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ABSTRACT

In this paper we address the problem related to data completeness
in the IoT domain. More specifically, we propose an Incremental
Space-Time-based (ISTM) model for fast repairing missing values
in an IoT real-time data stream. ISTM is based on Incremental
Multiple Linear Regression, which processes data as follows: upon
arrival of new data, ISTM updates quickly the model after reading
again an intermediary matrix instead of accessing historical data.
If a missing value is detected, ISTM will provide an estimation for
the missing value based on historical data and the observation of
sensors surrounding the one responsible for missing value(s). The
paper also presents the performance studies in comparing ISTM
with existing techniques using real traffic data.
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1 INTRODUCTION

With the advent of the Internet of Things (IoT), we are witnessing
a proliferation of sensors, with a large scale deployment in cities.
Data emitted by sensors enable the inference of Knowledge [7] in
various domains such as traffic conditions or the management of
natural resources in urban environments.

IoT data in general, and sensor data in particular, need to be
handled with quality-awareness, i.e., data quality issues must be
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addressed in order to infer reliable knowledge. For sensor data,
incompleteness (characterized by means of missing values) is an
important quality dimension to deal with. Machine learning al-
gorithms using datasets with missing values may generate bias
because most of them make the assumption that input data is cu-
rated (e.g., with no missing value) [19].

As described in [19], there exist four approaches that address
missing values problem: 1) delete incomplete observations; 2) man-
ually repairing; 3) Substitute by a constant/mean; 4) get most proba-
ble value to fill in the missing values. Deleting incomplete observa-
tions is, obviously, the easiest way for handling missing values [22]
but at a heavy cost since one may loose useful information. Man-
ually repairing may be hard to achieve and may contradict IoT’s
philosophy that is, extracting meaning without human intervention
[7, 19]. Replacing missing values with the average/last-observation
is the most common method but leads to biased estimates [5]. The
last approach known as imputation, which is the most popular one
[5, 11, 16, 17, 19, 20], uses as more information as possible from the
observed data to predict missing values [8].

There are three major types of Imputation methods: (1) k-nearest
neighbors algorithm (k-NN)[17, 21], (2) Regression imputation and
(3) Multiple imputation [6]. Regression imputation can be linear,
logistic, Poisson, or a combination of the three methods [18]. An-
other method, Multiple Linear Regression (MLR) is widely used for
forecasting. In general, the whole set of data is used as a training
set of MLR, and missing values are estimated by MLR with its inde-
pendents variables. For example, model proposed in [15] improves
prediction accuracy by establishing a MLR model for both spatial
and temporal data.

In the IoT context, one may manipulate data streams: hence, con-
tinuously training of MLR with new data may improve the accuracy
of forecasting. Meanwhile, without modifying the original model,
we need to read all new and old data at one time to completely
retrain the model. Usually the volume of historical data may be
very huge, for example, on Internet every day around 2.5 quintillion
bytes of data are created [2]. It is obviously expensive (slow) to read
all historical data into memory at one time once new data arrive. If
the data streams are not permanently stored [11], it is impossible to
read all historical data needed by the model. So updating the model
of repairing missing value with data stream in real time is a new
challenge.

In this article, we make the MACR assumption (Missing Com-
pletely at Random), that means the underlying reasons for missing
values are independent of known (or unknown) data characteristics
[5]. We propose to repair missing values (of data stream) in real time
via incremental MLR (IMLR) [24], which can significantly increase
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learning efficiency without sacrificing accuracy. Incremental learn-
ing is considered as an effective method [25]. Finally, we propose
the incremental Space-Time-based model (ISTM) approach which
can rapidly update the model with new data. ISTM re-reads one
intermediary matrix instead of all historical data.

Our findings show that ISTM has a good performance in repair-
ing accuracy and overall, performs better than existing techniques.

The remainder of this paper is organized as follows: In section 2,
we formalize the problem and present our approach. In section 3
we describe the results of our solution and compare it with existing
methods. In section 4, we describe some related work on IoT data
repairing. Finally, in section 5, we conclude and highlight some
future directions.

2 INCREMENTAL SPACE-TIME MODEL
APPROACH

In this section, we describe ISTM, an incremental Space-Time-based
model that we proposed for repairing missing values. ISTM extends
STM, the Space Time Model proposed in [15], in using incremental
Multiple Linear Regression.

2.1 Modeling missing values with ISTM

The problem of repairing missing values can be represented as
matrix Z as illustrated in Figure 1. Given p sensors, each element
z;,+ represents a data value generated by a sensor i at time ¢. If the
value emitted by sensor i, at time ¢ is lost, then a value that we
denote Z; ; will be generated in place of z; ;. Estimation of Z; ; is
the solution to the problem of minimizing |z; ; — Z; -

The main feature of ISTM is to avoid reading all the historical
data. Indeed, STM [15] adapts the multiple linear regression model
to estimate missing data both along the temporal dimension and
the spatial one, and get the weighted average of the two values as
the final estimation.

If the value 2,/ of a sensor p” at time ¢’ is missing, STM needs
to get an estimation 215;,’ , depending on the observation (called

SM) of its neighbors and also calculates another estimation 2157, o

depending on its observation of nearly time points (called TM) as
illustrated in Figure 1. Then a weighted sum of the two is given as
the final estimation as illustrated by the following formula:

ig,Tt, = wg * ig/ gt wWT % ig,’t, )
0<ws,wr <lL,wg+wr=1

2.2 ISTMvs.STM

It is demonstrated that, for repairing values, STM performs better
than SM and TM [15]. However, STM is difficult to adapt to incre-
mental because the weights wg and wr are determined by their
performances in historical data. It is clear that once the SM and TM
models are established, wg and wt are also determined. If some new
data arrive, SM and TM will be modified (maybe by one incremental
method which does not consume a lot of resources), but they still
have to read again all historical data in order to recalculate ws and
wr, hence resulting in a costly process.
Compared to STM, ISTM has the following features:
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Figure 1: STM Repairing Ilustrated (z2,;—1 missing value)

Replacement of t’ by t’ — 1. Considering the correlation between
the observation of one sensor (link) at time ¢’ and those of its
neighbors at the immediate past time, SM can be estimated with
the value of observations of the neighbors at time ¢’ rather than
those at ¢’ — 1. There is an additional benefit: avoid the problem of
"The missing value in its surrounding sensors", because all the missing
values at the previous time points have been already repaired.

. 2S
One computing pass. ISTM does not calculate separately 2 v

and 2;,’ o The values of the neighbors at time t” —1 and its historical
data observed between from time ¢’ — 1 to ¢’ — g are both provided
as input to incremental MLR. In doing so, we avoid to calculate wg
and wr which requires reading all historical data.

Figure 2: ISTM Repairing Illustrated (missing value z3 ;)

2.3 ISTM Repairing Function

As discussed above, the repairing process consists mainly on the re-
placement of the missing value by an estimated one. The estimation
function of ISTM can be represented as follows:

ST
ZP', p = Wo + Wi1Zp -1 + W2Zp! -2 + ...+ WgZp—g
+wg+1zk1,t:_1 + Wg+2Zf,, /-1 + ...+ Wy+qqu’ -1
q+g )

g9
:W0+ZWL'*ZP/’;/_Z‘+ Z Wi*Zj,t’—l
i=1 Jj=g+1
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If we note Uy, - as:

Up/’ =
[1 Zp', -1 Zp,t'-g  Zk1,t-1 Zkg,t’—l] 1+(1+g+q)
®)
dw = ! here g is the number of
an = [wo W9+q]1*(1+g+q)’ where q is the number o
neighbors.
So, ISTM function can also be represented as:
sST T
Zp’,t/ =W Up’,t’ (4)

Figure 3 illustrates the repairing process. If ISTM receives the
right message in a timely manner (considered as a normal/good
message), then ISTM uses the message to train/update the model
in real-time. If this message is not received in time (which is the
case of a missing value), ISTM will generate an estimation that
substitutes this missing value. The buffer in Figure 3 represents the
historical data.

the buffer is
Y| updated by
the provides an
estimation of the
|—> missing value with
YES the buffer

ISTM
waits for

dataat [——>
the next
time point

ISTM detected a
missing value ?

NO  ["1STM and the buffer
I—b are updated with
the new data

t |

Figure 3: ISTM Processes

3 EVALUATION

In this section, we evaluate the complexity of our incremental
model and we present the experimental results on a real dataset.
The evaluation is made according the following assumptions made
in [15, 17, 19, 20]:

(1) n>Pm> P,

(2) P> nP>m,

B)n>Pn>m

where n denotes the old sample size, P is number of feature values
and m is new sample size of one unit time.
Table 1 below summarizes those assumptions.

3.1 Time and Space Complexity

We calculate the complexity of IMLR and we compare it with MLR.
It is worth emphasizing that we only care about the complexity
with respect to updating the model.

If we assume that n is much larger than P and the m like in the
article [15, 17, 19, 20], This situation is recorded as n > P,n > m
in Table 1.

If we assume that the number of sensor is large enough, the n
and m may be much larger than P too, like in the article [15, 17],
which is represented as n > P,m > P in Table 1.
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Original Incremental

* | O((n+mP?+P3) 0 (mp? + P*)

| 0 (2(n+m)P +2P?) O (2mP + 4P?)
n>Pm>P|* 0 ((n + m)PZ) > o (sz)

o O (2(n+ m)P) > O (2mP)
P>nP>m| * 0] (P3) = 0] (P3)

** 0 (2P?) < 0 (4P?)
n>Pn>m| * 0 (nP?) >| o(mp+P?)

* O (2nP) > | 0 (2mP +4P?)

" this is the Time Complexity

" this is the Space Complexity
Table 1: Time Complexity, Space Complexity of IMLR and
MLR in 3 cases

We are also interested in the other extreme opposite case, be-
cause it can depict when there are not many sensors and not much
historical data (possibly because the system just started or only
stores very little history data), but with more features value. This
case is represented as P > n,P > m in Table 1.

In the first case n > P,m > P andin third case n > P.n > m, the
time complexity and space complexity of IMLR are generally better
than its traditional version. But, in the second case (P > n,P >
m), the incremental does not outperform MLR. When the number
of features is too large, and the number of samples is too small,
the incremental version does not improve the time complexity;
moreover, it consumes more memory.

3.2 Dataset Description

In order to evaluate ISTM, we use CityPulse [1] data consisting
of average speed of cars. CityPulse dataset covers seven different
domains: Road Traffic, Parking, Pollution, Weather, Cultural, Social
and Library Events Data of Aarhus, Denmark and Brasov, Romania
for years 2014 and 2015. Road Traffic Data is the most important
part.

Road Traffic Data save real world data of travel information dur-
ing "2/2014 - 6/2014",'8/2014 - 9/2014", "10/2014 - 11/2014" 07/2015 -
10/2015" in City of Aarhus, Denmark. The total number of monitors
is 449 (assume that one sensor in one area). The volume of the data
in format CSV is 747.2 MB.

Traffic Data are collected by a number of sensors installed in
the road. Every five minutes, each sensor will send a bunch of
information (one line of table of Traffic Data) to a central computer
center. If one line needs 60 Bytes, every 5 minutes the center will
receive 29940 Bytes (0.029MB).

Figure 4 illustrates a sample of data for one sensor with one miss-
ing value at "2014-02-13T11:50:00" (between "2014-02-13T11:45:00"
and "2014-02-13T11:55:00"). The frequency of missing value is close
to 9%.

3.3 Implementation and Results

We set that the model can read data from the last 6 time points
noted as g = 6. In fact, the bigger g is, the greater is the effectiveness
of the model, but g is limited by the computing center capacities.
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status avgMeasuredTime avgSpeed extlD medianMeasuredTime TIMESTAMP

oK 8 44] 891 89 2014-02-13T11:25:00 |
oK 0 43 891 80 | 2014-02-18711:40:00
oK 0 3 891 90/ 2014-02-13T11:45:00
oK 8 44 891 80 2014-02-18T11:55:00
oK % 0| 891 98 | 2014-0-12112:00:00 |

Figure 4: CityPulse Missing Values

Given a sensor, devices (sensors) within in 1 km around are
considered as its neighbors, and hence are related to it.

So our application of ISTM falls into the following case (n >
P,n > m): we have a large amount of old data (big n), P is a small
constant (P = q + g) where q is the number of neighbours and g is
number of time points recently that our model can review, and the
model is updated immediately with each new data arrival.

For measuring the effect of the reparation, we have to know some
ground truth, i.e., the original value. So we randomly simulate some
missing values from the good ones as illustrated in Figure 5, called
Simulated Missing Values(SMV).

Identificatio .
Randomly pick
n of missing
values / normal values and
mark them as SMWV
normal

Repair all missing
wvalues and SMV

Comparison of the
repair results of SMV
with its criginal value

for evaluation the

repair work

Figure 5: Process of simulation of Missing Values and evalu-
ation of repair work

The Sum Squared Residual (SSE) of SMV is used to evaluate the
performance of accuracy of ISTM and we compare it with some
existing models for repairing missing values.

1 n-1
SSE = - Z (Zi — 2i)% 120, s Zno1 € SMV (5)
n i

Accuracy Discussion. As shown in Figure 6, we compare ISTM
with three traditional MLR models: Static Space-Based, Static Time-
Based and Static Space-Time-Based, in terms of accuracy. We do
not consider the Dynamic Space-Time-Based Model because it has
the same accuracy as our model.

There exist different methods for data replacement:

o Mean of All Historical(MAH). Means of all Historical data
can directly replace missing values.

e Previous Data (PD). If we assume that the values does not
change drastically over a certain period of time, the value
of a previous timestamp can replace the missing value (of
current timestamp).

o Static Space-Based Model(SSBM). A subset of values of the
surrounding sensors are used to train the model(MLR), but
when new data arrive, it won’t re-train/update the model.

o Static Time-Based Model(STBM). A part of historical data of
one sensor is used to train the model(MLR, non incremental),
but when new data arrive, it won’t re-train/update the model.
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e Static Space-Time-Based Model(SSTBM). A part of historical
data of one sensor and values of the surrounding sensors are
used to train the model(MLR, non incremental), but when
new data arrive, it won’t re-train/update the model.

e Dynamic Space-Time-Based Model(DSTBM). The model (MLR,
non incremental) is updated by means of new data (consid-
ered as dependent variable), a subset of historical data and
the data of surrounding sensors (considered as as indepen-
dent variables).

MAH and PD are two simple approaches but widely used, in
some case they can get an acceptable results [5, 11, 21].

For each sensor, the data of first 174 time points are used to
initialize the models(if needed). Respectively 5%, 10%, 15%, 20%, 25%
of the remaining data will be selected randomly and be marked as
a Simulated Missing Value(SMV).

As the proportion of missing values increases, the SSE value of
all algorithms increases. This is because all of the above methods
rely on historical data, and if the quality of the historical data
decreases (although it has already been repaired), the quality of
the prediction/repair will be reduced. It can be speculated that
directly applying data with missing values (without being repaired)
to commercial activities may bring intolerable deviations/losses.

Figure 6 shows that, when the ratio of SMV is equals to 5%, the
SSE of SSBM is much higher than the other methods. Although its
SSE is improved at its subsequent point, but it is still higher than
other methods.

When ratio of SMV is equal to 5% and 10%, the performance of
STBM is close to PD and ISTM (which are the two best methods
according to our findings). But, when the proportion of missing
values increases, the growth rate of SSE of STBM is significantly
higher than MAH, PD, ISTM. That is to say, STBM is more suitable
for situations where the ratio of missing values is low than high.

SSE of MAH relatively gently grows with the ratio of SMV, is
better (lower) than STBM in the ratio of SMV 15%, 20% and 25%,
and is always not as good as PD or ISTM.

As 2nd best method, compared to others, PD’s performance is
close to ISTM. But there are still clear differences between PD and
ISTM as shown in Figure 6.B: when the ratio of SMV is equal to 5%
,10% ,15% ,20%, PD’s curve is relatively flat; in the case where ratio
of SMV grows 5 times, SSE only increases by 50%. And when SMV
ratio is equal to 25%, the accuracy of PD is better than all methods
involved in comparison.

In general, our new method ISTM achieves the best performance.
ISTM wins in terms of accuracy when ratio of SMV is equal to 5%
,10% ,15% ,20%. Until a ratio of SMV equal to 25%, SSE of PD (99)
performs slightly better than ISTM (100). The speed limit of the
Dutch highway is 120, we can think that these two methods are
very close at the point where ratio of SMV is equal to 25%. ISTM
and PD are two robust methods, their performance is stable with
the different ratio of SMV.

In summary, when the ratio of SMV is relatively low (5-20%),
ISTM gains overall advantage. When the ratio of SMV reaches 25%,
PD and ISTM perform similarly.

Comparison of Efficiency. We have shown that ISTM has better
accuracy than MAH, PD, SSBM, STBM, SSTNM. According to [24],
we know that DSTBM has the same accuracy performance as ISTM.
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In order to compare efficiencies of DBSTM and ISTM, we ran
a set of experiments on a computer (Intel i5, 2.60 GHz, 8GB RAM,
macOS, Python), with five different data samples sizes: 10%, 20%,
30%, 40%, 50% of all data (the simulated missing value ratio is 10%,
which is close to 9% mentioned in section 3.2).

Figure 7 illustrates the speed of DSTBM and ISTM. Obviously,
as the number of samples increases, the running time of ISTM
increases: with 10% of all data, it takes 497 seconds; with 50%, it
takes 2587 seconds; 5 times the amount of data leads to about 5
times running time. In comparison, DSTBM running time increases
much faster than ISTM: with 10% of all data, it takes 3994 seconds;
with 50%, it takes 77241 seconds; hence, 5 times the amount of data
brings about 19 times the running time.
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Figure 6: Comparison of SSE on ISTM and other methods
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Figure 7: Comparison of speed between ISTM and DSTBM

4 RELATED WORK

According to [23], "real-time analytics of massive IoT data is in its
infancy". The paper also describes a set of use cases of real-time
analytics together with their network requirements.

To mitigate data quality issues of IoT in real time, some ap-
proaches try to build a more reliable network that has better fault
tolerance, including missing values. For instance, in [9] the tree
topology is considered to have good fault-prone because of the
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single point of failure. Standby hardware, which replaces the failed
physical network components in real-time [23], is another way
of reducing missing values. The hardware-based fault tolerance is
trustworthy but expensive, so software-based network fault toler-
ance approaches needs to be carefully investigated [23].

In [10], some approaches based on principal component analysis
(PCA) are employed for imputing missing values, in order to get the
real-time crash likelihood prediction. In order to improve the accu-
racy, [27] propose a Singular Value Decomposition algorithm which
can be updated with the current reconstructed frame adaptively.

In [5, 26] a typology of IoT missing values is proposed: (1) missing
completely at random (MCAR), (2) missing at random (MAR), (3)
not missing at random (NMAR). According to different types of
missing values, corresponding methods should be used instead of
using a generic method. Among the models proposed are: MCL, a
model based on context and linear mean; MBS, a model based on
binary search; and MGI, a Gaussian mixture model (MGI).

In [3], authors propose an imputation technique based on spatio-
temporal and association rule mining (STARM). Firstly STARM uses
space-time data to determine the Pearson coefficient between two
sensors, then the missing value is replaced by a weighted average
of values for sensors whose Pearson exceeds a threshold. A new
moving-neighborhood interpolation algorithm based on Delaunay
triangulation technique has been proposed in order to find out the
neighbor’s sensors set having a strong spatial correlation.

Nearest Neighbor (NN) imputation is proposed in [12] which uses
k-d tree and spatial and temporal data to determine which nodes
are spatially and temporally correlated with each other. According
to authors, NN is suitable for use in resource-constrained WSNs.

In [4], authors propose TKCM (Top-k Case Matching) to impute
missing values in streams of time series data. For the imputation,
TKCM exploits both a set of reference time series (for each time
series) and a similar historical situations in the reference time series.

5 CONCLUSION AND FUTURE WORK

In this article, we described a method for repairing missing values
in an IoT context, using incremental MLR (IMLR), depending on
the spatial and temporal features. By analyzing time and space
complexity of IMLR, we have showed that IMLR is suitable for our
application scenario. Our method, called ISTM relies on a Space-
Time model adapted to incremental MLR. Our method has been
tested on repairing traffic data drawn from CityPulse; moreover
experimental results show that ISTM outperforms some traditional
methods in terms of accuracy and efficiency.

After surveying some related work, to the best of our knowledge,
there is no work on repairing missing value of IoT data stream with
incremental Multiple Linear Regression, i.e.; a method that (on-line)
updates dynamically the model.

Future directions of this work are based on the following obser-
vations: MLR is a convenient linear modeling tool, which is easy to
adapt for incremental without loss of accuracy; Non-linear models,
such as Ridge Regression, SVM may be more powerful [14] than lin-
ear models. Using these incremental tools in order to detect/repair
missing values in the IoT world deserves further investigation.
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