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Abstract

We consider a set of necessary conditions which are efficient heuristics
for deciding when a set of Wang tiles cannot tile a group.

Piantadosi [?] gave a necessary and sufficient condition for the exis-
tence of a valid tiling of any free group. This condition is actually neces-
sary for the existence of a valid tiling for an arbitrary finitely generated
group.

We then consider two other conditions: the first, also given by Pianta-
dosi [?], is a necessary and sufficient condition to decide if a set of Wang
tiles gives a strongly periodic tiling of the free group; the second, given by
Chazottes et. al. [?], is a necessary condition to decide if a set of Wang
tiles gives a tiling of Z2.

We show that these last two conditions are equivalent. Joining and
generalising approaches from both sides, we prove that they are neces-
sary for having a valid tiling of any finitely generated amenable group,
confirming a remark of Jeandel [?].
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1 Introduction

Z2-subshifts of finite type (SFT) are a set of colorings of the 2-dimensional lattice
Z2, or tilings, defined by a finite set of local restrictions. There are various
equivalent ways to express the restrictions, such as the Wang tiles formalism
introduced by Hao Wang [?]. This formalism was introduced to study the
domino problem: given as input a set of restrictions (e.g. a set of Wang tiles),
is there an algorithm that decides whether there is a tiling of Z2 that respects
those restrictions?

R. Berger [?] showed that the domino problem is undecidable. The proof
depends heavily on notions of periodicity and aperiodicity, more precisely on
the existence of a set of Wang tiles that only tile Z2 in a strongly aperiodic
manner. This is in stark contrast with the situation on Z where the domino
problem is decidable thanks to a graph representation [?].

There has been a recent interest in symbolic dynamics on more general
contexts, such as where the lattice Z2 is replaced by the Cayley graph of an
infinite, finitely generated group. Using again the existence of strongly aperiodic
SFTs, the domino problem was shown to be undecidable, apart from Zd, on
some semisimple Lie groups [?], the Baumslag-Solitar groups [?], the discrete
Heisenberg group (announced, [?]), surface groups [?, ?], semidirect products
on Z2 [?] or some direct products [?], polycyclic groups [?], some hyperbolic
groups [?]. . . It is decidable on free groups [?] and conjectured to be decidable
on every virtually free groups, which is proved for virtually nilpotent groups [?].

As a consequence, outside of free and virtually free groups, one can not
expect to find simple necessary and sufficient conditions for admitting a valid
tiling. However, heuristics can be very useful when making an exhaustive search
for SFTs with desired properties; necessary conditions in particular allow fast
rejection of most empty SFTs. For example, a transducer-based heuristic was
used in the search for the smallest set of Wang tiles that yield a strongly aperi-
odic Z2-SFT [?]. It is also of theoretical interest to understand how the group
properties impact necessary conditions.

1.1 Statements of results

We first consider a necessary and sufficient condition introduced by Piantadosi
for an SFT on the free group to admit a valid tiling [?]. It is well-known that
an SFT on a finitely generated group can only admit a tiling if the “correspond-
ing” SFT on the free group does, so this becomes a necessary condition on an
arbitrary f.g. group (Corollary 4.3).

The next two stronger conditions were introduced by Piantadosi (to decide
if an SFT admits a strongly periodic tiling of the free group) and by Chazottes-
Gambaudo-Gautero [?] in a more general context of tiling the plane by polygons,
but which is necessary for an SFT to admit a tiling of Z2 [?]. We prove that
the two conditions are equivalent (Theorem 3.10), and that they form a nec-
essary condition for an SFT to admit a valid tiling on any amenable group
(Theorem 5.3), confirming a remark of Jeandel [?].

Finally, we provide for any non-free finitely generated group a counterexam-
ple that satisfies all conditions but does not provide a valid tiling.
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2 Preliminaries

2.1 Symbolic dynamics on groups

In the whole article G is an infinite, finitely generated group with unit element
1G. We write G = 〈S | R〉 where S = {g1, . . . , gd} is a finite set of generators
and R = {r1, . . . , rm} ⊂ (S ∪ S−1)∗ is a finite set of relations. By convention
r ∈ R means that r = 1G.

For instance:

• the free group Fd is the group on d generators with no relations;

• Z2 = 〈{g1, g2} | g1g2g
−1
1 g−1

2 〉.

Let A be a finite set endowed with the discrete topology; denote its cardi-
nality #A. Let AG = {(xg)g∈G | ∀g ∈ G : xg ∈ A} be the set of all functions
from G to A endowed with the product topology. Given a finite subset F ⊂ G,
an element P ∈ AF is called a pattern and F = supp(P ) its support ; the set of
all patterns is denoted A∗. We say that a pattern P appears in a configuration
x ∈ AG (and we write P @ x) if there exists g ∈ G such that x|gF = P .
AG is a compact space called the G-full shift. It is a symbolic dynamical

system under the following G-action, called the G-shift :

∀x ∈ AG,∀h ∈ G, (σh(xg))g∈G = (xh−1g)g∈G

We call G-subshift a closed shift-invariant subset Y ⊂ AG. Given a set of
forbidden patterns F ⊂ A∗, we can define the corresponding G-subshift:

Y = YF = {x ∈ AG | ∀P @ x : P /∈ F}.

Every G-subshift can be defined in this way using a set of forbidden patterns.
When a subshift can be defined by a finite set of forbidden patterns, we say it is
a G-subshift of finite type (G-SFT). If furthermore the set of forbidden patterns
can be chosen so that every pattern in F has support of the form {1G, gi} where
gi ∈ S for some set of generators S, we say it is a G-nearest-neighbor subshift
of finite type (G-NNSFT). Notice that this definition depends on the choice of
S which is usually clear in the context.

For example, If we consider G = Z with generator +1, A = {0, 1} and
F = {11} we obtain a Z-NNSFT, the golden mean shift, a classical example in
symbolic dynamics.

Definition 2.1 (Weakly & strongly aperiodic). For a configuration x ∈ AG, we
define the orbit of the element x under the shift action as orbσ(x) = {σg(x)|g ∈
G} and the set of element on G that fixes the configuration x by stabσ(x) =
{g ∈ G|σg(x) = x}. A configuration x ∈ AG is

strongly periodic if stabσ(x) has finite index or, equivalently, if orbσ(x) is
finite;

strongly aperiodic if stabσ(x) = {1G}.

weakly periodic if it is not strongly aperiodic.

weakly aperiodic if it is not strongly periodic;
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More generally, a subshift X ⊂ AG is weakly/strongly aperiodic if every config-
uration on X is weakly/strongly aperiodic.

Example 2.2. In G = Z2,

• the configuration x such that xg = 0 for all g is strongly periodic;

• the configuration x such that xgn1 = 0 for all n, and xg = 1 otherwise, is
weakly periodic and weakly aperiodic;

• the configuration x such that x(0,0) = 0 for all n, and xg = 1 otherwise, is
strongly aperiodic.

2.2 Wang tiles, NNSFT and graphs

Definition 2.3 (Wang tiles, Wang subshifts). Let G = 〈S | R〉 be a finitely
generated group and C a finite set of colors. A Wang tile on C and S is a map
S ∪ S−1 → C.

Given a set T of Wang tiles, the corresponding G-Wang subshift is defined
as:

XT = {(xg) ∈ TG | ∀g ∈ G, s ∈ S ∪ S−1, xg(s) = xgs(s
−1)}

We call the elements in XT G-Wang tilings.

Notice that the definition of a Wang tile depends only on the chosen set of
generators, so that the same Wang tile can be used for F2 and Z2, for example.

Z

a b
g1 7→ b

g−1
1 7→ a

Z2/F2

a b

c

d

g1 7→ b
g−1

1 7→ a
g2 7→ c

g−1
1 7→ d

Figure 1: Examples of Wang tiles with colors C = {a, b, c, d} on one and two
generators, respectively, with their corresponding maps.

Take any G-NNSFT X on alphabet A, where G = 〈{g1, . . . , gd} | R〉 is an
arbitrary finitely generated group. Let F be a set of forbidden patterns with
each support of the form {1G, gi}.

We associate to X a set of d graphs Γ1, . . . ,Γd, where the set of vertices is
A for all Γi, and

∀a, b ∈ A, a→ b in Γi ⇐⇒
{

1G → a
gi → b

/∈ F .

By definition of a G-NNSFT, it follows that a configuration x belongs to X
if, and only if, xh → xgih is an edge in Γi for all h ∈ G and all 1 ≤ i ≤ d.

4



Definition 2.4 (Cycles). A cycle on a graph Γ is a path - with possible edge and
vertex repetitions - that starts and ends on the same vertex. A cycle through
the vertices a1, . . . , ana1, with ai ∈ A, is denoted a1, . . . , an.

A cycle is simple if it does not contain any vertex repetition. Denote SC(Γ)
the set of simple cycles on Γ, which is a finite set.

Remark 2.5. In graph theory, cycles are sometimes called closed walks, in which
case cycle means simple cycle. We decided to follow Piantadosi’s conventions
[?] for convenience.

Let w be a cycle and a ∈ A. We define:

|w|a = #{i | wi = a, 1 ≤ i ≤ |w|}.

In any cycle, the path between the closest repetitions is a simple cycle. By
removing this simple cycle and iterating the argument, we can see that any cycle
w can be decomposed into simple cycles, in the sense that there are integers λω
for ω ∈ SC(Γ) such that:

∀a ∈ A, |w|a =
∑

ω∈SC(Γ)

λω|ω|a.

We say that two G-subshifts X,Y ⊂ AG are (topologically) conjugate if there
is an homeomorphism Φ such that Φ(X) = Y . In the context of G-subshifts,
an homeomorphism corresponds to a reversible cellular automaton: there is a
finite subset H ⊂ G and a local rule ϕ : AH → A such that

∀x ∈ X,∀g ∈ G, Φ(x)g = ϕ((xgh)h∈H),

and Φ−1 is itself a cellular automaton.

Proposition 2.6. For any set of genrators, each G-SFT is conjugate to a G-
NNSFT and each G-NNSFT is conjugate to a G-Wang subshift.

This is folklore. A detailed proof for the SFT - NNSFT part can be found
in [?] (Propositions 1.6 and 1.7), and a proof of the NNSFT - Wang subshift
part in [?].

Since the conjugacy between a G-NNSFT and a G-Wang subshift can be
chosen letter-to-letter (i.e. H = {1G} in the definition), it is easy to see that
the conjugacy does not depends on G, so we could say that a set of graphs and
a set of Wang tiles are conjugate.

Proposition 2.7. Let X and Y be two conjugate G-subshifts. X admits a valid
tiling if and only if Y admits a valid tiling. The same is true for weakly/strongly
(a)periodic tilings.

3 Piantadosi’s and Chazottes-Gambaudo-Gautero’s
conditions

3.1 State of the art on the free group and Z2

The first two condition were introduced by Piantadosi in the context of symbolic
dynamics on the free group Fd.
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Definition 3.1 ([?]). A family of graphs Γ = {Γi}1≤i≤d on alphabet A satisfies
condition (?) if and only if there is some A′ ⊂ A with a coloring function
Ψ : A′ × S → A′ such that, for any color a ∈ A′ and any generator gi ∈ S,
a→ Ψ(a, gi) is an edge in Γi.

Theorem 3.2 ([?]). Let X be a Fd-NNSFT on alphabet A. X is nonempty if
and only if the corresponding set of graphs satisfies condition (?).

This theorem provides a decision procedure for Domino problem in free
groups of any rank: find a subalphabet such that every letter admits a valid
neighbourg in the subalphabet for every generator.

Definition 3.3 ([?]). Consider a family of graphs Γ = {Γi}1≤i≤d and SC(Γi) =

{ωji }1≤j≤#SC(Γi) the set of simple cycles for each graph Γi.
We denote by (??) the following equation on xi,j :

∀a ∈ A,
#SC(Γ1)∑
j=1

x1,j |ωj1|a =

#SC(Γ2)∑
j=1

x2,j |ωj2|a = · · · =
#SC(Γd)∑
j=1

xd,j |ωjd|a.

We say that the graph family satisfies condition (??) if equation (??) admits
an nontrivial positive solution.

Theorem 3.4. [?] A Fd-NNSFT contains a strongly periodic configuration if
and only the associated family of graphs satisfies condition (??).

Example 3.5. We illustrate Piantadosi’s conditions on the following example:

0 1

2

0

1 2

Γ1 : Γ2 :

The corresponding F2-NNSFT admits a tiling, because it satisfies condition
(?) on alphabet A′ = A. However, it does not admit a periodic tiling: the
simple cycles of Γ1 are (up to shifting) {012} and the simple cycles of Γ2 are
{1, 2}, so Equation (??) is:

x1,1 = 0 (a = 1)

x1,1 = x2,1 (a = 2)

x1,1 = x2,2 (a = 3)

which obviously doesn’t admit a solution. As we will see later, the corresponding
Z2-NNSFT doesn’t admit any tiling.
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Remark 3.6. For example, if all graphs Γi share a common cycle w, then condi-
tion (??) admits a solution and therefore the corresponding Fd-NNSFT contains
a periodic configuration.

Definition 3.7 ([?]). Let T be a set of Wang tiles on colors C and set of
generators S. For each g ∈ S ∪ S−1 and each color c ∈ C, define cg the subset
of Wang tiles τi ∈ T such that τi(g) = c. We call (??)′ the following equation :

∀g ∈ S,∀c ∈ C,
∑
τi∈cg

xi =
∑

τj∈cg−1

xj

We say that T satisfies condition (??)′ if Equation (??)′ admits a positive non-
trivial solution.

Theorem 3.8 ([?]). If a set T of Wang tiles admits a valid tiling of Z2, then
it satisfies condition (??)′.

This condition and result was introduced in [?], but a much easier presenta-
tion in our context is given in [?].

Example 3.9. Example 3.5 is conjugate to the following set of Wang tiles:

0 7→ τ0
1 7→ τ1
2 7→ τ2

τ0

a

b

b

a

τ1

b

a

c

a

τ2

c

b

a

b

Equation (??)′ becomes the following, where next to each equation is the cor-
responding generator and color:

(g1, a) x2 = x0 (g2, a) x1 = x0 + x1

(g1, b) x0 = x1 (g2, b) x0 + x2 = x2

(g1, c) x1 = x2 (g2, c) 0 = 0

This equation does not admit a positive nontrivial solution, so the corresponding
Z2-Wang subshift is empty.

3.2 Conditions (??) and (??)′ are equivalent

Although conditions (??) and (??)′ were introduced in very different contexts
(periodic tilings of the free group and tilings of the Euclidean plane, respec-
tively), it turns out that they are equivalent. The fact that (??) is a condition
on graphs (NNSFTs) and (??)′ is a condition on sets of Wang tiles (Wang sub-
shifts) is only cosmetic since Proposition 2.6 lets us go from one model to the
other.

Theorem 3.10. Let T be a set of Wang tiles over the set of colors C and the
set of generators S.

T satisfies condition (??)′ if, and only if, the associated graphs satisfy con-
dition (??).
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Proof. (⇐) Let (xi,j) be a nonnegative solution to equation (??). For every tile

τi, put xi =
∑#SC(Γ1)
j=1 x1,j |ωj1|τi .

Because each simple cycle of Γ1 is a cycle, it contains as many tiles in cg1
as in cg−1

1
; that is,

∑
τi∈cg1

|ωj1|τi =
∑
τj∈cg−1

1

|ωj1|τi . Summing over all simple

cycles ωj1, we get
∑
τi∈cg1

xi =
∑
τj∈cg−1

1

xj .

Since (xi,j) is a solution to Equation (??), we also have xi =
∑#SC(Γn)
j=1 xn,j |ωjn|τi

for every n, so the same argument shows that (xi) is a nonnegative solution of
equation (??)′.

(⇒) Because equation (??)′ admits a solution, it admits an rational solution,
and therefore an integer solution. Let (xi) be an integer, nonnegative solution
of equation (??)′.

For the generator g1, define an auxiliary graphG1 on vertices {τki }1≤i≤n,1≤k≤xi

as follows.
Because

∀c ∈ C,
∑
τi∈cg1

xi =
∑

τj∈cg−1
1

xj ,

we can fix an arbitrary bijection :

Ψ1 : {τki : τi ∈ cg1 , k ≤ xi} → {τk
′

i′ : τi′ ∈ cg−1
1
, k′ ≤ xi′}

and put an edge τki → τk
′

i′ if and only if Ψ1(τki ) = τk
′

i′ . Because each vertex
has indegree and outdegree 1, it is a (not necessarily connected) Eulerian graph
and admits a finite set of cycles covering every vertex exactly once. Decompose
this finite set of cycles into simple cycles and denote x1,j the total number of

each simple cycle ωj1 obtained in this way.
Because each tile τi was present in the graph as a vertex in xi copies, we

have for every i
∑#SC(Γ1)
j=1 x1,j |ωj1|τi = xi.

Now apply the same argument for each generator g2 . . . gn and the variables
(xi,j) thus obtained are a solution to equation (??).

4 Necessary conditions for tiling arbitrary groups

Since the above conditions apply on sets of Wang tiles or set of graphs, they
actually are conditions on a family of G-SFT where G range over all groups with
a fixed number of generators. The following proposition relates the properties
of these SFT. It can be found (under a different form) in [?] (Proposition 10
and remark below)

Proposition 4.1. Fix a set of d graphs Γ1, . . . ,Γd on alphabet A.
Let G1 = 〈{g1 . . . gd}|r1 . . . rn〉, G2 = 〈{g1 . . . gd}|r1 . . . rn−1〉 be finitely gen-

erated groups. Consider the canonical surjective morphism π : G2 → G1 defined
by π(gi) = gi, ∀1 ≤ i ≤ d. Let Φ : AG1 → AG2 be defined by Φ(x)g = xπ(g). Let
X1 and X2 be the corresponding G1-NNSFT and G2-NNSFT respectively, such
that X2 has the same local rules that X1.

We have:

1. If x is a valid tiling for X1 then Φ(x) is a valid tiling for X2.
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2. If x is weakly periodic then Φ(x) is weakly periodic. In particular, if X1

admits a weakly periodic tiling, then X2 admits a weakly periodic tiling.

3. If x is weakly aperiodic then Φ(x) is weakly aperiodic. In particular, if X1

admits a weakly aperiodic tiling, then X2 admits a weakly aperiodic tiling.

The strong properties are not preserved by Φ, but of course the image of a
strongly (a)periodic tiling remains weakly (a)periodic. Stronger versions with
different hypotheses can be found in [?, ?].

Proof. 1. Since X2 is an NNSFT, it is enough to check that, for all h ∈ G2

and all 1 ≤ i ≤ d, Φ(x)h → Φ(x)hgi is an edge in Γi, that is to say, that it
is not a forbidden pattern for X2. By definition of Φ, Φ(x)h = xπ(h) and
Φ(x)h = xπ(h)π(gi) = xπ(h)gi . Because x is a valid tiling for X1, we have
that xπ(h) → xπ(h)gi is an edge in Γi, which proves the result.

2. If x is a weakly periodic tiling in X1, then stabσ(x) is nontrivial by defi-
nition. We have:

stabσ(Φ(x)) = {g ∈ G2 : ∀h ∈ G2,Φ(x)hg = Φ(x)h}
= {g ∈ G2 : ∀h ∈ G2, xπ(h)π(g) = xπ(h)}

Since π is surjective, this means that π(stabσ(Φ(x))) = stabσ(x). stabσ(x)
is nontrivial so stabσ(Φ(x)) = π−1(stabσ(x)) is nontrivial as well.

3. If x be a weakly aperiodic tiling in X1, then stabσ(x) does not have finite
index. The canonical morphism π : G2 → G1 yields a morphism on the
quotient:

π̃ : G2/π
−1(stabσ(x))→ G1/ stabσ(x)

and π̃ is surjective since π is surjective. Remember that stabσ(Φ(x)) =
π−1(stabσ(x)) by the previous point. Since stabσ(x) does not have finite
index, G1/ stabσ(x) is infinite, so G2/π

−1(stabσ(x)) is infinite as well, and
stabσ(Φ(x)) = π−1(stabσ(x)) does not have finite index.

Remark 4.2. In the last proposition, the converse of the point (1) does not hold.
For instance, if consider G = Z2 = 〈g1, g2 | g1g2g

−1
1 g−1

2 〉. Example 2.2 provided
an example of a set of graphs that satisfied condition (?) (so the corresponding
F2-NNSFT admits a valid tiling) but does not satisfies the conditions (??) (so
the corresponding Z2-NNSFT does not admit any valid tiling).

To understand why, notice that ker(π) contains g1g2g
−1
1 g−1

2 , so if a tiling
x ∈ AF2 is such that x1F2

6= xg1g2g−1
1 g−1

2
, then Φ−1(x) = ∅. If this happens for

all x ∈ X2 then X1 is empty.

Corollary 4.3. Let Γ1, . . . ,Γd be a set of graphs that does not satisfy the con-
dition (?). Then the corresponding G-NNSFT is empty for an arbitrary group
G with d generators.

Proof. If there was a valid tiling in G = 〈g1, . . . , gd | R〉 then, applying Propo-
sition 4.1 iteratively, we would obtain a tiling on Fd, which is in contradiction
with Theorem 3.2.
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5 Necessary conditions for tiling amenable groups

Definition 5.1 (Følner sequence). Let G be a finitely generated group. A
Følner sequence for G is a sequence of finite subsets Sn ⊂ G such that:

G =
⋃
n

Sn and ∀g ∈ G, #(Sng4Sn)

#Sn
−−−−→
n→∞

0,

where Sng = {hg : h ∈ Sn} and A4B = (A\B) ∪ (B\A) is the symmetric
difference.

In the previous definition, it is easy to see that the second condition only
has to be checked for g in a finite generating set. Sng4Sn can be understood as
the border of the group, so an element of a Følner sequence must have a small
border relative to its interior.

Definition 5.2 (Amenable group). A finitely generated group G is amenable
if it admits a Følner sequence.

A few examples :

• Zd is amenable and a Følner sequence is given by Sn = [−n, n]d. Indeed,
if (gi)1≤i≤d is the canonical set of generators, then #Sn = (2n+ 1)d and
#(Sn + gi)4Sn = 2 · (2n+ 1)d−1.

• Fd for d ≥ 2 is not amenable. In particular, the balls Sn of radius n - that
is, reduced1 words of length ≤ n on the set of generators (gi)1≤i≤d - are
not a Følner sequence. Indeed, one can easily check that #Sn = O(dn)
and #(Sngi4Sn) = O(dn).

The following theorem was conjectured in [?], Section 3.1.

Theorem 5.3 (Heuristic for tiling an amenable group). Let G be a finitely
generated amenable group, S a finite set of generators, and T a set of Wang
tiles.

If there is a tiling of G with the tiles T , then condition (??) (or equivalently
(??)′) is satisfied.

Proof. Let x ∈ TG be a tiling of G and Sn be a Følner sequence for G. Using
notations from Definition 3.7, for a color c ∈ C and a generator g ∈ S, cg is the
set of tiles τ such that τ(g) = c.

For any h ∈ Sn ∩ Sng−1, we have xh ∈ cg ⇔ xhg ∈ cg−1 (and in this case,
xhg ∈ Sn ∩ Sn · g. This means that, for all c ∈ C, g ∈ S and n ∈ N:

#{h ∈ Sn ∩ Sng−1 : xh ∈ cg} = #{h ∈ Sn ∩ Sng : xh ∈ cg−1}

so in particular |#{h ∈ Sn : xh ∈ cg} − #{h ∈ Sn : xh ∈ cg−1}| ≤
#Sng4Sn + #Sng

−14Sn.

For each tile τi, let xni = #{h∈Sn : xh=τi}
#Sn

. The previous computation implies
that:

∀g ∈ S,∀c ∈ C,

∣∣∣∣∣∣
∑
τi∈cg

xni −
∑

τj∈cg−1

xnj

∣∣∣∣∣∣ ≤ #Sng4Sn
#Sn

+
#Sng

−14Sn
#Sn

.

1with no g−1
i gi or gig

−1
i factors
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Notice that the right-hand side tends to 0 as n tends to infinity by definition
of a Følner sequence. Consider the sequence of vectors ((xni )i)n∈N and, by
compacity, let (xi) be any limit point of this sequence. We have

∀g ∈ S, ∀c ∈ C,
∑
τi∈cg

xi =
∑

τj∈cg−1

xj ,

which is exactly condition (??). Condition (??)′ follows by Theorem 3.10.

6 Counterexamples

It is clear that none of the (?), (??) or (??)′ conditions can be a sufficient
condition to admit a Zd-tiling, since it would be a decision procedure for the
Domino problem; this argument applies to any group where the Domino problem
is undecidable. For completeness, we provide explicit counterexamples for any
non-free finitely generated group.

Theorem 6.1. Let G be an arbitrary finitely generated group. If G is not free,
then there exists an SFT that satisfies the three conditions (?), (??) and (??)′

and which is empty.

Proof. Write G = 〈g1 . . . gn | r1 . . . rk〉, with r1 : w1 . . . w` = 1.
We build a family of graphs Γn on vertices {0, . . . , n} that satisfy the fol-

lowing properties :

∀i ≤ `,
{

if wi = gj , then Γj has an edge i− 1→ i;
if wi = g−1

j , then Γj has an edge i→ i− 1.

Because the previous process did not create any cycle, we can complete every
Γj to be isomorphic to a n-cycle graph Cn.

Now we define a set of n+ 1 Wang tiles on n+ 1 colors {0 . . . n} as follows.
Tile τi has the following colors: g−1

j → i for all j and gj → k if there is an edge
τi → τk in Γj .

Example 6.2. For Z2, we have r1 : g1g2g
−1
1 g−1

2 = 1. Therefore Γ1 contains
0 → 1 and 3 → 2, and Γ2 contains 1 → 2 and 4 → 3. One possible completion
for Γ1 and Γ2 is the following:

τ0

τ1

τ4τ3

τ2

Γ1 : τ0

τ1

τ2τ4

τ3

Γ2 :

and the corresponding set of Wang tiles:
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τ0

0 1

1

0

τ1

1 4

2

1

τ2

2 0

4

2

τ3

3 2

0

3

τ4

4 3

3

4

This tiling satisfies condition (?) since we can assign the same weight 1
n to

each tile.
It is clear that a tiling x of G using tiles τ0, . . . τn must contain every tile.

Assume w.l.o.g that x1 = τ0. By construction we must have xw1
= τ1, xw1w2

=
τ2, and by an easy induction xw = τn. But since w = 1 in G, we have τ0 =
x1 = xw = τn, a contradiction. Therefore there is no tiling of G using tiles
τ0, . . . τn.

7 Conclusion

We would like to mention the two following conjectures that relate the fact of
admitting a valid (periodic) tiling and the underlying group structure:

Conjecture 7.1 ([?]). A finitely generated group has a decidable domino prob-
lem if and only if it is virtually free.

Conjecture 7.2 ([?]). A finitely generated group has an SFT with no strongly
periodic point if and only if it is not virtually cyclic.

In both cases, the “if” direction is proven and the “only if” direction is open.
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