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We numerically analyze the landscape governing the evolution of the vibrational dynamics of hard
disk glasses as the density increases towards jamming. We find that the dynamics becomes slow, spatially
correlated, and starts to display aging dynamics across an avoided Gardner transition, with a
phenomenology that resembles three-dimensional observations. We carefully analyze the behavior of
single glass samples, and find that the emergence of aging dynamics is controlled by the apparition of a
complex organization of the landscape that splits into a remarkable hierarchy of minima as jamming is
approached. Our results show that the mean-field prediction of a Gardner phase characterized by an
ultrametric structure of the landscape provides a useful description of finite-dimensional systems, even
when the Gardner transition is avoided.
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I. INTRODUCTION

The Gardner transition has a long history in the spin-
glass literature. It was first discovered in the context of
mean-field spin-glass models characterized by a random
first-order transition, where the glassy phase was found to
destabilize at low temperature into a more conventional
spin-glass phase [1–3], characterized by a complex hier-
archical organization of pure states. The existence of a
Gardner phase was more recently also proven for particle
models in the absence of quenched disorder. In the mean-
field limit, dense fluids first undergo a random first-order
transition to a glassy phase that may also transform in a
marginal spin-glass phase [4–7]. The existence of a
Gardner transition in finite-dimensional glass and spin-
glass models is still a debated issue, that neither theory nor
simulations have been able to resolve [8–14].
This debate is particularly relevant in the context of hard

sphere glasses, where the mean-field theory has been more
precisely developed [5,7]. When the density is increased,
the hard sphere fluid first undergoes a glass transition to an
arrested glassy state [6]. Upon further compression, the
hard sphere pressure increases very fast and diverges at a
jamming transition. Jamming itself is a critical phenome-
non, whose properties can be obtained in terms of marginal

stability [15,16]. In the context of mean-field theory, a
marginally stable Gardner phase is encountered between
the glass and jamming transitions [4,7,17]. The marginal
properties of the Gardner phase are thus key to properly
describe the jamming criticality within mean-field theory.
This is a very puzzling observation, as the critical expo-
nents of jamming seem to remain roughly unchanged
between d ¼ ∞ and d ¼ 2 [16,18], whereas instead the
Gardner transition appears fragile against finite-dimen-
sional fluctuations [10–12,19,20].
These two sets of observations are hard to reconcile. On

the one hand, the precise coincidence between mean-field
predictions for jamming and numerical measurements in
finite d would suggest that there exists a large pressure
regime where mean-field predictions must become accurate
[4,7]. On the other hand, it is unlikely that a Gardner
phase can exist in dimensions as low as d ¼ 2, where
jamming criticality remains similar to the one in d ¼ ∞
[15,16,18,21], suggesting that the Gardner transition, in
itself, is not needed for a theory to capture the jamming
criticality. Resolving this paradox is important, as mean-
field theory can be used to tackle a large number of physical
questions from a fully microscopic perspective, such as
thermodynamic properties [4,19,22–24], the structure of
phase space, the evolution of vibrational dynamics [25,26],
or the rheology of hard sphere glasses [27–29]. In addition,
it is also important to understand under which conditions a
complex free-energy landscape may become physically
relevant, in order to make novel predictions for experi-
mental work dealing with the glassy dynamics of granular,
colloidal, and molecular systems.
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To tackle these questions we study the properties of hard
disk glasses in the regime between glass and jamming
transitions. For this system, it is known that jamming has
the same critical properties as in any larger dimension up to
d ¼ ∞. It is also certain that a sharp Gardner transition
cannot exist [10–12], although numerical simulations in
d ¼ 2 spin glasses indicate that the spin-glass phenom-
enology can indeed be observed [30,31]. This suggests
that a relatively sharp crossover should exist between two
types of glass states, a simple and a marginal glass (see
Refs. [22,24] for earlier hints for 2d hard disks systems),
associated to the standard spin-glass phenomenology and
an emerging complexity of phase space, but that this
phenomenology is not the result of a phase transition.
We find that hard disk glasses indeed display the same

phenomenology as three-dimensional hard spheres, asso-
ciated with growing (but nondiverging) timescales and
length scales, as they are compressed towards jamming
[19,24]. By investigating the properties of single glass
samples, we find that the emergence of collective vibra-
tional dynamics corresponds to the development of a
complex organization of the landscape and a hierarchy
of barriers and length scales that are strongly reminiscent of
the mean-field description of spin-glass phases [1,3,17].
From our results, it is not possible to decide whether the
complexity of the free-energy landscape near jamming
stems from the marginality of jammed states, or, rather,
whether the existence of an avoided Gardner phase tran-
sition is responsible for the original properties of the
jamming transition. Our study suggests that it is not pos-
sible to observe jamming criticality without the Gardner
physics. To our knowledge there is also no evidence that
a finite-dimensional particle system exhibits marginal
stability far from a jamming transition [32], contrary to
predictions obtained within mean-field theory [33].
This paper is organized as follows. In Sec. II, we

introduce the model and simulation methods and define
the main observables used in this work. We present the
numerical evidence for an avoided Gardner transition in
Sec. III. In Sec. IV, we present a detailed analysis of the
free-energy landscape and the nonequilibrium dynamics
observed in individual glass samples. In Sec. V, we demon-
strate the emergence of a hierarchical landscape and show
that the location of the Gardner avoided transition is
strongly dependent on the chosen nonequilibrium protocol.
In Sec. VI, we present results for larger systems and a
careful analysis of finite-size effects. We conclude the paper
in Sec. VII.

II. SIMULATION DETAILS

A. Model and methods

We simulate dense assemblies of N hard disks in a d ¼ 2
square box with periodic boundary conditions. To avoid
crystallization, polydisperse mixtures are adopted, where

the diameters of the disks are drawn from the continuous
distribution PðσÞ ∝ σ−3, with σmin=σmax ¼ 0.45, σmin
and σmax are the minimum and the maximum dia-
meters, respectively. The simulation is carried out using
Monte Carlo (MC) simulations, using two types of algo-
rithms. Throughout this work, the time unit is defined as a
MC sweep, i.e., a series of N attempts to perform a
translational move for a single particle chosen at random.
The units of length and energy are set by the average
diameter σ̄ ¼ ð1=NÞPiσi and temperature kBT, respec-
tively. The pressure is reduced by the factor kBTρ, where ρ
is the number density. The dimensionless pressure Z ¼
P=ðkBTρÞ is extracted from the rescaled pair distribution,

Z ¼ 1þ 1

2N

XN
i≠j

δ

�
rij
Dij

− 1þ
�
; ð1Þ

where rij is the separation between particles i and j,
Dij ¼ ðσi þ σjÞ=2, with σi the diameter of particle i.
We perform simulations using different system sizes,
N ¼ 1024, 4096, and 16 384.
Our first task is to prepare equilibrium configurations

of the system at large packing fraction, defined as
φ ¼ π

P
iσ

2
i =ð4L2Þ. Following previous work [34,35], we

use a SWAPMC technique which combines translation MC
moves for single particles and SWAP moves for randomly
chosen pairs of particles. To optimize the thermalization
efficiency, the ratio of SWAP versus translational moves is
set to 0.2 [35].
At thermal equilibrium, the equation of state of the

polydisperse hard disk fluid is well described by the
following empirical equation of state [36]:

ZðφÞ ¼ 1

1 − φ
þM2

1

M2

ð1þ φ=8Þφ
ð1 − φÞ2 ; ð2Þ

where M1 and M2 are the first and second moments of the
diameter distribution. The measured equation of state is
shown in Fig. 1.
By measuring the translational dynamics of the equilib-

rium supercooled fluid, we observe that the dynamics slows
down rapidly as φ increases. By fitting the relaxation time
to a power-law divergence, we estimate the location of the
mode-coupling crossover to be φMCT ¼ 0.795; see Fig. 1.
Above this density, particle diffusion becomes very slow
when standard MC simulations are employed, but the
SWAP MC method allows us to prepare much denser
systems in equilibrium conditions. In this work, we prepare
Ns independent equilibrium configurations at φg ¼ 0.820,
where the pressure is Zg ≈ 31. At this packing fraction, the
standard MC dynamics is nearly frozen and diffusive
dynamics is not observed over the duration of our simu-
lations. Therefore, each of the Ns configurations corre-
sponds to a different glass sample.
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Having prepared equilibrium glass configurations, we
then employ NPT standard MC simulations to rapidly
compress the system. In our simplest protocol, the pressure
is instantaneously changed from its equilibrium value
Zg ¼ 31 to a much larger pressure Z > Zg to rapidly
compress the system. This is analogous to an instantaneous
temperature quench. We denote tw the “waiting time” spent
since the pressure has been suddenly increased to its
targeted value.
It is important to perform rapid compressions to avoid

the formation of localized “defects” [20,32,37], which
correspond to small groups of particles which may undergo
a small rearrangement in the initial steps of the compression
when the pressure is not yet very large. Our simulations
indicate that this happens with a low but finite probability,
and this is distinct from the more collective Gardner
physics we wish to analyze at larger pressures.
In order to obtain very fast compressions, we adjust the

amplitude of individual compression moves in the NPT
MC protocol to obtain an acceptance rate of about 0.1. We
also frequently attempt compression moves, once every
100 MC steps. The amplitude of the translational moves is
carefully chosen to have an acceptance rate of about 0.6.
Empirically, we find that these choices optimize both the
measured compression rate and the CPU time. Examples of

fast compressions from Zg ¼ 31 to Z ¼ 100, 200, 400, and
10 000 are shown in Fig. 1. For each final pressure, we
observe that after a short time of about 104 MC sweeps, the
density reaches a steady-state value that increases with Z.
The relation ZðφÞ in that steady state defines the glass
equation of state, which we report in Fig. 1.
As noted in a recent study [19], the efficiency of MC

compression moves decreases rapidly as the system size
increases. If one keeps the compression parameters fixed,
this leads to an unwanted slowdown of the compression
time, which scales proportionally to N. To keep the
compression rate roughly constant, we introduce a slightly
different compression move for larger systems in which we
randomly select a subset of N ¼ 1024 particles (corre-
sponding to the smallest system size studied in this work) at
each compression move and attempt to change their sizes.
As can be seen in Fig. 1, this approach removes the N
dependence of the compression protocol. It is therefore
much easier to compare results obtained for different
system sizes.
In order to understand the structure of the landscape of

hard disk glasses, we need to perform an average over the
Ns distinct glass samples produced in equilibrium, and for
each glass sample, we also need to perform a thermal
average over a large number Nc of “clones.” Each clone is
prepared by replicating the particle positions of the glass at
density φg ¼ 0.820, but the different configurations are
simulated using different random numbers for the MC
moves, thus leading to independent trajectories within the
same glass metastable basin. Hence, for each simulation,
we need to choose a pair ðNs; NcÞ for the number of glass
samples and clones. To study macroscopic quantities, we
have used two sets of values, ðNs;NcÞ ¼ ð100; 20Þ for
general aspects of the physics related to the Gardner
transition, while we use ðNs; NcÞ ¼ ð1; 100–1000Þ when
we study individual glass samples.

B. Physical observables

In this section, we introduce the physical observables
used throughout this work. Because we want to perform
various levels of average, we need to be precise with the
notations. We consider Ns independent glass samples that
we design using greek letters: α ¼ 1;…; Ns. For each glass
sample α, we introduce Nc clones, which we design using
latin letters: a ¼ 1;…; Nc. And we use i ¼ 1;…; N to
design the particle index.
We then introduce two types of averages. We use an

overline Ō to define a disorder average over the Ns distinct
glass samples, and use brackets hOi to denote averages
over the clones within a given glass sample. To avoid
complex notations, we use brackets for both averaging
single-clone quantities (over Nc clones) and two-clone
quantities [over NcðNc − 1Þ=2 pairs of clones].
The basic observable we consider is the particle coor-

dinate. We define Rα
a;iðtÞ the coordinate of particle i within
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FIG. 1. (a) Waiting time evolution of the volume fraction φ after
the pressure is suddenly increased from Zg ¼ 31 to the targeted
value forN ¼ 1024. For each pressure shown, a steady state value
of the density is reached after tw ≈ 104. For Z ¼ 400 we show the
compressions obtained for larger systems with N ¼ 4096 and
16384, which exhibit no system size dependence. (b) Equation of
state (EOS) for the equilibrium fluid, and glass equation of state
obtained by compression of an initially equilibrated system at
φg ¼ 0.820. For reference, we show the location of the mode-
coupling crossover and of the avoided Gardner transition φG.
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clone a and sample α at time t. Tracking the motion at
single-particle level, we can measure the full mean-squared
displacement (MSD),

Dðtw; tÞ ¼
�
1

N

X
i

jRα
a;iðtw þ tÞ −Rα

a;iðtwÞj2
�
; ð3Þ

where tw is the waiting time since the beginning of the
compression. It is important to keep the two-time notations,
since the emergence of aging dynamics is a powerful tool to
probe the Gardner transition [24].
There is an important complication which emerges in

two-dimensional solids, which takes the form of long-range
cooperative motion [38]. These so-called Mermin-Wagner
fluctuations happen at finite temperature and pressure, and
may dramatically affect the single-particle dynamics we
wish to study in the glass phase [39,40]. These fluctuations
happen in addition to the vibrational motion within the
cage, but they do not change the nature of the glass phase
itself. To disentangle the true emergence of marginal
glasses (which involve spatially correlated motion) from
the more mundane Mermin-Wagner fluctuations, we intro-
duce the cage-relative coordinate as follows [22,40]:

rαa;iðtÞ ¼ Rα
a;iðtÞ −

1

Ni

XNi

j¼1

Rα
a;jðtÞ; ð4Þ

where Ni is the number of nearest neighbors of particle i.
We define neighbors as particles separated by a distance
smaller than 2σ̄, which essentially includes the first shell of
neighbors. Using the cage-relative coordinates, we can then
define the cage-relative mean-squared displacement as

Δðtw; tÞ ¼
�
1

N

X
i

jrαa;iðtw þ tÞ − rαa;iðtwÞj2
�
: ð5Þ

We also introduce the instantaneous MSD Δα
aðtw; tÞ for a

given clone awithin sample α,Δαðtw; tÞ ¼ hΔα
aðtw; tÞi for a

given sample α, such that Δðtw; tÞ ¼ Δαðtw; tÞ.
In Fig. 2, we show some representative data for both the

full MSD Dðtw; tÞ and the cage-relative MSD Δðtw; tÞ after
a quench from Zg ¼ 31 to Z ¼ 100. Not only is the MSD
much larger than the cage relative one, but its system size
dependence is very different, as Dðtw; tÞ seems to grow
without bound as N increases [40]. By contrast, the cage-
relative MSD is insensitive to system size, showing that
Mermin-Wagner fluctuations have properly been removed
from our measurements. In the rest of this work we quantify
all the dynamic observables using cage-relative definitions
only. Whereas this distinction is crucial to quantify dis-
placements (and, thus, dynamics), it is immaterial as far as
particle positions are concerned.
The study of complex landscape makes heavy use of

two-clone quantities, in the spirit of spin-glass physics

where the order parameter is an overlap between cloned
configurations. In the present case, we introduce the
distance between clones a and b as

ΔAB ¼
�
1

N

X
i

jrαa;iðtÞ − rαb;iðtÞj2
�
: ð6Þ

Similarly to the MSD, we introduce the instantaneous value
Δα

ab of the distance between clones a and b within the
sample α, and the typical distance between Δα

AB ¼ hΔα
abi

within a given sample α. From now on, we omit the time
label for those one-time observables.
We are interested in the spatial fluctuations of the

distance between clones. It is convenient to measure them
in the Fourier domain and access the following structure
factor,

SABðqÞ ¼
1

ðΔα
ABÞ2

hΔα
abðqÞΔα

bað−qÞi; ð7Þ

where the distance field is defined in the Fourier domain as

Δα
abðqÞ ¼

1ffiffiffiffi
N

p
X
i

Δα
ab;ie

iq·Rα
a;i ;

Δα
bað−qÞ ¼

1ffiffiffiffi
N

p
X
i

Δα
ab;ie

−iq·Rα
b;i ; ð8Þ

where Δα
ab;i ¼ jrαa;iðtÞ − rαb;iðtÞj2. Here, both the indexes a

and b range from 1 to Nc, to the keep the symmetry. We
have implicitly performed an angular average in Eq. (7).
For visualization purposes, we represent snapshots of the
real-space version of the displacement field:
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FIG. 2. Full MSD Dðtw; tÞ (lines) and cage-relative MSD
Δðtw; tÞ (symbols) measured at pressure Z ¼ 100 for various
system sizes N ¼ 1024, 4096, 16384, with tw ¼ 107. The strong
finite size effects due to Mermin-Wagner fluctuations are re-
moved by using cage-relative coordinates. We use cage-relative
quantities for all measurements.
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Δα
abðR; tÞ ¼

X
i

Δα
ab;iðtÞδ(R −Rα

a;iðtÞ); ð9Þ

A simpler quantity measuring the global fluctuations of
the distance field is to obtain the q → 0 limit of the
structure factor SABðqÞ, which corresponds to the following
susceptibility [32]:

χAB ¼ N
hðΔα

abÞ2i − hΔα
abi2

C0

; ð10Þ

where the normalization is given by

C0 ¼
1

N

X
i

½hΔα
ab;i

2i − hΔα
ab;ii2�; ð11Þ

to ensure χAB ∼Oð1Þ for a fully uncorrelated field.
It is also useful to decompose the susceptibility χAB into

two distinct components, which, respectively, quantify the
fluctuations within a sample χ̃AB and the sample-to-sample
fluctuations χ̄AB, defined as follows:

χ̃AB ¼ N
hðΔα

abÞ2i − hΔα
abi2

C0

;

χ̄AB ¼ N
hΔα

abi2 − hΔα
abi2

C0

: ð12Þ

It is easy to verify that χAB ¼ χ̃AB þ χ̄AB. Finally, the
susceptibility within a single sample α is measured as

χαAB ¼
P

i;j½hΔα
ab;iΔα

ab;ji − hΔα
ab;iihΔα

ab;ji�P
i½hΔα

ab;i
2i − hΔα

ab;ii2�
: ð13Þ

As before, we can see that χαAB ∼Oð1Þ if the variables Δα
ab;i

for different particles i are uncorrelated.
The final set of variables that we study in this work

corresponds to performing a time average over the coor-
dinates. To this end, we define time-averaged cage-relative
positions for each particle after a quench:

rαa;iðtw; τÞ ¼
1

τ

Z
twþτ

tw

dtrαa;iðtÞ: ð14Þ

Here, we average the coordinates between time tw and
tw þ τ. Computing the difference between clones, we have

ΔABðtw; τÞ ¼
�
1

N

X
i

jrαa;i − rαb;ij2
�
: ð15Þ

The physical idea is that the long-time average will provide
an estimate of the average position around which particle i
performs vibrations in clone a within sample α. We expect
that all average positions would be the same from one clone

to the next in a simple glass, whereas in a marginal phase
characterized by a complex landscape, the average posi-
tions can be distinct for different clones. Finally, the time
dependence of ΔABðtw; τÞ will inform us about how slow
the exploration of the landscape is by the different clones
within a given glass sample.

III. EVIDENCE OF AN (AVOIDED)
GARDNER TRANSITION

In this section, we use the system size N ¼ 1024
and perform averages over both samples and clones. We
use ðNs; NcÞ ¼ ð100; 20Þ to obtain a reasonable statis-
tical accuracy (requiring these numbers to be as large
as possible) within the available computer resources
[14,19,41]. We follow earlier work and compress the
system instantaneously using the protocol shown in
Fig. 1, starting from the equilibrium state at ðφg; ZgÞ ¼
ð0.820; 31Þ along the glass equation of state to pres-
sures Z ¼ 100;…; 10 000.

A. Signatures of a Gardner crossover

In Fig. 3, we reproduce several key signatures of the
Gardner transition for the 2d hard disk glass, reported
earlier for the 3d hard sphere system, which signal the
emergence of marginal stability and a rough free-energy
landscape at large enough pressure [24,32]. For our 2d
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FIG. 3. Signatures of an (avoided) Gardner transition in 2d hard
disks following the dynamics after a quench. (a) Time evolution
of Δðtw; tÞ (line) and ΔABðtwÞ (symbols) for different pressures.
For Z > ZG ≈ 200, Δðtw; tÞ exhibits aging and is smaller than
ΔABðtwÞ at long times. (b) The plateau valuesΔðtw → ∞; t → ∞Þ
and ΔABðtw → ∞Þ start to differ for Z > ZG. (c) The probability
distributions of distances between clones at various pressures for
tw ¼ 108 become non-Gaussian for Z > ZG. (d) The skewness
ΓABðZÞ and susceptibility χABðZÞ measured at tw ¼ 108 both
exhibit a peak at a finite pressure.
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system, this can only signal a sharp Gardner crossover, not
a real phase transition.
Our first observation is the evolution of the MSDΔðtw; tÞ

and distance ΔABðtwÞ following a quench, as shown in
Fig. 3(a). For small pressure, both quantities rapidly
converge at long time to the same limit, indicating that
the typical distance traveled by one clone is similar to the
typical distance between clones. This shows that the
structure of the glass remains simple. For pressures larger
than ZG ≈ 200, by contrast, the MSD Δðtw; tÞ is strongly
dependent on the waiting time, indicating slow dynamics.
And the MSD no longer converges to the typical distance
between clones, which indicates that the dynamics within
the glass is no longer ergodic.
From these data, we compute the long-time limit

(in practice, we use 108 MC sweeps) of both Δ and ΔAB
obtained after a quench. The results are shown in Fig. 3(b),
as a function of the pressure where the quench is
performed. As expected, we find that for Z < ZG both
quantities converge to the same long-time limit, but depart
gradually from one another as Z increases beyond ZG.
In Fig. 3(c), we show the probability distribution of

distances PðΔα
abÞ measured at long waiting time tw ¼ 108

and various pressures. The distribution has a simple
Gaussian form for Z < ZG, but becomes strongly non-
Gaussian for Z > ZG, which can be taken as another sign
that a complex structure of the glass basin emerges beyond
ZG characterized by a broad distribution of distances
between the clones, as found before [24]. We observe that
the distribution PðΔα

abÞ first broadens as Z → 1000, but
then it narrows down again, as the pressure increases
further, Z > 1000, which corresponds to a nonmonotonic
evolution of the susceptibility χABðZÞ, as shown in
Fig. 3(d). In addition, for intermediate pressures Z ¼
200;…; 1000, the distribution PðΔα

abÞ develops a clear
shoulder. This indicates that different pairs of clones can be
either very close or, instead, very distant from one another,
and suggests already that some kind of self-organization of
the glass basin emerges near ZG.
Finally, we also employ a procedure used before [24] to

locate the Gardner transition and compute the skewness
ΓABðZÞ of the distributions PðΔα

abÞ; see Fig. 3(d). The
skewness presents a clear peak, but we find that the posi-
tion of the peak depends on the chosen timescale, shifting
from Z ≈ 200 at tw ¼ 107 to Z ≈ 300 at tw ¼ 108 with no
sign of a saturation.
To summarize, the results reported in Fig. 3 indicate that

all key signatures of the Gardner transition seem to survive
in our 2d hard disk system, which appears to behave
similarly to the 3d and mean-field systems [4,19,24].
Notice that some of these important signatures are absent
for the nearly 1d system studied in Ref. [20] and 3d and 2d
systems of soft spheres [32,37], where collective aging
effects are not observed. At this stage, it is unclear that the
Gardner transition is indeed avoided in our system, but the

absence of a sharp phase transition will become more
obvious in Sec. V.

B. Growing time scales and length scales

Next, we characterize the timescales and length scales
associated to the emergence of a rough landscape inside
hard disk glasses.
First, we follow the time evolution of the global

fluctuations, χABðtwÞ in Fig. 4(a). For all pressures, the
initial growth of χAB up to tw ¼ 104 is identical, which
corresponds to the initial compression of the system. For
Z ¼ 100;…; 200, the susceptibility rapidly reaches a con-
stant limiting value, which increases by a factor of about 2.

0

5

10

15

20

102 104 106 108

χ A
B

 (
t w

)

tw

(a)
Z = 100

150
200
400
600

1000
3000

10 000

100

101

102

103

100

S
A

B
(q

)

q

(b)

10-5

10-4

10-3

104 106 108

Δ_ A
B

(t
w

 =
 4

×1
05 , τ

)

τ

(c)

FIG. 4. Growing timescales and length scales in hard disk
glasses. (a) Time evolution of susceptibilities χABðtwÞ for various
pressures. (b) SABðqÞ at time tw ¼ 108 for various pressures
indicated in (a). As q → 0, SABðqÞ of Z > ZG ≈ 200 displays a
growing peak, which suggests long-range fluctuations in real
space over a length scale as large as L=2 ≈ 15 for Z > ZG.
(c) ΔABðtw; τÞ for pressures as in (a), with tw ¼ 4 × 105. The
increasingly slow decay at larger pressure directly reveals that
the exploration of glass basin by individual clones becomes
increasingly difficult at large pressure.
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For Z > 400, no steady state value can be observed, and the
susceptibility remains time dependent. It grows to reach
large values of about 20 for Z ¼ 1000 with a slow time
dependence at long times compatible with a nearly loga-
rithmic increase with time [the data are shown in a log-lin
representation in Fig. 4(a)].
Interestingly, for Z ¼ 3000 and 10 000, the susceptibility

becomes somewhat smaller, indicating a nonmonotonic
behavior with Z, which was already apparent in Fig. 3(d).
This overall behavior is qualitatively similar to observa-
tions performed in 3d spin-glass models [19]. Roughly
speaking, the nonmonotonicity corresponds to the com-
petition between the emergence of an increasingly complex
landscape that tends to increase the susceptibility and the
slowing-down of the dynamics, which makes the explora-
tion of that landscape more difficult at large pressures.
A similar nonmonotonic behavior can be observed in

real space, as shown in Fig. 4(b), which represents the
spatial fluctuations of the distance field SABðqÞ for a time
tw ¼ 108 and various pressures. For each pressure, the
structure factor has a peak near q ≈ 6, which corresponds to
the interparticle distance. More interesting is the develop-
ment of a peak at q → 0, which corresponds in real space
to spatial fluctuations happening at length scales much
larger than the interparticle scale. As Z increases, this peak
becomes higher, and a saturation to a low-q plateau, which
is clearly visible for Z < 200, becomes difficult to observe.
This directly indicates that the fluctuations of the distance
field between clones inside glass basins become spatially
correlated over a large correlation length that grows as
the pressure increases. Just as for the susceptibility, we
observe that the height of a low-q peak has a nonmonotonic
behavior with Z, reaching its maximum near Z ¼ 1000. For
N ¼ 1024, the linear size of the system is L ≈ 30, and so
the observations in Fig. 4(b) indicate that a collective
correlation length of at least L=2 ≈ 15 develops in the
system near ZG. Given the relatively modest range of wave
vector at hand, it is difficult to quantitatively extract the
value of a correlation length from these data, a task which is
known to be difficult in glass formers [42]. We nevertheless
confirm these observations using larger systems in Sec. VI.
We now turn to the growing timescales associated to the

signatures of a Gardner transition. In Fig. 4(c), we report
the evolution of the distance ΔABðtw; τÞ between time-
averaged positions; see Eq. (15). We choose tw ¼ 4 × 105,
which is large enough for the density to converge to its
steady state value. For Z ¼ 100;…; 200, the distance
decays to zero at long times, indicating that the structure
of the glass basin remains simple at those pressure, and all
clones can freely explore the entire basin. However, the
timescale for this exploration increases rapidly with Z, from
τ ∼ 106 at Z ¼ 100 to τ > 108 at Z ¼ 200. For even larger
pressures, ΔABðtw; τÞ does not decay to zero, indicating that
different clones are now confined in different restricted
parts of the glass basin that are not dynamically accessible

at these pressures. In Sec. IV, we revisit the physical
meaning of this increasing timescale in terms of emerging
barriers that appear near ZG.

C. Thermal average versus disorder average

In the quantities presented above, the fluctuations have
two distinct origins: there are clone-to-clone fluctuations
within each glass sample, and there are sample-to-sample
fluctuations because each glass corresponds to a distinct
particle packing.
We have performed a more detailed study of a small

number (Ns ¼ 10) of individual glass samples, using for
each glass a large number of clones, Nc ¼ 100. We find
that each glass behaves dynamically similarly, and varia-
tions between samples are mostly quantitative. In particu-
lar, each individual sample exhibits a clear aging behavior,
indicating that for all samples, a nontrivial collective
dynamics emerges at large enough pressures. Strikingly,
all the key signatures of a Gardner transition shown in
Fig. 3 can be reproduced for a single glass.
However, the precise location of the crossover pressure

differs from one sample to another. For N ¼ 1024, the
range of these variations is estimated to vary from ZG ≈
100 to ZG ≈ 600, for a set of glass configurations drawn
from our pool of equilibrium systems at ðφg; ZgÞ ¼
ð0.820; 31Þ.
In order to estimate the relative influence of the two

sources of the fluctuations, we decompose the susceptibil-
ity χAB into its two contributions defined in Eq. (12). For a
quench to Z ¼ 1000, we show the result in Fig. 5. The data
in Fig. 5 indicate that the two sources of fluctuations are of
the same order, and we find in addition that the ratio
χ̄AB=χ̃AB increases only weakly with the pressure.
This result suggests that the analysis of single glass

samples provides an important part of the fluctuations
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FIG. 5. Time evolution of the susceptibilities at Z ¼ 1000. The
total susceptibility χAB is decomposed into sample-to-sample
fluctuations χ̄ABðtwÞ and clone-to-clone fluctuations within each
individual sample χ̃ABðtwÞ. Both contributions are comparable in
amplitude and time evolution.
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associated to the avoided Gardner transition. In addition,
averaging over distinct glass basins washes out the detailed
information related to the structure of the landscape within
each glass. In the next two sections, we thus perform a more
detailed analysis of the evolution of the landscape in a
single glass basin.

IV. DETAILED ANALYSIS OF A
SINGLE GLASS SAMPLE

In this section, we analyze the physics associated to
the Gardner transition for a single glass sample selected
randomly. The protocol and parameters are the same as in
Sec. III. We generate Nc ¼ 1000 clones to understand
better the structure of this particular glass basin. For this
sample, the key signatures shown in Fig. 3 are reproduced
with ZG ≈ 200. We first analyze the physics in the vicinity
of the Gardner crossover near ZG and then move to larger
pressures.

A. Emergence of sub-basins at Gardner crossover

To understand the emerging structure of the glass basin,
we use a large number Nc of clones issued from the same
equilibrium configurations at Zg ¼ 31 and we independ-
ently compress them instantaneously at some pressures
Z > ZG. After a given waiting time, we then measure the
relative distance Δα

ab between clones a and b for this
sample α. It is useful to cluster the clones according to
their relative distances. With the simple procedure
explained in Appendix A, we can relabel the clones and
construct heat maps such as the ones shown in Fig. 6(a),
where the color is coding for the distance between the
clones. For sample α in the condition of Z ¼ 600 and
tw ¼ 218 × 100, the map reveals a clustering of the clones
into two subpopulations, which we refer to as groupm and
groupn. We present maps for different times and pressures
below. This indicates that, after a fast compression, the
different clones now explore two distinct parts of the glass
basin that are not easily accessed dynamically. The under-
lying physical picture is that of a glass basin that is now
fractured into two sub-basins separated by a barrier
between them.
We now measure the corresponding probability distri-

bution functions PðΔα
abÞ shown in Fig. 6(b). As expected

from the structure of the heat map in Fig. 6(a), the full
distribution of distances between clones is bimodal, which
reflects the clustering of the clones into two families.
Clones within a given group are close to each other, while
they are relatively far from all clones belonging to the other
group, which leads to two peaks in the distributions.
Decomposing the clones into groupm and groupn, we also
measure the distribution of distances between clones
belonging to the same group in Fig. 6(b). These distribu-
tions are nearly Gaussian, centered around a small value
roughly equal to the cage size at the pressure Z ¼ 600.

Finally, in Figs. 6(c1)–6(c3), we visualize the displace-
ment fields between clones, Δα

abðRÞ, generated by choos-
ing a pair of clones belonging to groupm and groupn as in
Fig. 6(c1), or to the same groupm [Fig. 6(c2)] or groupn
[Fig. 6(c3)]. The method to construct these snapshots is
detailed in Appendix B. We observe long-range correla-
tions in Fig. 6(c1) which are instead much shorter-ranged in
Figs. 6(c2) and 6(c3). These snapshots suggest that the
emergence of large length scale across the Gardner cross-
over ZG is a direct consequence of the fracturation of the
glass basin into multiple sub-basins.

B. Physical interpretation of aging dynamics

We now extend the analysis of the heat map to a larger
range of timescales and pressures. Our goal is to explore the
connection between the emergence of barriers within the
glass basin and the aging dynamics reported in Fig. 3(a)
and the growing timescale reported in Fig. 4(c).
We first display the evolution of the heat maps for several

pressures Z and various waiting times tw in Fig. 7. The first
row of heat maps shows the results obtained for a relatively
low pressure, Z ¼ 100 < ZG, where aging is absent and
the vibrational dynamics is featureless. Accordingly, we
observe that all clones within the glass sample resemble
each other and can freely explore the basin. As a result, the

FIG. 6. Emerging complexity in the landscape of individual
sample α with N ¼ 1024 for Z ¼ 600 > ZG. (a) Heat map of
cage-relative MSD at tw ¼ 218 × 100, with the clone index
ranging from 1 to 100 after clustering. The clones can be divided
into two subpopulations, groupm and groupn. (b) Corresponding
probability distributions PðΔα

abÞ for all clones, groupm and
groupn. (c1)–(c3) Cage-relative displacement field for clones
belonging to different groups (c1), groupm (c2), and groupn (c3).
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heat map is both featureless and time independent. For
Z ¼ 300, 400, and 600, one can see the emergence of the
two subpopulations groupm and groupn discussed in
Sec. IVA. Fixing the pressure, the time dependence
observed shows that as tw increases, the size of the
groupm enlarges, whereas groupn shrinks. In addition, this
dynamics slows down as Z increases so that for a fixed tw,
the number of clones surviving within groupn increases
with Z.
The emergence of a bimodal structure that slowly fades

away with time is confirmed in Figs. 8(a)–8(c), where we
report the probability distributions function corresponding
to the maps shown in Fig. 7. In agreement with the maps,
the distributions develop a bimodal structure at intermedi-
ate waiting times, where the peak at small distance
corresponds to the amplitude of thermal vibrations,
whereas the peak (or shoulder for Z ¼ 300) at large
distance corresponds to the typical distance between the
two sub-basins identified by groupm and groupn. For a
fixed tw, increasing the pressure tends to broaden the
distributions, which is related to the growth of the suscep-
tibility χAB near ZG shown in Fig. 3(d).
The time evolution of these bimodal distributions can be

easily described by computing the evolution of the fraction
of clones PnðtwÞ that survive in the less stable groupn after a
time tw. This can be done when the pressure is in the
vicinity of the Gardner crossover. We report the time
evolution of PnðtÞ in Fig. 8(d). In agreement with the time
evolution of the maps and of the distributions, we find that

groupn becomes empty after tw ≈ 107 for Z ¼ 300, while
the corresponding population survives much longer and
remains finite even after tw ¼ 2 × 108 for Z ¼ 600, sug-
gesting that the dynamic evolution from one basin to the
other becomes slower as the pressure increases. The time
decay of PnðtwÞ is quantitatively similar to the evolution of
the distance between average positions ΔABðtw; τÞ dis-
cussed in Fig. 4(c).
We now close the loop between the structure of the glass

landscape, the emerging barriers near ZG, and the physical
interpretation of the aging dynamics arising for Z > ZG. A
careful analysis of the MSD at the single clone level reveals
that the existence of two subpopulations, groupm and
groupn, implies also two types of MSD. Clones that belong
at time tw to the more stable groupm are characterized by
simple MSD smoothly increasing to reach the cage size,
and never leave that long-time plateau. These clones do not
contribute to the aging dynamics. By contrast, clones
belonging at time tw to the less stable groupn may undergo
some activated event at time tþ tw later to join groupm.
The example of such a clone, clone a, is shown in Fig. 9(a)
(blue lines). The MSD first grows to the plateau corre-
sponding to the cage size, but then a rearrangement takes
place that increases the MSD further to a second plateau
value. Notably, this second plateau corresponds to the
typical distance Δα

ab between groupm and groupn (red
squares). After the rearrangement, the clone a belongs
to groupm.
Obviously, the time when the sudden rearrangement

takes place in clone a fluctuates from one clone to another.
Therefore, after averaging over clones and over glass

FIG. 7. Heat maps of distances between clones Δα
abðtwÞ for

sample α with N ¼ 1024, organized by Nc ¼ 100 clones. The
waiting time increases from left to right, the pressure from top to
bottom, as indicated. Whereas the maps at Z ¼ 100 < ZG are
featureless and time independent, they exhibit an organization
into two sub-basins for Z ≥ 300, which slowly disappears as tw
increases.
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samples, the MSD eventually exhibits the smooth aging
behavior reported in Fig. 3(a).
We also confirm that the spatial correlations that develop

during the aging are also directly controlled by the under-
lying structure of the phase space. We show in Fig. 9(b) a
snapshot representing the real-space displacement field
corresponding to the activated event detected in clone a
in Fig. 9(a), by measuring Δα

aðtw; tÞ for well-chosen times.
This displacement field is very similar to the distance field
shown in the snapshot of Fig. 6(c1), corresponding to Δα

ab
between clones belonging to groupm and groupn. The
remarkable similarity between Fig. 9(b) and Fig. 6(c1)
indicates that the long-time aging dynamics in the vicinity
of the Gardner crossover is fully controlled by activated
relaxations between the emerging sub-basins.
Remarkably, this aging dynamics is spatially correlated

over a relatively large length scale, comparable to the
system size L=2 ≈ 15, and involves a large number of
particles. Thus, we conclude that the sub-basins structure
that we detect for 2d hard disks is qualitatively distinct from
the highly localized defects found in both nearly 1d hard
disks and 3d and 2d soft spheres [20,32,37].
In summary, the detailed analysis of a single glass

sample shows that as Z increases across ZG, the glass
basin fractures into two sub-basins separated by a collective
barrier. After a sudden quench, clones are initially ran-
domly trapped into one of the sub-basins, and as tw
increases, the clones belonging to the less stable sub-basin
undergo a collective, spatially correlated rearrangement to
join the more stable sub-basin. This physical picture
explains the emergence of growing timescales and length
scales in the vicinity of the Gardner crossover. In particular,
it fully accounts for the growing timescale detected directly
in Fig. 4(c).

C. Proliferation of states at large pressures

We now present results of the same sample α, obtained
by quenching to much larger pressure, Z ¼ 10 000 ≫
ZG ≈ 200. We again use Nc ¼ 1000 clones and record
the time evolution of the probability distribution function
PðΔα

abÞ; see Fig. 10(a). The distribution shows a peak at a
large value (much larger than the cage size), and it starts to
develop a tail at smaller values as tw increases. However,
the simple bimodal structure found at smaller pressures is
now totally absent. Physically, this means that after a
quench to a large pressure, all clones are trapped within
a large number of distinct structures, so that two clones
chosen at random are typically separated by a large dis-
tance. Thus, instead of finding two sub-basins separated by
a single large barrier, the Nc clones in sample α are now
trapped in a number of OðNcÞ distinct states. Corres-
pondingly, when we perform a cluster analysis of the clones
to construct a heat map, we find no interesting structure
emerging from the map; see Fig. 10(b). We conclude that
the number of basins increases dramatically upon
approaching jamming. The crossover between the simple
bimodal structure observed for Z ¼ 600 in Fig. 8 and the
very complex structure for Z ¼ 10 000 in Fig. 10
is not sudden: the change of pressure between these two
state points is quite large (a factor of 16), and quenches
performed at pressure values intermediate between those
reveal a gradual change from one limit to the other.
Tracking the time evolution of the clones, we observe

that there is still some activated dynamics taking place,
which is responsible for the aging dynamics observed at the

FIG. 9. Connection between landscape structure and aging
dynamics for sample α at Z ¼ 600. (a) Blue lines: Aging
dynamics for a single clone a undergoing activated event from
groupn to groupm via MSD Δα

aðtw; tÞ. Red square: The distance
Δα

abðtwÞ between clone a and a randomly chosen clone belonging
to groupm jumps discontinuously after the rearrangement. (b) The
cage-relative displacements by the configurations of clone a
measured before and after the activated event detected in (a). This
displacement field is very similar to the snapshot of Δα

ab
in Fig. 6(c1).
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at tw ¼ 221 × 100. (c) Diversity of activated events in indivi-
dual clones are captured by small jumps in the packing frac-
tion. (d) Corresponding evolution of the individual MSD at
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level of the averaged MSD. If one follows the time
evolution of the packing fraction in individual clones, as
shown in Fig. 10(c), one can observe that the density
performs small jumps corresponding to activated events
taking place within each clone. Similarly, the time evolu-
tion of the MSD for individual clones shown in Fig. 10(d)
shows that the MSD exhibit small jumps, which presum-
ably correspond to crossing small barriers between neigh-
boring states. The amplitude of these jumps is smaller than
at lower pressure, suggesting that aging at large pressures
corresponds to crossing smaller barriers.
In summary, a direct quench to large pressures reveals a

proliferation of accessible states, indicating that the glass
basin breaks at large Z into many sub-basins. Dynamically,
the clones at such large pressure can only cross small
barriers and explore a very small part of the entire glass
basin. Altogether, these results therefore point towards a
hierarchical organization of the glass landscape where the
large sub-basins that appeared at smaller pressure are
themselves broken into many smaller sub-basins, involving
therefore a hierarchy of barriers.
The analysis of this complex structure emerging in a

single glass sample is not easy. To get more insight into
this structure, we turn to more complicated compression
protocols to more evidently reveal the hierarchical structure
of the landscape of hard disk glasses.

V. EVIDENCE OF HIERARCHICAL LANDSCAPE
APPROACHING JAMMING

In the previous section, we observed a fracturation of
the glass basin of sample α in two basins near the Gardner
crossover and a proliferation of dynamically inaccessible
states at larger pressure. In this section, we demonstrate
that the glass basin is actually organized in a hierarchical
way where, as the pressure increases, the main basin
breaks into sub-basins that themselves break into several
sub-basins, and so on. This description suggests the
existence of a broad distribution of barriers separating
these different states.

A. Compressing the system in several steps

To illustrate the finer structure of the glass landscape, we
continue our exploration of a single representative sample
α, but change our protocol. As an example, we use the
following history: Z¼31↦600↦1000↦10000, where
the applied pressure is kept constant for a duration dt ¼
218 × 100 at each step. In Fig. 11(a), we present the
evolution of the susceptibility χαab measured in sample α
during this multistep protocol and the corresponding heat
maps of distance in Figs. 11(b)–11(e).
During the first stage, Z ¼ 31 ↦ 600, we recover the

physics obtained during a direct quench across ZG,
namely, a slow growth of the susceptibility associated to
a bimodal organization of the states, as discussed in Sec. IV.

If we waited a larger time at this pressure, groupn would
eventually disappear and all clones would be located inside
groupm, which is the most stable sub-basin. Such a protocol
is used in Sec. V B. Here, instead, we again increase the
pressure to Z ¼ 1000 after a waiting time dt when both
groupm and groupn are still populated, followed by another
quench to Z ¼ 10 000 at time tw ¼ 2dt. In this multistep
protocol, we find that the susceptibility increases rapidly
after each of the steps, indicating that the distribution of
distances between clones broadens at each step.
The most striking observation comes from the corre-

sponding heat maps in Figs. 11(c)–11(e), which show that
the bimodal structure observed at Z ¼ 600 fractures into a
finer structure hierarchically. Specifically, we observe that
each blue square from Fig. 11(b) at Z ¼ 600 becomes
decomposed into subsquares at Z ¼ 1000 in Fig. 11(c),

FIG. 11. Hierarchical landscape of sample α revealed by a
multistep compression protocol. (a) Time evolution of the
susceptibility χαabðtwÞ, in the various histories indicated by keys.
(b)–(e) Corresponding heat maps of distances Δα

ab for Nc ¼ 100

clones, at times indicated in (a). In particular, in (d) the map at
Z ¼ 10000 clearly reveals a hierarchical structure with states
within states. The selected pairs of clones (i)–(iv) in (d) are used
to construct the snapshots in Fig. 12.
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which themselves break into smaller clusters at Z ¼ 10 000
in Fig. 11(d).
Whereas the clones were scattered across many different

states with little organization between them after a direct
quench to Z ¼ 10 000 [recall the heat map in Fig. 10(b)],
the states reached at the same pressure in a multistep
compression protocol are now clearly clustered and organ-
ized in a hierarchical manner in Fig. 11(d). Physically the
difference is that the subpopulation of clones in different
subregions of the landscape are better thermalized in a
multistep protocol than by a direct quench to a large
pressure, where the clones are instead trapped in a myriad
of states and can barely evolve dynamically across the
landscape. The difference between these two protocols is
also clear if one compares the susceptibilities measured
after the same time by direct quench or in a multistep
protocol; see Fig. 11(a).
In Fig. 12, we provide a real-space view of the hierar-

chical landscape shown in Fig. 11(d) at Z ¼ 10 000. To this
end, we select pairs of clones belonging to the different
layers of states shown in the maps, see the notations (i)–(iv)
in Fig. 11(d), and we build a snapshot showing the
corresponding distance fields Δα

abðRÞ. In the snapshot
we observe that the overall shade increases as the main
distance between clones increases, and also that the spatial
displacements become correlated over increasing length
scales. This suggests that the hierarchical organization of
the states corresponds, in real space, to a hierarchy of length
scales, presumably associated to a hierarchy of barriers
between these states.
This hierarchical structure should give rise to rejuvena-

tion and memory effects [43], as discussed extensively in

the spin glass literature. The various compression steps
discussed above are accompanied by an aging dynamics
corresponding to barriers of smaller and smaller ampli-
tude, akin to rejuvenation effects. Given the distinct
timescales mentioned above, one should find the memory
of the previous state by decompressing the system. This
is shown in Fig. 11(a) (red squares). When the pressure is
decreased from Z ¼ 1000 to Z ¼ 600, the susceptibility
goes back to the value it had at the end of the first
compression step at Z ¼ 600, which indicates memory.
Accordingly, the heat map in Fig. 11(e) is similar to the
one in Fig. 11(b), showing that the clones have retained
the memory of the organization they had at that time.
It is remarkable that such a complex organization

of the glass basin emerges in our system of 2d hard
disks, given that no Gardner transition is expected to
take place at finite pressure in this system. In the regime
of pressure considered here, Z ≤ 10 000, the system is
still pretty far from jamming, in the sense that the
jamming criticality itself is not yet well developed (for
instance, the power laws characterizing the pair corre-
lation function at contact cannot be observed at all), but
our results are quite consistent with the organization of
the landscape obtained in mean-field descriptions of
spin glass phases [1]. In particular, it is striking that
our heat maps resemble the pictures drawn to describe
the ultrametric organization of phase space in spin
glasses [44,45].

B. Direct evidence for absence
of Gardner transition

The description of the glass landscape as a hierarchical
organization of sub-basins suggests a strategy to maintain
equilibrium up to the pressures that are above the
Gardner crossover shown in Fig. 3. The simplest way
to detect the Gardner crossover is by monitoring the
difference between the long-time limits of the MSD and
the averaged distance between clones. For the single
sample α considered extensively in this work, we report
those data in Fig. 13(a), which confirms that ZG ≈ 200
for this sample.
Next, we again use the idea of a multistep protocol, but

now choose carefully the intermediate pressures and
duration spent at each step as follows. We first perform
a quench from the initial liquid state at Zg ¼ 31 up to
Z ¼ 300. At this pressure, for the single glass sample α, we
have shown in Fig. 8(d) above that it takes about tw ≈ 107

for all clones to cluster inside the most stable sub-basin,
which we called groupm. To make sure that all the clones
end up in the same part of the landscape, we spend a time
tw ¼ 2 × 108 at this pressure.
Using the same set of clones, we then repeat the protocol

of quenching the system to larger pressures, and we again
measure the long-time limits of both Δ and Δα

ab in this two-
step protocol. Notably, we observe that they now start to

FIG. 12. Distance fields Δα
abðRÞ for sample α at Z ¼ 10 000,

using the four pairs of clones shown in Fig. 11(d). From (i) to (iv),
the various levels of the hierarchy of states are associated to larger
displacements and longer-ranged spatial correlations.
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differ from one another only when Z becomes larger than
Z ≈ 900. In the language used in the previous section, it
corresponds to the pressure where the underlying sub-basin
of groupm splits into distinct sub-basins that become
dynamically inaccessible above Z ≈ 900. This resembles
a second avoided Gardner transition.
We then perform a three-step protocol Zg ¼ 31 ↦

300 ↦ 1000 and wait a long enough time at Z ¼ 1000

(we use tw ¼ 2 × 108) so that all clones again gather into
the same sub-basin at this pressure at the end of the second
step. Then, we again quench further the clones to larger Z.
The data in Fig. 13 suggest that a third Gardner crossover
now occurs at Z ≈ 2000 in this protocol, which is about 10
times larger than the Gardner crossover detected using a
direct quench.
In those three protocols, we measure the susceptibility

χαab at a fixed time tw ¼ 2 × 108, as reported in Fig. 13(b).
The nonmonotonic behavior observed before for a direct
quench is again present in the multistep protocols, but the
location of the maximum is shifted to larger pressures.
More interestingly, the amplitude of the maximum
decreases as well, which agrees well with the above
findings that the hierarchy of states that appear at larger
pressures correspond to smaller and smaller length scales as
well (recall the snapshots in Fig. 12).
In Sec. III, we obtained key signatures for the existence

of a Gardner transition in our 2d system, with a transition
possibly rounded by finite time effects. Here, we observe
that by crossing the transition more slowly, these signs are
shifted to another location and become less prominent. If
the crossover was underlaid by a genuine phase transition, a
modest shift of its location would be expected, together
with sharper dynamic signatures. The results in Fig. 13 are
thus direct evidence for a transition that is avoided. In the
following section, we additionally show that increasing the
system size does not provide diverging correlation length
scales either.

VI. RESULTS FOR LARGER SYSTEMS

In this final section, we expand the above analysis to
larger system sizes to understand how robust the results
for N ¼ 1024 can be. We study how the measurements
related to the Gardner physics change with increasing
the system size to N ¼ 4096 and 16 384, quenching the
system from ðφg; ZgÞ ¼ ð0.820; 31Þ to different pressures,
using ðNs; NcÞ ¼ ð100; 20Þ and maximal waiting time
tw ∼ 3 × 107.

A. Large but finite correlation length

First, we present the N dependence of several quantities
after a quench to both Z ¼ 100 and Z ¼ 400 starting from
the equilibrium system at Zg ¼ 31 in Fig. 14, which implies
that the results presented earlier for N ¼ 1024 do not
strongly depend on the system size.
The susceptibility in Fig. 14 together with the MSD (not

shown) confirm that in large systems the dynamics is fast
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FIG. 14. Finite size effects via system sizes N ¼ 1024, 4096,
and 16384 for Z ¼ 100 and 400. (a) Time evolution of suscep-
tibilities χABðtwÞ. (b) Structure factor of distance field, SABðqÞ at
tw ¼ 218 × 100. (c) Time decay of ΔABðtw ¼ 4 × 105; τÞ. All data
converge rapidly with N, indicating a maximal correlation length
of about L=2 ≈ 30, the linear system size for N ¼ 4096.
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FIG. 13. Evolution of long-time limits of the MSD and the
average distance between clones against pressure for various
protocols. (a) The gap between Δα

AB and Δα emerges at a pressure
that strongly depends on the protocol, which appears to shift the
location of the Gardner crossover from Z ≈ 200 to Z ≈ 2000.
(b) The corresponding susceptibilities χαAB have a maximum that
shifts to larger pressure and decreases as the protocol is made
more complicated.
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(no aging) and trivial [the susceptibility remains Oð1Þ] at
Z ¼ 100. Looking at the structure factor SABðqÞ, the
absence of finite size effects is also obvious (data for
larger N nearly superpose) and a clear plateau at low q is
observed, suggesting a small correlation length of a few
particle diameters at most.
The situation is different at Z ¼ 400, where the MSD

shows aging (not shown) and the susceptibility is large
(of magnitude 15 at tw ¼ 107), and the low-q part of the
structure factor saturates at a much lower wave vector,
indicating a much larger correlation length of the distance
field. Therefore, the signatures of the Gardner crossover
found in N ¼ 1024 are also observed in larger systems. A
key observation from Fig. 14 is the presence of a finite size
effect between N ¼ 1024 and larger sizes, compared with
the superposition of curves for N ¼ 4096 and 16384. This
suggests that the maximal correlation length observed in our
system is of the order of the linear size of the system with
N ¼ 4096, that is, L=2 ≈ 30, which is consistent with the
length extracted from the low-q part of SABðqÞ. The presence
of such a large correlation length provides the explanation of
why the physics related to a phase transition is obvious in our
data, as it requires much larger system sizes to realize that the
correlation length is actually not divergent. It would be
interesting to revisit 3d hard sphere glasses to understand
how large the correlation length can become in d ¼ 3.
Regarding timescales, we revisit the measurements

of the distance between averaged positions, ΔABðtw; τÞ
from [Eq. (15)], for different system sizes in Fig. 14(c). As
for other quantities, we again find that the timescales
extracted from these data change weakly with N, indicating
in particular that the measured relaxation times do not
appear to grow with the system size.

B. Self-averaging and landscape in large systems

The data in Fig. 14 indicate that the maximal correlation
length in the 2d hard disk glass after an instantaneous quench
is about ξ ≈ 30, the linear size of the system N ¼ 4096.
Hence, a larger system with N ¼ 16 384, corresponding to
L ≈ 120, should be understood as the superposition of several
independent subsystems. Correspondingly, the numerical
measurements with N ¼ 16 384 should be self-averaging,
with smaller fluctuations within each glass sample and
sample-to-sample fluctuations should be much smaller. A
second consequence is that it should become less relevant to
discuss the landscape of single glass samples in such large
systems, because the total landscape is in fact the convolution
of independent landscapes. We therefore expect that the
hierarchical structure revealed when studying systems with
N ¼ 1024 should of course still be physically relevant (for
instance, to account formemory and rejuvenation effects), but
should also be more difficult to visualize.
To illustrate these ideas, we randomly select one glass

sample with N ¼ 16 384 and repeat the measurements
presented in Fig. 6 above. Specifically, we quench this

sample from Zg ¼ 31 to Z ¼ 600 using Nc ¼ 100 clones
and analyze the results after a waiting time tw ¼ 218 × 100.
The heat map of distances between clones in Fig. 15(a)
appears featureless, which is different from the heat
map constructed for the same parameters with N ¼ 1024
in Fig. 6(a). Accordingly, the distribution of distances
between clones shown in Fig. 15(b) presents no remarkable
structure; in particular, it centers around a value between
the two peaks of the distribution of theN ¼ 1024 sample in
Fig. 6(b). When we randomly select two clones to visualize
the distance field in real space, as shown in Fig. 15(c), one
can observe large correlated domains, but the largest
domains are clearly smaller than the linear size of the
system, L ¼ 120. Therefore, the large system behaves as
the superposition of many smaller parts, which explains the
simple forms of the heat map and the distribution.
The self-averaging suggested by these measurements

can be directly confirmed by comparing the MSD mea-
sured after a quench for a single clone (symbols) to the
results obtained after averaging over Nc clones (lines) in
Fig. 15(d). Remarkably, the behavior of one clone is similar
to the averaged behavior, and the individual events that
could be clearly observed for N ¼ 1024 are now washed
out by the self-averaging taking place inside large systems.

VII. CONCLUSION

We show that 2d hard disks exhibit all the phenomenol-
ogy expected for systems undergoing a Gardner transition

FIG. 15. Self-averaging in a single sample α for N ¼ 16 384 at
Z ¼ 600. (a) Heat map of Δα

abðtw ¼ 218 × 100Þ, with Nc ¼ 100

clones. (b) Corresponding probability distribution PðΔα
abÞ.

(c) Distance field Δα
abðRÞ for two randomly selected clones a

and b at tw ¼ 218 × 100. (d) Aging exhibited in the MSD of a
single clone a (blue symbols) and in the MSD averaged over
Nc ¼ 100 clones (yellow lines).
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inside the glass phase [7], even though no such phase
transition is expected to occur in the thermodynamic limit
[10–12]. We observe, in particular, that hard disks display
slow and aging dynamics, spatially correlated motion, non-
Gaussian global fluctuations, and large sample-to-sample
fluctuations, which are all reminiscent of generic observa-
tions performed in systems possessing a spin glass phase at
low temperatures [8,13,14,30,43]. In that sense, 2d hard
disks are more similar to the d ¼ 3 and d ¼ ∞ hard sphere
models [4,19,24] than, for instance, nearly 1d hard disks
and soft spheres for which several important indicators of a
Gardner transition are absent [20,32,37]. We show that
these observations are natural, given that a large correlation
is measured as the pressure increases, estimated to be
ξ ≈ 30. Thus, we conclude that there is a sharp Gardner
crossover in 2d hard disk glasses.
By carefully analyzing the behavior of individual glass

samples, we demonstrate that the Gardner crossover is
associated with the emergence of a complex free-energy
landscape, where the metastable glass basin breaks into
smaller sub-basins with increasing pressure. We also
discovered a hierarchical organization of the landscape,
associated to a hierarchy of timescales and length scales.
Our study suggests that the analysis of a single glass sample
with a modest system size does yield strong evidence of a
phase transition [22], but our analysis of sample-to-sample
fluctuations, of a range of different system sizes and of
different thermal histories, has shown that no phase
transition actually exists in 2d hard disks.
This complex organization of the landscape contrasts

strongly with the behavior of stable glasses formed using
pair potentials with no cutoff, where no jamming transition
is present [32,37]. Therefore, our findings suggest that
systems approaching the jamming transition have a land-
scape that is more complex than ordinary amorphous
solids. At the theoretical level, this complexity is signaled
in the mean-field limit by the concept of a Gardner phase
that is entered before reaching the jamming critical point
[17]. In this approach the marginality of the Gardner phase
is central to account for the properties of the jamming
transition itself [4,33]. In physical dimensions, there is no
strong evidence that a Gardner phase exists in d ¼ 3, and
no transition is expected for d < 3 [10–12]. However, our
simulations in d ¼ 2 suggest that the phenomenology
associated to a Gardner phase can be present even when
a real phase transition does not exist. It would be interesting
to understand better why the man-field physics is so
strongly relevant in d ¼ 2. One possibility is that long-
ranged elastic interactions between very dense hard sphere
packings make the system closer to its mean-field limit.
Our results suggest, therefore, that the concepts and tools

associated to the Gardner transition are not only useful to
account for the jamming point, but also describe qualita-
tively new physical features characterizing the physical
properties of a large variety of amorphous materials even

away from jamming. We expect, therefore, that aging, slow
dynamics, correlated particle motion, and the existence of a
hierarchy of timescales, length scales, and barriers to be
relevant for future numerical and experimental studies of
broad range of amorphous solids. We suggest, in particular,
that dense amorphous materials made of simple colloidal
and granular particles should display very complex
dynamic features not only when approaching the glass
transition but also very deep in the arrested phase.
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APPENDIX A: CLUSTERING METHOD TO
CONSTRUCT THE MAPS

Here we introduce the method used to sort the clones to
construct the heat maps shown throughout this paper. We
refer to the Introduction [46] for advanced clustering
algorithms. Our algorithm proceeds as follows.
Step 1. Create cluster CA and cluster CB, place the a with

maximal
PNc

b Δα
ab as the first clone of CA (NA ¼ 1), and put

the rest NB ¼ Nc − 1 clones into CB.
Step 2. Transfer clone b with minimal

PNA
a∈CA Δ

α
ab from

CB (NB ¼ NB − 1) to CA, as the ðNA ¼ NA þ 1Þth clone.
Step 3. Return to step 2, until all clones are in cluster

CA (NA ¼ Nc).

APPENDIX B: COARSE-GRAINING METHOD TO
CONSTRUCT THE SNAPSHOT OF THE

DISPLACEMENT FIELD

To compute the field Δα
abðRÞ, we cut the system into

N=4 square pieces, so that the linear size of each site is
½ð2L= ffiffiffiffi

N
p Þ × ð2L= ffiffiffiffi

N
p Þ�, and perform the averaging of

Eq. (9) at each site:

Δα
abðRÞ ¼

P
N
i Δα

ab;iPiðRÞP
N
i PiðRÞ ;

PiðRÞ ¼ Θ
�

Lffiffiffiffi
N

p − jX − Xα
a;ij

�
Θ
�

Lffiffiffiffi
N

p − jY − Yα
a;ij

�
;

ðB1Þ

where Θ is the step function, ðXα
a;i; Y

α
a;iÞ ¼ Rα

a;i is the
coordinate of particle i in clone a and sample α, and
ðX; YÞ ¼ R is the center of each site.
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[1] M. Mézard, G. Parisi, and M. Virasoro, Spin Glass Theory
and Beyond: An Introduction to the Replica Method and
Its Applications (World Scientific Publishing Company,
Singapore, 1987), Vol. 9.

[2] D. J. Gross, I. Kanter, and H. Sompolinsky, Mean-Field
Theory of the Potts Glass, Phys. Rev. Lett. 55, 304 (1985).

[3] E. Gardner, Spin Glasses with p-Spin Interactions, Nucl.
Phys. B257, 747 (1985).

[4] P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and F.
Zamponi, Fractal Free Energy Landscapes in Structural
Glasses, Nat. Commun. 5, 3725 (2014).

[5] G. Parisi and F. Zamponi, Mean-Field Theory of Hard
Sphere Glasses and Jamming, Rev. Mod. Phys. 82, 789
(2010).

[6] L. Berthier and G. Biroli, Theoretical Perspective on the
Glass Transition and Amorphous Materials, Rev. Mod.
Phys. 83, 587 (2011).

[7] P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and F.
Zamponi, Glass and Jamming Transitions: From Exact
Results to Finite-Dimensional Descriptions, Annu. Rev.
Condens. Matter Phys. 8, 265 (2016).

[8] E. Marinari, G. Parisi, F. Ricci-Tersenghi, J. J. Ruiz-
Lorenzo, and F. Zuliani, Replica Symmetry Breaking in
Short-Range Spin Glasses: Theoretical Foundations and
Numerical Evidences, J. Stat. Phys. 98, 973 (2000).

[9] M. A. Moore and A. J. Bray, Disappearance of the de
Almeida–Thouless Line in Six Dimensions, Phys. Rev. B 83,
224408 (2011).

[10] P. Urbani and G. Biroli, Gardner Transition in Finite
Dimensions, Phys. Rev. B 91, 100202 (2015).

[11] P. Charbonneau and S. Yaida, Nontrivial Critical Fixed
Point for Replica-Symmetry-Breaking Transitions, Phys.
Rev. Lett. 118, 215701 (2017).

[12] P. Charbonneau, Y. Hu, A. Raju, J. P. Sethna, and S. Yaida,
Morphology of Renormalization-Group Flow for the de
Almeida–Thouless–Gardner Universality Class, Phys. Rev.
E 99, 022132 (2019).

[13] D. Larson, H. G. Katzgraber, M. A. Moore, and A. P. Young,
Spin Glasses in a Field: Three and Four Dimensions as
Seen from One Space Dimension, Phys. Rev. B 87, 024414
(2013).

[14] M. Baity-Jesi, R. A. Banos, A. Cruz, L. A. Fernandez,
J. M. Gil-Narvion, A. Gordillo-Guerrero, D. Iñiguez, A.
Maiorano, F. Mantovani, E. Marinari et al., The Three-
Dimensional Ising Spin Glass in an External Magnetic
Field: The Role of the Silent Majority, J. Stat. Mech. (2014)
P05014.

[15] A. J. Liu and S. R. Nagel, The Jamming Transition and the
Marginally Jammed Solid, Annu. Rev. Condens. Matter
Phys. 1, 347 (2010).

[16] M. Müller and M. Wyart, Marginal Stability in Structural,
Spin, and Electron Glasses, Annu. Rev. Condens. Matter
Phys. 6, 177 (2015).

[17] P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and F.
Zamponi, Exact Theory of Dense Amorphous Hard Spheres
in High Dimension. III. The Full Replica Symmetry Break-
ing Solution, J. Stat. Mech. (2014) P10009.

[18] P. Charbonneau, E. I. Corwin, G. Parisi, and F. Zamponi,
Jamming Criticality Revealed by Removing Localized Buck-
ling Excitations, Phys. Rev. Lett. 114, 125504 (2015).

[19] B. Seoane and F. Zamponi, Spin-Glass-like Aging in
Colloidal and Granular Glasses, Soft Matter 14, 5222
(2018).

[20] C. L. Hicks, M. J. Wheatley, M. J. Godfrey, and M. A.
Moore, Gardner Transition in Physical Dimensions, Phys.
Rev. Lett. 120, 225501 (2018).

[21] Z. Zhang, N. Xu, D. T. N. Chen, P. Yunker, A. M. Alsayed,
K. B. Aptowicz, P. Habdas, A. J. Liu, S. R. Nagel, and A. G.
Yodh, Thermal Vestige of the Zero-Temperature Jamming
Transition, Nature (London) 459, 230 (2009).

[22] A. Seguin and O. Dauchot, Experimental Evidence of the
Gardner Phase in a Granular Glass, Phys. Rev. Lett. 117,
228001 (2016).

[23] K. Geirhos, P. Lunkenheimer, and A. Loidl, Johari-
Goldstein Relaxation Far Below Tg: Experimental Evidence
for the Gardner Transition in Structural Glasses?, Phys.
Rev. Lett. 120, 085705 (2018).

[24] L. Berthier, P. Charbonneau, Y. Jin, G. Parisi, B. Seoane,
and F. Zamponi, Growing Timescales and Lengthscales
Characterizing Vibrations of Amorphous Solids, Proc. Natl.
Acad. Sci U.S.A. 113, 8397 (2016).

[25] P. Charbonneau, E. I. Corwin, G. Parisi, A. Poncet, and F.
Zamponi, Universal Non-Debye Scaling in the Density of
States of Amorphous Solids, Phys. Rev. Lett. 117, 045503
(2016).

[26] S. Franz, G. Parisi, P. Urbani, and F. Zamponi, Universal
Spectrum of Normal Modes in Low-Temperature Glasses,
Proc. Natl. Acad. Sci. U.S.A. 112, 14539 (2015).

[27] C. Rainone, P. Urbani, H. Yoshino, and F. Zamponi,
Following the Evolution of Hard Sphere Glasses in Infinite
Dimensions under External Perturbations: Compression
and Shear Strain, Phys. Rev. Lett. 114, 015701 (2015).

[28] G. Parisi, I. Procaccia, C. Rainone, and M. Singh, Shear
Bands as Manifestation of a Criticality in Yielding Amor-
phous Solids, Proc. Natl. Acad. Sci. U.S.A. 114, 5577
(2017).

[29] Y. Jin and H. Yoshino, Exploring the Complex Free-Energy
Landscape of the Simplest Glass by Rheology, Nat. Com-
mun. 8, 14935 (2017).

[30] L. A. Fernandez, E. Marinari, V. Martin-Mayor, G. Parisi,
and J. J. Ruiz-Lorenzo, An Experiment-Oriented Analysis of
2D Spin-Glass Dynamics: A Twelve Time-Decades Scaling
Study, arXiv:1805.06738.

[31] L. A. Fernandez, E. Marinari, V. Martin-Mayor, G. Parisi,
and J. J. Ruiz-Lorenzo, The Out-Equilibrium 2D Ising Spin
Glass: Almost, but Not Quite, a Free-Field Theory, J. Stat.
Mech. (2018) P103301.

[32] C. Scalliet, L. Berthier, and F. Zamponi, Absence of
Marginal Stability in a Structural Glass, Phys. Rev. Lett.
119, 205501 (2017).

[33] C. Scalliet, L. Berthier, and F. Zamponi, Marginally Stable
Phases in Mean-Field Structural Glasses, Phys. Rev. E 99,
012107 (2019).

[34] L. Berthier, D. Coslovich, A. Ninarello, and M. Ozawa,
Equilibrium Sampling of Hard Spheres Up to the Jamming
Density and Beyond, Phys. Rev. Lett. 116, 238002
(2016).

[35] A. Ninarello, L. Berthier, and D. Coslovich, Models and
Algorithms for the Next Generation of Glass Transition
Studies, Phys. Rev. X 7, 021039 (2017).

QINYI LIAO and LUDOVIC BERTHIER PHYS. REV. X 9, 011049 (2019)

011049-16

https://doi.org/10.1103/PhysRevLett.55.304
https://doi.org/10.1016/0550-3213(85)90374-8
https://doi.org/10.1016/0550-3213(85)90374-8
https://doi.org/10.1038/ncomms4725
https://doi.org/10.1103/RevModPhys.82.789
https://doi.org/10.1103/RevModPhys.82.789
https://doi.org/10.1103/RevModPhys.83.587
https://doi.org/10.1103/RevModPhys.83.587
https://doi.org/10.1146/annurev-conmatphys-031016-025334
https://doi.org/10.1146/annurev-conmatphys-031016-025334
https://doi.org/10.1023/A:1018607809852
https://doi.org/10.1103/PhysRevB.83.224408
https://doi.org/10.1103/PhysRevB.83.224408
https://doi.org/10.1103/PhysRevB.91.100202
https://doi.org/10.1103/PhysRevLett.118.215701
https://doi.org/10.1103/PhysRevLett.118.215701
https://doi.org/10.1103/PhysRevE.99.022132
https://doi.org/10.1103/PhysRevE.99.022132
https://doi.org/10.1103/PhysRevB.87.024414
https://doi.org/10.1103/PhysRevB.87.024414
https://doi.org/10.1088/1742-5468/2014/05/P05014
https://doi.org/10.1088/1742-5468/2014/05/P05014
https://doi.org/10.1146/annurev-conmatphys-070909-104045
https://doi.org/10.1146/annurev-conmatphys-070909-104045
https://doi.org/10.1146/annurev-conmatphys-031214-014614
https://doi.org/10.1146/annurev-conmatphys-031214-014614
https://doi.org/10.1088/1742-5468/2014/10/P10009
https://doi.org/10.1103/PhysRevLett.114.125504
https://doi.org/10.1039/C8SM00859K
https://doi.org/10.1039/C8SM00859K
https://doi.org/10.1103/PhysRevLett.120.225501
https://doi.org/10.1103/PhysRevLett.120.225501
https://doi.org/10.1038/nature07998
https://doi.org/10.1103/PhysRevLett.117.228001
https://doi.org/10.1103/PhysRevLett.117.228001
https://doi.org/10.1103/PhysRevLett.120.085705
https://doi.org/10.1103/PhysRevLett.120.085705
https://doi.org/10.1073/pnas.1607730113
https://doi.org/10.1073/pnas.1607730113
https://doi.org/10.1103/PhysRevLett.117.045503
https://doi.org/10.1103/PhysRevLett.117.045503
https://doi.org/10.1073/pnas.1511134112
https://doi.org/10.1103/PhysRevLett.114.015701
https://doi.org/10.1073/pnas.1700075114
https://doi.org/10.1073/pnas.1700075114
https://doi.org/10.1038/ncomms14935
https://doi.org/10.1038/ncomms14935
http://arXiv.org/abs/1805.06738
https://doi.org/10.1088/1742-5468/aae2e1
https://doi.org/10.1088/1742-5468/aae2e1
https://doi.org/10.1103/PhysRevLett.119.205501
https://doi.org/10.1103/PhysRevLett.119.205501
https://doi.org/10.1103/PhysRevE.99.012107
https://doi.org/10.1103/PhysRevE.99.012107
https://doi.org/10.1103/PhysRevLett.116.238002
https://doi.org/10.1103/PhysRevLett.116.238002
https://doi.org/10.1103/PhysRevX.7.021039


[36] C. Barrio and J. R. Solana, Contact Pair Correlation
Functions and Equation of State for Additive Hard Disk
Fluid Mixtures, J. Chem. Phys. 115, 7123 (2001).

[37] B. Seoane, D. R. Reid, J. J. de Pablo, and F. Zamponi,
Low-Temperature Anomalies of a Vapor Deposited Glass,
Phys. Rev. Mater. 2, 015602 (2018).

[38] J. M. Kosterlitz and D. J. Thouless, Long Range Order and
Metastability in Two Dimensional Solids and Superfluids
(Application of Dislocation Theory), J. Phys. C 5, L124
(1972).

[39] E. Flenner and G. Szamel, Fundamental Differences
between Glassy Dynamics in Two and Three Dimensions,
Nat. Commun. 6, 7392 (2015).

[40] B. Illing, S. Fritschi, H. Kaiser, C. L. Klix, G. Maret,
and P. Keim, Mermin–Wagner Fluctuations in 2D Amor-
phous Solids, Proc. Natl. Acad. Sci. U.S.A. 114, 1856
(2017).

[41] R. A. Baños, A. Cruz, L. A. Fernandez, J. M. Gil-Narvion,
A. Gordillo-Guerrero, M. Guidetti, D. Iniguez, A. Maiorano,

F. Mantovani, E. Marinari et al., Sample-to-Sample Fluctua-
tions of the Overlap Distributions in the Three-Dimensional
Edwards-Anderson Spin Glass, Phys. Rev. B 84, 174209
(2011).

[42] L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, and
W. van Saarloos, Dynamical Heterogeneities in Glasses,
Colloids, and Granular Media (Oxford University Press,
Oxford, 2011), Vol. 150.

[43] V. Dupuis, F. Bert, J.-P. Bouchaud, J. Hammann, F. Ladieu,
D. Parker, and E. Vincent, Aging, Rejuvenation and Memory
Phenomena in Spin Glasses, Pramana 64, 1109 (2005).

[44] E. Domany, G. Hed, M. Palassini, and A. P. Young, State
Hierarchy Induced by Correlated Spin Domains in Short-
Range Spin Glasses, Phys. Rev. B 64, 224406 (2001).

[45] G. Hed, A. P. Young, and E. Domany, Lack of Ultrametricity
in the Low-Temperature Phase of Three-Dimensional Ising
Spin Glasses, Phys. Rev. Lett. 92, 157201 (2004).

[46] F. Murtagh, A Survey of Recent Advances in Hierarchical
Clustering Algorithms, Comput. J. 26, 354 (1983).

HIERARCHICAL LANDSCAPE OF HARD DISK GLASSES PHYS. REV. X 9, 011049 (2019)

011049-17

https://doi.org/10.1063/1.1405450
https://doi.org/10.1103/PhysRevMaterials.2.015602
https://doi.org/10.1088/0022-3719/5/11/002
https://doi.org/10.1088/0022-3719/5/11/002
https://doi.org/10.1038/ncomms8392
https://doi.org/10.1073/pnas.1612964114
https://doi.org/10.1073/pnas.1612964114
https://doi.org/10.1103/PhysRevB.84.174209
https://doi.org/10.1103/PhysRevB.84.174209
https://doi.org/10.1007/BF02704172
https://doi.org/10.1103/PhysRevB.64.224406
https://doi.org/10.1103/PhysRevLett.92.157201
https://doi.org/10.1093/comjnl/26.4.354

