

Generation of machine code. At this stage a machine code is generated. This amount to replace
the flow definitions with an ordered sequence of imperative statements. The state of a node instance is
characterized by its memories, i.e. expressions defining memories such as x = pre e, and the node
instances that appear in its expressions such as x = f oo(. . .). This tree-like characterization of a node
state enable a modular definition of a state as a tree of local memories.

Definition 1 (Node memories and instances). Let f be a Lustre node with normalized equations eqs.
Then we define its set of memories and node callee instances as:

Mems(f) = {x | x = pre _ ∈ eqs}
Insts(f) = {(f oo,uid) | _ = f oouid(_) ∈ eqs}

The follow by (→) operator is interpreted as a node instance of a generic polymorphic node arrow as
illustrated in Listing 2a. Therefore the initial state for a node associated to all its arrow instances and all
its child arrow instances the value true to the memory init . Similarly the activation of a node reset using
the operator every modifies the state of this instance of the node foo by resetting its arrow init variable to
their initial value true, e.g. e = foo (...) every ClockValue(clock_var). Figure 4 shows the computed
memories of the node in Listing 2b.

Horn backend. At this stage the Horn clauses are generated. The hierarchy of memories and node
instances are flattened and modeled as a tuple of memories. We denote as statelabel (f, uid) the tuple
of variables denoting the state of the instance uid of a node f. Different labels are used to differentiate

node arrow (e1 , e2 : ’ a) r e tu rn s (out : ’ a)
var i n i t : bool ;
l e t

i n i t = t r u e −> f a l s e ;
out = i f i n i t then e1 e l s e e2 ;

t e l
(a) Polymorphic arrow node

node cpt (z : bool) r e tu rn s (y : i n t) ;
l e t y = 0 −> i f z then 0 e l s e pre y + 1 ; t e l

node f oo (z : bool) r e tu rn s (out : i n t)
l e t out = 1 −> foo (z) ; t e l

(b) Simple example with two nodes

Listing 2: Memories in Lustre

foo

arrow_out: arrow

init: bool

n1: cpt

mem_y: int arrow_y: arrow

init: bool

(a) Tree type: memories and instances

foo

arrow_out: arrow

init = false

n1: cpt

y = 3 arrow_y: arrow

init = false

(b) Example of state for node foo

foo

arrow_out: arrow

init = true

n1: cpt

y = 3 arrow_y: arrow

init = true

(c) State (4b) after reset

Figure 4: Memory trees and reset

between different versions of the same variable. We use the labels c and n to denote the (c)urrent and
(n)ext value of a memory x: xc and xn. The internal node arrow is fitted with a specific reset rule:

r u l e (=> (= i n i t n t r u e) (a r row_rese t (i n i t c , i n i t n)))

Note that its state is only defined by the init variable. In the proposed encoding, the predicates defining
the program semantics should enable the reset of a node state as performed in Fig. 4c. This leads to the
following encoding for the reset function:

r u l e (=> (
∧

mem ∈ Mems(f)

(= memn memc)
∧

(g, uid) ∈ Inst(f)

g_reset (s t a t e c (g , gu id) , s t a t e n (g , gu id)))

(f_ r e s e t (s t a t e c (f , u i d) , s t a t e n (f , u i d))))

The collecting semantics definition of [10] is modified to rely on f_reset instead of f_init . It builds the
set of reachable states (Reach):

r u l e (=> (f_ r e s e t (s t a t e c (f , u i d) , s t a t e n (f , u i d))) (Reach (s t a t e n (f , u i d))))
r u l e (=> (and (f_step (i npu t s , outputs , s t a t e c (f , u i d) , s t a t e n (f , u i d)))

(Reach (s t a t e c (f , u i d))))
(Reach (s t a t e n (f , u i d))))

4 Compilation of automaton

In this section, we describe the compilation scheme from automaton to modular Horn clauses. This is
performed in two stages: (i) compilation of automaton into clocked expressions and (ii) compilation of
clocked expressions into Horn clauses.

4.1 From automaton to clocked expressions

We denote with ReadEqsi and WriteEqsi the set of read and write variables occurring in equations of an
automaton state Si. We also denote as ReadUnlessi and ReadUntili the set of variables in unless and
until clauses.

node nd (inputs) r e tu rn s (out puts) ;
var locals
l e t

other_equations
automaton aut
. . .
s ta te Si :
. . .
un l e s s (sc j,sr j,SS j)
. . .
var localsi
l e t

equationsi
t e l
. . .
u n t i l (wc j,wr j,WS j)
. . .

t e l
(a) Automaton skeleton

type aut_type = enum { S1 , . . . , Sn } ;
. . .
node Si _unless (ReadUnlessi)
r e tu rn s (r e s t a r t_a c t : bool ,

s t a t e_ac t : aut_type c l o c k) ;
l e t

(r e s t a r t_ac t , s t a t e_ac t) =
i f sc1 then (sr1 , SS1) e l s e
i f sc2 then (sr2 , SS2) e l s e
. . .
(f a l s e , Si) ;

t e l

node Si _hand l e r_unt i l (ReadEqsi ∪ReadUntili)
r e tu rn s (r e s t a r t_ i n : bool ,

s t a t e_ in : aut_type c lock ,
WriteEqs) ;

var localsi
l e t

(r e s t a r t_ i n , s t a t e_ in) =
i f wc1 then (wr1 , WS1) e l s e
i f wc2 then (wr2 , WS2) e l s e
. . .
(f a l s e , Si) ;

equationsi
t e l

(b) Clocked expression as new nodes.

Listing 3: Automaton in Lustre and their representation as clocked expressions in Lustre nodes.

Our compilation scheme from automaton to clocked expressions follows Figure 2 and is applied to
a generic automaton such as the one described in Figure 3a (node nd). As illustrated in Listing 3b, the
variables state_act and state_in are modelled as clocks of enumerated type. Also, two new nodes are
introduced for each of the automaton state: one to express the semantics of state equations; and another
one to capture the weak and strong transitions (as explained in Section 2).

Figure 4 illustrate the compiled node c_nd that replace the original automaton description of node
nd. Evaluation of each single node call embedding state equations and transitions only takes place when
its corresponding clock is active; this is done via “when Value(clock)” sampling operators applied to all
node arguments.

All the node calls that corresponds to the global evaluation of the automaton are then gathered in two
merge constructs, which are driven by the putative state clock state_in (for strong transitions) and the
actual state clock state_act (for weak transitions and state equations).

4.2 Compiling clocked expressions into modular Horn clauses

Once the automaton structure as been compiled into clocked expression, the second step is to encode
them as Horn clauses. Here, we use the Horn clause format introduced in Z3 [16], where (rule expr)
universally quantify the free variables of the SMT-LIB expression expr. At this level, the challenges are
to be able to express within the Horn formalism the following concepts: (i) the clock’s feature of Lustre,
(ii) the reset functionality of a node, (iii) the declaration of enumerated clocks, (iv) clocked expression
with the when operator, (v) merge of clocked expressions and reset of node state on conditionals with the
every operator. In the following we illustrate how we capture using Horn clauses the above mentioned
concepts.

node c_nd (inputs) r e tu rn s (out puts) ;
var locals ;

aut _res ta r t_in , aut _next_restart_in , aut _res ta r t_act : bool ;
aut _state_in , aut _next_state_in , aut _state_act : aut_type c l o c k ;

l e t
. . .
(aut _res ta r t_in , aut _state_in) =

(f a l s e , S1) −> pre (aut _next_restart_in , aut _next_state_in) ;
(aut _resta r t_act , aut _state_act) = merge aut _state_in

. . .
(Si −> Si _unless ((ReadUnlessi) when Si (aut _state_in)) every aut _res ta r t_ in)
. . .

(aut _next_restart_in , aut _state_next_in , WriteEqs) = merge aut _state_act
. . .
(Si −> Si _hand l e r_unt i l ((ReadEqsi ∪ReadUntili) when Si (aut _state_act)) every aut _res ta r t_act)

. . .
t e l Listing 4: Compiled node c_nd from node nd in Figure 3a.

Clock values are defined as regular enumerated type in SMT-LIB format:
(dec lare−datatypes () ((c lock_type S t a r t Stop)))

Combination of merge and when operator are required for the clock calculus (i.e. clock typing) but
are ignored when generating the final code. Merge constructs act as a switch-case statement over well-
clocked expression. For example, the following well-clocked Lustre expression:

s econds = merge run (S t a r t −> x when S t a r t (run)) (Stop −> y when Stop (run))

is translated to the imperative switch-case expression:
switch (run) { case S t a r t : e = x ; break ;

case Stop : e = y ; break }

Since each case definition is purely functional, this can be directly expressed as the following constraint:
(and (=> (= run S t a r t) (= e x))

(=> (= run Stop) (= e y)))

The next item is to capture the reset of a node’s state using the every operator,
e.g. count (x) every condition . During the compilation process, such expression generate a machine
code instruction:

i f (c o n d i t i o n) { Reset (count , u i d) } ;

which gets translated to an imperative statement:
i f (c o n d i t i o n) { count_rese t (s tate_count_uid) } e l s e {} ;

where state_count_uid is a struct that denotes a node’s state instance. s This conditional statement
will perform a side-effect update of the memory state and impact the computation of the next state and
outputs. How do we capture this in the Horn encoding? Let us first look how we encode a step transition
in Horn clauses. A step transition is basically a relationship (i.e. a predicate) between inputs, outputs,
previous state and next state.

r e l a t i o n s h i p (i npu t s , outputs , o ld_state , new_state) = (and (. . .))

Typically this relationship would be used to define the step transition as follows:
r u l e (=> (r e l a t i o n s h i p (i npu t s , outputs , s t a t e c (f , u i d) , s t a t e n (f , u i d)))

(f_step (i npu t s , outputs , s t a t e c (f , u i d) , s t a t e n (f , u i d))))

node auto (x : bool) r e tu rn s (out : bool) ;
l e t

automaton f o u r_s t a t e s
s ta te One :
l e t
out = f a l s e ;

t e l u n t i l t r u e r e s t a r t Two
s ta te Two :
l e t
out = f a l s e ;

t e l u n t i l t r u e r e s t a r t Three
s ta te Three :
l e t
out = t r u e ;

t e l u n t i l t r u e r e s t a r t Four
s ta te Four :
l e t
out = f a l s e ;

t e l u n t i l t r u e r e s t a r t One
t e l

(a) Automaton-based counter

node g r e y c oun t e r (x : bool) r e tu rn s (out : bool) ;
var a , b : bool ;
l e t

a = f a l s e −> not pre (b) ;
b = f a l s e −> pre (a) ;
out = a and b ;

t e l
(b) Boolean-based counter

node i n t l o o p c o u n t e r (x : bool) r e tu rn s (out : bool) ;
var t ime : i n t ;
l e t

t ime = 0 −> i f pre (t ime) = 3 then 0
e l s e pre t ime + 1 ;

out = (t ime = 2) ;
t e l

(c) Integer-based counter

Listing 5: Automaton-(5a), Boolean-(5b) and Integer-(5c) based implementation of a 2-bit counter.

For resetting the node’s state, the value used for the state is f_reset(statec(f,uid)) (instead of
statec(f,uid)). In addition to the two state labels used to denote current c and next value x, we in-
troduce an intermediate label i. In case of a transition without reset, the intermediate version would be
directly defined as the current one.
r u l e (=> (and (= (s t a t e i (f , u i d)) (s t a t e c (f , u i d)))

(r e l a t i o n s h i p (i npu t s , outputs , s t a t e i (f , u i d) , s t a t e n (f , u i d))))
(f_step (i npu t s , outputs , s t a t e c (f , u i d) , s t a t e n (f , u i d))))

Finally, the reset function is encoded as follows:
r u l e (=> (and (= (s t a t e i (f , u i d))

(i f c o n d i t i o n then f_ r e s e t (s t a t e c (f , u i d)) e l s e s t a t e c (f , u i d)))
(r e l a t i o n s h i p (i npu t s , outputs , s t a t e i (f , u i d) , s t a t e n (f , u i d))))

(f_step (i npu t s , outputs , s t a t e c (f , u i d) , s t a t e n (f , u i d))))

5 Example of encoding

As an example of the proposed compilation process, we consider a simple Lustre program that compares
three implementations of a 2-bit counter: a low-level Boolean implementation, a higher-level imple-
mentation using integers and an automaton based counter. The greycounter node (cf. Fig. 5b) inter-
nally repeats the sequence ab = {00,01,11,10,00, ...} indefinitely, while the integercounter node (cf.
Fig. 5c) repeats the sequence time = {0,1,2,3,0, . . .}. The automaton based node (cf. Fig. 5a) is a state
machines with 4 states and it basically alternates between them.
In the first phase of our compilation scheme a clock is generated to encode the automaton states:

type auto_ck = enum {One , Two , Three , Four } ;

Each automaton state is associated to a stateless function describing respectively its strong (unless) tran-
sitions and its weak (until) ones.

node auto (x : bool) r e tu rn s (out : bool)
var mem_restart : bool ; mem_state : auto_ck ;

f o u r_ r e s t a r t_ i n : bool ; f ou r_s ta t e_ in : auto_ck ; four_out : bool ;
f o u r_ r e s t a r t_ac t : bool ; f o u r_ r e s t a r t_ i n : auto_ck ;
. . . −− s i m i l a r d e c l a r a t i o n s f o r o t h e r s t a t e s
n ex t_r e s t a r t_ in : bool ; r e s t a r t_ i n : bool ;
r e s t a r t_a c t : bool ; next_state_in : auto_ck ;
s t a t e_ in : auto_ck c l o c k ; s t a t e_ac t : auto_ck c l o c k ;

l e t
r e s t a r t_ i n , s t a t e_ in = ((f a l s e , One) −> (mem_restart , mem_state)) ;
mem_restart , mem_state = pre (nex t_re s ta r t_ in , next_state_in) ;
nex t_re s ta r t_ in , next_state_in , out =

merge s t a t e_ac t (One −> . . .) (Two −> . . .) (Three −> . . .)
(Four −> (fou r_re s t a r t_ in , four_state_in , four_out)) ;

f ou r_re s t a r t_ in , four_state_in , four_out =
Four_hand l e r_unt i l (r e s t a r t_a c t when Four (s t a t e_ac t) ,

s t a t e_ac t when Four (s t a t e_ac t))
every (r e s t a r t_a c t) ;

. . . −− s i m i l a r d e f i n i t i o n s f o r o t h e r s t a t e s
r e s t a r t_ac t , s t a t e_ac t = merge s t a t e_ in (One −> . . .)

(Two −> . . .)
(Three −> . . .)

(Four −> (fou r_re s t a r t_ac t , f ou r_sta te_act)) ;
f ou r_re s t a r t_ac t , f ou r_sta te_act =

Four_un les s (r e s t a r t_ i n when Four (s t a t e_ in) ,
s t a t e_ in when Four (s t a t e_ in))

every (r e s t a r t_ i n) ;
. . . −− s i m i l a r d e f i n i t i o n s f o r o t h e r s t a t e s

t e l

Listing 6: Generated Lustre code without automaton.

To keep the presentation simpler we present the encoding of the state Four:
f unc t i on Four_hand l e r_unt i l (r e s t a r t_a c t : bool ; s t a t e_ac t : auto_ck)

r e tu rn s (r e s t a r t_ i n : bool ; s t a t e_ in : auto_ck ; out : bool)
l e t −− encodes the next s t a t e , he r e One

r e s t a r t_ i n , s t a t e_ in = (t rue , One) ;
out = f a l s e ;−− r e t u r n s t r u e i n the hand l e r f o r s t a t e Three

t e l

The handler and the until function assigns the next state to the state One and require the node to be
restarted. Listing 6 shows the generated Lustre node without an automaton.
The next stage of the compiler produces the Horn clauses. Enumerated type enable the declaration of
clock’s values:

(dec lare−data auto_ck () ((auto_ck One Two Three Four)))

The functions for until and unless are defined as Horn predicates (Four_handler_until and Four_unless
respectively) in the following way:

(dec lare−r e l Four_hand l e r_unt i l (Bool auto_ck Bool auto_ck Bool))
(r u l e (=> (and (= out f a l s e) (= s t a t e_ in One) (= r e s t a r t_ i n t r u e))

(Four_hand l e r_unt i l r e s t a r t_a c t s t a t e_ac t r e s t a r t_ i n s t a t e_ in out)))
(dec lare−r e l Four_un les s (Bool auto_ck Bool auto_ck))
(r u l e (=> (and (= s ta t e_ac t s t a t e_ in) (= r e s t a r t_a c t r e s t a r t_ i n))

(Four_un les s r e s t a r t_ i n s t a t e_ in r e s t a r t_a c t s t a t e_ac t)))

Finally the reset (auto_reset) and step (auto_step) predicates are defined as follows respectively:

(r u l e (=> (and (= mem_restart_m mem_restart_c) (= mem_state_m mem_state_c)
(= arrow . init_m t r u e))

(au to_re se t mem_restart_c mem_state_c arrow . i n i t_c
mem_restart_m mem_state_m arrow . init_m)))

(r u l e (=>
(and (= arrow . init_m arrow . i n i t_c)

(= arrow . i n i t_x f a l s e) −− update o f arrow s t a t e
(and (=> (= arrow . init_m t r u e) −− c u r r e n t arrow i s f i r s t

(and (= s t a t e_ in One)
(= r e s t a r t_ i n f a l s e)))

(=> (= arrow . init_m f a l s e) −− c u r r e n t arrow i s not f i r s t
(and (= s t a t e_ in mem_state_c)

(= r e s t a r t_ i n mem_restart_c))))
(and (=> (= s ta t e_ in Four) −− u n l e s s b l o ck f o r automaton s t a t e Four

(and (Four_un les s r e s t a r t_ i n s t a t e_ in f ou r_r e s t a r t_ac t fou r_sta te_act)
(= s ta t e_ac t fou r_sta te_act)
(= r e s t a r t_a c t f ou r_r e s t a r t_ac t)))

. . .) −− s i m i l a r d e f i n i t i o n f o r o t h e r s t a t e s
(and (=> (= sta t e_ac t Four) −− hand l e r and u n t i l b l o ck f o r s t a t e Four

(and (Four_hand l e r_unt i l r e s t a r t_a c t s t a t e_ac t
f o u r_ r e s t a r t_ i n fou r_s ta t e_ in four_out)

(= out four_out)
(= next_state_in fou r_s ta t e_ in)
(= nex t_re s t a r t_ in f o u r_ r e s t a r t_ i n)))

. . .) −− s i m i l a r d e f i n i t i o n f o r o t h e r s t a t e s
(= mem_state_x next_state_in) −− next v a l u e f o r memory mem_state
(= mem_restart_x nex t_r e s t a r t_ in)) −− next v a l u e f o r memory mem_restart

(auto_step x −− i n p u t s
out −− ou tpu t s
mem_restart_c mem_state_c arrow . i n i t_c −− o l d s t a t e
mem_restart_x mem_state_x arrow . i n i t_x))) −− new s t a t e

Once the Horn clauses are generated, a Horn clause solver can be used to perform verification and/or
testing. For example, we used Spacer [18] to prove that the three implementation of the 2-bit counters
behaves the same (i.e. each implementation outputs the stream true).

6 Conclusion

In this paper, we proposed a new compilation scheme to faithfully compile a mix of dataflow formalism
and hierarchical state machines into modular Horn clauses. Our approach compile hierarchical state
machines expressed as automata in the Lustre language into modular Horn clauses. The compilation
technique preserves the structural and modal behavior of the system which makes the analysis of such
models more tractable. The proposed approach is implemented in LUSTREC– an open source Lustre
compiler. Once the modular Horn clauses are generated, automated reasoning tools like Spacer [18] can
be used to reason about properties. In the future, we plan to evaluate our compilation scheme on larger
industrial case studies.

References

[1] P. Amagbégnon, L. Besnard & P. Le Guernic (1995): Implementation of the Data-flow Synchronous Language
SIGNAL. In: Conference on Programming Language Design and Implementation, ACM Press, pp. 163–173,
doi:10.1145/207110.207134.

http://dx.doi.org/10.1145/207110.207134

[2] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le Guernic & Robert de Si-
mone (2003): The synchronous languages 12 years later. Proceedings of the IEEE 91(1), pp. 64–83,
doi:10.1109/JPROC.2002.805826.

[3] G. Berry & G. Gonthier (1992): The ESTEREL synchronous programming language: design,
semantics, implementation. Sci. Comput. Program. 19(2), pp. 87–152, doi:10.1016/0167-6423(92)90005-V.

[4] Dariusz Biernacki, Jean-Louis Colaço, Grégoire Hamon & Marc Pouzet (2008): Clock-directed modu-
lar code generation for synchronous data-flow languages. In Krisztián Flautner & John Regehr, ed-
itors: Proceedings of the 2008 ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES’08), Tucson, AZ, USA, June 12-13, 2008, ACM, pp. 121–130,
doi:10.1145/1375657.1375674.

[5] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs & John Plaice (1987): Lustre: A Declarative Language for
Programming Synchronous Systems. In: Conference Record of the Fourteenth Annual ACM Symposium on
Principles of Programming Languages, Munich, Germany, January 21-23, 1987, ACM Press, pp. 178–188,
doi:10.1145/41625.41641.

[6] Jean-Louis Colaço, Grégoire Hamon & Marc Pouzet (2006): Mixing signals and modes in synchronous data-
flow systems. In Sang Lyul Min & Wang Yi, editors: Proceedings of the 6th ACM & IEEE International
conference on Embedded software, EMSOFT 2006, October 22-25, 2006, Seoul, Korea, ACM, pp. 73–82,
doi:10.1145/1176887.1176899.

[7] Jean-Louis Colaço, Bruno Pagano & Marc Pouzet (2005): A conservative extension of synchronous data-
flow with state machines. In Wayne Wolf, editor: EMSOFT 2005, September 18-22, 2005, Jersey City,
NJ, USA, 5th ACM International Conference On Embedded Software, Proceedings, ACM, pp. 173–182,
doi:10.1145/1086228.1086261.

[8] DO-178b: Software Considerations in Airborne Systems and Equipment Certification.

[9] Inc. Esterel Technologies: SCADE. Available at http://www.esterel-technologies.com/products/
scade-suite/.

[10] Pierre-Loïc Garoche, Arie Gurfinkel & Temesghen Kahsai (2014): Synthesizing Modular Invariants for Syn-
chronous Code. In Nikolaj Bjørner, Fabio Fioravanti, Andrey Rybalchenko & Valerio Senni, editors: Pro-
ceedings First Workshop on Horn Clauses for Verification and Synthesis, HCVS 2014, Vienna, Austria, 17
July 2014., EPTCS 169, pp. 19–30, doi:10.4204/EPTCS.169.4.

[11] Pierre-Loïc Garoche, Temesghen Kahsai & Xavier Thirioux: LustreC. Available at https://github.com/
coco-team/lustrec.

[12] N. Halbwachs, P. Caspi, P. Raymond & D. Pilaud (1991): The synchronous dataflow programming language
LUSTRE. In: Proceedings of the IEEE, pp. 1305–1320, doi:10.1109/5.97300.

[13] Grégoire Hamon & John M. Rushby (2004): An Operational Semantics for Stateflow. In Michel Wermelinger
& Tiziana Margaria, editors: Fundamental Approaches to Software Engineering, 7th International Confer-
ence, FASE 2004, Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2004 Barcelona, Spain, March 29 - april 2, 2004, Proceedings, Lecture Notes in Computer Science
2984, Springer, pp. 229–243, doi:10.1007/978-3-540-24721-0_17.

[14] David Harel (1987): Statecharts: A Visual Formalism for Complex Systems. Sci. Comput. Program. 8(3), pp.
231–274, doi:10.1016/0167-6423(87)90035-9.

[15] David Harel & Michal Politi (1998): Modeling Reactive Systems with Statecharts: The Statemate Approach,
1st edition. McGraw-Hill, Inc., New York, NY, USA.

[16] Kryštof Hoder & Nikolaj Bjørner (2012): Generalized Property Directed Reachability. In Alessandro Cimatti
& Roberto Sebastiani, editors: Theory and Applications of Satisfiability Testing – SAT 2012, LNCS 7317,
pp. 157–171, doi:10.1007/978-3-642-31612-8_13.

[17] Temesghen Kahsai & Cesare Tinelli (2011): PKind: A parallel k-induction based model checker. In Jiri
Barnat & Keijo Heljanko, editors: Proceedings 10th International Workshop on Parallel and Distributed

http://dx.doi.org/10.1109/JPROC.2002.805826
http://dx.doi.org/10.1016/0167-6423(92)90005-V
http://dx.doi.org/10.1145/1375657.1375674
http://dx.doi.org/10.1145/41625.41641
http://dx.doi.org/10.1145/1176887.1176899
http://dx.doi.org/10.1145/1086228.1086261
http://www.esterel-technologies.com/products/scade-suite/
http://www.esterel-technologies.com/products/scade-suite/
http://dx.doi.org/10.4204/EPTCS.169.4
https://github.com/coco-team/lustrec
https://github.com/coco-team/lustrec
http://dx.doi.org/10.1109/5.97300
http://dx.doi.org/10.1007/978-3-540-24721-0_17
http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://dx.doi.org/10.1007/978-3-642-31612-8_13

Methods in verifiCation, PDMC 2011, Snowbird, Utah, USA, July 14, 2011., EPTCS 72, pp. 55–62,
doi:10.4204/EPTCS.72.6.

[18] Anvesh Komuravelli, Arie Gurfinkel, Sagar Chaki & Edmund M. Clarke (2013): Automatic Abstraction in
SMT-Based Unbounded Software Model Checking. In Natasha Sharygina & Helmut Veith, editors: Com-
puter Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19,
2013. Proceedings, Lecture Notes in Computer Science 8044, Springer, pp. 846–862, doi:10.1007/978-3-
642-39799-8_59.

[19] Florence Maraninchi & Yann Rémond (1998): Mode-automata: About modes and states for reactive systems.
In Chris Hankin, editor: Programming Languages and Systems, Lecture Notes in Computer Science 1381,
Springer Berlin Heidelberg, pp. 185–199, doi:10.1007/BFb0053571.

[20] Inc. The MathWorks: Simulink. Available at http://www.mathworks.com/products/simulink/.
[21] Inc. The MathWorks: Stateflow. Available at http://www.mathworks.com/products/stateflow/.
[22] Andrew C. Uselton & Scott A. Smolka (1994): A Compositional Semantics for Statecharts using Labeled

Transition Systems. In Bengt Jonsson & Joachim Parrow, editors: CONCUR ’94, Concurrency Theory, 5th
International Conference, Uppsala, Sweden, August 22-25, 1994, Proceedings, Lecture Notes in Computer
Science 836, Springer, pp. 2–17, doi:10.1007/BFb0014994.

http://dx.doi.org/10.4204/EPTCS.72.6
http://dx.doi.org/10.1007/978-3-642-39799-8_59
http://dx.doi.org/10.1007/978-3-642-39799-8_59
http://dx.doi.org/10.1007/BFb0053571
http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/stateflow/
http://dx.doi.org/10.1007/BFb0014994

	1 Introduction
	1.1 Background

	2 Automaton as hierarchical state machines
	3 Synchronous dataflow programs as Horn clauses
	4 Compilation of automaton
	4.1 From automaton to clocked expressions
	4.2 Compiling clocked expressions into modular Horn clauses

	5 Example of encoding
	6 Conclusion

