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Abstract

We introduce methods to study the combinatorics of the normal form of
large random elements in Artin-Tits monoids. These methods also apply in
an axiomatic framework that encompasses other monoids such as dual braid
monoids.
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1—Introduction

Braid monoids are finitely presented monoids with a rich combinatorics, mainly based
on the existence of a normal form for their elements. Consider the braid monoid B+

n

on n strands: it has n− 1 Artin generators which represent the elementary twists of
two neighbor strands. The Artin length of an element x ∈ B+

n is the number m such
that x can be written as a product of m Artin generators. The decomposition is not
unique, yet m is well defined. The Garside normal form, also called the greedy normal
form, arises from the following fact: there exists a finite subset S of B+

n , that not only
generates B+

n , but also such that any x ∈ B+
n writes uniquely as a product x1 · . . . ·xk

of elements of S, provided that the sequence (x1, . . . , xk) satisfies a condition of the
form x1 → x2 → · · · → xk, where x→ y is some binary relation on S.

Fix an integer j and pick an element x in B+
n at random among elements of

Artin length m, with m large. Then consider the j first elements (x1, . . . , xj) in the
normal form of x. This is a complex random object: the sequence (x1, . . . , xj) has no
Markovian structure in general, and the law of (x1, . . . , xj) depends on m. However,
some regularity appears when considering the limit with m → ∞. Indeed, the
limit law of the sequence (x1, . . . , xj) is Markovian, which already brings qualitative
information on the typical behavior of “large random elements” in a braid monoid.
First motivated by this kind of question, we have introduced in a previous work [1]
the notion of uniform measure at infinity for braid monoids. The marginals of the
uniform measure give back the limit form of the law of (x1, . . . , xj) when m → ∞,
hence yielding an appropriate notion of uniform measure for “infinite braid elements”.
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The notion of uniform measure at infinity allowed us to settle open questions regarding
the behavior of the normal form of large braids, asked by Gebhardt and Tawn in [23].

The following questions were left open in [1]: how much of these techniques extend
to more general monoids? Furthermore, on top of the qualitative information brought
by the Markovian properties of the uniform measure at infinity, can we also obtain
asymptotics on some combinatorial statistics? Here is a typical statistics for which
precise asymptotics might be expected. Beside the Artin length of elements in B+

n ,
the height of x ∈ B+

n is the length k of the normal form (x1, . . . , xk) of x. What is the
typical behavior of the ratio m/k when k is the height of a random element in B+

n of
Artin length m large? Assume that this ratio is close to some constant γ. Is there a
limit law for the quantity

√
k(m/k − γ) when m→∞? Hence, we were left with the

two following natural extensions to carry over: 1) extension to other monoids than
braid monoids; and 2) asymptotics for combinatorial statistics.

A natural candidate for the generalization of braid monoids is the class of Artin-
Tits monoids. This class encompasses both braid monoids and trace monoids—the
later are also called heap monoids [38] and free partially commutative monoids [11]
in the literature. Contrasting with braid monoids, a trace monoid is not a lattice for
the left divisibility order; in particular, it has no Garside element. Actually, trace
monoids and braid monoids can be seen as two typical representatives of Artin-Tits
monoids of type FC, which is a subclass of Artin-Tits monoids already large enough
to provide a good view on Artin-Tits monoids.

In this paper, we develop the notion of uniform measure at infinity for Artin-Tits
monoids. More generally, we consider the class of multiplicative measures at infinity
for an Artin-Tits monoid, among which is the uniform measure at infinity. We first
define the boundary at infinity ∂A of an Artin-Tits monoid A as the topological
space of “A-infinite elements”. It has the property that A ∪ ∂A is a compactification
of A. Multiplicative measures at infinity are probability measures on ∂A with a
purely algebraic definition. The combinatorics of the monoid is reflected within these
measures. For instance, the explicit expression for the uniform measure at infinity
involves the root of smallest modulus of the Möbius polynomial of the monoid A. The
Möbius polynomial encodes some information on the combinatorics of the monoid.
Its root of smallest modulus is the inverse of the growth rate of the monoid. By
analogy, multiplicative measures at infinity play in an Artin-Tits monoid a role which
corresponds to the role of the standard Bernoulli measures in a free monoid, as
illustrated below:

Σ∗ : monoid
of Σ-words

// Σ∞ : space of
infinite Σ-sequences

// m: Bernoulli
measure on Σ∞

A : Artin-Tits
monoid

// ∂A : boundary
at infinity of A

// m: multiplicative
measure on ∂A

The uniform measure at infinity describes the qualitative behavior of a large
random element of the monoid. As for braid monoids, the first j elements in the
normal form of a random element x ∈ A of large size converge in law toward a
Markov chain, for which the initial distribution and the transition matrix are explicitly
described. This Markov chain corresponds to the marginal of the uniform measure at
infinity. Multiplicative measures play an analogous role when large elements, instead
of being picked uniformly at random, are chosen at random with multiplicative weights
associated to the elementary generators of the monoid.

A second device that we introduce is the conditioned weighted graph (CWG) asso-
ciated with an Artin-Tits monoid. This is essentially a non-negative matrix encoding
the combinatorics of the monoid, together with weights attributed to the generators
of the monoid. CWG are reminiscent of several tools and techniques found elsewhere
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in the literature and can almost be considered as folklore; we show in particular the
relationship with the classical notion of survival process. Our contribution consists in
applying spectral methods to derive asymptotics for CWG, including a concentration
result with a convergence in law and a Central Limit Theorem.

We have thus two devices for studying the asymptotic combinatorics of Artin-Tits
monoids. On the one hand, the uniform measure at infinity has a purely algebraic def-
inition, and naturally encodes some information on the combinatorics of the monoid.
On the other hand, the CWG associated with the monoid entirely encodes the combi-
natorics of the monoid and analytical methods can be used to obtain information on
its asymptotic. Our program consists in using the analytical results for CWG in order
to 1) derive asymptotic results for large random elements in the monoid; and 2) derive
additional information regarding multiplicative measures at infinity. In particular, the
set of finite probabilistic parameters that entirely describe multiplicative measures at
infinity is shown to be homeomorphic to a standard simplex, and by this way we prove
the existence of the uniform measure at infinity in all cases, which is a non-trivial
task.

The paper brings original contributions in the area of pure combinatorics of Artin-
Tits monoids. In particular, the following results are of interest per se: 1) If an
Artin-Tits monoid is irreducible, its graph of proper simple elements is strongly
connected—this graph contains as vertices all the simple elements of the monoid,
excepted the unit element and the Garside element if it exists. 2) We introduce a
generalized Möbius transform and we give an explicit form of its inverse for general
Artin-Tits monoids. 3) We give a simple characterization of monoids of type FC
among Artin-Tits monoids.

Finally, we observe that our methods also apply outside the framework of Artin-
Tits monoids. We isolate a working framework where the chain of arguments that we
use can be repeated mutatis mutandis. We illustrate this working framework by giving
examples of monoids fitting into it, yet living outside the class of Artin-Tits monoids.
Of particular interest is the class of dual braid monoids and their generalizations for
Artin-Tits monoids of spherical type. We show that they fit indeed into our general
framework.

Outline. In Section 2, we first recall the basic definitions and some results regarding
the combinatorics of Artin-Tits monoids. The notion of normal form of elements
of an Artin-Tits monoid leads us to the definition of the boundary at infinity of
the monoid. We describe the relationship between measures at infinity and Möbius
transform on the monoid. We particularize then our study to the class of multiplicative
measures at infinity, among which is the uniform measure at infinity. We characterize
multiplicative measures at infinity by a finite number of probabilistic parameters with
suitable normalization conditions, and we state a uniqueness result for the uniform
measure.

In Section 3 we introduce a technical device: the notion of conditioned weighted
graph (CWG). Based on the Perron-Frobenius theory for primitive matrices, we observe
that a natural notion of weighted measure at infinity can be attached to any CWG.

In Section 4, we show how the theory of CWG applies in particular to Artin-Tits
monoids. The two notions of uniform measure at infinity introduced above are related
to each other. We obtain in particular a parametrization of all multiplicative measures
at infinity for an Artin-Tits monoid, and the existence of the uniform measure at
infinity.

Section 5 is devoted to the of asymptotic study of combinatorial statistics, first in
the general case of CWG, and then applied to the case of Artin-Tits monoids. Using
spectral methods, we state a concentration result and a Central Limit Theorem in
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the framework of CWG, relatively to weak convergences. We state the corresponding
convergence results for the asymptotic combinatorics of Artin-Tits monoids, yielding
very general answers to the questions raised in the first part of this introduction, for
braids.

Finally, in Section 6, we extract some minimal properties that were needed to
carry our analysis. Provided that these minimal properties hold indeed, one states
the corresponding results for more general monoids. We also give examples of such
monoids outside the class of Artin-Tits monoids, including the class of dual monoids
of Artin-Tits monoids of spherical type.

2—Probability measures on the boundary of Artin-Tits monoids

In this section we review some background on the combinatorics of Artin-Tits monoids.
It turns out that the notion of Garside family is of great interest, both from a
theoretical and from a computational viewpoint. Therefore we focus on Garside
subsets for Artin-Tits monoids and related notions: simple elements and the associated
normal form in particular. We shall see later that the probabilistic viewpoint also
takes great advantage of these notions, which were originally devised mainly to explore
combinatorial aspects of Artin-Tits monoids.

2.1 — Definitions and examples of Artin-Tits monoids
2.1.1 Definition of Artin-Tits monoids — Let a finite, non empty alphabet Σ

be equipped with a symmetric function ` : Σ×Σ 7→ {2, 3, 4, . . .}∪{∞}, i.e., such that
`(a, b) = `(b, a) for all (a, b) ∈ Σ× Σ. Associate to the pair (Σ, `) the binary relation
I on Σ, and the monoid A = A(Σ, `) defined by the following presentation [10]:

A =
〈
Σ
∣∣ ababa . . . = babab . . . for (a, b) ∈ I

〉+
,

where ababa . . . and babab . . . both have length `(a, b),
and I =

{
(a, b) ∈ Σ× Σ

∣∣ a 6= b and `(a, b) <∞
}
.

Note that the values of ` on the diagonal of Σ× Σ are irrelevant. Such a monoid is
called an Artin-Tits monoid.
2.1.2 Examples of Artin-Tits monoids — The free monoid generated by Σ

is isomorphic to A(Σ, `) with `(·, ·) = ∞. The free Abelian monoid generated by Σ
is isomorphic to A(Σ, `) with `(·, ·) = 2. More generally, considering A(Σ, `) with
` ranging only over {2,∞}, but assuming possibly both values, yields the class of
so-called heap monoids on Σ, also called trace monoids on Σ. They are the monoids
analogous to the so-called right-angled Artin groups [12].

Braid monoids are also specific instances of Artin-Tits monoids. Indeed, for
every integer n ≥ 3, the braid monoid on n strands is the monoid B+

n generated
by n− 1 elements σ1, . . . , σn−1 with the following relations [22]: the braid relations
σiσjσi = σjσiσj for 1 ≤ i ≤ n − 2 and j = i + 1, and the commutativity relations
σiσj = σjσi for 1 ≤ i, j ≤ n− 1 and |i− j| > 1. Hence B+

n is isomorphic to A(Σ, `)
by choosing Σ = {σ1, . . . , σn−1} and `(σi, σj) = 3 for |i− j| = 1 and `(σi, σj) = 2 for
|i− j| > 1.
2.1.3 Length and orders — Let A = A(Σ, `) be an Artin-Tits monoid. The

length of x ∈ A, denoted by |x|, is the length of any word in the equivalence class x,
with respect to the congruence defining A (it does not depend on the choice of the
word as the relations do not modify the length).
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In particular, elements of Σ are characterized as those x ∈ A such that |x| = 1.
It follows that, when considering an Artin-Tits monoid A, we may refer to the pair
(Σ, `) such that A = A(Σ, `). In particular, elements of Σ are called generators of A.

The monoid A is equipped with the left and with the right divisibility relations,
denoted respectively by ≤l and by ≤r , which are both partial orders on A , defined
by:

x ≤l y ⇐⇒ ∃z ∈ A y = x · z ,
x ≤r y ⇐⇒ ∃z ∈ A y = z · x .

We also denote by <l and <r the associated strict orders.
The results stated in this paragraph and the next one are proved in [17, Ch. IX,

Prop. 1.26]. Every Artin-Tits monoid A is both left and right cancellative, meaning:

∀x, y, z ∈ A (z · x = z · y =⇒ x = y) ∧ (x · z = y · z =⇒ x = y).

The partially ordered set (A,≤l) is a lower semilattice, i.e., any finite set has a
greatest lower bound. Furthermore, any ≤l-bounded set has a ≤l-least upper bound.

We denote by
∧

l X and by
∨

l X the greatest ≤l-lower bound and the least upper
bound of a subsetX ⊆ A, if they exist. We use the standard notations a∧lb =

∧
l{a, b}

for a, b ∈ A. We also write a∨l b =
∨

l{a, b} when defined. The analogous notations
∨

r,
etc, are defined with respect to the right divisibility relation.

Unlike braid monoids, (A,≤l) is not necessarily a lattice. For instance, distinct
generators a and b of a free monoid have no common multiple and thus {a, b} has no
≤l-upper bound.

If a and b are two generators of A, then a ∨l b exists if and only if `(a, b) < ∞,
if and only if a ∨r b exists, and then a ∨l b = a ∨r b = ababa . . . , where the rightmost
member has length `(a, b). More generally, let S ⊆ Σ be a set of generators of A.
Then it follows from [17, Ch. IX, Proposition 1.29] that the following conditions are
equivalent: (i) S is ≤l-bounded; (ii)

∨
l S exists; (iii) S is ≤r-bounded; (iv)

∨
r S exists.

If these conditions are fulfilled, the element ∆S =
∨

l S has the following property:

∀x ∈ A x ≤l ∆S ⇐⇒ x ≤r ∆S . (2.1)

It implies in particular:

∆S =
∨

r
S, and ∀x ∈ S x ≤r ∆S . (2.2)

Furthermore, it follows from [17, Ch. IX, Cor. 1.12] that the sub-monoid of A
generated by S is isomorphic to the Artin-Tits monoid A(S, `

∣∣
S×S). In particular:

∆S ∈ 〈S〉, the sub-monoid of A generated by S. (2.3)

If X is a subset of A, we say that X is closed under existing ∨l to mean that, if a
and b are elements of X such that a ∨l b exists in A, then a ∨l b ∈ X.
2.1.4 Artin-Tits monoids of spherical type — The monoid A = A(Σ, `) is

said to have spherical type if
∨

l Σ exists. In this case, the partially ordered set (A,≤l)
is a lattice. The element

∨
l Σ is denoted by ∆ and is called the Garside element of A.

An equivalent definition, oftenly found in the literature, is the following. Let
C = C(Σ, `) be the presented group with Σ as set of generators, and with the
same relations given in Section 2.1.1 in the definition of A(Σ, `), together with all
the relations s2 = 1 for s ranging over Σ. The group C is the Coxeter group [14]
associated with A. Then A has spherical type if and only if C is finite, see [10,
Th. 5.6].
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For instance, it is well known that the braid monoid B+
n defined as in Section 2.1.2

has spherical type, with Garside element given by ∆ = (σ1 · σ2 · . . . · σn−1) · (σ1 · σ2 ·
. . . · σn−2) · . . . · (σ1 · σ2) · σ1. A heap monoid is of spherical type if and only if it is a
free Abelian monoid.
2.1.5 Irreducibility of Artin-Tits monoids and Coxeter graph —

• Definition 2.1—An Artin-Tits monoid A is called irreducible if it is not isomorphic
to the direct product of two Artin-Tits monoids.

For instance, braid monoids and free monoids are all irreducible. A free Abelian
monoid is irreducible if and only if it has only one generator. For a heap monoid
M = A(Σ, `) with `(·, ·) ∈ {2,∞}, define D = {(a, b) ∈ Σ×Σ

∣∣ a = b or `(a, b) =∞}.
ThenM is irreducible if and only if the undirected graph (Σ, D) is connected.

More generally, the irreducibility is related to the Coxeter graph of the monoid,
defined as follows.

• Definition 2.2—The Coxeter graph of an Artin-Tits monoid A(Σ, `) is the undirected
graph G = (Σ, E), with E = {(s, t) ∈ Σ× Σ

∣∣ s = t or `(s, t) ≥ 3 or `(s, t) =∞}.
As observed in [10, § 7.1], we have the following result.

• Proposition 2.3—An Artin-Tits monoid is irreducible if and only if its Coxeter graph
is connected.

2.2 — Normal sequences and normal form of elements
We fix an Artin-Tits monoid A = A(Σ, `).

2.2.1 Garside subsets — A subset G of A is a Garside subset of A if it contains Σ
and if it is closed under existing ∨l and downward closed under ≤r, the latter meaning:

∀x ∈ G ∀y ∈ A y ≤r x =⇒ y ∈ G.

The following result is proved in [18].

• Proposition 2.4—Any Artin-Tits monoid admits a finite Garside subset.
The class of Garside subsets of A is obviously closed by intersection, hence A

admits a smallest Garside subset, which we denote throughout the paper by S. The
subset S is the closure of Σ under ≤r and existing ∨l . Proposition 2.4 tells us that
the set S thus constructed is finite. By construction, S contains Σ ∪ {e}, where e is
the unit element of the monoid.

• Definition 2.5—The elements of the smallest Garside subset of an Artin-Tits monoid
are called its simple elements.

Assume that A is of spherical type. Then, according to [17, Ch. IX, Prop. 1.29],
the set S coincides with the set of left divisors of ∆, which is also the set of right
divisors of ∆. Hence: ∆ =

∨
l Σ =

∨
r Σ =

∨
l S =

∨
r S, and ∆ is the maximum of the

sub-lattice (S,≤l).
2.2.2 Artin-Tits monoids of type FC — If the smallest Garside subset of

an Artin-Tits monoid is closed under left divisibility, then the combinatorics of the
monoid is a bit more simple to study.

• Definition 2.6—An Artin-Tits monoid A, with smallest Garside subset S, is of type
FC if S is closed under left divisibility.
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It is proved in [27, Th. 2.85] that this definition is indeed equivalent to the one
found in the literature [25, 17]. In particular, heap monoids and braid monoids are
monoids of type FC.

Not all Artin-Tits monoids are of type FC: see an example in Section 2.3.4 below.
2.2.3 Normal sequences — Most of what is known on the combinatorics of

Artin-Tits monoids is based on the notion of normal sequence.

• Definition 2.7—Let A be an Artin-Tits monoid with smallest Garside subset S. A
sequence (x1, . . . , xk), with k ≥ 1, of elements of A is normal if it satisfies:

1. xi ∈ S for all i = 1, . . . , k.

2. xi =
∨

l
{
ζ ∈ S

∣∣ ζ ≤l xi · . . . · xk
}
for all i = 1, . . . , k.

A fundamental property of normal sequences is the following.

• Lemma 2.8—Let A be an Artin-Tits monoid.

1. A sequence (x1, . . . , xk), with k ≥ 1, of simple elements of A is normal if and
only if it satisfies:

xi =
∨

l

{
ζ ∈ S

∣∣ ζ ≤l xi · xi+1
}

for all i = 1, . . . , k − 1.

2. A sequence (x1, . . . , xk), with k ≥ 1, of simple elements of A is normal if and
only if all sequences (xi, xi+1) are normal, for i ∈ {1, . . . , k − 1}.

Proof. Point 1 is proved in [18], and point 2 follows at once from point 1.

Let x→ y denote the relation x =
∨

l
{
ζ ∈ S

∣∣ ζ ≤ x · y}, defined for (x, y) ∈ S×S.
Point 2 of Lemma 2.8 reduces the study of normality of sequences to the study of the
binary relation → on S.

The unit element e of A satisfies:

∀x ∈ S x→ e, ∀x ∈ S e→ x ⇐⇒ x = e. (2.4)

Hence e can only occur at the end of normal sequences, and e is the only element of
S satisfying the two properties in (2.4).

Dually, if A is of spherical type, the Garside element ∆ =
∨

l Σ satisfies:

∀x ∈ S ∆→ x, ∀x ∈ S x→ ∆ ⇐⇒ x = ∆. (2.5)

Hence ∆ can only occur at the beginning of normal sequences. Obviously, ∆ is the
only simple element satisfying the two properties in (2.5).
2.2.4 Charney graph — We define the Charney graph (C ,→) of an Artin-Tits

monoid A as follows. If A is of spherical type, we put C = S \ {∆, e}, where ∆ is
the Garside element of A. If not, we put C = S \ {e}. In all cases, the edge relation
→ is the restriction to C × C of the relation → defined above on S × S.

The relevance of this definition will appear in Section 2.2.7 below.
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2.2.5 Normal form of elements and height — Let A be an Artin-Tits monoid.
Then, for every element x ∈ A with x 6= e, there exists a unique integer k ≥ 1
and a unique normal sequence (x1, . . . , xk) of non unit simple elements such that
x = x1 · . . . · xk . This sequence is called the normal form of x. By convention, we
decide that (e) is the normal form of the unit element of A.

The integer k is called the height of x, and we denote it:

k = τ(x).

The following result is standard [17, Chap. III, Prop. 1.36]. It shows that comparing
elements can be done after ‘cutting’ at the right height.

• Lemma 2.9—Let A be an Artin-Tits monoid, and let S be the smallest Garside
subset of A. Then:

1. If (x1, . . . , xk) is the normal form of and element x ∈ A, then x1 · . . . · xj =∨
l{z ∈ Sj

∣∣ z ≤l x} for all j ∈ {1, . . . , k}, where Sj = {u1·. . .·uj
∣∣ (u1, . . . , uj) ∈

S × · · · × S}.

2. The height τ(x) of an element x ∈ A is the smallest integer j ≥ 1 such that
x ∈ Sj.

The normal form of elements does not behave ‘nicely’ with respect to the monoid
multiplication. For instance, the multiplication of an element x ∈ A, of normal form
(x1, . . . , xk), by an element y ∈ A, yields in general an element z of normal form
(z1, . . . , zk′) with no simple relation between xj and zj .

It is even possible that the multiplication x · σ of x ∈ A with a generator σ ∈ Σ,
satisfies τ(x ·σ) < τ(x) (see an example in Section 2.3.4). This contrasts with monoids
of type FC, where τ(x · σ) ≥ τ(x) always holds.

2.2.6 Conditions for normality of sequences — Aiming at studying the con-
nectedness of the Charney graph in the next section, one needs theoretical tools to
construct normal sequences. Such tools exist in the literature. They include the letter
set, the left set and the right set of an element x ∈ A, which are respectively defined
as the following subsets of Σ:

L(x) = {σ ∈ Σ
∣∣ ∃y, z ∈ A x = y · σ · z},

L(x) = {σ ∈ Σ
∣∣ σ ≤l x},

R(x) = {σ ∈ Σ
∣∣ σ ≤r x or (∃η ∈ L(x) σ 6= η and `(σ, η) =∞)}.

The letter set L(x) of x is the set of letters that appear in some word representing x
or, equivalently, in any word representing x, as relations in Artin-Tits monoids use
the same letters on both sides of the relation.

• Lemma 2.10—Let A = A(Σ, `) be an Artin-Tits monoid. The subsets

G = {x ∈ A
∣∣ ∀σ ∈ Σ ∀y, z ∈ A x 6= y · σ2 · z},

I = {x ∈ A
∣∣ ∀σ, η ∈ L(x) σ 6= η =⇒ `(σ, η) <∞},

are Garside subsets of A.

Proof. It is proved in [17, Theorem 6.27] that G is a Garside subset. Since I is clearly
downward closed under ≤r and contains Σ, we focus on proving that I is closed
under ∨l. In passing, we also note that I is downward closed under ≤l.

Seeking a contradiction, assume the existence of x, y ∈ I such that z = x∨l y exists
in A but z /∈ I. Without loss of generality, we assume that z is such an element of
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minimal length and that the element w = x∧l y is maximal among all the elements of
the set {u∧l v

∣∣ u, v ∈ I and u∨l v = z}. Consequently, a contradiction, and therefore
a proof of the lemma, is obtained by proving the following claim:

(†) There exist elements x′ and y′ in I such that x′ ∨l y
′ = z and w <l (x′ ∧l y

′).

Since z /∈ {x, y}, observe that neither x ≤l y nor y ≤l x hold, whence w <l x and
w <l y. Thus we pick σ, η ∈ Σ such that w · σ ≤l x and w · η ≤l y. Then w · σ ≤l z
and w · η ≤l z, which implies that σ and η have a common ≤l-upper bound, and thus
σ ∨l η exists by the remarks made in Section 2.1.3, and it is equal to σησ · · · .

Since I is ≤l-downward closed, and since x and y belong to I, the elements w · σ
and w · η both belong to I. It follows that `(a, b) <∞ for all pairs (a, b) with a 6= b
and a, b ∈ L(w)∪{σ, η}. Therefore, putting t = w · (σ ∨l η), we have that t ∈ I. Since
t also writes as t = (w · σ) ∨l (w · η), it is clear that t ≤l z.

Hence, the element u = t ∨l x exists, and u ≤l z. If u = z, then setting x′ = x
and y′ = t gives us w <l (w · σ) ≤l (x′ ∧l y

′) and z = x′ ∨l y
′. If u <l z, then by

minimality of z we have u ∈ I, and therefore setting x′ = u and y′ = y gives us
w <l (w · η) ≤l (t∧l y) ≤l (x′ ∧l y

′), z = (x∨l y) ≤l (x′ ∨l y
′) and (x′ ∨l y

′) ≤l z, whence
z = x′ ∨l y

′. This completes the proof of the claim and of the lemma.

We obtain the following sufficient criterion for detecting normal sequences.

• Corollary 2.11—Let A be an Artin-Tits monoid.

1. If x and y are two non unit simple elements of A satisfying L(y) ⊆ R(x), then
(x, y) is normal.

2. If (x1, . . . , xk), with k ≥ 1, is a sequence of non unit simple elements of A
satisfying L(xi+1) ⊆ R(xi) for all i ∈ {1, . . . , k − 1}, then it is normal.

Proof. Point 2 follows from point 1, in view of Lemma 2.8, point 2. To prove point 1,
let x and y be as in the statement and let u =

∨
l
{
z ∈ S

∣∣ z ≤l x · y
}
; we prove that

x = u.
Clearly, x ≤l u. Seeking a contradiction, assume that u 6= x. Then there exists

z ∈ S such that x <l z ≤l x · y. Let σ ∈ Σ be such that x · σ ≤l z. Then x · σ ≤l x · y
and thus σ ≤l y since A is left cancellative, hence σ ∈ L(y) ⊆ R(x).

Let G and I be the Garside subsets of A introduced in Lemma 2.10. Discussing
the property σ ∈ R(x), one has: (1) if σ ≤r x then x ·σ /∈ G, and (2) if `(σ, η) =∞ for
some η ∈ L(x) with η 6= σ, then x · σ /∈ I. In both cases, we have thus x · σ /∈ G ∩ I.
Since G and I are both closed under ≤l, so is G ∩I, and thus z /∈ G∩I since x ·σ ≤l z.
But S ⊆ G ∩I according to Lemma 2.10, which contradicts that z ∈ S and completes
the proof.

2.2.7 Connectedness of the Charney graph — Recall that we have defined
the Charney graph of an Artin-Tits monoid in Section 2.2.4. We aim to prove the
following result.

• Theorem 2.12—The Charney graph of an irreducible Artin-Tits monoid is strongly
connected.

We postpone the proof of this theorem to the end of the section, and prove two
intermediate results first.

• Lemma 2.13—Let A = A(Σ, `) be an Artin-Tits monoid, let S be a subset of Σ such
that the element ∆S =

∨
l S exists, and let σ ∈ Σ \ S.

9



1. Let L∗(σ, S) = {η ∈ S
∣∣ `(σ, η) = 2}. Then:

L(σ ·∆S) = {σ} ∪ L∗(σ, S), R(σ ·∆S) ⊇ S ∪ {η ∈ Σ
∣∣ `(σ, η) =∞}.

2. If `(σ, η) <∞ for all η ∈ S, then σ ·∆S is simple.

Proof. 1. The rightmost inclusion follows from the following two observations: the
relation R(σ ·∆S) ⊇ {η ∈ Σ

∣∣ `(σ, η) =∞} is immediate from the definitions stated
at the beginning of Section 2.2.6, and the relation R(σ ·∆S) ⊇ S derives from the
property (2.2), Section 2.1.3.

For the leftmost equality, we first observe that the inclusion {σ} ∪ L∗(σ, S) ⊆
L(σ ·∆S) is obvious. For the converse inclusion, the relation L(σ ·∆S) ⊆ L(σ ·∆S) is
immediate, and L(∆S) = S follows from (2.3), hence we obtain L(σ ·∆S) ⊆ {σ} ∪ S.
Thus, it is enough to prove that η /∈ L(σ ·∆S) for every η ∈ S such that `(σ, η) > 2.

Suppose, for the sake of contradiction, that η ≤l σ · ∆S for such an element η.
Then σ and η have the common ≤l-upper bound σ ·∆S . This implies that `(σ, η) <∞
according to the remarks of Section 2.1.3, and that σ ∨l η ≤l σ · ∆S . Furthermore,
σ · η · σ ≤l (σ ∨l η) since `(σ, η) > 2, whence σ · η · σ ≤l σ ·∆S , and thus η · σ ≤l ∆S .
Since σ /∈ S, the latter relation is impossible.

2. Let S denote the set of simple elements of A. Then for all η ∈ S, it follows
from the relation `(σ, η) <∞ that σ ∨l η ∈ S, and from the relation σ · η ≤r (σ ∨l η)
that σ · η ∈ S. Since σ ·∆S =

∨
l{σ · η

∣∣ η ∈ S}, it implies that σ ·∆S ∈ S.

For the next result, we follow the same lines as in the proof of [6, Proposition 4.9].

• Proposition 2.14—Let A be an irreducible Artin-Tits monoid, and let S be the small-
est Garside subset of A. Let a and b be non unit elements of S. If either A does
not have spherical type, or a = ∆, or b 6= ∆, then there exists some normal sequence
(x1, . . . , xk) such that a = x1 and b = xk.

Proof. Let G be the Coxeter graph of A (see Section 2.1.5), and let dG(·, ·) denote the
graph metric in G. For each set S ⊆ Σ, we denote by c(S) the number of connected
components of S in the graph G, and by dG(·, S) the sum

∑
s∈S dG(·, s).

First, observe that if L(b) = Σ, then b is a ≤l-upper bound of Σ, hence A has
spherical type and ∆ = b since ∆ =

∨
l Σ. According to our assumptions, this only

occurs with a = ∆, and then the normal sequence (∆) has first and last letters a
and b. Hence, we assume that L(b) 6= Σ.

Next, since a 6= e, the set R(a) is non empty. Hence, let ρ ∈ R(a) be some node of
G. Since (a, ρ) is a normal sequence according to Corollary 2.11, point 1, we assume
without loss of generality that a is an element of Σ.

Now, we put S = L(b), and we discuss different cases. We take into account
that G is connected, which follows from the assumption that A is irreducible via
Proposition 2.3. We also note that

∨
l S exists, since b is a ≤l-upper bound of S.

1. If dG(a, S) = 0, then S = {a}, hence L(b) ⊆ R(a) and therefore the sequence
(a, b) is normal by Corollary 2.11, point 1.

2. If c(S) = |S| and dG(a, S) > 0. Then the set S is G-independent and contains
some vertex σ 6= a.
Let n = dG(σ, a) ≥ 1, and let s0, s1, . . . , sn be a path in G such that s0 = a,
sn = σ. Since S is G-independent, the vertex sn−1 does not belong to S.
Consider the sets:

Q = {sn−1} ∪ {t ∈ S
∣∣ dG(t, sn−1) ≥ 2}, T = {t ∈ S

∣∣ `(sn−1, t) <∞}.
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We note that ∆T =
∨

l T exists since
∨

l S exists. Lemma 2.13, point 1, proves:

L(sn−1 ·∆T ) ⊆ Q, R(sn−1 ·∆T ) ⊇ T ∪ {t ∈ S : `(sn−1, t) =∞} = S,

and Lemma 2.13, point 2, proves that sn−1 ·∆T ∈ S. By construction, the set
Q is G-independent, whence c(Q) = |Q|. Finally, we observe:

dG(a, S)− dG(a,Q) =
∑
t∈S

1
(
dG(t, sn−1) = 1

)
dG(a, t)− dG(a, sn−1)

≥ dG(a, σ)− dG(a, sn−1) = 1,

and thus dG(a,Q) < dG(a, S).
Since we have observed that L(sn−1 ·∆T ) ⊆ Q, we may assume as an induction
assumption on dG(a, S) the existence of a normal sequence (w1, . . . , wj) such
that w1 = a and wj = sn−1 ·∆T . Since we have also observed that R(wj) ⊇ S =
L(b), it follows from Corollary 2.11, point 1, that (wj , b) is a normal sequence,
and thus the sequence (w1, . . . , wj , b) is also normal according to Lemma 2.8,
point 2.

3. If c(S) < |S|, then, for every subset T of Σ, let p(T ) be the maximal cardinal
of a connected component of T in G, and let q(T ) be the number of connected
components of T with this maximal cardinal.
Consider some connected component S′ of S in G of maximal cardinal, and let
η0 /∈ S be some neighbor of S′ in G. Such a vertex η0 exists since S 6= Σ. In
addition, consider the sets:

Q = {η0} ∪ {s ∈ S
∣∣ dG(η0, s) ≥ 2}, T = {t ∈ S

∣∣ `(η0, t) <∞}.

As in case 2 above, we note that ∆T =
∨

l T exists since
∨

l S exists, and we
apply Lemma 2.13 to obtain:

L(η0 ·∆T ) ⊆ Q, R(η0 ·∆T ) ⊇ S, η0 ·∆T ∈ S.

It is obvious that p(Q) ≤ p(S). Moreover, since η0 is a neighbor of S′, S′ ∩
Q  S′. Therefore, since S′ has been chosen of maximal cardinal among
the connected components of S on the one hand, and since |S′| ≥ 2 by the
assumption c(S) < |S| on the other hand, at least one of the inequalities
p(Q) < p(S) and q(Q) < q(S) holds. It implies that

(
p(Q), q(Q)

)
<
(
p(S), q(S)

)
holds in the lexicographical order on N×N. We may thus assume as an induction
hypothesis (using Case 2 if p(Q) = 1) the existence of a normal sequence
(w1, . . . , wj) such that w1 = a and wj = η0 ·∆T . As in case 2 above, we use that
L(b) = S ⊆ R(wj) to conclude that (wj , b), and thus (w1, . . . , wj , b) are normal
sequences.

The proof is complete.

Theorem 2.12 follows at once from Proposition 2.14.

2.3 — Finite measures on the completion of Artin-Tits monoids
2.3.1 Boundary at infinity of an Artin-Tits monoid — Let A be an Artin-

Tits monoid, with smallest Garside subset S. Elements of A \ {e} are in bijection
with normal sequences according to the results recalled in Section 2.2.5. Hence, they
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identify with finite paths in the graph (S \{e},→). It is therefore natural to introduce
boundary elements of A as infinite paths in the very same graph.

In order to uniformly treat elements and boundary elements of the monoid, we
extend the notion of normal form as follows. If x is an element of A, with height k ≥ 1
and normal form (x1, . . . , xk), we put xj = e for all integers j > k. The sequence
(xj)j≥1 thus obtained is the generalized normal form of x.

We say that an infinite sequence (xk)k≥1 of elements of S is normal if xk → xk+1
holds for all k ≥ 1. Among infinite normal sequences, those hitting e at least once
actually stay in e forever because of (2.4), and these sequences correspond bijectively
to the usual elements of A. And those normal sequences never hitting e correspond
to the boundary elements of A.

• Definition 2.15—The generalized elements of an Artin-Tits monoid A are the infinite
normal sequences of simple elements of A. Their set is called the completion of A,
and is denoted by A. The boundary elements of A are the generalized elements that
avoid the unit e. Their set is called the boundary at infinity of A, or shortly boundary
of A, and is denoted by ∂A. Identifying elements of A with their generalized normal
form, we have thus: A = A ∪ ∂A.

Both sets ∂A and A are endowed with their natural topologies, as subsets of the
countable product S ×S × · · · , where S is the smallest Garside subset of A, and with
the associated Borelian σ-algebras.

For every element x of A, of height k and with normal form (x1, . . . , xk), the
Garside cylinder of base x is the open and closed subset of A defined by:

Cx = {y = (yj)j≥1 ∈ A
∣∣ y1 = x1, . . . , yk = xk}.

Note that Ce = {e}.
The partial ordering ≤l is extended on A by putting, for x = (xk)k≥1 and y =

(yk)k≥1:

x ≤l y ⇐⇒ (∀k ≥ 1 ∃j ≥ 1 x1 · . . . · xk ≤l y1 · . . . · yj).

For every x ∈ A, the visual cylinder ↑ x ⊆ ∂A and the full visual cylinder ⇑ x ⊆ A
are:

↑ x = {y ∈ ∂A
∣∣ x ≤l y}, ⇑ x = {y ∈ A

∣∣ x ≤l y}.

Both spaces A and ∂A are metrisable and compact, and A is the topological
closure of A. More generally, for any x ∈ A, the full visual cylinder ⇑ x is the
topological closure in A of {y ∈ A

∣∣ x ≤l y}.
The collection

{
Cx
∣∣ x ∈ A

}
∪ {∅} is closed under intersection and generates the

σ-algebra on A. Therefore, any finite measure ν on A is entirely determined by the
family of values

(
ν(Cx)

)
x∈A .

The following lemma provides an alternative description of the relation x ≤l y for
x ∈ A and y ∈ A.

• Lemma 2.16—Let x be an element of an Artin-Tits monoid A, and let k = τ(x).
Let y = (yj)j≥1 be a generalized element of A. Then x ≤l y in A if and only if
x ≤l y1 · . . . · yk in A. In particular, if y ∈ A, then the relation x ≤l y holds in A if
and only if it holds in A.

Proof. Let x ∈ A, k = τ(x) and y ∈ A with y = (yj)j≥1. Assume that x ≤l y.
Then there is an integer j ≥ k such that x ≤l y

′, with y′ = y1 · . . . · yj . Applying
Lemma 2.9, point 1, we obtain that x ≤l y1 · . . . · yk, which is what we wanted to
prove. The converse implication also follows from Lemma 2.9: if x ≤l y1 · . . . · yk then
x1 · . . . · xj ≤l y1 · . . . · yj for all j ≤ k, and x1 · . . . · xj = x ≤l y1 · . . . · yk ≤l y1 · . . . · yj
for all j > k.
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2.3.2 Relating Garside cylinders and visual cylinders — Visual cylinders
are natural from the point of view of the algebraic structure of the monoid, whereas
Garside cylinders have a more operational presentation as they rely on the normal
form of elements. Since both points of view are interesting, it is important to relate
the two kinds of cylinders to one another, which we do now.

Given any two Garside cylinders Cx and Cy, either Cx ∩ Cy = ∅ or Cx ⊆ Cy or
Cy ⊆ Cx. Furthermore, for all x ∈ A, the Garside cylinder Cx is contained into the full
visual cylinder ⇑ x. Consequently, for every open set A ⊆ A, i.e., every union of sets
of the form ⇑ x with x ∈ A, there exists a unique set B such that A is the disjoint
union of the Garside cylinders Cx for x ∈ B. We say that B is a Garside base of A.

A case of special interest is that of the set A =⇑ x, where x ∈ A.

• Definition 2.17—Let A be an Artin-Tits monoid. For every x ∈ A, we denote by
A[x] the Garside base of the set ⇑ x, i.e., the unique set such that the full cylinder
⇑ x has the following decomposition as a disjoint union:

⇑ x =
⋃

y∈A[x]

Cy . (2.6)

Note that, equivalently, we might define the set A[x] as

A[x] =
{
y ∈ A ∩ ⇑ x

∣∣ ∀z ∈⇑ x Cy ⊆ Cz =⇒ y = z
}
. (2.7)

It follows from Lemma 2.18 below that the set A[x] is finite, and therefore that
the disjoint union of (2.6) is finite.

• Lemma 2.18—Let A be an Artin-Tits monoid. For every x ∈ A and y ∈ A[x], it
holds: τ(y) ≤ τ(x).

Proof. From x ≤l y with y = (yj)j≥1, we know from Lemma 2.16 that x ≤ y1 · . . . · yk
with k = τ(x), whence the result.

If x ∈ S, then every y ∈ A[x] has height exactly 1, and thus A[x] = {y ∈ S
∣∣ x ≤l

y}. However, if x is of height at least 2, elements y ∈ A[x] may satisfy the strict
inequality τ(y) < τ(x). This is illustrated in Section 2.3.4. This situation, valid for
general Artin-Tits monoids, contrasts with the case of specific monoids such as heap
monoids and braid monoids, or more generally monoids of type FC; this is investigated
in Section 2.3.4.

In addition, the very definition of A[x] has immediate consequences when consid-
ering finite measures on A.

• Proposition 2.19—Let ν be a finite measure on the completion of an Artin-Tits
monoid A. Then the measures of full visual cylinders and of Garside cylinders are
related by the following formulas, for x ranging over A:

ν(⇑ x) =
∑

y∈A[x]

ν(Cy). (2.8)

Assume given a finite measure ν for which the values ν(⇑ x) are known—this
will hold indeed for a family of probability measures that we shall construct later
in Sections 2.4 and 4. Let f, h : A → R be the functions defined by f(x) = ν(⇑ x)
and h(x) = ν(Cx). Then, in view of (2.8), expressing the quantities h(x) = ν(Cx)
by means of the values f(x) = ν(⇑ x) amounts to inverting the linear operator T∗
defined by:

T∗h(x) =
∑

y∈A[x]

h(y). (2.9)

Giving an explicit expression for the inverse of T∗ is the topic of the next section.
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2.3.3 Graded Möbius transform — Measure-theoretic reasoning provides a
hint for guessing the right transformation. Let ν be a finite measure defined on the
boundary ∂A of an Artin-Tits monoid A = A(Σ, `). For x an element of A, we put:

E(x) =
{
u ∈ A

∣∣ τ(x · u) ≤ τ(x)
}
\ {e},

D(x) = {≤l-minimal elements of E(x)}.
(2.10)

The set E(x) may be empty, in which case D(x) = ∅ as well.
We claim that, for every x ∈ A, the following equality of sets holds:

Cx =⇑ x \
⋃

u∈D(x)

⇑ (x · u). (2.11)

Proof of (2.11). Let (x1, . . . , xk) be the normal form of x, and let y ∈ Cx. Let
(yj)j≥1 be the extended normal form of y, with yj = xj for all j ∈ {1, . . . , k}. Hence
x ≤l (y1 ·. . .·yj) for all j ≥ k, and thus y ∈⇑ x according to the definition of the partial
ordering ≤l on A given in Definition 2.15. Let u ∈ A be such that τ(x · u) ≤ τ(x)
and y ∈⇑ (x · u). It follows from Lemma 2.16 that x · u ≤l y1 · . . . · yk, and since
y1 · . . . · yk = x it implies that u = e. Hence u /∈ D(x) and the ⊆ inclusion in (2.11)
follows.

Conversely, let y be an element of the right-hand set of (2.11), and let (yj)j≥1 be
the generalized normal form of y. Let us prove that y1 · . . . · yk = x, which entails
that y ∈ Cx . For this, we use the characterization given in Lemma 2.9, point 1:

y1 · . . . · yk =
∨

l
U, with U = {z ∈ Sk

∣∣ z ≤l y}.

We have x ∈ U since x ≤l y and τ(x) = k by assumption. Let z =
∨

l U
and, seeking a contradiction, assume that x 6= z. Then z = x · u with u 6= e and
τ(x · u) ≤ τ(x), thus u ∈ D(x). But then y ∈⇑ (x · u), contradicting the assumption
on y.

We observe that for any elements u, u′ ∈ D(x), one has that (x · u)∨l (x · u′) exists
in A if and only if u ∨l u

′ exists in A, if and only if ⇑ (x · u)∩ ⇑ (x · u′) 6= ∅. If these
conditions are fulfilled, we have:

⇑ (x · u)∩ ⇑ (x · u′) =⇑
(
x · (u ∨l u

′)
)
,

and the latter generalizes to intersections of the form ⇑ (x · u1) ∩ · · · ∩ ⇑ (x · uk)
for u1, . . . , uk ∈ D(x). Taking the measure of both members in (2.11), and applying
the inclusion-exclusion principle, which is basically the essence of Möbius inversion
formulas, we obtain thus:

ν(Cx) = ν(⇑ x)−
∑

DbD(x), D 6=∅

(−1)|D|+1ν
(
⇑
(
x ·
∨

l
D
))
,

where D b D(x) means that D is a subset of D(x) and that
∨

l D exists in A.
Observing that ∅ b D(x) with

∨
l ∅ = e, we get:

ν(Cx) =
∑

DbD(x)

(−1)|D|ν
(
⇑
(
x ·
∨

l
D
))
. (2.12)

We are thus brought to introduce the following definition.
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• Definition 2.20—Let A be an Artin-Tits monoid. The graded Möbius transform of
a function f : A→ R is the function Tf : A→ R, defined as follows for every x ∈ A:

Tf(x) =
∑

DbD(x)

(−1)|D|f
(
x ·
∨

l
D
)
,

where D(·) has been defined in (2.10) and D b D(x) means that D is a subset of D(x)
such that

∨
l D exists in A.

The inverse graded Möbius transform of a function h : A → R is the function
T∗h : A→ R, defined as follows for every x ∈ A:

T∗h(x) =
∑

y∈A[x]

h(y),

where A[·] has been defined in (2.7).
Section 2.3.4 below details the expression of the graded Möbius transform for

some specific examples. Before that, we bring additional information on the range of
summation in the definition of the graded Möbius transform.

• Lemma 2.21—In an Artin-Tits monoid A, for any x ∈ A, one has D(x) = D(u),
where u is the last simple element in the normal form of x.

Proof. Let (x1, . . . , xk) be the normal form of x. We first show the following:

∀y ∈ S D(x) ∩ ↓ y = ∅ ⇐⇒ D(xk) ∩ ↓ y = ∅, (2.13)

where ↓ y = {z ∈ A
∣∣ z ≤l y}. Indeed, for y ∈ S, one has according to Lemma 2.9:

xk → y ⇐⇒ x =
∨

l
{z ∈ Sk

∣∣ z ≤l x · y}

⇐⇒ E(x) ∩ ↓ y = ∅ ⇐⇒ D(x) ∩ ↓ y = ∅.

Applying the above equivalence with x = xk on the one hand, and with x on
the other hand, yields (2.13). From (2.13), and since D(x) and D(xk) are two ≤l-
antichains, we deduce that D(x) = D(xk), as expected.

With Definition 2.20, we reformulate (2.12) as follows.

• Proposition 2.22—Consider a finite measure ν on the completion of an Artin-Tits
monoid A. For every x ∈ A, let f(x) = ν(⇑ x) and let h(x) = ν(Cx). Then h is the
graded Möbius transform of f .

If ν and ν′ are two finite measures such that ν(⇑ x) = ν′(⇑ x) for all x ∈ A, then
ν = ν′.

Proof. The first part of the statement is a simple rephrasing of (2.12). For the second
part, if ν(⇑ x) = ν′(⇑ x) for all x ∈ A, then ν(Cx) = ν′(Cx) for all x ∈ A. We have
already observed that this implies ν = ν′.

Propositions 2.17 and 2.22 show that the transformations T and T∗ are inverse
of each other when operating on functions f and h of the form f(x) = ν(⇑ x)
and h(x) = ν(Cx). We actually have the following more general result, of a purely
combinatorial nature.

• Theorem 2.23—Let A be an Artin-Tits monoid. Then the graded Möbius transform
T and the inverse graded Möbius transform T∗ are two endomorphisms inverse of
each other, defined on the space of functions A→ R.
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We first prove the following lemma.

• Lemma 2.24—Let A be an Artin-Tits monoid, let x, y ∈ A, and let:

B(x, y) =
{
D b D(x)

∣∣ y ∈ A
[
x ·
∨

l
D
]}
.

Then: ∑
D∈B(x,y)

(−1)|D| = 1(x = y). (2.14)

Proof. For x, y ∈ A, we put:

K(x, y) =
{
z ∈ A

∣∣ x · z ≤l y and τ(x · z) ≤ τ(x)
}
,

K(x, y) =
{
D b D(x)

∣∣ ∨
l
D ∈ K(x, y)

}
.

Then we claim:

∑
D∈K(x,y)

(−1)|D| =
{

1, if y ∈ Cx,
0, otherwise.

(2.15)

Let us first prove (2.15). If x ≤l y does not hold, then K(x, y) = K(x, y) = ∅
and (2.15) is true. Hence we assume that x ≤l y. Let (y1, . . . , yk) be the normal form
of y. We put y′ = y1 · . . . · yj , where j = min{i ≥ 1

∣∣ x ≤l y1 · . . . · yi}, and thus x ≤l y
′

holds, with equality if and only if y ∈ Cx. We observe that K(x, y) is a lattice: this
follows from Lemma 2.9; and thus K(x, y) is a Boolean lattice.

We discuss two cases. If x = y′, then K(x, y) = {e} and K(x, y) = {∅}, and
thus (2.15) is true. However, if x 6= y′, then Lemma 2.16 proves that τ(y′) ≤ τ(x).
Hence, the set K(x, y′) contains a minimal non unit element z. This element satisfies
{z} ∈ K(x, y), which is thus a non trivial Boolean lattice. Hence (2.15) is true in all
cases.

We now come to the proof of (2.14). The case where x = y or ¬(x ≤l y) holds is
easily settled, hence we assume below that x <l y. In particular, observe that y 6= e.
Let (y1, . . . , yk) be the normal form of y, and let ỹ = y1 · . . . · yk−1 . Then we have
K(x, ỹ) ⊆ K(x, y) and B(x, y) = K(x, y) \ K(x, ỹ). Therefore, using (2.15), we have:∑

D∈B(x,y)

(−1)|D| = A(x, y)−A(x, ỹ), (2.16)

with A(u, v) =
{

1, if v ∈ Cu,
0, otherwise.

If ỹ belongs to the Garside cylinder Cx, so does y. Conversely, since x 6= y, if
y ∈ Cx then the normal form of x is a strict prefix of the normal form of y, and
therefore ỹ ∈ Cx. Together with (2.16) this completes the proof of (2.14).

Proof of Theorem 2.23. Let h : A→ R be given. We compute, exchanging the order
of summation:

T
(
T∗(h)

)
(x) =

∑
y∈A

h(y)
( ∑
D∈B(x,y)

(−1)|D|
)

= h(x),

where we have put B(x, y) =
{
D b D(x)

∣∣ y ∈ A[x·
∨
D]
}
, and where the last equality

follows from Lemma 2.24.
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Let E denote the vector space of functions A→ R. Then T is an endomorphism
of E, and it remains to prove that T is injective. Let f be a non zero function
f ∈ E, let k be the smallest integer such that f is non zero on Sk, and let x be a
maximal element of Sk such that f(x) 6= 0. For all non empty sets D b D(x), we
have x <l x ·

∨
l D, and x ·

∨
l D ∈ S` for some ` ≤ k, hence f(x ·

∨
l D) = 0. It follows

that T(f)(x) = f(x) 6= 0, which completes the proof.

2.3.4 Examples and particular cases — In this section, we first develop the
expression of the graded Möbius transform for monoids of type FC, pointing out the
simplification that arises in this case. By contrast, we introduce then the example
of an Artin-Tits monoid which is not of type FC. Finally, we give the expression of
the graded Möbius transform and its inverse evaluated on the simple elements of a
general Artin-Tits monoid.

Let us first examine the case of Artin-Tits monoids of type FC.

• Proposition 2.25—Let A be an Artin-Tits monoid of type FC. Then, for every x ∈ A,
the sets A[x] and D(x) have the following expressions:

A[x] = {y ∈ A
∣∣ x ≤l y and τ(y) ≤ τ(x)}

= {y ∈ A
∣∣ x ≤l y and τ(y) = τ(x)}

D(x) = {σ ∈ Σ
∣∣ τ(x · σ) = τ(x)}.

Proof. Let x, y ∈ A such that x ≤l y and τ(y) ≤ τ(x). Let k = τ(y), and let
(y1, . . . , yk) be the normal form of y. The following statement is proved in [27,
Prop. 2.95]:

(‡) Let A be an Artin-Tits monoid of type FC. For all a, b ∈ A such that a ≤l b, we
have τ(a) ≤ τ(b).
It follows from (‡) that τ(x) = τ(y) = k, i.e., that x ≤l y1 · . . . · yk and that

¬(x ≤l y1 · . . . · yj) for all j ≤ k − 1. This proves the inclusion A[x] ⊇ {y ∈ A
∣∣ x ≤l

y and τ(y) ≤ τ(x)}, whereas the converse inclusion follows from Lemma 2.18. Then,
the claim (‡) also proves the inclusion {y ∈ A

∣∣ x ≤l y and τ(y) ≤ τ(x)} ⊆ {y ∈
A
∣∣ x ≤l y and τ(y) = τ(x)}, and the converse inclusion is immediate.
Finally, assume that D(x) is non empty, and let z be an element of D(x). Since

z 6= e, we can write z = σ · z′ for some σ ∈ Σ and z′ ∈ A. Since x ≤l x ·σ ≤l x · z and
k = τ(x) = τ(x · z), it follows from (‡) that k = τ(x · σ), i.e., that x · σ ∈ A[x]. By
minimality of z, we must have z = σ. It follows that D(x) ⊆ {σ ∈ Σ

∣∣ x · σ ∈ A[x]},
whereas the converse inclusion is immediate. Recalling that A[x] = {y ∈ A

∣∣ x ≤l
y and τ(y) = τ(x)}, the proof is complete.

Recalling that D(x) = D(u) according to Lemma 2.21, where u is the last element
in the normal form of x, it follows that the graded Möbius transform, in a monoid of
type FC, has the following form:

Tf(x) =
∑

DbΣ : u·(
∨

lD)∈S

(−1)|D|f
(
x ·
∨

l
D
)
.

Compared to monoids of type FC, general Artin-Tits monoids have the pathology
that the smallest Garside subset S is not necessarily closed by left divisibility. It
entails that the strict inequality τ(x · σ) < τ(x) may occur. This is illustrated in the
following example, where we point out two consequences of this fact.

Let A be the Artin-Tits monoid defined below, known as the Artin-Tits groups of
type affine Ã2—see, for instance, [20]. It admits the set S described below as smallest
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Figure 1: Hasse diagram of (S,≤l) for the Artin-Tits monoid A = 〈a, b, c | aba =
bab, bcb = cbc, cac = aca〉. In this example, S is not closed by left divisibility since,
for instance, caba ∈ S whereas cab /∈ S.

Garside subset:

A = 〈a, b, c
∣∣ aba = bab, bcb = cbc, cac = aca〉

S = {e, a, b, c, ab, ac, ba, bc, ca, cb, aba, bcb, cac, abcb, bcac, caba}.

Hence, the normal forms of x = abc and y = abcb are, respectively, (ab, c) and
(abcb), which shows that τ(x · b) = 1 < τ(x) = 2. The Hasse diagram of (S,≤l) is
depicted on Figure 1.

As a first consequence of S not being closed by left divisibility, the Garside
cylinders Cy may not be disjoint, for x ∈ A fixed and for y ranging over {z ∈ A

∣∣ x ≤l
z and τ(z) ≤ τ(x)}. Indeed, consider again x = abc, of height 2, and y = abcb and
y′ = abcba, of height 1 and 2 respectively, the latter since the normal form of y′ is
(abcb, a). Then both y and y′ belong to the set described above; yet, Cy ⊆ Cy′ and
thus Cy ∩ Cy′ 6= ∅. Whereas, combining Proposition 2.17 and Proposition 2.25, one
sees that this situation cannot happen in monoids of type FC.

As a second consequence of S not being closed by left divisibility, the sets D(x)
are not in general subsets of Σ, but of S itself. Indeed, one has for instance: D(ab) =
{a, cb}, contrary to the second statement of Proposition 2.25 for monoids of type FC.

We note however that D(e) ⊆ Σ in any Artin-Tits monoid. Therefore, evaluated
at e, the graded Möbius transform has the following expression:

Tf(e) =
∑
DbΣ

(−1)|D|f
(∨

l
D
)
. (2.17)

Consider in particular the case of a function f of the form f(x) = p|x|, for some
real number p. Then:

Tf(e) =
∑
DbΣ

(−1)|D|p|
∨

lD|. (2.18)

This is a polynomial expression in p. We shall see in Section 4.1.2 that this polynomial
corresponds to the Möbius polynomial of the monoid, which is a simplified version of
the Möbius function in the sense of Rota [34] associated with the partial order.

Furthermore, if x is simple in a general Artin-Tits monoid, then A[x] has the
following expression: A[x] = {y ∈ S

∣∣ x ≤l y}. Therefore, restricted to S, the inverse
graded Möbius transform takes the following form:

for x ∈ S T∗h(x) =
∑

y∈S : x≤ly

h(y). (2.19)
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2.4 — Multiplicative probability measures on the boundary
In this section, we introduce a particular class of measures defined on the boundary
of Artin-Tits monoids, the class of multiplicative measures. Measures defined on
the boundary of an Artin-Tits monoid A can be seen as those measures ν on the
completion A with support in ∂A, i.e., such that ν(x) = 0 for all x ∈ A. In
Section 2.4.2, we entirely characterize multiplicative measures through a finite family
of probabilistic parameters. Each multiplicative measure induces a natural finite
Markov chain. Finally, we investigate in Section 2.4.3 the particular case of the
uniform measure.
2.4.1 Multiplicative measures and valuations — Multiplicative measures on

the boundary of Artin-Tits monoids are probability measures that generalize the
classical Bernoulli measures on infinite sequences of letters.

• Definition 2.26—Let A be an Artin-Tits monoid. A finite measure ν on the boundary
∂A is multiplicative if it satisfies the two following properties:

∀x ∈ A ν( ↑ x) > 0
∀x ∈ A ∀y ∈ A ν( ↑ (x · y)) = ν( ↑ x) · ν( ↑ y).

A valuation on A is any function f : A→ (0,+∞) satisfying f(x · y) = f(x) · f(y)
for all x, y ∈ A.

If ν is a multiplicative measure on ∂A, then the valuation associated with ν is the
function f : A→ (0,+∞) defined by f(x) = ν( ↑ x) for all x ∈ A.
Remark 2.27. 1. Assuming that multiplicative measures exist, which is not ob-

vious to prove, any such measure satisfies ν(∂A) = ν( ↑ e) = 1, hence is a
probability measure.

2. If A is a free monoid, multiplicative measures correspond to the usual Bernoulli
measures characterizing i.i.d. sequences. If A is a heap monoid or a braid
monoid, multiplicative measures have been introduced respectively in [2] and
in [1].

Let us put aside a trivial multiplicative measure which is found in Artin-Tits
monoids of spherical type.

• Definition 2.28—Let A be an Artin-Tits monoid of spherical type. Let ∆∞ denote the
boundary element ∆∞ = (∆,∆, . . . ), where ∆ is the Garside element of A. Then the
constant valuation f(x) = 1 on A corresponds to the multiplicative measure ν = δ∆∞ ,
which we call degenerate. Any other multiplicative measure on the boundary of an
Artin-Tits monoid, either of spherical type or not, is non degenerate.

By Proposition 2.22, a multiplicative measure is entirely determined by its as-
sociated valuation. We note that valuations always exist: it suffices to consider for
instance f to be constant on the set Σ of generators of A, say equal to r. Then f
extends uniquely to a valuation on A, given by f(x) = r|x| for all x ∈ A. Since we
will give a special attention to this kind of valuation and associated multiplicative
measures whenever they exist, we introduce the following definition.

• Definition 2.29—A valuation f : A→ (0,+∞) on an Artin-Tits monoid A = A(Σ, `)
is uniform if it is constant on Σ, or equivalently if it is of the form f(x) = p|x| for
some p ∈ (0,+∞). A multiplicative measure is uniform if it is non degenerate and if
its associated valuation is uniform.
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2.4.2 Characterization and realization of multiplicative measures — Our
aim is to characterize the valuations that correspond to multiplicative measures. To
this end, we introduce the following definition.

• Definition 2.30—Let f : A → (0,+∞) be a valuation on an Artin-Tits monoid A,
and let h = Tf be the graded Möbius transform of f . We say that f is a Möbius
valuation whenever:

h(e) = 0, and ∀x ∈ S \ {e} h(x) > 0,

where S denotes as usual the smallest Garside subset of A.
This definition is motivated by the following result, which shows in particular that

being Möbius is a necessary and sufficient condition for a valuation to be associated
with some non degenerate multiplicative measure. It also details the nature of the
probabilistic process associated with the boundary elements.

• Theorem 2.31—Let A be an irreducible Artin-Tits monoid, and let ν be a non
degenerate multiplicative measure on ∂A. Then the valuation f(·) = ν( ↑ ·) is a
Möbius valuation.

Conversely, if f is a Möbius valuation on A, then there exists a non degenerate
multiplicative measure on ∂A, necessarily unique, say ν, such that f(·) = ν( ↑ ·).
Hence, non degenerate multiplicative measures on ∂A correspond bijectively to Möbius
valuations on A.

Furthermore, let (f, ν) be such a corresponding pair. Let h be the graded Möbius
transform of f . For every integer n ≥ 1, let Xn : ∂A→ S \{e} denote the nth canon-
ical projection of boundary elements, which maps a boundary element ξ = (yj)j≥1 to
the simple element yn. Then, under the probability measure ν, the sequence of random
variables (Xn)n≥1 is a homogeneous Markov chain with values in the finite set S \{e},
with initial distribution and with transition matrix P given by:

∀x ∈ S \ {e} ν(X1 = x) = h(x),

∀x, y ∈ S \ {e} Px,y = 1(x→ y)f(x)h(y)
h(x) .

This Markov chain is ergodic if A is not of spherical type; and has S \ {e,∆} as
unique ergodic component if A is of spherical type.

The following lemmas are central in the proof of Theorem 2.31, and also for
subsequent results.

• Lemma 2.32—Let A be an Artin-Tits monoid, of smallest Garside subset S. Let
f : A→ (0,+∞) be a valuation, and let h = Tf be the graded Möbius transform of f .
For an element x ∈ A, let u ∈ S be the last element in the normal form of x, and let
x̃ ∈ A be such that x = x̃ · u. It holds that:

h(x) = f(x̃)h(u).

Proof. Lemma 2.21 proves that D(x) = D(u), and since f is a valuation it follows
that

h(x) =
∑

DbD(x)

(−1)|D|f
(
x ·
∨

l
D
)

=
∑

DbD(u)

(−1)|D|f(x̃)f
(
u ·
∨

l
D
)
= f(x̃)h(u).
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• Lemma 2.33—Let A be an Artin-Tits monoid, of smallest Garside subset S. Let
f : A→ (0,+∞) be a valuation, and let h = Tf be the graded Möbius transform of f .
Let also g : A→ R be the function defined by:

g(x) =
∑

y∈S : u→y
h(y),

where u ∈ S is the last element in the normal form of x. Then h(x) = f(x) · g(x)
holds for all x ∈ A.

Proof. Let P(S) denote the powerset of S, and let F,G : P(S) → R be the two
functions defined by:

F (U) =
∑
DbU

(−1)|D|f
(∨

l
D
)
, G(U) =

∑
y∈S

1(U∩ ↓ y = ∅)h(y),

where ↓ y = {z ∈ A
∣∣ z ≤l y}.

We first prove the equality F (U) = G(U) for all U ∈ P(S). For any x ∈ S, we
have f(x) = T∗h(x) according to Theorem 2.23. According to (2.19), this writes as
follows:

f(x) =
∑

y∈S : x≤l y

h(y).

This works in particular for x =
∨

l D for any D b S, since then x ∈ S, yielding:

F (U) =
∑
DbU

(−1)|D|
(∑
y∈S

1
(∨

l
D ≤l y

)
h(y)

)
=
∑
y∈S

( ∑
DbU

1
(∨

l
D ≤l y

)
(−1)|D|

)
· h(y) (2.20)

=
∑
y∈S

( ∑
D⊆(U∩↓y)

(−1)|D|
)
· h(y) = G(U). (2.21)

Next, we observe that for every u, y ∈ S, one has u→ y if and only ifD(u)∩ ↓ y = ∅,
which implies:

g(u) = G
(
D(u)

)
. (2.22)

And, using that f is a valuation, we have:

h(u) =
∑

DbD(u)

(−1)|D|f
(
u ·
∨

l
D
)

= f(u) ·
( ∑
DbD(u)

(−1)|D|f
(∨

l
D
))

= f(u) · F
(
D(u)

)
. (2.23)

Putting together (2.23), (2.22) and (2.20) with U = D(u), we obtain h(u) = f(u)·g(u).
So far, we have proved the statement of the lemma for x = u ∈ S. For an element

x ∈ A, let u ∈ S be the last element in the normal form of x, and let x̃ ∈ A be such
that x = x̃ · u. Lemma 2.32 states that h(x) = f(x̃) · h(u). We also have g(x) = g(u),
and thus by the first part of the proof: h(x) = f(x̃) · f(u) · g(u) = f(x) · g(x), which
completes the proof.
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• Lemma 2.34—Let f : A→ (0,+∞) be a valuation defined on an irreducible Artin-
Tits monoid A with at least two generators. Let h = Tf be the graded Möbius
transform of f , that we assume to satisfy h(e) = 0.

We consider the Charney graph (C ,→), and the non-negative square matrix B =
(Bx,y)(x,y)∈C×C defined by Bx,y = 1(x→ y)f(y). Let also g : A→ R be the function
defined as in Lemma 2.33. Then:

1. The matrix B is primitive, and the column vector g = (g(x))x∈C satisfies
B · g = g.

2. Furthermore, if f(·) = ν( ↑ ·) for some multiplicative measure ν, then the as-
sumption h(e) = 0 is necessarily satisfied, and one and only one of the following
two propositions is true:

a) h and g are identically zero on C . In this case, A is necessarily of spherical
type, and ν is the degenerate measure δ∆∞ .

b) h and g are positive on C , B has spectral radius 1, g is the Perron eigen-
vector of B and ν is non degenerate.

Proof. The graph (C ,→) is non empty since A is assumed to have at least two
generators. The function f is positive on C by definition of valuations; the graph
(C ,→) is strongly connected according to Theorem 2.12, and has loops since every
element σ ∈ Σ belongs to C and satisfies σ → σ. It follows that B is indeed primitive.
Finally, to see that g is a fixed point of B, we compute:

(B · g)x =
∑

y∈C : x→y

f(y)g(y) =
∑

y∈C : x→y

h(y),

the latter equality by Lemma 2.33. Now the set C differs from S by at most two
elements: either e, if A is not of spherical type, or e and ∆ if A is of spherical type.
Since h(e) = 0 by assumption, and since x → ∆ does not hold for any x ∈ C , the
above equality writes (B · g)x =

∑
y∈S : x→y h(y) = g(x), which completes the proof

of point 1.
For point 2, assume that f(·) = ν( ↑ ·) for some multiplicative measure ν on ∂A.

Write ξ = (X1, X2, . . . ) for a generic element ξ ∈ ∂A. Then, by Proposition 2.22
applied to elements of S, one has h(x) = ν(X1 = x) for all x ∈ S. It implies on the
one hand that h is non-negative on S. On the second hand, since X1 takes its values
in S \ {e} only, the total probability law yields:∑

y∈S\{e}

h(y) = 1. (2.24)

Applying formula (2.19) to x = e yields:∑
y∈S

h(y) = ν( ↑ e) = ν(∂A) = 1. (2.25)

Comparing (2.24) and (2.25) yields h(e) = 0.
Since h is non-negative, the vector g is also non-negative. Since B is primitive, it

follows from the Perron-Frobenius Theorem for primitive matrices [37] that g is either
identically zero or positive.

Assume that g = 0. Then Lemma 2.33 implies that h = 0 on C . It follows
from (2.24) that C \ {e} 6= ∅, and thus that A is of spherical type and that h(∆) = 1,
where ∆ is the Garside element of A. For any element x ∈ A, if u ∈ S is the last
element of the normal form of x, and if x̃ ∈ A is such that x = x̃ · u, Lemma 2.32
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states that h(x) = f(x̃)h(u). Hence, for all normal sequences (x1, . . . , xk), if xi 6= ∆
for some i ≤ k, then by Proposition 2.22 we have:

ν(X1 = x1, . . . , Xk = xk) ≤ ν(X1 = x1, . . . , Xi = xi) = h(x1 · . . . · xi) = 0,

from which follows ν
(
ξ = (∆,∆, . . . )

)
= ν

(
∂A) = 1, or in other words, ν = δ∆∞ , as

claimed in point 2a.
Assume now that g 6= 0, and thus that g is positive. Since g is a fixed point

of B, it follows from the Perron-Frobenius Theorem for primitive matrices that g is
a Perron eigenvector of B, and thus B is of spectral radius 1. From g > 0 and from
Lemma 2.33, we deduce that h > 0 on C , and this implies that ν is non degenerate
as claimed in point 2b.

Proof of Theorem 2.31. We first prove that, if ν is a non degenerate multiplicative
measure on A, then f : A→ (0,∞) defined by f(·) = ν( ↑ ·) is Möbius. Let h = Tf .
It follows from Lemma 2.34 that h(e) = 0, and since ν is non degenerate, point 2b
shows that h > 0 on C . To obtain that f is a Möbius valuation, it remains only
to prove, in case where A is of spherical type, that h(∆) > 0 for ∆ the Garside
element of A. But, since ∆ satisfies ∆→ x for all x ∈ S, one has D(∆) = ∅ and thus
h(∆) = f(∆) > 0. This proves the first statement of Theorem 2.31.

Conversely, let f be a Möbius valuation on A. Define a non-negative matrix
Q = (Qx,y)(x,y)∈(S\{e})×(S\{e}) by

Qx,y = 1(x→ y)f(x)h(y)
h(x) .

Since h(e) = 0, Lemma 2.33 shows that Q is stochastic. Furthermore, the non-negative
vector (h(x))x∈S\{e} satisfies, using that h(e) = 0 and Theorem 2.23:∑

x∈S\{e}

h(x) =
∑
x∈S

h(x) = T∗h(e) = f(e) = 1.

It is thus a probability vector.
Consider the canonical probability space (Ω,F,P) associated to the Markov chain

(Xn)n≥1 with values in S \ {e}, with initial distribution (h(x))x∈S\{e} and with
transition matrix Q. Let also π : Ω → ∂A be the canonical mapping, defined with
P-probability 1, and let ν = π∗P, the image probability measure on ∂A. Then we
claim that ν( ↑ ·) = f(·).

Indeed, by Theorem 2.23 and Proposition 2.22, it is enough to prove that, for
every integer n ≥ 1, the law of (X1, . . . , Xn) satisfies: P(X1 = x1, . . . , Xn = xn) =
h(x1·. . .·xn) for every sequence (x1, . . . , xn). If the sequence (x1, . . . , xn) is not normal,
then both members vanish. And if the sequence is normal, then the consecutive
cancellations yield:

P(X1 = x1, . . . , Xn = xn) = f(x1 · . . . · xn−1) · h(xn) = h(x1 · . . . · xn),

the latter equality using Lemma 2.32. This proves that ν( ↑ ·) = f(·), as expected.
This also proves that, for any non degenerate multiplicative measure ν on ∂A, the

sequence (Xn)n≥1 defined in the statement of Theorem 2.31 is indeed a Markov chain
with the specified transition matrix and initial distribution.

If A is of spherical type, then f(∆) = ν( ↑ ∆) < 1. Indeed, otherwise one
would have ν( ↑ ∆n) = ν( ↑ ∆)n = 1, and therefore ν = δ∆∞ , contradicting its non
degeneracy. The ergodicity statements derive at once from the fact that the Charney
graph is irreducible on the one hand, and that ∆ is initial with Q∆,∆ = f(∆) < 1 if
A is of spherical type, on the other hand. The proof is complete.
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2.4.3 Uniqueness of the uniform measure for Artin-Tits monoids —
Although we have not yet proved the existence of non degenerate uniform measures
on the boundary of Artin-Tits monoids—which is deferred to Section 4.2—, we are
ready to prove the following uniqueness result.

• Theorem 2.35—Let A be an irreducible Artin-Tits monoid. Then there exists at
most one uniform measure on ∂A.

Recall that, by Definition 2.29, uniform measures are non degenerate.

Proof of theorem 2.35. Let ν and ν′ be two uniform measures, say associated to the
two uniform valuations f1(x) = p

|x|
1 and f2(x) = p

|x|
2 . Without loss of generality, we

may assume that p1 ≤ p2.
Consider the primitive matrices B1 and B2 constructed as in Lemma 2.34, associ-

ated to f1 and to f2 respectively. Then B1 ≤ B2 since p1 ≤ p2, and both matrices have
spectral radius 1. It follows from the Perron-Frobenius Theorem [37] that B1 = B2,
and thus p1 = p2 and f1 = f2. Then Proposition 2.22 implies that ν1 = ν2.

3—Conditioned weighted graphs

3.1 — General framework
3.1.1 Non negative matrices — Although we already appealed to the concept of

non-negative matrix and to the Perron-Frobenius theory, we recall now some standard
definitions from this theory, see for instance [37]. A real square matrix M is non-
negative, denoted M ≥ 0, if all its entries are non-negative, and positive, denoted
M > 0, if all its entries are positive. The same definitions apply to vectors. If M ≥ 0,
it is primitive if MK > 0 for some integer power K > 0, and then Mk > 0 for all
k ≥ K. The matrix M is irreducible if for every pair (i, j) of indices, there exists an
integer k > 0 such that Mk

i,j > 0.
We interpret non-negative matrices as labeled oriented graphs, which we simply

call graphs for brevity; vertices are represented by the indices of the matrix, and there
is an edge from x to x′ , labeled by the entry Mx,x′ , whenever Mx,x′ > 0. A path in
the graph is any non empty sequence (x0, . . . , xk) of indices such that Mxi,xi+1 > 0
for all i = 0, . . . , k− 1. The non-negative integer k is the length of the path. The path
is a circuit if, in addition, xk = x0.

In this representation, irreducible matrices correspond to strongly connected
graphs and primitive matrices correspond to strongly connected graphs such that
circuits have 1 as greatest common divisor of their lengths.

The spectral radius, denoted ρ(M), of a non-negative matrix M is defined as the
largest modulus of its complex eigenvalues. In the seek of completeness, we establish
the following elementary lemma, which is probably found elsewhere as a textbook
exercise.

• Lemma 3.1—Let M be a non-negative square matrix of size N > 1. Assume that M
has a unique eigenvalue of maximal modulus, which is simple. Let λ be this eigenvalue.
Then:

1. λ is real and positive, and thus λ = ρ(M).

2. There exists a pair (`, r) of non-negative vectors, such that ` is a left (row) λ-
eigenvector and r is a right (column) λ-eigenvector of M , and such that ` ·r = 1.
Any other such pair is of the form (t`, t−1r) for some t > 0.
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3. With (`, r) a pair of non-negative vectors as above, the matrix M has the fol-
lowing decomposition:

M = λΠ +Q, with Π = r · `,

and where Q is a matrix satisfying Π ·Q = Q ·Π = 0 and ρ(Q) < λ. It entails
the following convergence:

lim
k→∞

( 1
λ
M
)k

= Π. (3.1)

Proof. Observe first that λ 6= 0, otherwise M could not have other eigenvalues than
λ = 0, contradicting that λ is simple. Hence, considering (1/|λ|)M , which is still non-
negative, instead of M , we assume without loss of generality that |λ| = 1. Secondly,
the spectral decomposition of M entails that M writes as M = λΠ + Q, where Π
is the matrix of a projector of rank 1, Q is a matrix with all eigenvalues less than 1
in modulus, and Π · Q = Q · Π = 0. Consequently, the powers Mk form a bounded
sequence of matrices.

Now, let x be a right λ-eigenvector of M , and let |x| denote the vector with
|x|i = |xi| for all i ∈ {1, . . . , N}. Then

∑
jMi,jxj = λxi yields |x|i ≤

∑
jMi,j |xj |, or

in other words: M · |x| ≥ |x|. Since M is non-negative, it follows that Mk+1 · |x| ≥
Mk · |x|, so that each coordinate ofMk · |x| is a non-decreasing sequence of reals. Since
(Mk)k>0 is bounded, it follows that (Mk · |x|)k>0 converges toward a non-negative
vector r, satisfying r ≥ |x| and M · r = r. Since |x| 6= 0, in particular r 6= 0 and thus
1 is an eigenvalue of M , which implies that λ = 1.

We have already found that r is a non-negative fixed point ofM for its right action
on vectors. The same reasoning applied to the transpose of M (or to the left action
of M on vectors) yields the existence of a non negative left fixed point, say `, of M .

The decomposition seen at the beginning of the proof now writes as M = Π +Q
with ρ(Q) < 1 and Π ·Q = Q ·Π = 0. It implies at once Mk = Π +Qk for all integers
k > 0 and thus limk→∞Mk = Π.

To obtain the existence of the pair (`, r) with the normalization condition ` · r = 1,
it suffices to prove that ` ·r > 0. For this, we observe first that r and ` are respectively
right and left fixed point of Π, since Π is associated to the λ-characteristic subspace
of M . Being a rank 1 projector with r as right fixed point, Π writes as Π = r · `′ for
some non zero row vector `′. Hence ` = ` · Π = (` · r)`′. This implies that ` · r 6= 0,
which was to be proved.

Assuming now that the normalization condition ` · r = 1 holds, we obtain `′ = `
and thus Π = r · `, completing the proof.

3.1.2 Conditioned weighted graphs — The central object of study of this section
is the following.

• Definition 3.2—A conditioned weighted graph (CWG) is given by a triple G =
(M,w−, w+), where M is a non-negative matrix of size N ×N with N > 1, and

w− : {1, . . . , N} → R+ , w+ : {1, . . . , N} → R+ ,

are two real-valued and non-negative functions, respectively called initial and final.
We identify w− with the corresponding row vector of size N , and we identify w+ with
the corresponding column vector of size N . Furthermore, we assume that the triple
(M,w−, w+) satisfies the following conditions.

1. M has a unique eigenvalue of maximal modulus, which is simple. Let λ be this
eigenvalue, which is real and positive according to Lemma 3.1.

2. Let (`, r) be a pair of nonzero non-negative left and right λ-eigenvectors of M .
We assume that w− · r > 0 and ` · w+ > 0 both hold.
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3.1.3 Two particular cases — For the study of Artin-Tits monoids, we shall be
interested in triples (M,w−, w+) falling into one of the two following cases.

Case A. M is primitive, and the functions w− and w+ are non identically zero.

Case B. For some integer 0 < K < N and for some non-negative matrices A, T and
M̃ of sizes K ×K, K × (N −K), and (N −K)× (N −K) respectively, M has
the following form:

M =
(
A T

0 M̃

)
(3.2)

where M̃ is primitive, and the spectral radii ρ(A) and ρ(M̃) satisfy ρ(A) < ρ(M̃).
The functions w− and w+ are assumed to be non identically zero on the N −K
last indices.

• Proposition 3.3—In either case A or B described above, the triple (M,w−, w+) is a
CWG.

Proof. In case A, this is a direct application of the Perron-Frobenius Theorem for
primitive matrices. In case B, let M be as in (3.2). Let λ be the Perron eigenvalue
of M̃ , i.e., according to the Perron-Frobenius Theorem for primitive matrices, the
simple, unique eigenvalue of M̃ of largest modulus. Then λ is the unique eigenvalue
of M of maximal modulus since ρ(A) < ρ(M̃), and it is simple as an eigenvalue of M .

It remains only to prove the existence of a pair (`, r) of λ-eigenvectors of M such
that w− · r > 0 and ` · w+ > 0. For this, let (˜̀, r̃) be a pair of positive left and right
λ-eigenvectors of M̃ , and consider the vectors ` and r defined by:

` =
(

0 ˜̀) r =
(

(λI −A)−1 · T · r̃
r̃

)
The hypothesis ρ(A) < ρ(M̃) implies that λI − A is invertible, hence r is well

defined, and ` and r are left and right λ-eigenvectors of M , which, due to Lemma 3.1,
have non-negative entries. Since w− and w+ are assumed to be non identically zero on
their last (N −K) coordinates, and since ˜̀and r̃ are positive, they satisfy w− · r > 0
and ` · w+ > 0.

3.2 — Weak convergence of weighted distributions
Let G = (M,w−, w+) be a CWG. Given a path x = (x0, . . . , xk) associated to M , we
define its weight w(x) as the following non-negative real:

w(x) = w−(x0) ·Mx0,x1 · . . . ·Mxk−1,xk · w+(xk) .

From now on, our study of conditioned weight graphs focuses on paths and on
probability distributions over sets of paths. As a first elementary result, we show that
paths of positive weight and of length k exist for all k large enough.

• Lemma 3.4—Let G = (M,w−, w+) be a conditioned weighted graph. Then there
exists an integer K such that, for each k ≥ K, the set of paths of length k and with
positive weight is non empty.

Proof. Let Zk be the sum of the weights of all paths of length k. Then, identifying
the functions w− and w+ with the corresponding row and column vectors, one has:
Zk = w− ·Mk · w+. Let (`, r) be a pair of left and right λ-eigenvectors of M and
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satisfying ` ·r = 1, where λ is the eigenvalue of maximal modulus ofM . Then, putting
Π = r · `, and according to Lemma 3.1:

1
λk
Zk = w− · 1

λk
Mk · w+ −−−−→

k→∞
w− ·Π · w+ = (w− · r)(` · w+) > 0.

It follows that Zk > 0 for all k large enough, and in particular the set of paths with
positive weight is non empty.

• Definition 3.5—Let G = (M,w−, w+) be a conditioned weighted graph, and for each
integer k ≥ 1, let Gk denote the set of paths of length k in G. The weighted distribution
on Gk is the probability distribution µk on Gk defined by:

∀z ∈ Gk µk(z) = w(z)
Zk

, with Zk =
∑
z∈Gk

w(z) ,

which is well defined at least for k large enough according to Lemma 3.4.
For each integer j ≥ 1, and for k large enough, we denote by µ−k,j the joint law

of the first j + 1 elements (x0, . . . , xj) of a path (x0, . . . , xk) of length k distributed
according to µk . We call µ−k,j the left j-window distribution with respect to µk .

Let G = (M,w−, w+) be a conditioned weighted graph, and for each integer k ≥ 0,
let Ωk denote the set of paths of length at most k. Let also Ω be the set of finite or
infinite paths, with its canonical topology (for which it is a compact space). The set
of finite paths

⋃
k Ωk is dense in Ω.

In general, the collection (µk)k≥0 is not a projective system of probability measures,
since the measure induced by µk+1 on the set Gk of paths of length k does not coincide
with µk. Hence, the projective limit of (µk)k≥0 is not defined in general.

Yet, weak limits of measures are an adequate tool to replace projective limits in
this case. Indeed, each Gk is naturally embedded into Ω. Through this embedding,
the distribution µk identifies with a discrete probability measure, still denoted by µk ,
on the space Ω equipped with its Borel σ-algebra.

• Theorem 3.6—Let G = (M,w−, w+) be a conditioned weighted graph, and consider
as in Definition 3.2 the eigenvalue λ of maximal modulus together with the pair (`, r)
of associated eigenvectors.

The sequence (µk)k≥0 of weighted distributions converges weakly toward a proba-
bility measure µ on Ω, which is concentrated on the set Ξ ⊆ Ω of infinite paths.

For each integer k ≥ 0, let Xk : Ξ→ {1, . . . , N} denote the kth natural projection.
Then, under µ, (Xk)k≥0 is a Markov chain. Its initial distribution, denoted h, and its
transition matrix, denoted P = (Pi,j) where Pi,j is the probability to jump from state
i to state j, are given by:

h(i) = w−(i)r(i)
w− · r

, Pi,j = λ−1Mi,j
r(j)
r(i) , if r(i) 6= 0,

independently of the choice of r. If r(i) = 0, the line Pi,• is defined as an arbitrary
probability vector. The chain can only reach the set of states i such that r(i) 6= 0.

Restricted to the set of reachable states, the chain has a unique stationary measure,
say π, given by:

∀i ∈ {1, . . . , N} π(i) = `(i)r(i).

In Case A introduced in Section 3.1.3, the chain (Xk)k≥1 is ergodic. In Case B, the
chain has a unique ergodic component, namely the N −K last indices {K+ 1, . . . , N},
and hence the states in {1, . . . ,K} are all transient.
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In view of the above result, we introduce the following definition.

• Definition 3.7—The probability measure µ on the space of infinite sequences charac-
terized in Theorem 3.6 is called the limit weighted measure of the conditioned weighted
graph G.

Proof of Theorem 3.6. For x a finite path of length j, denote by Cx the elementary
cylinder of base x, i.e., the set of finite or infinite words that start with x. For all
integers k such that k ≥ j and such that µk is well defined, one has:

µk(Cx) = 1
Zk

∑
z∈Gk : θj(z)=x

w(z) , (3.3)

where θj is the truncation map that only keeps the first j steps of a path.
Let w̃ be the real-valued function defined on finite paths by:

w̃(x0, . . . , xj) = w−(x0)Mx0,x1 · · ·Mxj−1,xj .

Then both terms of the quotient in (3.3) can be written through powers of the
matrix M :

µk(Cx) = 1
w− ·Mk · w+ w̃(x)1xj ·Mk−j · w+ .

where 1xj denotes the row vector filled with 0s, except for the entry xj where it has
a 1.

According to Lemma 3.1, the following asymptotics holds for the powers of M :

Mk = λk(r · `)
(
1 + o(1)

)
, k →∞.

Therefore (µk(Cx))k≥0 is convergent, with limit given by:

lim
k→∞

µk(Cx) = λ−jw̃(x)
(1xj · r)(` · w+)
(w− · r)(` · w+) = λ−jw̃(x) r(xj)

w− · r
. (3.4)

Elementary cylinders, together with the empty set, are stable under finite inter-
sections and generate the Borel σ-algebra on Ω. Elementary cylinders are clopen sets
and thus of empty topological boundary. And finally, Ω is a compact metric space.
According to [7, Th. 25.8], this is enough to deduce the weak convergence of (µk)k≥0
toward a probability measure µ on Ω such that µ(Cx) coincides with the value of the
limit in (3.4).

It is clear that the support of µ only contains infinite paths since, for every finite
path z = (x0, . . . , xj), one has µk({z}) = 0 for k large enough. It follows that
µ
(
{z}
)

= 0, and thus µ(Ξ) = 1 since finite paths are countably many.
The vector h and the matrix P defined in the statement are indeed respectively

a probability vector and a stochastic matrix on {1, . . . , N}. The Markov chain with
initial law h and transition matrix P gives to the cylinder Cx the following probability:

h(x0)Px0,x1Px1,x2 · · ·Pxj−1,xj =
w−(x0)r(x0)

w− · r
· λ−1Mx0,x1

r(x1)
r(x0) · λ

−1Mx1,x2

r(x2)
r(x1) · · ·λ

−1Mxj−1,xj

r(xj)
r(xj−1)

= w−(x0)r(xj)
w− · r

λ−jMx0,x1 · · ·Mxj−1,xj = µ(Cx),

by (3.4). This shows that this Markov chain has the same joint marginals as (Xk)k≥0
under µ, or equivalently, that (Xk)k≥0 under µ is the Markov chain with initial law
h and transition matrix P .
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By the normalization condition ` · r = 1, the vector π is indeed a probability
distribution, which is readily seen to be left invariant for P . Furthermore, left invariant
vectors θ for P and left λ-eigenvectors θ′ for M , with support within the set of
reachable states, correspond to each others by θ′(i) = θ(i)/r(i). SinceM has a unique
left λ-eigenvector `, the unique ergodic component of the chain corresponds to the
support of `. In case A, ` > 0 hence the chain is ergodic. In Case B, the unique
ergodic component corresponds to the last N −K states.

• Corollary 3.8—We keep the same notations as in Theorem 3.6. Let j ≥ 1 be an inte-
ger. Then, with respect to µk , as k →∞, the left j-window distributions µ−k,j converge
toward the joint law of (X0, . . . , Xj) under the uniform distribution at infinity µ.

Proof. This is a rephrasing of the weak convergence stated in Theorem 3.6.

3.3 — Related notions found in the literature
The notion of conditioned weighted graph is often found in the literature under dis-
guised forms. For instance, the transition matrix P of the Markov chain introduced in
Theorem 3.6 corresponds to the transformation of an incidence matrix first introduced
by Parry [30, 29, 28] in its construction of a stationary Markov chain reaching the
maximum entropy.

This matrix P also has the very same form as the transition matrix of the survival
process of a discrete time, finite states absorbing Markov chain [15, 13]. Actually,
discrete time, finite states absorbing Markov chains can be interpreted as a particular
case of conditioned weighted graph, as we briefly explain now.

A finite absorbing Markov chain (Yi)i≥0 is a Markov chain on {0, . . . , N} such
that P0,0 = 1, and such that 0 can be reached in a finite number of states from any
other state. Usually, it is assumed that all states in {1, . . . , N} are strongly connected,
which we assume too. For each x ∈ {1, . . . , N}, we consider the conditioned weighted
graph Gx = (M,wx, w

+) defined as follows: M is the restriction of P to the entries in
{1, . . . , N}; w+ is the constant vector with entries 1; and wx is the indicator function
of x.

Assume that (Yi)i≥0 starts from 1. Let T be the first hitting time of 0 of the chain
(Yi)i≥0 . Then it is clear that the marginal law of (Y0, . . . , Yj) conditioned on {T > k}
corresponds to our left j-window distribution for the conditioned weighted graph G1 .
The survival process, if it exists, is a process (Xi)i≥0 such that:

P(X0 = x0, . . . , Xj = xj) = lim
k→∞

P(Y0 = x0, . . . , Yj = xj |T > k) . (3.5)

We recover thus the existence of the survival process, and its form as a Markov
chain, through Theorem 3.6 (or Corollary 3.8); this is established for instance in [13,
Sections 3.1 and 3.2] for continuous-time Markov chains.

4—Application to Artin-Tits monoids

We apply the notion of Conditioned Weighted Graphs (CWG) introduced in Section 3
to the counting of elements of Artin-Tits monoids, maybe with a multiplicative posi-
tive weight. The limit of the associated weighted measures is found to be concentrated
on the boundary of the monoid and to be multiplicative. This yields another repre-
sentation of multiplicative measures, introduced in Section 2, as weak limits of finite
probability distributions, and provides a proof of existence for multiplicative measures.
It also yields a parametrization of multiplicative measures.

29



4.1 — CWG associated to an irreducible Artin-Tits monoid
4.1.1 Uniform case —

• Definition 4.1—Let A be an irreducible Artin-Tits monoid, and let S be the smallest
Garside subset of A. Let J = {(x, i)

∣∣ x ∈ S \ {e} and 1 ≤ i ≤ |x|} and N = #J .
The CWG associated with A is the triple (M,w−, w+), where M is the non-negative
square matrix of size N ×N indexed by J , and w− and w+ are defined by:

M(x,i),(y,j) =


1, if x = y and j = i+ 1
1, if x→ y and i = |x| and j = 1
0, otherwise

w−(x, i) = 1(i = 1), w+(x, i) = 1(i = |x|).

The motivation behind this definition is that elements of A correspond bijectively
to paths in the graph associated with the matrix M , or more precisely with the triple
(M,w−, w+). Indeed, let x be an element of A, with x 6= e, and let (x1, . . . , xj) be
the normal form of x. We associate to x the sequence x̃ defined by:

x̃ =
(
(x1, 1), . . . , (x1, |x1|), (x2, 1), . . . , (x2, |x2|), . . . , (xj , 1), . . . , (xj , |xj |)

)
. (4.1)

Then x̃ is indeed a path in the graph corresponding to the triple (M,w−, w+), of
length |x1|+ · · ·+ |xj | − 1 = |x| − 1.

This correspondence is a bijection between elements of A of length k > 0 and
paths in (M,w−, w+) of length k − 1, whence:

#{x ∈ A
∣∣ |x| = k} = w− ·Mk−1 · w+. (4.2)

• Proposition 4.2—Let A be an irreducible Artin-Tits monoid with at least two gen-
erators. Then the triple (M,w−, w+) introduced in Definition 4.1 is indeed a CWG,
corresponding either to Case A of Section 3.1.3 if A is not of spherical type, or to
case B if A is of spherical type.

Proof. Assume that A is not of spherical type. Then the graph (S\{e},→) is strongly
connected according to Theorem 2.12, which yields that the graph associated with
M is strongly connected. Since x → x holds for every x ∈ Σ, the diagonal element
M
(
(x, 1), (x, 1)

)
is 1, henceM is primitive. The conditions on w− and w+ are trivially

satisfied, and thus (M,w−, w+) is of type A.
If A is of spherical type, let J∆ = {(∆, i)

∣∣ 1 ≤ i ≤ |∆|}. Then the matrix M has
the following form:

M =
(
A T

0 M̃

)
with A =


0 1 0 · · · 0

0 1 0 · · · 0
...

...
· · · 0 1

1 0 · · · 0


where A has size #J∆ ×#J∆ , and M̃ is irreducible according to Theorem 2.12 and
by the same reasoning as above. The matrix T is filled with 0s, except for its last line
where it has a 1 at each column indexed by (x, 1) for x ∈ S \ {e,∆}.

Since A#J∆ = I, all the eigenvalues of A have modulus 1 and thus the spectral
radius of A is 1. On the other hand, since A is assumed to have at least two
generators and to be irreducible, there exist elements x, y, z ∈ S \ {e,∆} such that
y 6= z, x → y and x → z. Hence, M̃ is greater than a permutation matrix; being
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primitive, M̃ has a spectral radius greater than 1 by the Perron-Frobenius Theorem.
Finally, the conditions on w− and w+ are trivially satisfied, hence (M,w−, w+) falls
into case B.

• Proposition 4.3—Let A be an irreducible Artin-Tits monoid with at least two gener-
ators. For each integer k ≥ 0, let λk = #{x ∈ A

∣∣ |x| = k}. Then there exist two real
constants C > 0 and p0 ∈ (0, 1), that depend on A, such that:

λk ∼k→∞ Cp−k0 . (4.3)

The real p0 is the inverse of the Perron eigenvalue of the CWG associated to A.

Proof. By (4.2), we have λk = w−Mk−1w+. Hence, putting p0 = λ−1, where λ is
the Perron eigenvalue of M , we obtain the expected form according to Lemma 3.1,
point 3.

4.1.2 Möbius polynomial — There is a nice combinatorial interpretation of the
real p0 introduced in Proposition 4.3. It is much similar to the case of other monoids
such as braid monoids or trace monoids; see [1] or [2] for more details.

The Möbius polynomial of an Artin-Tits monoid A = A(Σ, `) is the polynomial
µA ∈ Z[T ] defined by :

µA =
∑
DbΣ

(−1)|D|T |
∨

lD|,

where the notation D b Σ has been introduced in Definition 2.20. Note that this is
nothing but the polynomial expression found for h(e) in Section 2.3.4, where h(·) was
the graded Möbius transform of the uniform valuation f(x) = p|x| on A.

Let also the growth series G ∈ Z[[T ]] be the formal series defined by :

G =
∑
x∈A

T |x| =
∑
k≥0

λkT
k. (4.4)

Then G is a rational series, inverse of the Möbius polynomial: G(T ) = 1/µA(T );
see a proof for a slightly more general result below in Section 4.1.3. Since G has non-
negative terms, its radius of convergence is one of its singularities by Pringsheim’s
Theorem [21]. Since G is rational with coefficients of the form (4.3), provided that A
is irreducible with at least two generators, this singularity is necessarily of order 1,
and there is no other singularity of G with the same modulus.

These facts reformulate as follows: If A is an irreducible Artin-Tits monoid with
at least two generators, the Möbius polynomial of A has a unique root of smallest
modulus. This root is simple, real, lies in (0, 1), and coincides with the real p0
introduced in Proposition 4.3.

4.1.3 Multiplicative case — More generally, assume given a multiplicative and
positive weight on the elements of an Artin-Tits monoid A, hence what we called
a valuation ω : A → (0,+∞). We associate to the pair (A, ω) the following square
matrixM with the same indices as in the uniform case (Definition 4.1), and the initial
and final vectors w− and w+ given by:

M(x,i),(y,j) =


1, if x = y and j = i+ 1
ω(y), if x→ y and i = |x| and j = 1
0, otherwise

w−(x, i) = 1(i = 1)ω(x) w+(x, i) = 1(i = |x|)
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Then we claim that (M,w−, w+) is a CWG.
Indeed, if A is not of spherical type, then the same arguments used in the proof of

Proposition 4.2 show that (M,w−, w+) is a CWG since M is primitive. Assume now
that A is of spherical type. If ω is constant on Σ, so that ω(x) = p|x| for all x ∈ A
and for some positive real number p, then the same arguments used in the proof of
Proposition 4.2 show that (M,w−, w+) is a CWG. If, however, ω is non constant on Σ,
introduce again J∆ = {(∆, i)

∣∣ i ≤ |∆|}, A the restriction of M to J∆ × J∆ and M̃
the restriction of M to (J \ J∆)× (J \ J∆). Let x ∈ Σ be such that ω(x) = maxω(Σ).
Since ω is a valuation, and since ∆ is divisible by some element y ∈ Σ such that
ω(y) < ω(x), it comes at once that ω(∆) < ω(x)|∆|. Due to the loop x→ x, it follows
that ρ(M̃) ≥ ω(x) > ω(∆)1/|∆| = ρ(A), which proves that (M,w−, w+) is a CWG in
this case too.

Let Gω be the generating series:

Gω =
∑
x∈A

ω(x)T |x| =
∑
k≥0

Zω(k)T k, with Zω(k) =
∑

x∈A : |x|=k

ω(x).

Then the coefficients Zω(k) have the following expression, for all k > 0:

Zω(k) = w− ·Mk−1 · w+. (4.5)

The uniform case seen in Section 4.1.1 corresponds to the constant valuation
ω(x) = 1, in which case Gω is the growth series (4.4) of the monoid. We note that
Gω = 1/µω, hence is rational, where µω ∈ Z[T ] is the following polynomial:

µω =
∑
DbS

(−1)|D|ω
(∨

l
D
)
T |
∨

lD| .

To prove the equality Gω = 1/µω, one has µωGω =
∑
x∈A axT

|x|, where ax is
computed by:

ax =
∑

DbS, y∈A :(∨
lD
)
·y=x

(−1)|D|ω
(∨

l
D
)
ω(y)

= ω(x)
( ∑
DbS :

∨
lD≤lx

(−1)|D|
)

= 1(x = e).

4.2 — Parametrization of multiplicative measures
Assume given a valuation ω : A → (0,+∞) defined on an irreducible Artin-Tits
monoid with at least two generators. For each integer k ≥ 1, let Ak = {x ∈ A

∣∣ |x| =
k} and let mω,k be the probability distribution on Ak proportional to ω:

mω,k(x) = ω(x)
Zω(k) for x ∈ Ak .

Then the finite probability space (Ak,mω,k) is isomorphic to the finite probability
space of all paths of length k−1 in the CWG (M,w−, w+) equipped with the associated
probability distribution from Definition 3.5 (Section 3.2). Furthermore, the space of
infinite paths in the CWG (M,w−, w+) is homeomorphic to the boundary ∂A. By
Theorem 3.6, we deduce that the sequence (mω,k)k≥0 converges weakly toward a
probability measure mω,∞ on ∂A. The following result gives the form of this limit
measure.
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• Theorem 4.4—Let ω : A→ (0,+∞) be a valuation defined on an irreducible Artin-
Tits monoid with at least two generators. Then the weak limit mω,∞ of the sequence
of finite probability distributions (mω,k)k≥0 is a multiplicative measure on ∂A. Its
associated valuation is given as follows, for any x ∈ A:

mω,∞( ↑ x) = λ−|x|ω(x),

where λ is the Perron eigenvalue of the CWG associated to ω.

Proof. Recall that A = A ∪ ∂A denotes the completion of A, and ⇑ x denotes the
full visual cylinder with base x (see Definition 2.15). Since the support of mω,∞ is a
subset of ∂A, one has mω,∞( ↑ x) = mω,∞(⇑ x). Since ⇑ x is both open and closed
in A, its topological boundary is empty, and therefore by [7, Th. 25.8]:

mω,∞(⇑ x) = lim
k→∞

mω,k(⇑ x).

Next, using that A is left cancellative, we compute for k ≥ |x|:

mω,k(⇑ x) = 1
Zω(k)

( ∑
y∈Ak : x≤ly

ω(y)
)

= ω(x)Zω(k − |x|)
Zω(k) .

Given the expression (4.5) for Zω(·) on the one hand, and the asymptotics from
Lemma 3.1 for the powers ofM on the other hand, we deduce mω,∞( ↑ x) = λ−|x|ω(x).
This is indeed a valuation, hence mω,∞ is a multiplicative measure.

• Corollary 4.5—Let A be an irreducible Artin-Tits monoid with at least two gener-
ators. Then there exists a unique non degenerate uniform measure ν on ∂A. It is
characterized by ν( ↑ x) = p

|x|
0 for all x ∈ A, where p0 is the unique root of smallest

modulus of the Möbius polynomial of A.

Proof. The uniqueness of the non degenerate uniform measure has already been proved
in Theorem 2.35. For the existence, let ω(x) = 1 be the constant uniform valuation
on A, and let ν = mω,∞. Then, according to Theorem 4.4, we have ν( ↑ x) = λ−|x|

for all x ∈ A and for λ the Perron eigenvalue of the CWG associated with ω. We have
seen in Section 4.1.2 that λ = p−1

0 , whence the result.

As illustrated by the above corollary, Theorem 4.4 provides a mean for proving the
existence of multiplicative measures. We shall see that all multiplicative measures can
be obtained as weak limits of such finite ‘multiplicative distributions’. This yields in
Theorem 4.7 below a parametrization of all multiplicative measures on the boundary.

From the operational point of view however, expressing a measure on the boundary
∂A as a weak limit of finite distributions on A does not provide a realization result
similar to Theorem 2.31. It is therefore not much useful for simulation purposes for
instance. Nevertheless, it yields a way to obtain asymptotic information on these
finite ‘multiplicative distributions’, which are of interest per se. The latter aspect will
be developed in Section 5.2.

Let us first investigate the structure of valuations on an Artin-Tits monoid: this
task does not present any difficulty, and therefore the proof of the following result is
omitted.

• Proposition 4.6—Let A = A(Σ, `) be an Artin-Tits monoid. Let R be the reflexive
and transitive closure of the symmetric relation R ⊆ Σ× Σ defined by:

R =
{

(x, y) ∈ Σ× Σ
∣∣ x 6= y and `(x, y) <∞ and `(x, y) = 1 mod 2

}
,
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and let R be the set of equivalence classes of R.
Then, for any valuation f : A→ (0,+∞), and for any equivalence class r ∈ R, the

value f(a) is constant for a ranging over r. Conversely, if xr ∈ (0,+∞) is arbitrarily
fixed for every r ∈ R, then there exists a unique valuation f : A→ (0,+∞) such that
f(a) = xr(a) for every a ∈ Σ, where r(a) is the equivalence class of a.

Valuations on A are thus in bijection with the product set F = (0,+∞)K , whereK
is the number of equivalence classes of R. LetM denote the subset of F corresponding
to parameters of Möbius valuations, hence those associated with a non degenerate
multiplicative measure. Theorem 4.7 below shows thatM has a familiar topological
structure.

We first introduce the following notation. If ω : A → (0,∞) is a valuation,
and if κ is a positive real number, then κω denotes the valuation on A defined by
(κω)(x) = κ|x|ω(x) for all x ∈ A. The half-line (0,∞)ω is the set of valuations of the
form κω for κ ranging over (0,∞).

• Theorem 4.7—Let A be an irreducible Artin-Tits monoid with at least two generators.
Let K be the number of equivalence classes of the relation R from Proposition 4.6.
Then the setM⊆ (0,+∞)K of parameters of non degenerate multiplicative measures
defined on ∂A intersects any half-line (0,+∞)ω in exactly one point. This gives a
homeomorphism betweenM and the open simplex P

(
(0,+∞)K

)
of dimension K − 1

(if K = 1, the open simplex of dimension 0 reduces to a singleton).
We first need the following lemma, which generalizes the uniqueness result of

uniform measures proved in Theorem 2.35 with the same technique of proof.

• Lemma 4.8—Let A be an irreducible Artin-Tits monoid with at least two generators.
Let ν and ν′ be two multiplicative non degenerate measures on ∂A, with associated
valuations f and f ′. Assume that there exists a constant κ > 0 such that f ′ = κf .
Then f = f ′.

Proof. Without loss of generality, we assume that κ ≤ 1. Let S be the smallest
Garside subset of A. Let B and B′ be the square non-negative matrices, indexed by
(S \ {e,∆}) × (S \ {e,∆}), with ∆ to be ignored if A is not of spherical type, and
defined by:

Bx,x′ = 1(x→ x′)f(x′), B′x,x′ = 1(x→ x′)f ′(x′).

Then B′ ≤ B. According to Lemma 2.34, point 2b, both matrices are primitive of
the same spectral radius 1. According to Perron-Frobenius Theorem [37], it implies
B = B′ and thus f = f ′.

Proof of Theorem 4.7. Let K be defined as in the statement, and let F = (0,+∞)K .
We identify the set of valuations on A with the product set F , which is justified
by Proposition 4.6. Let ω be a valuation on A, and let (M,w−, w+) be the CWG
associated to ω. Let also λ be the Perron eigenvalue of M , and let f = λ−1ω. The
valuation f corresponds to a non degenerate multiplicative measure according to
Theorem 4.4. This association defines thus a mapping Φ : F →M.

We first prove that Φ(r) = r for every r ∈ M. If r ∈ M, then both r and Φ(r)
correspond to non degenerate multiplicative measures, and they are related for some
constant κ > 0 by Φ(r) = κr. According to Lemma 4.8, it implies that Φ(r) = r,
as claimed. In particular, we deduce that Φ is onto. By the same lemma, we also
observe that Φ is constant on all half-lines (0,∞)ω, for any ω ∈ F .
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Let R be the set of equivalence classes of R, and let S be the open simplex of
dimension K − 1 defined by:

S =
{
r = (ra)a∈R ∈ F

∣∣ ∑
a∈R

ra = 1
}
,

and let Ψ = Φ
∣∣
S
. Since Φ is onto, and constant on the half-lines of F , it follows at

once that Ψ is onto. If Ψ(f) = Ψ(f ′) for f and f ′ in S, then f and f ′ are related by
a relation of the form f ′ = κf for some κ > 0, and thus obviously f = f ′. Hence Ψ is
one-to-one and thus bijective.

The mapping which associates to a family r ∈ S the corresponding matrix M is
obviously continuous, as well as the one mapping a primitive matrix to its Perron
eigenvalue (see [35, Fact 10 of Section 9.2]). Hence Ψ is continuous. And Ψ−1 is
continuous since, for f ∈M, the unique ω ∈ S such that Ψ(ω) = f is given by:

∀a ∈ R ω(a) = f(a)∑
b∈R f(b) .

Hence Ψ is a homeomorphism.

5—Asymptotics: concentration of ergodic means
and Central Limit Theorem

5.1 — Case of Conditioned Weighted Graphs
Consider a conditioned weighted graph G = (M,w−, w+), with M of order N , and
a cost function f : {1, . . . , N} → R. The ergodic sums Skf(z) and ergodic means
Rkf(z) of f along a path z = (x0, . . . , xk) of length k are defined by:

Skf(z) =
k∑
i=0

f(xi) , Rkf(z) = 1
k + 1

k∑
i=0

f(xi) . (5.1)

For each integer k ≥ 0, letGk denote the set of paths in G of length k, equipped with
the associated weighted distribution as in Definition 3.5. The function Rkf : Gk → R
can be seen as a random variable on the discrete probability space (Gk, µk). Since
this collection of random variables are not defined on the same probability spaces, the
only way we have to compare them is to consider their laws and their convergence in
law.

A weak variant of the Law of large numbers, adapted to the framework of con-
ditioned weighted graphs, is the following concentration result—to be refined in a
Central Limit Theorem next.

• Theorem 5.1—Let G = (M,w−, w+) be a conditioned weighted graph, with M of
order N . Let π be the stationary measure on {1, . . . , N} associated with the limit
weighted measure of G.

Then, for every function f : {1, . . . , N} → R, the sequence of ergodic means
(Rkf)k≥0, with Rkf defined on (Gk, µk) by (5.1), converges in distribution toward the
Dirac measure δγf , where γf is the constant defined by:

γf =
N∑
j=1

π(j)f(j) . (5.2)
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Proof. Using the characteristic functions, it is enough to show the following conver-
gence, for every real t :

lim
k→∞

Eµk(eitRkf ) = eitγf , (5.3)

where Eµk(·) denotes the expectation with respect to µk , and γf is the constant
defined in (5.2).

We express the above expectation in matrix terms, as follows. For each complex
number u, let Mf (u) be the complex-valued matrix defined by:

Mf (u) = Df (u)M , Df (u) = Diag(euf ) ,

where the last matrix is the diagonal matrix with entry euf(i) at position (i, i).
Let also vf (u) be the column vector defined by vf (u) = Df (u)w+. Then:

Eµk(eitRkf ) = 1
Zk
w−
(
Mf (u)

)k
vf (u) , with u = it

k + 1 ,

where Zk = w− ·Mk · w+ is the normalization factor.
For small values of u, Df (u) is an analytic perturbation of the identity. By

assumption, M has a unique eigenvalue of maximal modulus, say λ, and it is simple;
the same spectral picture persists for Mf (u) for small values of u. Hence, according
to [26, Theorem III.8], denoting by λ(u) the eigenvalue of highest modulus of Mf (u),
by `(u) and by r(u) the unique left and right associated eigenvectors normalized by
the conditions ` · r(u) = 1 and `(u) · r(u) = 1, all these quantities are analytic in u
around zero, and for u small enough:

Mf (u) = λ(u)Π(u) +Q(u) , with Π(u) = r(u) · `(u),

where the spectrum of Q(u) is included in a fixed disk of radius < λ, and Π(u) ·Q(u) =
Q(u) ·Π(u) = 0. Raising to the power k yields:(

Mf (u)
)k = λ(u)kΠ(u) +Q(u)k , ‖Q(u)k‖ = O

(
(λε)k

)
for any spectral norm ‖ · ‖ and for some 0 < ε < 1.

Put ` = `(0) and r = r(0), consistently with our previous notation for the pair (`, r).
For t fixed and for k large enough, u = t

k+1 eventually reaches the region of validity
of the above estimate. Hence, recalling that Zk = w− ·Mk ·w+ = w− ·

(
Mf (0)

)k ·w+,

Eµk(eitRkf ) =k→∞

(
λ(u)
λ

)k
w− ·Π(u) · vf (u)
w− ·Π(0) · vf (0) + o(1) .

As the last fraction on the right tends to 1 when u→ 0, this gives

Eµk(eitRkf ) =k→∞

(
λ(u)
λ

)k
(1 + o(1)) + o(1) .

Passing to the limit as k →∞ above yields, using the development of λ(·) around
zero at order 1:

lim
k→∞

Eµk(eitRkf ) = lim
k→∞

(
λ
( it
k+1
)

λ

)k
= eiλ

′(0)
λ t . (5.4)
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It remains to evaluate λ′(0). For this, we first differentiate the equality ` · r(u) = 1
at 0 and obtain ` ·r′(0) = 0. We also differentiate the equalityMf (u) ·r(u) = λ(u)r(u)
at 0 and obtain:

M ′f (0) · r +M · r′(0) = λ′(0)r + λr′(0) .

We multiply both members of the above equality by ` on the left to derive:

` ·M ′f (0) · r = λ′(0) , since ` · r′(0) = 0, ` ·M = λ` and ` · r = 1.

By the definitionMf (u) = Df (u)·M , we haveM ′f (0)·r = Diag(f)·M ·r = λDiag(f)·r,
and thus:

λ′(0) = λ` ·Diag
(
f
)
· r = λ

N∑
j=1

f(j)`(j)r(j) = λγf .

Returning to (5.4), we deduce the validity of (5.3), which completes the proof.

Extending the analysis to the next order yields a Central Limit Theorem.

• Theorem 5.2—Let G = (M,w−, w+) be a conditioned weighted graph, with M of
order N . Let π be the stationary measure on {1, . . . , N} associated with the uniform
measure at infinity of G. Let f : {1, . . . , N} → R be a function.

Then there exists a non-negative σ2 such that the following convergence in law
with respect to µk toward a Normal law holds:

1√
k + 1

(
Skf − (k + 1)γf

) L−−−−→
k→∞

N (0, σ2) .

Moreover, σ2 = 0 if and only if there exists a function g : {1, . . . , N} → R such
that f(i) = γf + g(i)− g(j) whenever Mi,j > 0 and i, j ∈ suppπ .

Proof. We keep the same notations introduced in the proof of Theorem 5.1. Replacing
f by f−γf if necessary, we assume without loss of generality that γf = 0. We evaluate
the characteristic function of (Skf)/

√
k + 1 :

Eµk
(
e

i t√
k+1

Skf) =k→∞

(
λ
( it√

k+1

)
λ

)k
(1 + o(1)) + o(1) . (5.5)

Since γf = 0, it follows from the computations performed previously that λ′(0) = 0,
and thus, for κ = λ′′(0)/(2λ), around zero:

λ(u) = λ(1 + κu2) + o(u2) .

Passing to the limit in (5.5) yields:

lim
k→∞

Eµk
(
e

i t√
k+1

Skf) = e−κt
2
.

Since the left member in the above equation is uniformly bounded in t and in k,
it entails that κ = σ2 ≥ 0, and this proves the convergence in law of (Skf)/

√
k + 1

toward N (0, σ2).
To prove the non degeneracy criterion, we need to compute the second derivative

of λ. First, we claim that we can assume that r(0)(i) > 0 for all i. Indeed, in
the general case, we can partition {1, . . . , N} into the set where r(0) > 0 and the
set where r(0) = 0. This gives rise to a block-triangular decomposition of M , with
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diagonal blocks A (on r(0) > 0) and B (on r(0) = 0). The spectrum of M is the
union of the spectra of A and B, hence A has λ as a unique eigenvalue of maximal
modulus, while B has strictly smaller spectral radius. When one perturbs M into
M(u), the block-triangular decomposition survives. By continuity of the spectrum,
the dominating eigenvalue λ(u) of M(u) is also the dominating eigenvalue of A(u),
which is of the same type except that r(0) is everywhere positive for A.

From now on, we assume that r(0)(i) > 0 for all i. To compute the second
derivative of λ, it is more convenient to reduce by conjugation to a situation where
r′(0) = 0, as follows. The vector r̃(u) = Diag(e−ur′(0)/r(0)) · r(u) is equal to r+O(u2),
and it is an eigenvector of the matrix

M̃f (u) = Diag
(
e−ur

′(0)/r(0)) ·Mf (u) ·Diag
(
eur
′(0)/r(0)) ,

for the eigenvalue λ(u). Differentiating twice the equality λ(u)r̃(u) = M̃f (u) · r̃(u)
yields

λ′′(0)r + 2λ′(0)r̃′(0) + λr̃′′(0) = M̃ ′′f (0) · r + 2M̃ ′f (0) · r̃′(0) + M̃f (0) · r̃′′(0) .

By construction, r̃′(0) = 0. Multiplying this equation on the left by `, the terms
λr̃′′(0) and M̃f (0) · r̃′′(0) cancel each other as ` · M̃f (0) = ` ·M = λ`. Thus,

λ′′(0) = ` · M̃ ′′f (0) · r.

Moreover: (
M̃f (u)

)
i,j

= Mi,j · expu
(
f(i)− r′(0)(i)

r(0)(i) + r′(0)(j)
r(0)(j)

)
.

Finally, writing g(i) = r′(0)(i)/r(0)(i), we get the formula

λ′′(0) =
∑
i,j

`(i)
(
f(i)− g(i) + g(j)

)2
Mi,jr(j).

Note that g is real-valued, as the matrix Df (u) for small real u is real-valued and has
a dominating real-valued eigenvector.

If follows from this expression that, if the variance vanishes, then f(i) = g(i)−g(j)
whenever Mi,j > 0 and `(i) > 0 and r(j) > 0 (these last two conditions are satisfied
if i and j belong to the support of π).

Conversely, assume that there exists g such that f(i) = g(i) − g(j) whenever
i, j ∈ suppπ and Mi,j > 0. Then, along any path x = (x0, . . . , xk) in the graph with
nonzero weight and in the support of π, the quantity Skf = g(x0)− g(xk) + f(xk) is
uniformly bounded. For the limit weighted measure µ, almost every path enters the
support of π by ergodicity. Hence, Skf remains bounded along almost every path. In
particular, for any ε > 0, there is a clopen set Kε of µ-measure > 1− ε on which Skf
is bounded for all k by a constant C(ε). As µk converges weakly to µ by Theorem 3.6,
it follows that µk(Kε) > 1− ε for large enough k. Hence, Skf is also bounded by C(ε)
with µk-probability 1− ε. This shows that Skf/

√
k + 1 converges in distribution with

respect to µk towards the Dirac mass at 0.

5.2 — Asymptotics for Artin-Tits monoids
Let an Artin-Tits monoid A, that we assume to be irreducible and with at least
two generators, be equipped with a Möbius valuation ω. Let (M,w−, w+) be the
associated CWG. We have already observed that, for every integer k ≥ 0, the finite
probability distribution mω,k on Ak = {x ∈ A

∣∣ |x| = k} which is proportional to ω
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corresponds to the weighted distribution on the set of paths of length k − 1 in the
CWG. Let mω,∞ be the weak limit on ∂A of (mω,k)k≥0 .

Let Ξ denote the space of infinite paths in the CWG, equipped with the limit
weighted measure m̃. Then the natural correspondence between ∂A and Ξ makes the
two probability measures mω,∞ and m̃ image of each other.

By Theorems 2.31 and 3.6, both measures correspond to finite homogeneous
Markov chains, but on two different finite sets of states: the set S \ {e} for mω,∞
and the set J =

{
(x, i) ∈ (S \ {e}) × N

∣∣ 1 ≤ i ≤ |x|
}
for m̃. We wish to relate the

stationary measures of these chains, that is to say, the finite probability distributions
which are left invariant with respect to the transition matrices.

• Lemma 5.3—Let f : A→ (0,+∞) be the valuation corresponding to a non degenerate
multiplicative measure m on the boundary at infinity of an Artin-Tits monoid A. Let
P be the transition matrix of the Markov chain on S \ {e} associated to m, and let θ
be the unique probability vector on S \ {e} left invariant for P .

Let (M,w−, w+) be the CWG associated with f as described in Section 4.1.3, and let
P̃ be the transition matrix on J =

{
(x, i) ∈ (S \{e})×N

∣∣ 1 ≤ i ≤ |x|
}
of the Markov

chain corresponding to the limit weighted measure of the CWG (see Definition 3.7).
Then the probability vector θ̃ on J defined by:

θ̃(x, i) = 1
κ
θ(x), with κ =

∑
x∈S\{e}

|x|θ(x),

is left invariant for P̃ .

Proof. We put S ′ = S \ {e} to shorten the notations. Let h be the Möbius transform
of f , and let g : S ′ → R be the normalization vector defined on S ′ by:

∀y ∈ S ′ g(x) =
∑

y∈S′ : x→y
h(y).

It follows from Theorem 2.31 that f is a Möbius valuation, hence h(e) = 0.
Therefore g coincides on S ′ with the function g defined in Lemma 2.33, and thus
h(x) = f(x)g(x) holds in particular for all x ∈ S ′. Furthermore, since m is non
degenerate, g > 0 according to Lemma 2.34.

Writing down the equation θP = θ yields, for every x ∈ S ′, and using the expression
for P given by Theorem 2.31:

θ(x) =
∑
y∈S′

θ(y)Py,x =
∑

y∈S′ : y→x
f(y) θ(y)

h(y)h(x) .

Using the identities h(x) = f(x)g(x) and f(y)/h(y) = 1/g(y), we obtain:

f(x) ·
( ∑

y∈S′ : y→x

θ(y)
g(y)

)
= θ(x)
g(x) . (5.6)

Now we claim:
(†) The vectors u and v defined, for (x, i) ∈ J , by u(x,i) = θ(x)/g(x) and v(x,i) = g(x),

are respectively left and right invariant for M , hence satisfy u · M = u and
M · v = v.

The claim follows from the following computations, referring to the definition for
the matrix M given in Section 4.1.3:

(u ·M)(x,1) =
∑

y∈S′ : y→x

θ(y)
g(y)f(x) = u(x,1) ,
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where the last equality derives from (5.6). And for i > 1:

(u ·M)(x,i) = u(x,i−1) = u(x,i) .

This proves that u is left invariant for M . To prove the right invariance of v, we
compute as follows:

for i = |x|: (M · v)(x,|x|) =
∑

y∈S′ : x→y
f(y)g(y) =

∑
y∈S′ : x→y

h(y) = g(x) = v(x,|x|)

for i < |x|: (M · v)(x,i) = g(x) = v(x,i)

This proves the claim (†).
Thus, the stationary distribution of P̃ is proportional to the vector u(x, i)v(x, i) =

θ(x) and is a probability vector; whence the result.

• Definition 5.4—Let A be an irreducible Artin-Tits monoid with at least two genera-
tors, equipped with a valuation ω : A→ (0,+∞). The speedup of ω is the quantity:

κ =
∑

x∈S\{e}

|x|θ(x),

where S is the smallest Garside subset of A, and θ is the stationary distribution of
the Markov chain on S \ {e} associated with the multiplicative measure mω,∞ on ∂A.

We note that θ(∆) = 0 if A is of spherical type. We now come to the study of
asymptotics for combinatorial statistics defined on Artin-Tits monoids.

• Definition 5.5—Let A be an Artin-Tits monoid. A function F : A → R is said to
be:

1. Additive if F (x · y) = F (x) + F (y) for all x, y ∈ A.

2. Normal-additive if F (x1 · . . . · xn) = F (x1) + . . .+ F (xn) whenever (x1, . . . , xn)
is a normal sequence of A.

Additive functions are normal additive, but the converse needs not to be true. For
instance, the height function is normal additive without being additive in general.

• Theorem 5.6—Let A be an irreducible Artin-Tits monoid with at least two generators.
Let ω : A→ (0,+∞) be a valuation, and let F : A→ R be a normal-additive function.

If k > 0 is an integer, we let x denote a random element in Ak distributed according
to the finite distribution mω,k . Let θ be the stationary distribution on S \ {e} of the
Markov chain associated with the weak limit mω,∞ = limk→∞mω,k .

Then the following convergence in distribution holds:

F (x)
|x|

L−−−−→
k→∞

δγ , with γ = 1
κ

∑
x∈S\{e,∆}

θ(x)F (x),

where κ is the speedup of ω, and where ∆ is to be ignored if A is not of spherical
type.

Assume furthermore that: (1) A has at least three generators in case that it is of
spherical type, and (2) F is not proportional on S \{e,∆} to the length function (with
∆ to be ignored if A is not of spherical type). Then there exists a constant s2 > 0
such that the following convergence in distribution toward a Normal law holds:

1√
k

(
F (x)− kγ

) L−−−−→
k→∞

N (0, s2).
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Proof. We assume without loss of generality that ω is a Möbius valuation. For
otherwise, we normalize it by putting ω′ = κω, for the unique positive real κ such
that, according to Theorem 4.7, the resulting valuation ω′ is a Möbius valuation.
Then the weighted distributions associated with ω′ are the same as the weighted
distributions associated with ω, and the convergences that we shall establish for ω′
correspond to the convergences for ω.

Let (M,w−, w+) be the CWG associated to ω. We express F (x) for x ∈ Ak

as an ergodic sum in order to apply Theorem 5.1. For this, let F̃ : J → R, with
J = {(x, i) ∈ (S \ {e})× N

∣∣ 1 ≤ i ≤ |x|}, be defined by:

F̃ (x, i) =
{

0, if i < |x|
F (x) if i = |x|

Then, for x ∈ Ak, if x̃ is the corresponding path in the CWG as in (4.1), one has
F (x) = Sk−1F̃ (x̃), where Sk−1F̃ denotes the ergodic sums associated to F̃ , and thus
F (x)/|x| = Rk−1F̃ (x̃) where Rk−1F̃ denotes the ergodic means associated to F̃ . Let θ̃
be the stationary distribution given by Theorem 3.6 applied to the CWG (M,w−, w+).
Then Theorem 5.1 entails the convergence in distribution:

F (x)
|x|

L−−−−→
k→∞

δγ , with γ =
∑

(x,i)∈J

θ̃(x, i)F̃ (x, i) = 1
κ

∑
x∈S\{e}

θ(x)F (x),

where the last equality comes from Lemma 5.3. If A is of spherical type, then θ(∆) = 0
hence the sum ranges over S \ {e,∆}.

We now aim at applying the Central Limit Theorem 5.2. For this, let H(x) =
F (x)−γ|x| and let H̃ be defined with respect to H in the same way than F̃ was defined
with respect to F . We prove that H̃ satisfies the non degeneration criterion stated in
Theorem 5.2. For this, since γH = 0, assume that there exists a function g(·, ·) on J
such that H̃(x, i) = g(x, i)− g(y, j) whenever M(x,i),(y,j) > 0 and (x, i), (y, j) belong
to the support of the invariant measure of the Markov chain, i.e., x, y ∈ S \ {e,∆}
(with ∆ appearing only if A is of spherical type).

For any x ∈ S \ {e,∆}, and for i < |x|, one has H̃(x, i) = 0 = g(x, i)− g(x, i+ 1),
hence the value of g(x, i) is independent of i ∈ {1, . . . , |x|}. And for all y such
that x → y holds, H̃(x, |x|) = g(x, |x|) − g(y, 1). Therefore the value of g(y, 1) is
independent of y, provided that x→ y holds.

To prove that g is globally constant, it is thus enough to show that the transitive
closure on S \ {e,∆} of the relation relating x and y if there exists z such that z → x
and z → y, is S \ {e,∆}. In turn, this derives from the following claim:

(†) For every x ∈ S \ {e,∆} (with ∆ appearing only if A is of spherical type), let
D(x) =

{
y ∈ S \ {e,∆}

∣∣ x → y
}
. Then there exists a subset I of S \ {e,∆}

such that:

∀x, y ∈ I x 6= y =⇒ D(x) ∩D(y) 6= ∅, (5.7)
∀y ∈ S \ {e,∆} ∃x ∈ I y ∈ D(x). (5.8)

We prove (†). If A is not of spherical type, any singleton I = {x} is suitable if
x is maximal in the finite poset (S,≤l). Indeed, (5.7) is trivially true, and for (5.8),
by maximality of x, any y ∈ S \ {e} satisfies x =

∨
l{ζ ∈ S

∣∣ ζ ≤l x · y} and thus
y ∈ D(x) by Lemma 2.8.

For A of spherical type, we put I =
{

∆A

∣∣ ∃a ∈ Σ A = Σ \ {a}
}
, where

∆A =
∨

l A. Let A = Σ \ {a} and B = Σ \ {b} with a 6= b. Then there exists c /∈ {a, b}
since |Σ| > 2, and then L(c) = {c} ⊆ R(∆A), R(∆B), hence c ∈ D(∆A) ∩ D(∆B)
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using Corollary 2.11. This proves (5.7). To prove (5.8), consider any x ∈ S \ {e,∆}.
Then L(x) 6= Σ hence L(x) ⊆ R(∆A) for any A = Σ \ {a} such that a /∈ L(x), and
thus x ∈ D(∆A).

Hence we have proved the claim (†), and thus that g is globally constant. It entails
that H̃ is itself constant, equal to zero, and that F is proportional on S \{e,∆} to the
length function, contradicting our assumption. Consequently, Theorem 5.2 applies
and we derive the stated convergence.

Remark 5.7. Let N (0, 0) denote the Dirac measure on R concentrated on 0. We
remark that, in the cases excluded in the last paragraph of Theorem 5.6, the same
convergence holds with s2 = 0, hence toward N (0, 0).

For functions F proportional to the length function, the quantity F (x) − kγ
identically vanishes, hence the convergence is trivial. The statement also excludes
the case of an Artin-Tits monoid A of spherical type and with two generators only.
Since A is assumed to be irreducible, it is the case of A = A

(
{a, b}, `

)
with 3 ≤

`(a, b) < ∞. Such a monoid is easily investigated. Putting n = `(a, b), one has
S = {e, x1, . . . , xn−1, y1, . . . , yn−1,∆} with xi = abab · · · , yi = baba · · · and |xi| =
|yi| = i, and ∆ = xn = yn . Furthermore, putting X = {xj

∣∣ 1 ≤ j < n} and
Y = {yj

∣∣ 1 ≤ j < n}, one has:

for 2i+ 1 < n: D(x2i+1) = X, D(y2i+1) = Y,

for 2i < n: D(x2i) = Y, D(y2i) = X.

Consider a Möbius valuation ω, and let G be the normal-additive function defined
by G(x2i) = 1, G(y2i) = −1, G(x2i+1) = G(y2i+1) = 0. Observe that ω(x2i) =
ω(y2i), hence γ = 0 for symmetry reasons. For any x ∈ A, with normal form
x = ∆ix · s1 · . . . · sm , one has G(x) = ixG(∆) + εm with εm ∈ {−1, 0, 1}, where ix is
the number of ∆s in the normal form of x. Hence, for any a > 0:

ωk

(∣∣∣G(x)√
k

∣∣∣ ≥ a) ≤ ωk(ix ≥ a
√
k − 1

1 + |G(∆)|

)
.

Since ix converges in law toward a geometric law, it follows that the right-hand
member above, and thus the left-hand member, converges toward 0, and so G(x)/

√
k

converges in law toward N (0, 0), as expected.
An inspection of the proof of Theorem 5.6 shows that the functions for which the

non degeneracy criterion for the convergence applies, are exactly those in the two-
dimensional vector space generated by the length function and G. Hence, for normal-
additive functions outside this vector space, the convergence stated in Theorem 5.6
applies with s2 > 0.

Let us apply Theorem 5.6 to obtain information on the following statistics: the
ratio height over length of large elements in an irreducible Artin-Tits monoid.

• Corollary 5.8—Let A be an Artin-Tits monoid. We assume that A is irreducible,
has at least two generators and is not a free monoid. Let κ be the speedup associated
to the constant valuation ω(x) = 1 on A.

Then, for all reals a < b distinct from κ−1, one has:

lim
k→∞

#{x ∈ Ak

∣∣ a < τ(x)/k < b}
#Ak

= 1(a < κ−1 < b),

and for a and b distinct from κ:

lim
k→∞

#{x ∈ Ak

∣∣ a < k/τ(x) < b}
#Ak

= 1(a < κ < b).
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It entails the convergence of the following expectations, where Ek denotes the
expectation with respect to the uniform distribution on Ak:

lim
k→∞

1
k
Ekτ(·) = κ−1, lim

k→∞
kEk

( 1
τ(·)

)
= κ.

Furthermore, there is a positive constant s2 such that, for any two reals a < b, one
has:

lim
k→∞

#
{
x ∈ Ak

∣∣ a√k < τ(x)− kκ−1 < b
√
k
}

#Ak
= 1√

2πs2

∫ b

a

exp
(
− t2

2s2

)
dt, (5.9)

lim
k→∞

#
{
x ∈ Ak

∣∣ a < √k(k/τ(x)− κ) < b
}

#Ak
= 1√

2πs2κ−4

∫ b

a

exp
(
− t2

2s2κ−4

)
dt.

(5.10)

Proof. We apply Theorem 5.6 with the height function F (x) = τ(x), which is normal-
additive. It is not proportional on S \ {e,∆} to the length function since A is not a
free monoid. If A is of spherical type with only two generators, the function F does
not belong to the vector space generated by the length function and the function G
described in the above Remark. Hence, Theorem 5.6 applies.

The ratios τ(x)/|x| converge in distribution toward δγ with:

γ = 1
κ

∑
x∈S\{e}

θ(x) = 1
κ
.

Since it is a constant, it entails the convergence in distribution of the inverse ratios
|x|/τ(x) toward the constant γ−1 = κ. The two first points derive at once, as well as
the convergence of the expectations.

The convergence (5.9) is the reformulation of the convergence in distribution√
k
(
τ(x)/|x| − κ−1) L−→ N (0, s2). It is then well know how to derive the following

convergence:

√
k
( |x|
τ(x) − κ

)
L−−−−→

k→∞
N (0, s2γ4),

based on the Delta method, see [7, p. 359]. The convergence (5.10) follows.

6—Similar results for other monoids

So far, our results only focused on Artin-Tits monoids and their Garside normal forms,
with the help of conditioned weighted graphs. However, the arguments developed
above may apply to other monoids as well, provided that their combinatorial structure
is similar to that of Artin-Tits monoids.

In Section 6.1, we list the different properties on which our arguments rely, and then
we state the corresponding results. In Section 6.2, we underline that the main objects
that we construct—the boundary at infinity and the class of multiplicative probability
measures on the boundary—are intrinsically attached to the monoid, although the
construction uses non intrinsic objects such as a particular Garside subset. Finally,
we identify in Section 6.3 several examples of monoids fitting into this more general
framework, and not falling into the class of Artin-Tits monoids.
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6.1 — A more general working framework
The properties that must be satisfied by the monoid A to follow the sequence of
arguments that we developed are the following:

(P1) There exists a length function on the monoid A, i.e., a function |·| : A→ Z≥0
such that:

∀x, y ∈ A |x · y| = |x|+ |y| and ∀x ∈ A x = e ⇐⇒ |x| = 0.

(P2) The monoid A is both left and right cancellative, meaning:

∀x, y, z ∈ A (z · x = z · y =⇒ x = y) and (x · z = y · z =⇒ x = y).

(P3) The ordered set (A,≤l) is a lower semi-lattice, i.e., any non-empty set has a
greatest lower bound in A.

(P4) There exists a finite Garside subset S, i.e., a finite subset of A which generates
A and is closed under existing ∨l and downward closed under ≤r (the condition
that S contains Σ is dropped: it does not make sense in our context as we have
not singled out a generating set Σ in our assumptions).

(P5) The Charney graph (C ,→) is strongly connected, where C is the subset of S
and → is the relation on S × S defined by:

C =
{
S \ {∆, e}, if (S,≤l) has a maximum ∆
S \ {e}, otherwise

x→ y ⇐⇒ x =
∨

l

{
z ∈ S

∣∣ z ≤l x · y
}
.

(P6) The integers in the set:{
|z1|+ . . .+ |zk|

∣∣ k ≥ 1, z1, . . . , zk ∈ S, z1 → z2 → . . .→ zk → z1
}
,

are setwise coprime, i.e., have 1 as greatest common divisor.

(P7) If (S,≤l) has a maximum, then the Charney graph (C ,→) has at least one
vertex with out-degree two or more.

We observe that all irreducible Artin-Tits monoids with at least two generators
satisfy the above axioms.

Property (P1) states the conditions that must be met by the notion of length of
an element, and then Properties (P2) to (P4) lead to the notion of Garside normal
form and its variants, such as the generalized Garside normal form.

Property (P5) is then equivalent with Theorem 2.12. Property (P6) is used to
obtain aperiodic, and therefore primitive matrices. Property (P7) ensures that the ∆
component, if it exists, will have a small spectral radius. In the case of irreducible
Artin-Tits monoids, (P7) holds for monoids with at least two generators, and only for
them.

The results obtained in the previous sections for irreducible Artin-Tits monoids
with at least two generators, and regarding the construction of multiplicative probabil-
ity measures at infinity, generalize to all monoids satisfying Properties (P1) to (P7).

• Theorem 6.1—Let A be a monoid satisfying Properties (P1)–(P7). Then Theo-
rem 2.35, Proposition 4.3, Theorem 4.4, Corollary 4.5, Theorem 4.7 and Theorem 5.6
hold for the monoid A.

44



In view of Theorem 6.1, two questions naturally arise:

• Assume given a monoid A satisfying (P1)–(P7). The central objects that we
consider are the boundary at infinity of A, the multiplicative measures and
the uniform measure on the boundary. How much of these objects are intrinsic
to A? And on the contrary, how much depend on the specific length function
and on the Garside subset that were chosen?

• What are typical examples of monoids satisfying (P1)–(P7) outside the family
of Artin-Tits monoids?

We answer the first question below in Section 6.2, showing that most of our objects
of interest are intrinsic to the monoid. The answer to the second question is the topic
of Section 6.3.

6.2 — The boundary at infinity and the multiplicative measures are intrin-
sic

We have constructed in Section 2.3.1 a compactification A of an Artin-Tits monoid A
as the set of infinite paths in the graph (S,→), where S is the smallest finite Garside
subset of A. Then A identifies with the set of paths that hit e, whereas the boundary
is the set of paths that never hit e.

The same construction is carried over for an arbitrary monoid A equipped with
a finite Garside subset S, and this was implicitly understood in the statement of
Theorem 6.1. We have thus an operational description of the compactification and
of the boundary at infinity relative to the Garside subset S, say AS and ∂AS . It is
not obvious however to see that the two compact spaces thus obtained are essentially
independent of S. We sum up an alternative construction of the boundary at infinity,
already used in [2], and the fact that it is equivalent to the previous construction in
the following result, the proof of which we omit.

• Proposition 6.2—Let A be a monoid, and define the preorder ≤l on A by putting
x ≤l y ⇐⇒ (∃z ∈ A y = x · z). Let H =

{
(xi)i≥0

∣∣ ∀i ≥ 0 xi ∈ A xi ≤l xi+1
}
.

Equip H with the preordering relation defined, for x = (xi)i≥0 and y = (yi)i≥0 , by:

x v y ⇐⇒
(
∀i ≥ 0 ∃j ≥ 0 xi ≤l yj

)
.

Let finally (A,≤l) be the collapse of (H,v). That is to say, A is the partially ordered
set obtained as the quotient of H by the equivalence relation v ∩(v)−1.

Assume that A satisfies Properties (P1), (P2) and (P4).

1. Then (A,≤l) is a partial order that identifies with its image in A through the
composed mapping A→ H→ A, where the mapping A→ H sends an element
x to the constant sequence (x, x, . . . ).

One equips A with the smallest topology containing as open sets all sets of the form
↑ x with x ∈ A and all sets of the form A \ ↑ x with x ∈ A (in Domain theory, this
corresponds to the Lawson topology [24, p.211]). Finally, the boundary at infinity of
A is the topological space defined by ∂A = A \A.

2. There is a canonical mapping between AS and A. This mapping makes (AS ,≤l)
and (A,≤l) isomorphic as partial orders, and the topological spaces homeomor-
phic. Its restriction to ∂AS induces a homeomorphism from ∂AS to ∂A.

Multiplicative measures on the boundary are those measures m on ∂A satisfying
m
(
↑ (x · y)

)
= m( ↑ x) ·m( ↑ y). We deduce the following corollary.
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• Corollary 6.3—Let A be a monoid satisfying Properties (P1) to (P7). Then the
notions of boundary at infinity and of multiplicative measure are intrinsic to A, and
do not depend either on the specific length function nor on the specific finite Garside
subset considered.

By contrast, the notion of uniform measure does depend on the specific length
function one considers. Nevertheless, the uniform measure associated to any length
function belongs to the class of multiplicative measures—and this class is intrinsic
to A according to Corollary 6.3.

6.3 — Examples outside the family of Artin-Tits monoids
We now mention two families of monoids matching the general working framework
introduced in Section 6.1, and yet outside the family of Artin-Tits monoids.
6.3.1 Dual braid monoids — Braid monoids, which are among the foremost

important Artin-Tits monoids, can be seen as sub-monoids of braid groups. The braid
group with n strands, for n ≥ 2, is the group Bn defined by the following presentation:

Bn =
〈
σ1, . . . , σn−1 | σiσj = σjσi if |i− j| > 1, σiσjσi = σiσjσi if i = j ± 1

〉
.

The associated braid monoid is just the sub-monoid positively generated by the
family {σi

∣∣ 1 ≤ i ≤ n}.
The dual braid monoid is another sub-monoid of the braid group, strictly greater

than the braid monoid when n ≥ 3. This monoid was introduced in [8]. It is the
sub-monoid of Bn generated by the family {σi,j

∣∣ 1 ≤ i < j ≤ n} , where σi,j is
defined by:

σi,j = σi , for 1 ≤ i < n and j = i+ 1,
σi,j = σiσi+1 . . . σj−1σ

−1
j−2σ

−1
j−3 . . . σ

−1
i , for 1 ≤ i < n− 1 and i+ 2 ≤ j ≤ n .

Alternatively, the dual braid monoid is the monoid generated by the elements σi,j
for 1 ≤ i < j ≤ n, and subject to the relations:

σi,j · σj,k = σj,k · σi,k = σi,k · σi,j for 1 ≤ i < j < k ≤ n;
σi,j · σk,` = σk,` · σi,j for 1 ≤ i < j < k < ` ≤ n;
σi,j · σk,` = σk,` · σi,j for 1 ≤ i < k < ` < j ≤ n.

It is proved in [1] that dual braid monoids satisfy Properties (P1) to (P7), where
the length of an element x of the monoid is the number of generators σi,j that appear
in any word representing x, and where S is the smallest Garside subset of the monoid.

In fact, this construction can be generalised to all irreducible Artin-Tits monoids
of spherical type. Indeed, for any such monoid A, Bessis also developed in [5] a
notion of dual monoid, which subsumes the notion of dual braid monoid in case A is
the braid monoid B+

n . In particular, Bessis proved that these dual monoids satisfy
Properties (P1) to (P4), (P6) and (P7), with the same definitions of element length
and of Garside set S.

However, Property (P5) was not investigated. Hence, we prove here the following
result.

• Proposition 6.4—Let A be an irreducible Artin-Tits monoid of spherical type, with
at least two generators. The dual monoid associated with A satisfies Properties (P1)
to (P7).
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Proof. Based on the above discussion, it only remains to prove that the dual monoid B
satisfies Property (P5). It follows from the classification of finite Coxeter groups [14]
that A must fall into one of the following finitely many families. Three families consist
of so-called monoids of type A, B and D, one is the family of dihedral monoids I2(m)
(with m > 3), and other families are finite (these are families of exceptional type).

Monoids of type A are braid monoids, which are already treated in [1]. Further-
more, using computer algebra (for instance the package CHEVIE of GAP [36]), it is
easy to prove (P5) in the case of families of exceptional type. Hence, we focus on the
three infinite families of monoids.

If A is of type I2(m), the monoid B has the following presentation (this presenta-
tion is the one given by [31], with reversed product order):

B =
〈
σ1, . . . , σm | σiσj = σmσ1 if j = i+ 1

〉+
.

Then, its Garside set is S = {e, σ1, . . . , σm,∆}, where ∆ = σmσ1 is the only element
of S with length 2. In particular, we have C = {σ1, . . . , σm}, and σi → σj for all
j 6= i+ 1, which proves (P5) in this case.

In case A is of type B or D, combinatorial descriptions of B are provided in [33,
9, 31, 5, 4, 3]. They include descriptions of the generating family Σ, of the Garside
set S, and of the multiplication relations in S. These descriptions lead, in all dual
braid monoids, to the fact that (S,≤l) is a lattice, and to the following property:

(†) For all σ, τ ∈ Σ such that σ · τ ∈ S, it holds that τ ≤l σ · τ and σ ≤r σ · τ .

Property (†) leads to Lemma 6.5 and Corollary 6.6. From there, and by following a
proof that is very similar to the one in [1] for monoids of type A, we show Lemmas 6.8
and 6.9, thereby demonstrating Proposition 6.4.

• Lemma 6.5—The left and right divisibility relations coincide on B, i.e.:

∀x, y ∈ B x ≤l y ⇐⇒ x ≤r y. (6.1)

Proof. We proceed by induction on |y|. The statement is immediate if |x| = 0 or
|x| = |y|, hence we assume that 0 < |x| < |y|.

If x ≤l y, let us factor x and y as products of the form x = x1 ·x2 and y = x ·y3 ·y4,
where x2 and y4 belong to Σ. Using the induction hypothesis and Property (†), there
exist elements y′3, y′4 and y′′4 of B such that

y = x1 · x2 · y3 · y4 = y′3 · x1 · x2 · y4 = y′3 · x1 · y′4 · x2 = y′3 · y′′4 · x1 · x2,

which proves that x ≤r y. We prove similarly that, if x ≤r y, then x ≤l y.

• Corollary 6.6—For all x ∈ S, let L(x) = {σ ∈ Σ
∣∣ σ ≤l x}. Then, for all x and y

in S: (
∀τ ∈ L(y) ∃σ ∈ L(x) σ → τ

)
=⇒ (x→ y).

Proof. Assume that the relation x→ y does not hold. This means that we can factor
y as a product y = τ · y2 · y3, with τ ∈ Σ, such that the element z = x · τ · y2 belongs
to S. Then, let σ ∈ L(x) be such that σ → τ .

By Lemma 6.5, we can also factor x as a product x = x1 · σ. Hence, the element
σ · τ is a factor of z, and therefore σ · τ ≤r z. Since S is downward closed under ≤r,
this means that σ · τ ∈ S, contradicting the fact that σ → τ .
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σ1,2 σ2,3 σ3,4 σ2,4 σ1,3

σ3,5 σ3,6 σ2,5 σ1,4

Figure 2: Generators of the dual monoid of type B for n = 3

Remark 6.7. The above corollary indicates how to infer a relation x→ y for x, y ∈ S
based on the knowledge of the restriction →

∣∣
Σ×Σ . In turn, the explicit presentations

given in [31] for dual monoids of monoids of type B and D have the following property:
for any two generators σ, τ ∈ Σ, the relation σ → τ holds if and only if the product
σ · τ does not appear as a member of the presentation rules of the dual monoid. In
particular, σ → σ holds for all σ ∈ Σ.

• Lemma 6.8—Let A be an irreducible Artin-Tits monoid of type B, with two genera-
tors or more. The dual monoid associated with A satisfies Property (P5).

Proof. Thanks to the combinatorial descriptions mentioned above, we identify ele-
ments of S with type B non-crossing partitions of size n, where n is the number of
generators of A. These are the partitions T = {T 1, . . . , Tm} of Z/(2n)Z such that,
for every set T i, the set n + T i is also in T, and the sets {exp(i kπ/n)

∣∣ k ∈ T i}
have pairwise disjoint convex hulls in the complex plane. Note that T is thus globally
invariant by central symmetry. Both relations ≤l and ≤r then coincide with the
partition refinement relation.

Thus, we respectively identify the extremal elements e and ∆ of S with the
partitions

{
{1}, {2}, . . . , {2n}

}
and

{
{1, 2, . . . , 2n}

}
, and Σ consists of those partitions

σi,j =
{
{i, j}, {i+ n, j + n}

}
∪
{
{k} : k 6= i, j, i+ n, j + n

}
,

with 1 ≤ i ≤ n and i < j ≤ n+ i. They are pictured in Figure 2 for n = 3. The left
divisors of a partition T, i.e., the elements of L(T), are then those partitions σi,j that
refine T.

Finally, keep in mind the following observation. Let v be a maximal proper factor
of ∆, i.e., a type B non-crossing partition of which ∆ is the immediate successor
in the partition refinement order. After application of a bijection of the form i ∈
Z/(2n)Z 7→ i+ j, for some integer j ∈ {0, 2n− 1}, v is of the form

vi =
{
{1, . . . , i}, {n+ 1, . . . , n+ i}, {i+ 1, . . . , n, n+ i+ 1, . . . , 2n}

}
, (6.2)

for some integer i ∈ {1, . . . , n}.
Now, consider two elements y, z of S \ {e,∆}, and let us prove that y →∗ z. Since

z <l ∆, and since the map σi,j 7→ σi+1,j+1 induces an automorphism of the monoid B,
corresponding to the rotation of the complex plane of angle π/n, we assume without
loss of generality that z is a refinement of some partition vi from (6.2), for an integer
i ∈ {1, . . . , n}. Corollary 6.6 implies in particular that vi → z holds.
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Based on Remark 6.7, one sees that:

σi,j → σu,v ⇐⇒
(
(u < i ≤ v < j) or (i ≤ u < j ≤ v) or (i ≤ u+ n < j ≤ v + n)

)
.

Using Corollary 6.6, it implies: vj → vj+1 when 1 ≤ j ≤ n − 1, and vn → w → v1
with w =

{
{1, n+ 2, . . . , 2n}, {2, . . . , n+ 1}

}
. It follows that holds: vn →∗ vi → z.

Finally, let σa,b be some generator in L(y). It comes that y → σ1,a → σ1,n+1
if 1 < a, or y → σ1,n+1 if a = 1. We then observe that σ1,n+1 → x → vn, where
x =

{
{j, n+ 1− j} : 1 ≤ j ≤ n

}
, and therefore that y →∗ z.

• Lemma 6.9—Let A be an irreducible Artin-Tits monoid of type D, with two genera-
tors or more. The dual monoid associated with A satisfies Property (P5).

Proof. Let n+1 be the number of generators of A. If n ≤ 2, A is also a braid monoid.
Hence, we assume that n ≥ 3.

We identify elements of S with type D non-crossing partitions of size n+ 1. Here,
we associate every element k of Z/(2n)Z with the complex point pk = exp(i kπ/n).
We also consider a two-element set {•, •+ n}, with the convention that •+ 2n = •,
and associate both • and •+ n with the complex point p• = p•+n = 0.

Then, typeD non-crossing partitions of size n are the partitions T = {T 1, . . . , Tm}
of Z/(2n)Z ∪ {•, • + n} such that (i) T does not contain the set {•, • + n}, (ii) for
every set T i, the set n+ T i is also in T, and (iii) the sets {pk

∣∣ k ∈ T i} have pairwise
disjoint convex hulls in the complex plane, with the exception that they may share
the point p• = p•+n = 0.

Again, both relations ≤l and ≤r coincide with the partition refinement relation,
extremal elements e and ∆ of S are identified with the respective partitions{

{1}, {2}, . . . , {2n}, {•}, {•+ n}
}

and
{
{1, 2, . . . , 2n, •, •+ n}

}
,

and Σ consists of those partitions

σi,j =
{
{k} : k 6= i, j, i+ n, j + n

}
∪
{
{•}, {•+ n}, {i, j}, {i+ n, j + n}

}
τ` =

{
{k} : k 6= `, `+ n

}
∪
{
{`, •}, {`+ n, •+ n}

}
,

with 1 ≤ i ≤ n, i < j < n+ i, and 1 ≤ ` ≤ 2n.
Moreover, proceeding as in Remark 6.7, one finds that:

σi,j → τw if w ∈ {i, . . . , j − 1} or w + n ∈ {i, . . . , j − 1};
σi,j → σu,v if u < i ≤ v < j, i ≤ u < j ≤ v or i ≤ u+ n < j ≤ v + n;
τ` → τw if w ∈ {`, . . . , `+ n− 1};
τ` → σu,v if {`, `+ n} ∩ {u+ 1, . . . , v} 6= ∅.

Now, consider two elements y, z of S \ {e,∆}, and let us prove that y →∗ z. Since
z <l ∆, and since the map σi,j 7→ σi+1,j+1, τ` 7→ τ`+1 induces an automorphism of
the monoid B, we assume without loss of generality that z is refinement of a partition
v that is either equal to τ−1

2n ∆ = {{1, . . . , n, •}, {n+ 1, . . . , 2n, •+ n}} or to

σ−1
n,n+i∆ = {{1, . . . , i},{n+ 1, . . . , n+ i},

{i+ 1, . . . , n, n+ i+ 1, . . . , 2n, •, •+ n}}

for some integer i ∈ {1, . . . , n− 1}.
Using Corollary 6.6, one checks that σ−1

n,n+j∆→ σ−1
n,n+j+1∆ when 1 ≤ j ≤ n− 1,

and that σ−1
n,2n∆→ τ−1

2n ∆→ τ−1
1 ∆→ σ−1

n,n+1∆, where

τ−1
1 ∆ =

{
{2, . . . , n+ 1, •}, {n+ 2, . . . , 1, •+ n}

}
.
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It follows that τ−1
2n ∆ →∗ v → z. Finally, let λ be some generator in L(y). It comes

that 
y → σ1,a → σ1,n if λ = σa,b with 2 ≤ a;
y → σ1,n if λ = σa,b with a = 1;
y → σ1,` → σ1,n if λ = τ` with ` ≤ n;
y → σ1,`+n → σ1,n if λ = τ` with n+ 1 ≤ `.

We then observe that σ1,n+1 → w → τ−1
2n ∆, where

w =


{
{j, 2n+ 1− j} : 1 ≤ j ≤ n and j 6= m

}
∪
{
{m,m+ n, •, •+ n}

}
if n is odd and m = (n+ 1)/2;{

{j, 2n+ 1− j} : 1 ≤ j ≤ n
}
∪
{
{•}, {•+ n}

}
if n is even.

It follows that y →∗ z.

6.3.2 Free products of Garside monoids — Garside monoids are extensively
studied structures [19, 16, 32, 17]. Their definition is as follows [16]. First recall that an
atom of a monoidM is an element x ∈M, different from the unit element e, and such
that x = yz =⇒ (y = e∨z = e). A monoid is atomic if it is generated by its atoms. A
Garside monoid is an atomic monoidM, left and right cancellative, such that (M,≤l)
and (M,≤r) are two lattices, and such thatM contains a Garside element. A Garside
element is an element ∆ ∈ M such that {x ∈ M

∣∣ x ≤l ∆} = {x ∈ M
∣∣ x ≤r ∆},

and such that this set is finite and generatesM. By [16, Prop. 1.12], this set is then
necessarily a Garside subset ofM.

Garside monoids do not necessarily have a length function as in (P1). Hence, in
the following result, we have to assume its existence as an additional assumption in
order to fit with our previous setting.

• Proposition 6.10—Let A1 and A2 be non-trivial Garside monoids satisfying Prop-
erty (P1). Then the monoid A0 defined as the free product A0 = A1 ∗A2 satisfies
Properties (P1) to (P7).

Proof. This is a consequence of the properties of Garside monoids recalled above,
together with the following elementary lemma.

• Lemma 6.11—Let A1 and A2 be two non-trivial monoids satisfying Properties (P1)–
(P4). Then the free product monoid A0 = A1 ∗A2 satisfies Properties (P1) to (P7).

Proof. Let u = x1y1 . . . xpyp , with x1, . . . , xp ∈ A1 and y1, . . . , yp ∈ A2 , denote a
generic element of A0 . The length of u is defined by |u|0 = |x1|1 + · · · + |xp|1 +
|y1|2 + · · · + |yp|2 , and the length function thus defined on A0 satisfies (P1). The
free product of cancellative monoids is itself cancellative, hence A0 satisfies (P2). Let
u′ = x′1y

′
1 . . . x

′
qy
′
q ∈ A0 . Put k = max{j ≤ p, q

∣∣ x1y1 . . . xjyj = x′1y
′
1 . . . x

′
jy
′
j}. If

k = p then u∧ u′ = u and if k = q then u∧ u′ = u′. Otherwise, it is readily seen that:

u ∧ u′ =
{
x1y1 . . . xkyk(xk+1 ∧ x′k+1), if xk+1 6= x′k+1 ,
x1y1 . . . xkykxk+1(yk+1 ∧ y′k+1), if xk+1 = x′k+1 .

Hence u ∧ u′ exists in all cases, and A0 satisfies 3.
Identify the two monoids A1 and A2 with their images in A0 through the canonical

injections A1 → A0 and A2 → A0 . Then the (disjoint) union S1 ∪ S2 is a finite
Garside subset of A0 , which satisfies thus (P4).
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Consider the augmented Charney graph (C ′1,→) of A1, where C ′1 = S1 \ {eA1},
i.e., C ′1 = C1 ∪ {∆1} if S1 has a maximum ∆1, and C ′1 = C1 otherwise. We define the
augmented Charney graph (C ′2,→) of A2 similarly. Then, the Charney graph (C0,→)
of A0 is the bipartite complete graph with parts (C ′1,→) and (C ′2,→). Therefore A0
satisfies necessarily (P5). And since the two monoids A1 and A2 are assumed to be
non trivial, both parts contain edges. Hence A0 satisfies (P7).

Up to rescaling the length function |·|0 by a multiplicative factor, we assume that
the integers in the set {|x|0

∣∣ x ∈ A0} are setwise coprime. We show below that A0
satisfies (P6) by proving that, for all prime numbers p, there exists a cycle in (C0,→)
whose total length is not divisible by p.

We pick an element a ∈ S1 \ {e1} such that p does not divide |a|1 . Such an
element exists; otherwise, since S1 generates A1 , it would contradict our assumption
that the integers in {|x|0

∣∣ x ∈ A0} are setwise coprime. We also pick a cycle
x1 → x2 → . . .→ xk → x1 in (C0,→), such that x1 and xk belong to S2. Then, both
x1 → x2 → . . . → xk → x1 and x1 → x2 → . . . → xk → a → x1 are cycles in the
Charney graph (C0,→). Their total lengths differ by |a|1, hence p does not divide
both of them. This completes the proof.
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