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SELF-SIMILAR DYNAMICS FOR THE MODIFIED KORTEWEG-DE VRIES EQUATION

SIMÃO CORREIA, RAPHAËL CÔTE AND LUIS VEGA

ABSTRACT. We prove a local well posedness result for the modified Korteweg-de Vries equa-
tion in a critical space designed so that is contains self-similar solutions. As a consequence,
we can study the flow of this equation around self-similar solutions: in particular, we give an
asymptotic description of small solutions as t → +∞.

1. INTRODUCTION

In this paper, we are interested in the dynamics near self-similar solutions for the modified
Korteweg-de Vries equation:

∂tu+ ∂
3
x u+ ε∂x(u

3) = 0, u : Rt ×Rx → R.(mKdV)

The signum ε ∈ {±1} indicates whether the equation is focusing or defocusing. In our frame-
work, ε will play no major role.
The (mKdV) equation enjoys a natural scaling: if u is a solution then

uλ(t, x) := λ1/3u(λt,λ1/3 x)

is also a solution to (mKdV). As a consequence, the self-similar solutions, which preserve
their shape under scaling

S(t, x) = t−1/3V (t−1/3 x),

are therefore of special interest.
Self-similar solutions play an important role for the (mKdV) flow: they exhibit an explicit
blow up behavior, and are also related to the long time description of solutions. For smooth
and decaying data, this problem (the so-called soliton resolution conjecture) can be studied
via the inverse transform method: (mKdV) is integrable. For generic such initial data, a self
similar solution appears in the self-similar region t−1/3 x = O(1); we refer to Deift and Zhou
[6] for the defocusing case and the recent work by Chen and Liu [3] and the references
therein for the focusing case, with a description involving solitons and breathers outside of
the self-similar region.
Even if one considers small (and smooth, decaying) initial data – an assumption which rules
out solitons and breathers – solutions to (mKdV) display a modified scattering where self-
similar solutions appear: we refer to Hayashi and Naumkin [17, 16], which was revisited by
Germain, Pusateri and Rousset [11] and Harrop-Griffiths [14].
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Another example where self-similar solutions of the (mKdV) equation are relevant is in the
long time asymptotics of the so-called Intermediate Long Wave (ILW) equation. This equation
occurs in the propagation of waves in a one-dimensional stratified fluid in two limiting cases.
In the shallow water limit, the propagation reduces to the KdV equation, while in the deep
water limit, it reduces to the so-called Benjamin-Ono equation. In a recent work, Bernal-
Vilchis and Naumkin [2] study the large-time behavior of small solutions of the (modified)
(ILW), and they prove that in the so-called self-similar region the solutions tend at infinity
to a self-similar solution of (mKdV).
Self-similar solutions and the (mKdV) flow are also related to some other simplified models in
fluid dynamics. More precisely, Goldstein and Petrich [12] find a formal connection between
the evolution of the boundary of a vortex patch in the plane under Euler equations and a
hierarchy of completely integrable dispersive equations. The first element of this hierarchy
is:

∂tz = −∂ 3
s z + ∂sz̄(∂

2
s z)2, |∂sz|2 = 1,(1)

where z = z(t, s) is complex-valued and parametrizes a plane curve (by its arclength s) which
evolves in time t. A direct computation shows that its curvature solves the focusing (mKdV)
(with ε= 1), and self-similar solutions with initial data

U(t)* cδ0 +αv.p.
�

1
x

�
as t → 0+, α, c ∈ R,(2)

correspond to logarithmic spirals making a corner, see [22].
Finally, (mKdV) is a member of a two parameter family of geometric flows that appears
as a model for the evolution of vortex filaments. In this case, the filaments are curves that
propagate in 3d, and their curvature and torsion determined a complex valued function that
satisfies a non-linear dispersive equation. This equation, that depends on the two free pa-
rameters, is a combination of a cubic non-linear Schrödinger equation (NLS) and a complex
modified KdV equation.
The particular case of cubic (NLS) has received plenty of attention. The corresponding geo-
metric flow is known as either the binormal curvature flow or the Localized Induction Ap-
proximation, a name that is more widely used in the literature of fluid dynamics. In this
setting, the relevant role played by the self-similar solutions, including also logarithmic spi-
rals, has been largely studied. We refer the reader to the recent paper by Banica and Vega [1]
and the references therein. Among other things, the authors prove that self-similar solutions
have finite energy, when the latter is properly defined. Moreover, they give a well-posedness
result in an appropriately chosen space of distributions that contains the self-similar solu-
tions.

Our goal in this paper is to continue our work initiated in [4], and to study the (mKdV)
flow in spaces in which self-similar solutions naturally live. As we will see, the number of
technical problems increases dramatically with respect to the case of (NLS). This is due to the
higher dispersion, which makes the algebra rather more complicated, and to the presence
of derivatives in the non-linear term. In this article, we give the first steps to deal with these
issues.
In order to have a hint at one of the main challenges we face, let us recall the main result of
[4], which gives a description in Fourier space of self-similar solutions.
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Theorem. Given c,α ∈ R small enough, there exists unique a ∈ R, A, B ∈ C and a self-similar
solution S(t, x) = t−1/3V (t−1/3 x), where V satisfies

for p ¾ 2, e−i t p3
V̂ (p) = Aeia ln |p| + B

e3ia ln |p|−i 8
9 p3

p3
+ z(p),(3)

for |p|¶ 1, e−i t p3
V̂ (p) = c +

3iα
2π

sgn(p) + z(p),(4)

where z ∈W 1,∞(R), z(0) = 0 and for any k < 4
7 , |z(p)|+ |pz′(p)|= O(|p|−k) as |p| → +∞.

One sees that there is no decay for high frequencies: this is a standard feature for a self-
similar solution. The jump at frequency 0 for α 6= 0 (as in (2)) encodes a different geometric
information: for example, in the context of the vortex patch (1), it is related to the angle of
the curve at the corner.
We emphasize that self-similar solutions do not fit in any of the functional spaces considered
for the use of the inverse scattering transform as in [6, 3] or in the setting derived from
[16]: both due to the behavior at high frequency, and to the jump at frequency 0. In those
works, the lack of decay for high frequency was not important because self-similar solutions
were only relevant in a bounded region (for fixed time); and decaying initial data means that
α= 0 so that there was no jump. Hence, the analysis therein does not suit our purposes: the
study of the (mKdV) flow around self-similar solutions must be done in sharper spaces than
in earlier works, and preferably in a critical space.

2. DEFINITIONS AND MAIN RESULTS

2.1. Notations and functional setting. We start with some notations. û represents the
Fourier transform of u (in its space variable x only, if u is a space time function), and we will
often denote by p the variable dual to x in the Fourier side. We denote by G (t) the linear
KdV group: ØG (t)v(p) = ei t p3

v̂(p),
for any v ∈ S ′(R). Given a (space-time) function u, we denote ũ, the profile of u, defined by

ũ(t, p) := ÛG (−t)u(t)(p) = e−i t p3
û(t, p).(5)

In all the following, C denotes various constants, which can change from one line to the next,
but does not depend on the other variables which appear. As usual, we use the conventions
a ® b and a = O(b) to abbreviate a ¶ C b.
We will also use the Landau notation a = on(b) when a and b are two complex quantities
(depending in particular of n) such that a/b → 0 as n → +∞; and mutatis mutandis a =
oε(b) when a/b→ 0 as ε→ 0.
We use often the japanese bracket 〈y〉 = p

1+ |y|2, and the (complex valued) Airy-Fock
function

(6) Ai(z) :=
1
π

∫ +∞
0

eipz+ip3
dp.

For v ∈ S ′(R) such that v̂ ∈ L∞ ∩ Ḣ1, and for t > 0, we define the norm (depending on t)
with which we will mostly work:

‖v‖E (t) := ‖ÛG (−t)v‖L∞(R) + t−1/6‖∂p
ÛG (−t)v‖L2((0,+∞)).(7)
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Let us remark that we will only consider real-valued functions u, and so û(t,−p) = û(t, p).
As a consequence, the knowledge of frequencies p > 0 is enough to completely determine
u(t). In the above definition, the purpose of considering L2((0,+∞)) is to allow a jump at
0 as discussed above.
Observe that the E (t) norm is scaling invariant, in the following sense:

‖uλ(t)‖E (t) = ‖u(λt)‖E (λt), λ > 0.

In particular, self-similar solutions have constant E (t) norm for t ∈ (0,+∞).
If u is a space-time function defined on a time interval I ⊂ (0,+∞), we extend the above
definition and denote

‖u‖E (I) := sup
t∈I
‖u(t)‖E (t) = sup

t∈I

�‖ũ(t)‖L∞(R) + t−1/6‖∂pũ(t)‖L2((0,+∞))
�

.

In the same spirit, we define the functional space

E (1) := {u ∈ S ′(R) : ‖u‖E (1) < +∞},
and for I ⊂ (0,+∞),

E (I) = {u : I →S ′(R) : ũ ∈ C (I ,Cb((0,+∞))),∂pũ ∈ L∞(I , L2((0,+∞)))},(8)

endowed with the norm ‖ · ‖E (I).
2.2. Main results. We can now state our results. Our main result is a local well-posedness
result in the space E (I), for initial data u1 ∈ E (1) at time t = 1.

Theorem 1. Let u1 ∈ E (1). Then there exist T > 1 and a solution u ∈ E ([1/T, T]) to (mKdV)
such that u(1) = u1.
Furthermore, one has forward uniqueness. More precisely, let 0 < t1 < t2 and u and v be two
solutions to (mKdV) such that u, v ∈ E ([t1, t2]). If u(t1) = v(t1), then for all t ∈ [t1, t2],
u(t) = v(t).

For small data in E (1), the solution is actually defined for large times, and one can describe
the asymptotic behavior. This is the content of our second result.

Theorem 2. There exists δ > 0 small enough such that the following holds.
If ‖u1‖E (1) ¶ δ, the corresponding solution satisfies u ∈ E ([1,+∞)). Furthermore, let S be the
self-similar solution such that

Ŝ(1, 0+) = û1(0
+) ∈ C.

Then ‖u(t)− S(t)‖L∞ ® ‖u1‖E (1) t−5/6− . Moreover, there exists a profile U∞ ∈ Cb(R \ {0},C),
with |U∞(0+)|= limp→+∞ |Ŝ(1, p)| is well-defined, and����ũ(t, p)− U∞(p)exp

�
− iε

4π
|U∞(p)|2 log t

�����® δ

〈p3 t〉 1
12

‖u1‖E (1).

As a consequence, one has the asymptotics in the physical space.

Corollary 3. We use the notations of Theorem 2, and let

y =

�p−x/3t, if x < 0,
0, if x > 0.
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One has, for all t ¾ 1 and x ∈ R,����u(t, x)− 1
t1/3

ReAi
� x

t1/3

�
U∞ (y)exp

�
− iε

6
|U∞(y)|2 log t

�����® δ

t1/3


x/t1/3

�3/10
.(9)

2.3. Outline of the proofs, comments and complementary results. In proving Theorem 1
and 2, we use a framework derived from the work of Hayashi and Naumkin [16], improved so
that only critically invariant quantities are involved (see Section 3). In particular, we use very
similar multiplier identities and vector field estimates. An important new difficulty though is
that to perform such energy-type inequalities, the precise algebraic structure of the problem
has to be respected (for example, in integration by parts): it seems that one cannot use a
perturbative argument like a fixed point, as the method truly requires nonlinear solutions.
On the other hand, the rigorous derivation of such inequalities at our level of regularity is
quite nontrivial.
This problem does not appear in [16] as the authors work in a (weighted) subspace of H1, for
which a nice local (and global) well-posedness result holds ((mKdV) is actually well-posed in
Hs for s ¾ 1/4, see Kenig, Ponce and Vega [19]). However, no nontrivial self-similar solution
belongs to these spaces, as it can be seen from the lack of decay for large p in (3). Let us
also mention the work by Grünrock and Vega [13], where local well-posedness is proved inÒHs

r = {u ∈ S ′(R) : ‖ 〈p〉s û‖Lr′ < +∞} for 1< r ¶ 2, s ¾ 1
2
− 1

2r
.

This framework is still not enough: self-similar belong to ÒH0
1 but not better. When finding

a remedy for this, let us emphasize again that, due to the jump at the zero frequency for
self-similar solutions displayed in (4), one must take extra care on the choice of the func-
tional setting. In particular, smooth functions are not dense in E spaces (and they can not
approximate self-similar solutions).
In a nutshell, we face antagonist problems coming from low and high frequencies, and we
were fortunate enough to be able to take care of both simultaneously.

An important effort of this paper is to solve first an amenable approximate problem (in
Section 4), for which we will then derive uniform estimates in the ideology of [16]. This
approximate problem is actually a variant of the Friedrichs scheme where we filter out high
frequencies via a cut-off function χn (in Fourier space). We solve it via a fixed point argument:
the cut-off takes care of the lack of decay for large frequencies, but again, smooth functions
are not dense in the space Xn where the fixed point is found (Xn is a version of E where high
frequencies are tamed, but the jump at frequency 0 remains).
In order to obtain uniform estimates, due to the absence of decay for large frequencies of
self-similar solutions, boundary terms cannot be neglected – unless the cut-off function χn
is chosen in a very particular way.
At this point, we pass to the limit in n (Section 5), and a delicate but standard compactness
argument allows to prove the existence part of Theorem 1 and Theorem 2. The description
for large time (the second part of Theorem 2 and Corollary 3) is then a byproduct of the
above analysis.

The forward uniqueness result given in Theorem 1 requires a different argument. We con-
sider the variation of localized L2 norm of the difference w of two solutions. Our solutions
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do not belong to L2, but we make use of an improved decay of functions in E (I) on the
right (for x > 0): in this region, one has a decay of 〈x〉−3/4 and therefore they belong to
L2([0,+∞)). The use of a cut-off ϕ which is zero for x � −1 allows to make sense of the
L2 quantity.
When computing the derivative of this quantity, one bad term can not be controlled a priori.
Fortunately, if ϕ is furthermore chosen to be non-decreasing, this bad term has a sign, and
can be discarded as long as one works forward in time (which explains the one-sided result).
This is related to a monotonicity property first observed and used by Kato [18], and a key
feature in the study of the dynamics of solitons by Martel and Merle [21]. We can then
conclude the uniqueness property via a Gronwall-type argument.
Using the forward uniqueness properties, we can improve the continuity properties of the
solution u: the derivative of its Fourier transform is continuous to the right in L2, see Propo-
sition 18 for the details.

Backward uniqueness for solutions in E remains an open problem. One can recover it under
some extra decay information, namely that u1 ∈ L2(R) (of course this is no longer a critical
space). This is the content of our next result, proved in Section 6.

Proposition 4. Let u1 ∈ E (1)∩ L2(R). Then the solution u ∈ E ([1/T, T]) to (mKdV) given by
Theorem 1 is unique and furthermore, there is persistence of regularity: u ∈ C ([1/T, T], L2(R)).
The stability of self-similar solutions at blow-up time t = 0, or more generally the behavior
of solutions with initial data in E (1) near t = 0 is a challenging question. This will be the
purpose of future work.

3. PRELIMINARY ESTIMATES

Throughout this section, I ⊂ (0,+∞) is an interval.

Lemma 5 (Decay estimates). Let u ∈ E (I)). Then u ∈ C (I , W 1,∞
loc (R)) and more precisely, for

t ∈ I and x ∈ R, one has

|u(t, x)|® 1

t1/3

|x |/t1/3

�1/4 ‖u(t)‖E (t)(10)

|∂xu(t, x)|® 1
t2/3


|x |/t1/3
�1/4 ‖u(t)‖E (t).(11)

Consequently,

‖u(t)‖3L6 ® t− 5
6 ‖u(t)‖3E (t)(12)

‖u(t)∂xu(t)‖L∞ ® t−1‖u(t)‖2E (t).(13)

Moreover, for x > t1/3,

|u(t, x)|® 1

t1/3


x/t1/3

�3/4 ‖u(t)‖E (t),(14)

|∂xu(t, x)|® 1

t2/3


x/t1/3

�1/4 ‖u(t)‖E (t),(15)
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and for x < −t1/3,

(16)

�����u(t, x)− 1
t1/3

ReAi
� x

t1/3

�
ũ

�
t,

√√ |x |
3t

������® 1

t1/3

|x |/t1/3

�3/10
‖u(t)‖E (t).

Proof. The statement and proof are very similar to Lemma 2.1 in [16]; notice, however, that
the norm ‖·‖X therein is stronger than ours, so that we in fact need to systematically improve
their bounds. For the convenience of the reader, we provide a complete proof.
We recall that ũ(t) is not continuous at 0, and may (and will) have a jump (because we only
control ‖∂pu‖L2(0,+∞): in the following computations ũ(t, 0) will mean the limit ũ(t, 0+)).
Setting

z =
x
3pt

, y =
s
− x

t
for x ¶ 0, y = 0 for x > 0,

we have the identity

u(t, x) =
1
π

Re

∫ ∞
0

eipx+ip3 t ũ(t, p)dp, q = p 3pt

=
1

π 3pt
Re

∫ ∞
0

eiqz+iq3
�

ũ(t, y) +
�

ũ
�

t,
q
3pt

�
− ũ(t, y)

��
dq

=
1
3pt

ReAi
�

x
3pt

�
ũ(t, y) + R(t, x).(17)

In the case x ¾ 0, we integrate by parts in the remainder R:

R(t, x) =
1

π 3pt
Re

∫ ∞
0

∂q

�
qeiqz+iq3

� 1
1+ iq(3q2 + z)

�
ũ
�

t,
q
3pt

�
− ũ(t, y)

�
dq

=
1

π 3pt
Re

∫ ∞
0

eiqz+iq3

1+ iq(3q2 + z)

×
�

iq(6q2 + z)
1+ iq(3q2 + z)

�
ũ
�

t,
q
3pt

�
− ũ(t, y)

�
− q

3pt
∂pũ

�
t,

q
3pt

��
dq.

Since

|ũ(t, p)− ũ(t, 0)|¶
����∫ p

0

∂pũ(t, q)dq

����¶pp‖∂pũ(t)‖L2((0,+∞)),

we can estimate the remainder in the following way:

|R(t, x)|® 1
3pt

∫ ∞
0

1
1+ q(3q2 + z)

�����ũ�t,
q
3pt

�
− ũ(t, 0)

����+ q
3pt

����∂pũ
�

t,
q
3pt

������ dq

® 1p
t
‖∂pũ(t)‖L2

∫ ∞
0

p
qdq

1+ q(3q2 + z)

+
1

3p
t2

�∫ ∞
0

����∂pũ
�

t,
q
3pt

�����2 dq

� 1
2
�∫ ∞

0

q2dq
(1+ q(3q2 + z))2

� 1
2

® 1p
t

�
1+
|x |
t1/3

�−1/4

‖∂pũ(t)‖L2((0,+∞)).
7



In the case x < 0, we denote r =
p−z/3. Integrating by parts, we get

R(t, x) =
1

π 3pt
Re

∫ ∞
0

∂q

�
(q− r)eiqz+iq3

� 1
1+ 3i(q− r)2(q+ r)

�
ũ
�

t,
q
3pt

�
− ũ(t, y)

�
dq

= − 1

π 3pt
Re

∫ ∞
0

eiqz+iq3

1+ 3i(q− r)2(q+ r)

�
3i(q− r)2(3q+ r)

1+ 3i(q− r)2(q+ r)

�
ũ
�

t,
q
3pt

�
− ũ(t, y)

�
+

q− r
3pt
∂pũ

�
t,

q
3pt

��
dq− r

π 3pt
Re

ũ(t, 0)− ũ(t, y)
1+ 3ir3

.

Then we can estimate

|R(t, x)|® 1
3pt

∫ ∞
0

1
1+ (q− r)2(q+ r)

�����ũ�t,
q
3pt

�
− ũ(t, y)

����+ |q− r|
3pt

����∂pũ
�

t,
q
3pt

������ dq

+
1p
t 〈r〉‖∂pũ(t)‖L2((0,+∞))

® 1p
t

 ∫ ∞
0

p|q− r|dq
1+ (q− r)2(q+ r)

+

�∫ ∞
0

(q− r)2dq
(1+ (q− r)2(q+ r))2

�1/2
!

× ‖∂pũ(t)‖L2((0,+∞)) +
1p
t 〈r〉‖∂pũ(t)‖L2((0,+∞))

® 1p
t
p〈r〉‖∂pũ(t)‖L2((0,+∞)).

It now follows from the decay of the Airy-Fock function |Ai(z)|® 〈z〉− 1
4 that

|u(t, x)|® t−1/3
D x

t1/3

E−1/4 �‖ũ(t)‖L∞ + t− 1
6 ‖∂pũ(t)‖L2((0,+∞))

�
® 1

3pt


x/t1/3

�1/4 ‖u(t)‖E (t).
This concludes the proof of (10). For (11), we split once again between the cases x ¾ 0 and
x < 0. In the second case, we have as in (17)

∂xu(t, x) =
1

3p
t2

ReAi′
�

x
3pt

�
ũ(t, y) + R̃(t, x), with

R̃(t, x) :=
1

π
3p

t2
Re

∫ ∞
0

iqeiqz+iq3
�

ũ
�

t,
q
3pt

�
− ũ(t, y)

�
dq.

Analogous computations done for R yield

|R̃(t, x)|® 1
3p

t2

∫ ∞
0

q
1+ (q− r)2(q+ r)

�����ũ�t,
q
3pt

�
− ũ(t, y)

����+ |q− r|
3pt

����∂pũ
�

t,
q
3pt

������ dq

® ‖ũ(t)‖L∞3p
t2

∫ ∞
0

qdq
1+ 3(q− r)2(q+ r)
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+
‖∂pũ(t)‖L2((0,+∞))

6p
t5

�∫ ∞
0

q2(q− r)2dq
(1+ 3(q− r)2(q− r))2

� 1
2

® 1
t2/3

�
1+
|x |
t1/3

�1/4 �‖ũ(t)‖L∞ + t− 1
6 ‖∂pũ(t)‖L2((0,+∞))

�
® 1

t2/3

D x
t1/3

E1/4 ‖u(t)‖E (t),
and the bound for ∂xu follows from the bound on the Airy-Fock function |Ai′(z)|® 〈z〉 1

4 .
For x ¾ 0, we write

∂xu(t, x) =
1

π
3p

t2
Re

∫ ∞
0

ieiqz+iq3
qũ
�

t,
q
3pt

�
dq

=
1

π
3p

t2
Re

∫ ∞
0

ieiqz+iq3
q

�
ũ(t, 0) +

∫ q

0

∂pũ
�

t,
r

3pt

�
dr
3pt

�
dq

=
1
πt

Re

∫ ∞
0

�∫ ∞
r

ieiqz+iq3
qdq

�
∂pũ

�
t,

r
3pt

�
dr.

For z, r > 0, we have ∫ ∞
r

eiqz+iq3
qdq ® 1

z + r2
.

Applying Cauchy-Schwarz, we obtain

|∂xu(t, x)|® 1
6p

t5
‖∂pũ(t)‖L2((0,+∞))





∫ ∞
r

eiqz+iq3
qdq






L2((0,∞),dr)

® 1
3p

t2
〈z〉− 1

4 ‖∂pũ(t)‖L2((0,+∞)).

Hence (11) follows. The estimate for ∂xu in (14) is also a consequence of the above estimate.
Now we prove the first estimate in (14). To that end, we integrate by parts the expression
for u:

u(t, x) =
1
π

∫ ∞
0

eipx+ip3 t ũ(t, p)dp =
ũ(t, 0)
πx
− 1
π

∫ ∞
0

eipx+ip3 t∂p

�
ũ(t, p)

x + 3p2 t

�
dp

=
ũ(t, 0)
πx
− 1
π

∫ ∞
0

eipx+ip3 t
∂pũ(t, p)

x + 3p2 t
dp+

∫ ∞
0

eipx+ip3 t 6ptũ(t, p)
(x + 3p2 t)2

dp.

The first and third terms are bounded directly, while the second term is bounded using
Cauchy-Schwarz:����∫ ∞

0

eipx+ip3 t
∂pũ(t, p)

x + 3p2 t
dp

����® ‖∂pũ(t)‖L2((0,+∞))
�∫ ∞

0

dp
(x + 3p2 t)2

�1/2

® t1/6 1
t1/4 x3/4

‖∂pũ(t)‖L2((0,+∞)) ®
1

t1/3


x/t1/3

�‖∂pũ(t)‖L2((0,+∞)).
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Finally, estimate (16) follows from [11, Lemma 2.9]. For completeness, we present the proof:
define `0 ∈ Z so that

2`0 ∼ t−1/3(|x |/t1/3)−1/5.

We split the estimate for

R(t, x) =
1
π

Re

∫ ∞
0

ei tΦ(p)(ũ(t, p)− ũ(t, y))dp, Φ(p) =
x
t

p+ p3,

in three regions, using appropriate cut-off functions χA+χB +χC = 1:

Region A: |p− y|¾ y/2. Over this region, ∂pΦ(p)¦max{y, p}. Then an integration by parts
yields ����∫ ∞

0

ei tΦ(p)(ũ(t, p)− ũ(t, y))χA(p)dp

����® 1
t1/3(|x |/t1/3)3/4

‖u(t)‖E (t).

Region B: |p − y| ¾ 2`0 . If |p − y| ∼ 2l , with l ¾ `0, then |∂pΦ(p)| ¦ 2l y and the same
integration by parts gives�

contribution of |p− y| ∼ 2l
�
®
�

1
t5/62l/2 y

+
1

t2l y

�
‖u(t)‖E (t).

Summing in l ¾ `0,����∫ ∞
0

ei tΦ(p)(ũ(t, p)− ũ(t, y))χB(p)dp

����® � 1
t5/62`0/2 y

+
1

t2`0 y

�
‖u(t)‖E (t)

® 1
t1/3(|x |/t1/3)3/10

‖u(t)‖E (t).

Region C: |p− y|¶ 2`0 . We decompose the integral as∫ ∞
0

ei tΦ(p)(ũ(t, p)− ũ(t, y))χC(p)dp

=

∫ ∞
0

ei tΦ(p)−i t(Φ(y)+3y(p−y)2)(ũ(t, p)− ũ(t, y))χC(p)dp

+ ei tΦ(y)

∫ ∞
0

e3i t y(p−y)2(ũ(t, p)− ũ(t, y))χC(p)dp

= I1 + I2.

Since |ũ(t, p)− ũ(t, y)|® t1/6|p− y|1/2‖u(t)‖E (t), one easily bounds these integrals:

|I1|® t24`0‖u‖® t−1/3(|x |/t1/3)4/5‖u(t)‖E (t)
|I2|® t1/623`0/2‖u(t)‖E (t) ® t−1/3(|x |/t1/3)3/10‖u‖E (t). □

Let u ∈ C (I ,S ′) be a solution to (mKdV) in the distributional sense. Taking the Fourier
transform of

(∂t + ∂x x x)u= −ε∂x(u
3)
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using ũ(t, p) = ei t p3
û(t, p), one obtains

(18) ∂t ũ(t, p) +
iεp
4π2

∫∫
p1+p2+p3=p

ei t(p3−p3
1−p3

2−p3
3)ũ(t, p1)ũ(t, p2)ũ(t, p3)dp1dp2 = 0.

This leads us to define (with the change of variables pi = pqi)

(19) N [u](t, p) = ip3

∫∫
q1+q2+q3=1

e−i t p3(1−q3
1−q3

2−q3
3)ũ(t, pq1)ũ(t, pq2)ũ(t, pq3)dq1dq2,

so that

∂t ũ(t, p) = − ε

4π2
N [u](t, p).(20)

The following result is a stationary phase lemma forN [u]. Similar statements may be found
in [16, Lemma 2.4] and [11].

Lemma 6 (Asymptotics of the nonlinearity on the Fourier side). Let u ∈ E (I). One has the
following asymptotic development for N [u]: for all t ∈ I and p > 0,

N [u](t, p) =
πp3

〈p3 t〉
�

i|ũ(t, p)|2ũ(t, p)− 1p
3

e−
8i t p3

9 ũ3
�

t,
p
3

��
+ R[u](t, p)(21)

where the remainder R satisfies the bound

|R[u](t, p)|® p3‖u(t)‖3E (t)
(p3 t)5/6 〈p3 t〉1/4 .(22)

Proof. This essentially relies on a stationary phase type argument. We must however em-
phasize that the computations and the estimations of the errors have to be performed very
carefully, because our setting allows few integration by parts and functions have limited
spatial decay. We postpone the proof to Appendix A. □

Lemma 7. Let I ⊂ (0,+∞) be an interval and t1 ∈ I . Let u ∈ E (I) be a solution to (mKdV)
in the distributional sense.
Then, for some universal constant C (independent of I) and for all t ∈ I ,

‖ũ(t)‖L∞ ¶ ‖ũ(t1)‖L∞ + C(‖u‖3E (I) + ‖u‖5E (I)),
‖∂t ũ(t)‖L∞ ® 1

t
‖u(t)‖3E (t).

Furthermore, if we denote

Eu(t, p) := exp

�
−iε

∫ t

t1

p3

〈p3s〉 |ũ(s, p)|2ds

�
,(23)

one has, for all t,τ ∈ I

(24) |(ũEu)(t, p)− (ũEu)(τ, p)|® (‖u‖3E (I) + ‖u‖5E (I))min

� |t −τ|
〈p3〉 ,

1

〈τp3〉 1
12

�
.
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Proof. Since ũ(t,−p) = ũ(t, p), it suffices to consider p > 0. Using Lemma 6,

∂t ũ(s, p) = − ε
4π

p3

〈p3s〉
�

1p
3

e−
8isp3

9 ũ3(s, p/3)− i|ũ(s, p)|2ũ(s, p)
�

(25)

+O

�
p3‖u‖3E (t)

(p3 t)5/6 〈p3 t〉1/4
�

.(26)

Denote v(t, p) = ũ(t, p)Eu(t, p). Then the integration in time of (25) on [τ, t] ⊂ I yields

v(t, p) = v(τ, p)− ε
∫ t

τ

p3

4π
p

3 〈p3s〉 e
− 8isp3

9 Eu(s, p)ũ3
�

s,
p
3

�
ds(27)

+O

�
p3‖u‖3E (I)

∫ t

τ

ds

(p3s)5/6 〈p3s〉1/4
�

.(28)

We claim that

(29)

�����
∫ t

τ

p3

〈p3s〉 e
− 8isp3

9 Eu(s, p)ũ3
�

s,
p
3

�
ds

�����® (‖u‖3E (I) + ‖u‖5E (I))min
�

1
〈p3τ〉 ,

|t −τ|
〈p3〉

�
Indeed, integrating by parts,∫ t

τ

p3

〈p3s〉 e
− 8isp3

9 Eu(s, p)ũ3
�

s,
p
3

�
ds

=

∫ t

τ

∂s

�
se−

8isp3

9

�
1

1− 8isp3

9

p3

〈p3s〉Eu(s, p)ũ3
�

s,
p
3

�
ds

= −
∫ t

τ

Eu(s, p)
e− 8isp3

9

1− 8isp3

9

�
ũ3 (s, p/3)

O(p6s)�
1− 8isp3

9

� 〈p3s〉
+

3sp3

〈p3s〉 ũ
2(s, p/3)ũs(s, p/3) +

ip3sp3

〈p3s〉2 ũ3(s, p/3)|ũ(s, p)|2
�

ds

+

 Eu(s, p)e− 8isp3

9 ũ3(s, p/3)

1− 8isp3

9

s=t

s=τ

.

From (25), we have
|∂t ũ(s, p)|® s−1‖ũ(s)‖3L∞ ® s−1‖u‖3E (s).

Taking absolute values in the above expression,�����
∫ t

τ

p3

〈p3s〉 e
− 8isp3

9 Eu(s, p)ũ3
�

s,
p
3

�
ds

�����® (‖u‖3E ([τ,t]) + ‖u‖5E ([τ,t]))

∫ t

τ

p3ds

〈p3s〉2

® (‖u‖3E (I) + ‖u‖5E (I))min
�

1
〈p3τ〉 ,

|t −τ|
〈p3〉

�
12



as claimed. We plug this estimate with τ= t1 in (27),

‖ũ(t)‖L∞ = ‖v(t)‖∞ ¶ ‖v(t1)‖L∞ + C(‖u‖3E (I) + ‖u‖5E (I)).
Estimate (24) follows from (29):

|v(t, p)− v(τ, p)|®
�����
∫ t

τ

p3

4π
p

3 〈p3s〉 e
− 8isp3

9 Eu(s, p)ũ3
�

s,
p
3

�
ds

�����
+O

�
p3‖u‖3E (I)

∫ t

τ

ds

(p3s)5/6 〈p3s〉1/4
�

® (‖u‖3E (I) + ‖u‖5E (I))min

� |t −τ|
〈p3〉 ,

1

〈τp3〉 1
12

�
. □

4. CONSTRUCTION OF AN APPROXIMATING SEQUENCE

Let (χn)n∈N ⊂ S (R) be a sequence of even decreasing functions such that

• for all n ∈ N, 0< χn ¶ 1, χ1/2
n ∈ S (R),• for all p ∈ R, χn(p)→ 1 as n→ +∞.

• sup
p∈R
|p(χ1/2

n )′(p)| → 0 as n→ +∞.

The existence of such a sequence is not completely obvious, let us sketch how to construct
one.

Claim 8. There exists a sequence (χn)n∈N satisfying the above conditions.

Proof. Define the function ϕn as follows: ϕn is even and

ϕn(p) =


1 if |p|¶ n
1− 1

n ln(p/n) if n¶ p ¶ αn

e−p if p ¾ αn.

where αn > 0 is chosen so that ϕn is continuous, that is 1− 1
n

ln
�αn

n

�
= e−αn . One can check

that αn ∈ [nen − 1, nen].
It follows that 0< ϕn ¶ 1, ϕn is non-increasing on [0,+∞), and supp∈R |pϕ′n(p)|= O(1/n).
Then let ψ ∈ D(R) be non-negative, even, with support in [−1, 1] and ‖ψ‖L1 = 1. One can
see that χn := (ϕn ∗ψ)2 answers the question. □

Define, for any u ∈ S ′(R), ÔΠnu(p) = χn(p)û(p).

Throughout this section, we shall study the properties of the solutions of

(Πn-mKdV)

�
∂tu+ ∂ 3

x u+ εΠn∂x(u3) = 0,
u(1) = Πnu1,

where u1 ∈ E (1) is given. Equivalently, we consider the equation

(30) ∂t ũ= −εχn

4π2
N [u], ũ(1) = χnũ1.
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(with the slight abuse of notation ũ1 = ÛG (−1)u1). Define

(31) ‖u‖Xn(t) := ‖ÛG (−t)uχ−1
n ‖L∞ +




∂p(ÛG (−t)u)χ−1/2
n





L2((0,+∞))

and the space
Xn(t) :=

�
u ∈ S ′(R) : ‖u‖Xn(t) <∞

	
.

Similarly, if I ⊂ (0,+∞) is an interval and u a space-time function, we denote

‖u‖Xn(I) := sup
t∈I
‖u(t)‖Xn(t) = sup

t∈I
‖ũ(t)χ−1

n ‖L∞ + ‖∂pũ(t)χ−1/2
n ‖L2((0,+∞)),

and

Xn(I) :=
�
u ∈ C (I ,S ′(R)) : ũχ−1

n ∈ C (I ,Cb((0,+∞))), ∂pũχ−1/2
n ∈ C (I , L2((0,+∞)))	 .

Observe that if u ∈ E (1), then

‖Πnu1‖Xn(1) ¶ ‖u1‖E (1).
Proposition 9. Given any u1 ∈ E (1), there exists T−,n < 1, T+,n > 1 and a unique un ∈
Xn((T−,n, T+,n)) maximal solution of (Πn-mKdV). Moreover, if T+,n <∞, then

lim
t→T+
‖un(t)‖Xn(t) = +∞.

(A similar statement holds at T−).
In particular, u ∈ E ((T−,n, T+,n)).

Proof. This is a standard fixed-point argument (in the estimates below, the implicit constants
are allowed to depend on n). We work for times larger than 1, the other case is similar. For
T > 1, M > 0, let

(32) Bn(T, M) =
�
u ∈ Xn([1, T]) : ‖u‖Xn([0,T]) ¶ M

	
endowed with the natural distance

d(u, v) = ‖u− v‖Xn([0,T]),

and

(Ψ(u))(t, p) = χn(p)ũ1(p)− εχn(p)
4π2

∫ t

1

N [u](s, p)ds.

Using the strong decay on the Fourier side, that is, for any u ∈ Xn(T, M),

∀t ∈ [1, T],∀p ∈ R, |ũ(t, p)|¶ Mχn(p),

one may easily obtain the necessary bounds on Ψ. Indeed, we estimate

|N [u|(t, p)|® |p|
∫∫

q1+q2+q3=p
χn(q1)χn(q2)χn(q3)dq1dq2‖u‖3Xn

(33)

® |p| sup
|q3|¾|p/3|

χn(q3)‖χn‖2L1‖u‖3Xn
® ‖u‖3Xn

,

where we used the fact that at least one of the variables q1, q2 and q3 has modulus at least
|p/3| . Hence for t ∈ [1, T],

‖û(t)χ−1
n ‖L∞ = ‖ũ(t)χ−1

n ‖L∞ ® ‖χnũ1χ
−1
n ‖L∞ +







∫ t

1

N [u](s)ds







L∞
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® ‖ũ1‖L∞ + (T − 1) sup
t∈[1,T]

‖N [u](t)‖L∞
® ‖ũ1‖L∞ + (T − 1)M3.

Similar to estimate (33), we have

|∂pN [u](t, p)|® t|p|
∫∫

q1+q2+q3=p
(|p|2 + |q3|2)χn(q1)χn(q2)χn(q3)dq1dq2‖u‖3Xn

+ |p|
∫∫

q1+q2+q3=p
χn(q1)χn(q2)|∂pu(q3)|dq1dq2‖u‖2Xn

® |p| sup
|q3|¾|p/3|

(p2 + q2
3)χn(q3)‖χn‖2L1‖u‖3Xn

+ |p|
�∫∫

q1+q2+q3=p
χn(q1)

2χn(q2)χn(q3)dq1dq2

�1/2

×
�∫∫

χn(q2)|∂pu(q3)|2χ−1
n (q3)dq2dq3

�1/2

‖u‖2Xn
® ‖u‖3Xn

.

This implies the direct bound

‖∂pũ(t)χ−1/2
n ‖L2((0,+∞))

® ‖χn∂pũ1χ
−1/2
n ‖L2((0,+∞)) + (T − 1)‖χ1/2

n ‖H1 sup
t∈[1,T]

‖N [u](t)‖W 1,∞

® ‖∂pũ1‖L2((0,+∞)) + (T − 1)‖u‖3Xn
.

Thus
‖(Ψ(u))‖Xn([0,T]) ¶ C

�‖u1‖E (1) + (T − 1)M3
�

.

Analogous computations yield

d(Ψ(u),Ψ(v))¶ C(T − 1)M2d(u, v)

(since N is a trilinear operator). Choosing M and T such that

C
�‖ũ1‖Xn

+ (T − 1)M3
�
¶ M ,

and C(T −1)M ¶ 1/2, we see that Ψ : Bn(T, M)→ Bn(T, M) is a contraction. The result now
follows from Banach’s fixed-point theorem. □

To conclude the construction of a solution, we need the time interval on which the approxi-
mating sequence is defined to remain wide independently of n. To that end, we need some
a priori bounds.

Lemma 10 (L∞ bound for (Πn-mKdV)). Given u1 ∈ E (1), denote u the corresponding solution
of (Πn-mKdV), given by Proposition 9 and defined on (T−,n, T+,n). Let I ⊂ (T−,n, T+,n). Then

(34) ∀t ∈ I , ‖ũn(t)χ
−1
n ‖L∞ ¶ ‖ũ1χ

−1
n ‖L∞ + C(‖un‖3E (I) + ‖un‖5E (I))

and

‖∂t ũnχ
−1
n ‖L∞ ® 1

t
‖un‖3E (I).
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Moreover, if one defines

En(t, p) = exp

�
−iε

∫ t

1

p3χn(p)
4π 〈p3s〉 |ũn(s, p)|2ds

�
.

then for all t,τ ∈ I ,

|(ũEn)(t, p)− (ũEn)(τ, p)|χ−1
n (p)¶ C(‖un‖3E (I) + ‖un‖5E (I)))min

� |t −τ|
〈p3〉 ,

1

〈τp3〉 1
12

�
.

Proof. The proof follows the lines of Lemma 7, we leave the details to the reader. □

Now we look for an a priori bound for ∂pũn. Define the operator

ÓI u(t, p) = i∂pû(t, p)− 3i t
p
∂t û(t, p) = iei t p3

�
∂pũ− 3t

p
∂t ũ
�

,

which corresponds to the formal operator

x + 3t

∫ x

−∞
∂t d x ′.

Using the definition, one may check that, ifÔΠ′nu := χ ′nû

then
I (Πnu) = ΠnI u+ iΠ′nu.

Moreover, if we let L = ∂t + ∂ 3
x ,

ÕLI u=ÕI Lu+
3i
p
cLu, I (u3)x = 3u2 (I u)x − 3u3.

Lemma 11 (Ḣ1 bound for (Πn-mKdV)). Given u1 ∈ E (1), the corresponding solution un of
(Πn-mKdV) satisfies ÔI un ∈ C 1((T−,n, T+,n), L2((0,+∞),χ−1

n dp)).

There exists a universal constant κ > 0, such that, for 1< t < T+,n,

∀t ∈ [1, T+,n)

�∫ ∞
0

|ÔI un(t, p)|2χ−1
n dp

�1/2

¶
�∫ ∞

0

|ÔI un(1, p)|χ−1
n dp

�1/2

tκ‖un‖2E ([1,t])

+ on(1)‖un‖3E ([1,t]) t
1/6,(35)

∀t ∈ (T−,n, 1],

�∫ ∞
0

|ÔI un(t, p)|2χ−1
n dp

�1/2

¶
�∫ ∞

0

|ÔI un(1, p)|χ−1
n dp

�1/2

t−κ‖un‖2E ([t,1])

+ on(1)‖un‖3E ([t,1]) t1/6.(36)

Proof. Fix ε > 0. First of all, notice that, by Lemma 10, we have

ÔI un = ie−i t p3
�
∂pũn − 3t

p
∂t ũn

�
∈ L2([ε,+∞),χ−1

n dp),
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which justifies the finiteness of all the following integrations. On the other hand,

∂tÔI un − ip3ÔI un =×LI un =×I Lun − 3εÚΠn(u3
n) = −ε ÛI (Πn(u3

n)x)− 3εχn
cu3

n

= −εχn
ÚI (u3

n)x − iεχ ′nÖ(u3
n)x − 3εχn

cu3
n = −ε

�
3χn

Ûu2(I un)x + ipχ ′ncu3
n

�
.

Multiplying by ÔI unχ
−1
n , integrating on R \ (−ε,ε) and taking the real part,

1
2

d
d t

∫
R\(−ε,ε)

|ÔI un(p)|2χ−1
n (p)dp = −εRe

∫
R\(−ε,ε)

∫
p1+p2=p

cu2
n(p1)p2ÔI un(p2)ÔI un(p)dp2dp

− εRe

∫
R\(−ε,ε)

pχ ′n(p)χ−1/2
n (p)cu3

n(p)ÔI un(p)χ
−1/2
n (p)dp

= I1 + I2.

For I1, we split the integral in p2:�����
∫
R\(−ε,ε)

∫ ε

−ε
ÔI un(p)ÔI un(p2)p2

cu2
n(p1)dp2dp

�����® ε‖ÔI un‖L2(R\(−ε,ε))‖ÔI un‖L2((0,+∞))‖cu2
n‖L1

→ 0 as ε→ 0.

(Indeed ‖cu2
n‖L1 ® ‖ũn‖2L1 < +∞). Then observe that

Re

∫
R\(−ε,ε)

∫
R\(−ε,ε)

cu2
n(p1)p2ÔI un(p2)ÔI un(p)dp2dp

= Re

∫
R\(−ε,ε)

∫
R\(−ε,ε)

cu2
n(p1)(p− p1)ÔI un(p2)ÔI un(p)dp2dp

= −Re

∫
R\(−ε,ε)

∫
R\(−ε,ε)

p1
cu2

n(p1)ÔI un(p2)ÔI un(p)dp2dp

−Re

∫
R\(−ε,ε)

∫
R\(−ε,ε)

cu2
n(p1)p2ÔI un(p2)ÔI un(p)dp2dp.

Hence, if we define the operator d1εv = 1R\(−ε,ε) v̂,
then �����Re

∫
R\(−ε,ε)

∫
R\(−ε,ε)

cu2
n(p1)p2ÔI un(p2)ÔI un(p)dp2dp

�����
=

1
2

�����Re

∫
R\(−ε,ε)

∫
R\(−ε,ε)

p1
cu2

n(p1)ÓI u(p2)ÔI un(p)dp2dp

�����
®
����∫∫ p1

cu2
n(p1)×1εI u(p2)Ù1εI un(p)dp2dp

����® ����∫ (u2
n)x(x)|1ε(I un)(x)|2d x

����
® ‖un∂xun‖L∞‖1ε(I un)‖2L2 ® ‖un∂xun‖L∞

∫
R\(−ε,ε)

|ÔI un(p)|2χ−1
n (p)dp.

17



Now, to estimate I2, we use Cauchy-Schwarz:

|I2|®
�∫
R\(−ε,ε)

|ÔI un(p)|2χ−1
n (p)dp

�1/2�∫
|pχ ′n(p)χ−1/2

n |2|cu3
n|2dp

�1/2

®
�∫
R\(−ε,ε)

|ÔI un(p)|2χ−1
N (p)dp

�1/2

‖un(t)‖3L6 sup
p∈R
|p(χ1/2

n )′(p)|
Here we crucially use the third condition on χn. Putting together these estimates, using
Lemma 5 and the symmetry ûn(t,−p) = ûn(t, p),����� d

d t

�∫ ∞
ε

|ÔI un(p)|2χ−1
n (p)dp

�1/2
�����

® ‖un∂xun‖L∞
�∫ ∞

ε

|ÔI un(p)|2χ−1
n (p)dp

�1/2

+ oε(1) + on(1)‖un(t)‖3L6(37)

®
‖un(t)‖2E (t)

t

�∫ ∞
ε

|ÔI un(p)|2χ−1
n (p)dp

�1/2

+ oε(1) + on(1)
‖un(t)‖3E (t)

t5/6

It follows that, for t ¾ 1 and some universal constant κ > 0,�∫ ∞
ε

|ÔI un(p)|2χ−1
n (t, p)dp

�1/2

¶
�∫ ∞

ε

|ÔI un(p)|2(1, p)χ−1
n (p)dp

�1/2

tκ‖un‖2E (1,t)

+ oε(t) + ‖un(t)‖3E (t)on(t
1/6).

Taking ε → 0, the result follows. An analogous computation yields the inequality for t <
1. □
Proposition 12 (Global existence). Given u1 ∈ E (1) small, let un be the unique maximal
solution of (Πn-mKdV) given by Proposition 9. Then there exists T = T (‖u1‖E (1)) < 1 such
that, if n is large enough, un is defined on [T,+∞) and

(38) ‖un‖E ([T,+∞)) ¶ C‖u1‖E (1).
Proof. Fix δ0 > ‖u1‖E (1). Define

(39) fn(t) = ‖ũn(t)χ
−1
n ‖L∞ + t−1/6‖∂pũn(t)χ

−1/2
N ‖L2((0,+∞))

and let Jn be the maximal connected interval containing t = 1 such that

fn(t)¶ 4Cδ0, t ∈ Jn.

For δ0 sufficiently small and some T < 1 close to 1, it follows from Lemma 11 that, given
t ∈ Jn, t > T ,�∫ ∞

0

|ÓI u(t, p)|2χ−1
n dp

�1/2

¶ 2

 �∫ ∞
0

|ÓI u(1, p)|2χ−1
n dp

�1/2

+ on(1) fn(s)
3

!
t1/6.

Recalling that

∂pũn = −iei t p3ÔI un +
3t
p
∂t ũn = −iei t p3ÔI un + 3tχne−i t p3cu3

n,

18



we derive the bound for ∂pũn:

‖∂pũn(t)χ
−1/2
n ‖L2((0,+∞)) ¶ ‖ÔI un(t)χ

−1/2
n ‖L2((0,+∞)) + 3t‖cu3

n(t)χ
1/2
n ‖L2

® t1/6
�‖ÔI un(1)χ

−1/2
n ‖L2((0,+∞)) + on(1) fn(t)

�
+ 3t‖un‖3L6

® t1/6
�‖ÔI un(1)χ

−1/2
n ‖L2((0,+∞)) + on(1) fn(t) + fn(t)

3
�

.

Together with the L∞ bound (34), we infer

fn(t)¶ C
�‖χ−1

n ũ(1)‖L∞ + ‖χ−1/2
n ∂pũ(1)‖L2((0,+∞)) + on(1) fn(t) + fn(t)

3
�

¶ C
�‖u1‖E (1) + oN (1) fn(t) + fn(t)

3
�

.

If n large and 4C‖u1‖< δ0, then a continuity argument implies that

(40) ∀t ∈ Jn, t > T, fn(t)¶ 2C‖u1‖E (1) < δ0

2
.

Hence Jn must be equal to [T, T+,n). By the definition of Jn and the blow-up alternative,
T+,n = +∞. □

5. WELL-POSEDNESS ON THE CRITICAL SPACE

Proposition 13 (Existence for small data). There exists C ,δ > 0 such that, given u1 ∈ E (1)
with ‖u1‖E (1) < δ, there exist T = T (‖u1‖E (1)) < 1 and a unique u ∈ E ([T,∞)) solution
of (mKdV) in the distributional sense such that u(1) = u1. Moreover, there exists a universal
constant C > 1 such that

(41) ‖u‖E ([T,∞)) ¶ C‖u1‖E (1).
Proof. Step 1. Approximate solutions and a priori bounds. For each n ∈ N, define un as the
unique solution of (Πn-mKdV). By Proposition 12, for n large enough, un is defined on
[T,+∞) and

‖un‖E ([T,+∞)) ¶ Cδ.

Step 2. Convergence on the profile space. Since the sequence (ũn)n∈N is uniformly bounded in
C ([T,∞), Ḣ1((0,+∞))∩ L∞(R)), the Sobolev embedding implies that

|ũn(t, p)− ũn(t, q)|® |p− q|1/2, p, q > 0.

Moreover, by Lemma 10, we have ũn uniformly bounded in W 1,∞([T,∞), L∞(R)). Hence
(ũn)n∈N is equicontinuous on [T,∞)× [0, R], for any R > 0. By Ascoli-Arzelà theorem, we
conclude that there exists ũ ∈ Cb([T,∞)× (0,+∞)) such that, up to a subsequence,

ũN → ũ uniformly in [T, T ′]× [0, R], T ′ > T, R> 0.

Given p < 0, we set
ũ(t, p) = ũ(t,−p).

Step 3. ũ ∈ Cb([T,∞)×R)∩ L∞((T,∞), Ḣ1((0,+∞))). Define

Eu(t, p) = exp

�
−iε

∫ t

1

p3

4π 〈p3s〉 |ũ(s, p)|2ds

�
,

En(t, p) = exp

�
−iε

∫ t

1

χn(p)p3

4π 〈p3s〉 |ũn(s, p)|2ds

�
.

19



By Lemma 10,

|ũnEn(t.p)− ũnEn(s, p)|® |t − s|
〈p3〉 .

Taking n→∞, we get

|ũEu(t.p)− ũEu(s, p)|® |t − s|
〈p3〉 ,

which means that ũEu ∈ C ([T,∞), L∞(R)). On the other hand,

|Eu(t, p)− Eu(s, p)|®
∫ t

s

p3

〈p3s〉 |ũ(s, p)|2ds ® |t − s|.
Hence, when t → s,

‖ũ(t)− ũ(s)‖L∞(R) ¶ ‖ũ(t)Eu(t)− ũ(s)Eu(s)‖L∞(R) + ‖ũ(s) (Eu(t)− Eu(s))‖L∞(R)→ 0

and so ũ ∈ C ([T,∞), L∞(R)).

Fix t ∈ [T,∞). Since (ũn(t))n∈N is bounded in Ḣ1((0,+∞)), up to a subsequence, there
exists g(t) ∈ L2((0,+∞)) such that

∂pũn(t)* g(t), ‖g(t)‖L2((0,+∞)) ¶ lim inf‖∂pũn(t)‖L2((0,+∞)) ® δ.

Since ũn(t)→ ũ(t) in L∞loc(R), we have ũ(t) ∈ Ḣ1((0,+∞)) and ∂pũ(t) = g(t). Moreover,
the uniform bound on g(t) implies

ũ ∈ Cb([T,∞)×R)∩ L∞((T,∞), Ḣ1((0,+∞))).
Step 4. Convergence on the physical space. We already now that

|ũn(t, p)− ũn(t, 0+)|, |ũ(t, p)− ũ(t, 0+)|® |p|1/2.

Hence, ũn(t)→ ũ(t) in S ′(R). Therefore u(t) = (ei t p3
ũ)∨(t) is well-defined and we have

un→ u in D′((T,∞)×R),
We now claim that u is in L∞((T,∞) × R) and that un(t) → u(t) in L∞(R), for any
t ∈ [T,∞). Since (un)n∈N is bounded in E ([T,∞)), Lemma 5 implies that, for any K ⊂ R
compact and T ′ > T ,

∀t ∈ [T, T ′], ‖un(t)‖L∞(K),‖(un)x(t)‖L∞(K) ®T ′,K δ,

and ∀x ∈ R, ∀t ∈ [T, T ′], |un(t, x)|® C(T ′) 〈x〉− 1
4 .

Again by Ascoli-Arzelà theorem, there exists h(t) ∈ C (R) such that

unk
(t)→ h(t) uniformly in K , for any K ⊂ R compact.

and
|h(t, x)|® C(T ′) 〈x〉− 1

4 , x ∈ R.

This implies that h is, in fact, bounded over (T, T ′)×R. Since un→ u in the distribution sense,
h = u. Hence the limit h(t) is unique and we conclude that the whole sequence (un(t))n∈N
must converge to h(t):

un(t)→ h(t) = u(t) uniformly in K , for any K ⊂ R compact.
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Finally, the uniform decay of un and u imply that this convergence holds over R,

un(t)→ u(t) in L∞(R).
The claim is proven.

Step 5. u is a solution of (mKdV) in E ([T,+∞)). Since un(t)→ u(t) in L∞(R), one has

(un)
3→ u3 in D′((T,∞)×R).

Recalling that (∂t+∂ 3
x )un = −εΠn((un)3)x , one may now pass to the limit in the distributional

sense and
(∂t + ∂

3
x )u= −ε(u3)x .

By Step 3, u ∈ E ([T,+∞)) and the bound (41) follows from the corresponding bound for
un. The proof is complete. □

Remark 14. As a consequence of the above proof and Lemma 11, one may easily see that, if
‖u1‖E (1) < δ < δ0, then

∀t ¾ 1, ‖ÓI u(t)‖L2((0,+∞)) ¶ ‖ÓI u(1)‖L2((0,+∞)) tκδ
2
, and(42)

∀t ¶ 1, ‖ÓI u(t)‖L2((0,+∞)) ¶ ‖ÓI u(1)‖L2((0,+∞)) t−κδ
2
.(43)

We now consider the large data case. Here, the only delicate point is to prove that the lifes-
pan [T−,n, T+,n] does not become trivial as n tends to∞. Afterwards, the arguments of the
previous proof may be applied mutatis mutandis.

Lemma 15 (Uniform local existence for large data). Given u1 ∈ E (1), there exists T−(u1) <
1, T+(u1) > 1, C = C(‖u1‖E (1)) such that, for large n, the corresponding solution un of
(Πn-mKdV) is defined on [T−(u1), T+(u1)] and

‖un‖E ([T−(u1),T+(u1)]) ¶ C‖u1‖E (1).
Proof. Due to the critical nature of the space E , we are unable to obtain a uniform time-
continuity estimate for the solutions un. Instead, we argue by contradiction. We focus on
showing the existence of T+(u1)> 1, the other case being completely analogous.
Let C1 > 0 be a large constant to be chosen later. For each n, let tn > 1 be the first time
satisfying

‖un(tn)‖E (tn) = C1‖u1‖E (1).
Suppose, for the sake of contradiction, that tn→ 1 (in particular tn ¶ 2). The uniform bound
of ũn(tn) in L∞ ∩ Ḣ1((0,+∞)) implies the existence of v such that

∂pũn(tn)* ∂pv in L2(0,+∞), ũn(tn)→ v in L∞(K), for any K ⊂ R compact

On the other hand, by Lemma 10,

|(ũnEn)(tn, p)− ũ1(p)|= |(ũnEn)(tn, p)− (ũnEn)(1, p)|+ |ũn(1, p)− ũ1(p)|
® (‖un(tn)‖3E (tn)

+ ‖un(tn)‖5E (tn)
)‖|tn − 1|+ |Πn(p)− 1| → 0(44)

which means that v = ũ1. Moreover, the decay estimates of Lemma 5 imply that

un(tn)→ u1 in L6(R).
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Due to (35) from Lemma 11, we have

‖(I un)(tn)‖L2((0,+∞)) ®
�∫ ∞

0

|ÔI un(1)|2χ−1
n dp

�1/2

t
C2

1κ‖u1‖2E (1)
n + on(1)t

1/6
n ‖un(1)‖E (1).

For n large, t
C2

1κ‖u1‖2E (1)
n ¶ 2. Using once more the formula

∂pũn = −iei t p3ÔI un + 3tχne−i t p3cu3
n,(45)

we get that for large n,

‖I un(1)χ
−1/2
n ‖L2((0,+∞)) ® ‖∂pũn(1)χ

−1/2
n ‖L2((0,+∞)) + ‖×u3

n(1)χ
1/2
n ‖L2((0,+∞))

® ‖u1‖E (1) + ‖u1‖3L6 ® ‖u1‖E (1)(1+ ‖u1‖2E (1)).
As a consequence, we get

‖(I un)(tn)‖L2((0,+∞)) ® ‖u1‖E (1)(1+ ‖u1‖2E (1)).
In the above estimate, we emphasize that the implied constant does not depend on C1. Using
(45) yet another time gives

‖∂pũn(tn)‖L2((0,+∞)) ¶ ‖(I un)(tn)‖L2((0,+∞)) + 3tn‖×u3
n(1)‖L2((0,+∞))

® ‖u1‖E (1)(1+ ‖u1‖2E (1)).
Moreover, it follows from (44) that ‖ũn(tn)‖L∞ ¶ 2‖u1‖E (1) for large n. In other words, for
some absolute constant C0 and large n,

‖un(tn)‖E (tn) ¶ C0‖u1‖E (1)(1+ ‖u1‖2E (1)).
Choose now C1 = 2C0(1+ ‖u1‖2E (1)): this is a contradiction. Hence tn 6→ 1, and the proof is
complete. □
We can now follow the same arguments as for the proof of Proposition 13, and get the
analoguous result for large data given below.

Proposition 16 (Existence for large data). Let u1 ∈ E (1). There exist T−(u1)< 1 and T+(u1)>
1 and a solution u ∈ E ([T−(u1), T+(u1)]) solution of (mKdV) in the distributional sense such
that u(1) = u1.

We now turn to the forward uniqueness result. It relies on completely different arguments,
related to a monotonicity formula.

Proposition 17 (Forward uniqueness). If u, v ∈ E ([t1, t2]) are two solutions of (mKdV) and
u(t1) = v(t1), then u≡ v.

Proof. Step 1. In this proof, we abbreviate ‖u‖E ([t1,t2]) by ‖u‖. The difference w = u − v
satisfies (∂t + ∂ 3

x )w = −ε((w + v)3 − v3)x , w(t1) = 0. For any x1 < x2, take φ ∈ C∞(R)
increasing such that φ(x) = 0 for x < x1 and φ(x) = 1 for x > x2. A formal computation
yields

(46)
1
2

∫
w(t)2φd x =

∫ t

t1

∫ �
−3

2
w2

xφx −wx wφx x − ε((w+ v)3 − v3)x wφ
�

d xds
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This can be rigorously justified by a regularization process: for any δ > 0, take ψ ∈ C∞c (R)
such that Supp(ψ) ⊂ [t1, t2] and ψ≡ 1 over [t1 +δ, t2 −δ]. Then ψw solves

(∂t + ∂
3
x )(ψw) =ψ′w− εψ �(w+ v)3 − v3

�
x in D′(R×R).

Taking a sequence of mollifiers (in both space and time) (ρε)ε>0, one has

(∂t + ∂
3
x )(ρε ∗ (ψw)) = ρε ∗ (ψ′w)− ερε ∗

�
ψ((w+ v)3 − v3)x

�
, t ∈ [t1, t2].

Writing wε = ρε ∗ (ψw), one now multiplies the above equation by wεφ and integrates over
[t1 +δ, t]×R:

∫
wε(t)

2φd x −
∫

wε(t1 +δ)
2φd x =

∫ t

t1+δ

∫ �
−3

2
(∂x wε)

2φx − (∂x wε)wεφx x

�
d xds

(47)

+

∫ t

1+δ

∫
ρε ∗ (ψ′w− εψ((w+ v)3 − v3)x)wεφd xds(48)

Using the decay properties of w and v (cf. Lemma 5), one may show that

w ∈ L2(φd x), ∂x w ∈ L6(φd x), ∂x w ∈ L2(φx d x),

w∂x w ∈ C (Supp(φx x)), uniformly in t ∈ [t1, t2].

Furthermore, since w ∈ C ([t1, t2], L∞loc(R)) and |w(t, x)| ® C‖w‖x−1 for x ¾ 1, it is trivial
to check, using the dominated convergence theorem, that w2φ ∈ C ([t1, t2], L1(R)). These
bounds are sufficient to show that, when ε→ 0 in (47), one obtains

1
2

∫
w(t)2φd x − 1

2

∫
w(t1 +δ)

2φd x(49)

=

∫ t

t1+δ

∫ �
−3

2
w2

xφx −wx wφx x − ε((w+ v)3 − v3)x wφ
�

d xds.

Finally, using once again the continuity of ‖w2(t)φ‖L1 , the limit δ→ 0 yields (46).

Step 2. Fix φ0 ∈ C∞(R) non-decreasing with φ(x) = 0 for x < 0 and φ(x) = 1 for x > 1.
Define the sequence φn(x) = φ0(1+ x/n), which satisfies

φn(x)→ 1 as n→∞, ‖(φn)x‖L2 =
‖(φ0)x‖L2p

n
.

Applying (46) to φn,

1
2

∫
w(t)2φnd x ¶

∫ t

t1

�
‖wx w‖L∞‖(φn)x x‖L1 − ε

∫
((w+ v)3 − v3)x wφnd x

�
ds.

We expand the last term:∫
(w3)x wφnd x =

∫
3wwx w2φnd x ,

∫
(vw2)x wφnd x =

∫
(vx w+ 2wx v)w2φnd x∫

(v2w)x wφnd x =

∫
2vx vw2φnd x +

1
2

∫
v2(w2)xφnd x =

∫
vx vw2φnd x − 1

2

∫
v2w2(φn)x d x .
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Recall that, from Lemma 5, as u, v ∈ E ([t1, t2]), ‖u(t)vx(t)‖L∞ ® ‖u‖‖v‖/t (and similarly
with w). Also,∫

v(t)2w(t)2(φn)x d x ¶ ‖(φn)x‖L2‖v(t)‖L∞‖v(t)‖L6‖w(t)‖2L6 ®
1p
n

1
t7/6
(‖u‖4 + ‖v‖4).

Hence

1
2

∫
w(t)2φnd x ®

∫ t

t1

‖w‖2‖(φn)x x‖L1
ds
s
+

∫ t

t1

(‖u‖2 + ‖v‖2)
�∫

w(s)2φnd x

�
ds
s

+

∫ t

t1

(‖u‖4 + ‖v‖4)‖(φn)x‖L2
ds
s

® ‖u‖2 + ‖v‖2
n

ln
�

t
t1

�
+
‖u‖4 + ‖v‖4p

nt1/6
1

+ (‖u‖2 + ‖v‖2)
∫ t

t1

�∫
w(s)2φnd x

�
ds
s

.

If we denote M = 4C(1+ ‖u‖4 + ‖v‖4)
�

ln
�

t2
t1

�
+ 1

t1/6
1

�
(where C is the implicit constant in

the above) we obtained∫
w(t)2φnd x ¶ Mp

n
+M

∫ t

t1

�∫
w(s)2φn

�
ds
s

.

Applying Gronwall’s inequality, there holds, for all t ∈ [t1, t2]∫
w(t)2φnd x ¶ Mp

n

�
t
t1

�M

.

Fix t ∈ [t1, t2]. Taking the limit n→∞ and using Fatou’s lemma, we infer∫
w(t)2d x ¶ lim inf

n

∫
w2(t)φnd x ¶ lim inf

n

Mp
n

�
t
t1

�M

= 0.

Thus w≡ 0 and u≡ v. □
Using the forward uniqueness property, we are able to obtain some further continuity infor-
mation on the solution u we constructed.

Proposition 18 (Continuity properties on ∂pũ). Let u ∈ E ([T−(u1), T+(u1)]) be the solution
constructed in Proposition 16.
The map t 7→ ∂pũ(t) is continuous in weak-L2 on [T−(u1), T+(u1)], continuous to the right in
L2, and it is continuous at t = 1.

Proof. Step 1. Continuity at t = 1 in L2.
Given a sequence tk → 1+, since ũ ∈ L∞((T,∞), Ḣ1((0,+∞))), one may extract a subse-
quence so that

∂pũ(tk)* z weakly in L2((0,+∞)).
The continuity of t 7→ ũ(t) ∈ L∞(R) implies that z = ∂pũ(1). Since u ∈ E ([T,∞)), given any
compact set K ⊂ R, the estimates of Lemma 5 imply that (u(tk))k∈N is in W 1,∞(K). Hence,
by Ascoli-Arzelá theorem, up to a subsequence, there exists v ∈ C (R) such that

u(tk)→ v in L∞(K), K compact subset of R.
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Moreover, due to the uniform decay of u(tk), one sees that this convergence is valid over
L∞(R). Since, by Step 3, ũ(tk) → ũ(1) in L∞(R), one must have v = u(1). Together with
the decay estimate (10), the Dominated Convergence theorem implies that

ũ(tk)→ ũ(1) in L6(R).

Hence

e−i tk p3ÓI u(tk) = i
�
∂pũ(tk)− 3tk

4π
ei tk p3Òu3(tk)

�
* e−ip3ÓI u(1) in L2((0,+∞)).

On the other hand, using (35) from Lemma 11,

‖(I u)(tk)‖L2((0,+∞)) ® lim
n

�∫ ∞
0

|ÓI u(tk)|2χ−1
n dp

�1/2

® lim
n

�∫ ∞
0

|ÓI u(1)|2χ−1
n dp+ on(1)δ

3

�
t1/6
k

= ‖(I u)(1)‖L2((0,+∞)) t1/6
k .

Therefore e−i tk p3ÓI u(tk)→ e−ip3ÓI u(1) in L2((0,+∞)) and

(50) ∂pũ(tk) = −ie−i tk p3ÓI u(tk) +
3tk

4π
ei tk p3Òu3(tk)→ ∂pũ(1) in L2((0,+∞)).

The continuity to the left of t = 1 follows from the same arguments and (36).

Step 2. Continuity to the right in L2.
Now we observe that ũ is continuous to the right with values in Ḣ1((0,+∞)).
Given t0 ∈ [T−(u1), T+(u1)), Proposition 16 show that one may build v satisfying ṽ ∈ E ([t0−
ε, t0 + ε]), for some ε > 0, with v a solution to (mKdV) in D′((t0 − ε, t0 + ε) × R) and
v(t0) = u(t0).
Step 1 shows that we can furthermore assume continuity at t0: ∂p ṽ(t)→ ∂p ṽ(t0) in L2((0,+∞))
as t → t0. However, by forward uniqueness, v ≡ u on [t0, t0 + ε], which means that ∂pũ is
continuous to the right at t0.

Step 3. Continuity in weak-L2.
Let (tn)n∈N be a sequence of times in [T−(u1), T+(u1)] such that tn→ t∗. We already saw that
ũ(tn)→ ũ(t∗) in L∞. Since ∂pũ(tn) in bounded in L2((0,+∞)), any subsequence admits a
sub-subsequence converging in weakly in L2, to a limit which can only be u(t∗). This proves
that the full sequence converges: ∂pũ(tn)* ∂pu(t∗) weakly in L2. □

Remark 19. If backward uniqueness holds, then the same proof shows full continuity: ∂pũ ∈
C ([T−(u1), T+(u1)], L2).

Proposition 20 (Forward uniqueness implies a backward blow-up alternative). Let u ∈
E ((T−, T+)) be a maximal solution of (mKdV). If T− > 0, then

limsup
t→T−

‖u(t)‖E (t) =∞.
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Proof. By contradiction, suppose that

∀t ∈ (T−, 1), ‖u(t)‖E (t) < M .

It follows from Step 3, proof of Proposition 13, that ũ is Lipschitz in time with values in
L∞(R). Moreover, since T− > 0, ũ is bounded in Ḣ1((0,+∞)). This means that u may be
extended up to t = T−: u ∈ E ([T−, 1]).
Now consider the solution v ∈ E ([T−−ε, T−+ε) of (mKdV) with v(T−) = u(T−). By forward
uniqueness, u≡ v for t > T−. This means that u is not maximal, a contradiction. □

6. WELL-POSEDNESS ON L2(R)∩E
In this section, we prove Proposition 4, that is, once we restrict the critical space to L2-
integrable functions, the local well-posedness theory works in both directions of time. We
split it into two statements: one for uniqueness and another for persistence of L2 integrability.

Proposition 21 (Backward uniqueness). If u, v ∈ E ([t1, t2]) are two solutions of (mKdV)
with u, v ∈ C ([t1, t2], L2(R)) and u(t2) = v(t2), then u1 ≡ u2.

Proof. Set w = u− v. Then (∂t + ∂ 3
x )w = −ε(u3 − v3)x . The right-hand side of the equation

is in L∞((t1, t2), L2(R)):

‖(u3)x(t)‖L2 ® ‖uxu(t)‖L∞‖u(t)‖L2 ® ‖u‖E (t1,t2)‖u‖L∞((t1,t2),L2).

Applying w to the equation, we see that����12 d
d t
‖w(t)‖22

����® (‖uxu(t)‖L∞ + ‖vx v(t)‖L∞)‖w(t)‖2L2

® (‖u‖E (t1,t2) + ‖u‖E (t1,t2))‖w(t)‖2L2 .

By Gronwall’s lemma, we obtain w≡ 0. □

We now prove existence of solutions in L2(R)∩E , which can be translated into a persistence
result:

Proposition 22 (Persistence of L2 integrability). Given u1 ∈ E (1)∩ L2(R), consider the cor-
responding solution u ∈ E (I) of (mKdV) given by Proposition 13. Then u ∈ C (I , L2(R)).

Proof. Consider the approximate solutions un of (Πn-mKdV). Since unχ
−1
n ∈ C (I , L∞(R)),

we have ũnχ
−1/2
n ∈ C (I , L2(R)). It then follows by direct integration that����12 d

d t

∫
|ũn(t, p)|2χ−1

n dp

����= ����∫ Ö(u3
n)x(t, p)ûn(t, p)dp

����= ����12
∫
(u2

n)xu2
nd x

����= 0

and so ‖ũχ−1/2
n (t)‖2L2(R) is conserved. In the limit n→∞, we obtain u ∈ L∞(I , L2(R)). We

then infer L2-conservation by direct integration of the equation for u:

‖u(t)‖L2 = ‖u1‖L2 .

Together with the weak L2-continuity, we conclude that u ∈ C (I , L2(R)). □
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7. ASYMPTOTIC BEHAVIOUR AS t → +∞
Given ν ∈ (0, 1/2), consider the norm

‖u‖Y νt = t
ν
3− 1

6 ‖∂pũ‖L2 + sup
p∈R

n
|p|−ν 
p3 t

� ν
3− 1

6 |ũ(p)|
o

and define
Y νt =

�
u ∈ S ′(R;R) : ũ(0) = 0, ‖u‖Y νt <∞

	
.

For the sake of completeness, we recall the following technical lemma.

Lemma 23 ([16, Lemma 2.2]). Given ν ∈ (9/20, 1/2), let u, v, w ∈ E ([1, T]) be such that
w̃(t, 0) = 0. Then there exists a universal constant C > 0 such that

(51) ∀t ∈ [1, T], ‖u(t)v(t)w(t)‖L2 ¶ C t− 5
6− ν3 ‖u(t)‖E (t)‖v(t)‖E (t)‖w(t)‖Y νt .

Furthermore,

(52)

����w(t, x)− 1
t1/3

ReAi
� x

t1/3

�
w̃(t, y)

����® t−1/3−ν/3 
|x |/t1/3
�−1/4 ‖w(t)‖Y νt ,

where

(53) y =

� p−x/3t, x < 0
0, x > 0

.

Proposition 24 (Asymptotics in the Fourier space). Given u ∈ E ([1,∞)) solution of (mKdV)
with ‖u‖E ([1,+∞)) ¶ δ, let S ∈ E ([1,∞)) be a self-similar solution withÕS(1)(0+) =Ôu(1)(0+).
Then, for any ν ∈ (9/20, 1/2),

(54) ‖u(t)− S(t)‖Y νt < 30δ, t ¾ 1.

On the other hand, there exists U∞ ∈ Cb(R \ {0}) such that

(55)

����ũ(t, p)− U∞(p)exp
�
− iε

4π
|U∞(p)|2 log t

�����® δ

〈p3 t〉 1
12

Finally, one has

(56) lim
p→0+
|U∞(p)|= lim

t p3→+∞ |S(t, p)|.
Remark 25. As a direct consequence, we see that, if S and S′ are two self-similar solutions
with ‖S‖E (1),‖S′‖E (1) ¶ δ and ÕS(1)(0) =ÖS′(1)(0),
then S = S′.
Proof. Proof of (54). Set w(t) = u(t)− S(t). Observe that

‖w(1)‖Y νt ¶ 2δ.

Suppose that there exists T1 > 1 such that

‖w(t)‖Y νt < 30δ, 1¶ t ¶ T1, and ‖w(T1)‖Y νT1
= 30δ.
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Due to the self-similar structure of S, I S = 0 and so

∂peS = 3tei t p3cS3.

Since (∂t + ∂x x x)w= −ε(w3 − 3uw2 + 3u2w)x ,

‖w̃p(t)‖L2((0,+∞)) ¶ ‖dIw(t)‖L2((0,+∞)) + 3t‖(w3 − 3uw2 + 3u2w)(t)‖L2

¶ ‖ÓI u(t)‖L2((0,+∞)) + 30δ3 t
1
6− ν3 ¶ 2δt

1
6− ν3 .

Moreover, since w̃(0) = 0,

|w̃(t, p)|¶pp‖w̃p(t)‖L2 ¶ 2δ|p|ν 
p3 t
� 1

6− ν3

Thus
30δ = ‖w(T1)‖Y νT1

¶ 4δ,

which is a contradiction. Hence

‖w(t)‖Y νt < 30δ, t ¾ 1

and (54) follows.
Proof of (55). From (24), we have

|(ũEu)(t, p)− (ũEu)(τ, p)|® δ

〈p3τ〉 1
12

, t ¾ τ

where we recall that (see (23))

Eu(t, p) = exp

�
−iε

∫ t

1

p3

4π 〈p3s〉 |ũ(s, p)|2ds

�
.

Thus there exists U ∈ L∞(R), U ∈ C (R \ {0}), such that

(57) |(ũEu)(t, p)− U(p)|® δ

〈p3 t〉 1
12

.

Writing

ψ(t, p) =

∫ t

1

p3

4π 〈p3s〉(|ũ(s, p)|2 − |ũ(t, p)|2)ds,

we have

ψ(t)−ψ(τ) =
∫ t

τ

p3

4π 〈p3s〉(|ũ(s, p)|2 − |ũ(t, p)|2)ds

+ (|ũ(τ, p)|2 − |ũ(t, p)|2)
∫ t

τ

p3

4π 〈p3s〉ds

which implies that

|ψ(t, p)−ψ(τ, p)|® δ

〈p3τ〉 1
12

Therefore there exists Ψ ∈ L∞(R), Ψ ∈ C (R \ {0}) such that

(58) |ψ(t, p)−Ψ(p)|® δ

〈p3 t〉 1
12
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We decompose∫ t

1

p3ds
〈p3s〉 =

∫ p3 t

p3

ds
〈s〉 =

∫ p3 t

p3

ds
s
+

∫ p3 t

p3

�
1
〈s〉 −

1
s

�
ds

= log t +

∫ ∞
p3

s− 〈s〉
s 〈s〉 −

∫ ∞
tp3

s− 〈s〉
s 〈s〉 =: log t +R(p3)−R(t p3)

Since

| 〈s〉 − s|= s

��
1+

1
s2

�1/2

− 1

�
® s−1,

we have

|R(y)|® 1
y2

.

Thus,�����
∫ t

1

p3|ũ(s, p)|2ds

4π(p3s)1−γ/2 〈p3s〉γ/2 −Ψ(p)−
1

4π
|U(p)|2R(p3)− 1

4π
|U(p)|2 log t

�����® δ

(p3 t)
1
12

.

Defining

U∞(p) = U(p)exp
�
−iεΨ(p)− iε

4π
|U(p)|2R(p3)

�
,

(57) and (58) imply����ũ(t, p)− U∞(p)exp
�
− iε

4π
|U∞(p)|2 log t

�����® δ

〈p3 t〉 1
12

.

Proof of (56): Using (54) and (55),

||S(t, p)| − |U∞(p)||® |p|ν


tp3
� 1

6− ν3 + 1

〈p3 t〉 1
12

Take, at the same time, t p3→ +∞ and p→ 0+ so that the right-side goes to zero. Then

lim
p→0+
|U∞(p)|= lim

t p3→+∞ |S(t, p)|.
□

Remark 26. If u is an L2 solution of (mKdV), then (55) implies that U∞ ∈ Lp(R), for p large.
On the other hand, if one takes u as a self-similar solution, then |U∞| is a constant.

Corollary 27 (Asymptotics in the physical space). Given u ∈ E ([1,∞)) solution of (mKdV)
with ‖u‖E ([1,+∞)) ¶ δ, let S ∈ E ([1,∞)) be the self-similar solution withÕS(1)(0+) =Ôu(1)(0+).
Then, for any ν ∈ (9/20, 1/2),

(59) ‖u(t)− S(t)‖L∞ ® δ

t1/3+ν/3
.
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On the other hand,

(60)

����u(t, x)− 1
t1/3

ReAi
� x

t1/3

�
U∞ (y)exp

�
− iε

6
|U∞(y)|2 log t

�����¶ δ

t1/3


x/t1/3

�3/10
,

where y is defined by (53).

Proof. Define w(t) := u(t, x)− S(t, x). Then, by Proposition 24,

‖w(t)‖Y νt < 30δ.

The definition of the norm of Y νt and the decay estimate for the Airy-Fock function imply����� 1
t1/3

ReAi
� x

t1/3

�
w̃

�
t,

√√ |x |
3t

������® δt−1/3


x/t1/3

�−1/4 |x/t|ν/2 
x3/2/t1/2
� 1

6− ν3 ® δ

t1/3+ν/3
.

Together with (52), we obtain (59). Finally, (60) follows from (16) and (55). □

APPENDIX A. ASYMPTOTIC DEVELOPMENT OF THE NONLINEARITY

Proof of Lemma 6. We actually prove a slightly stronger version: our goal here is to obtain
the right asymptotics for

(61) N (t, p) = p3

∫∫
q1+q2+q3=1

e−i t p3(1−q3
1−q3

2−q3
3) f (pq1)g(pq2)h(pq3)dq1dq2

assuming that f (and mutatis mutandis g, h) satisfies

f (p) = f (−p), ‖ f ‖E(t) := ‖ f ‖L∞ + t− 1
6 ‖∂p f ‖L2((0,+∞)) =<∞.

Specifically, we prove that

N (t, p) =
πp3

〈p3 t〉
�

i f (p)g(p)h(p)− 1p
3

e−
8i t p3

9 f
� p

3

�
g
� p

3

�
h
� p

3

��
+ R(t, p)(62)

where the remainder R satisfies the bound

|R(t, p)|® p3‖ f ‖E(t)‖g‖E(t)‖h‖E(t)
(p3 t)5/6 〈p3 t〉1/4 .(63)

The usual stationary phase arguments either use high regularity assumptions or that all the
functions involved have enough spatial decay (specifically L2, in order to apply Parseval’s
identity), which fail in our setting: as mentioned earlier, the way the computations are per-
formed is critical in order to close the argument with suitable bounds. Before we proceed,
let us first explain the ideas of the computations, and start with the main order term. The
phase

Q := −(1− q3
1 − q3

2 − q3
3)

has four stationary points:�
1
3

,
1
3

,
1
3

�
, (1, 1,−1), (−1, 1, 1), (1,−1, 1).

The last three are connected through the symmetry between q1, q2 and q3. Then we split the
domain of integration using three cutoff functions φ j with φ1 +φ2 +φ3 = 1 such that the

30



support of φ j does not include the stationary points with qk = −1, k 6= j. Therefore, without
loss of generality, in order to study the asymptotics for N , it suffices to consider

p3

∫∫
q1+q2+q3=1

ei t p3Q f (pq1)g(pq2)h(pq3)φ(q1, q2)dq1dq2,

were φ := φ3 and the relevant stationary points are�
1
3

,
1
3

,
1
3

�
, (1, 1,−1).

If the general stationary phase argument was applicable, then

N (t, p) = k1(t, p)e−
8i t p3

9 f
� p

3

�
g
� p

3

�
h
� p

3

�
+ k2(t, p) f (p)g(p)h(p)

+ remainder.

If one takes smooth cutoff functions around the stationary points ψ1/3 and ψ1, then the
stationary phase argument for smooth functions (see, for example, [8]) implies that, up to
a small remainder,

1
3

k1(t, p)e−
8i t p3

9 f
� p

3

�
g
� p

3

�
h
� p

3

�
= f

� p
3

�
g
� p

3

�
h
� p

3

��
p3

∫∫
q1+q2+q3=1

ei t p3Qψ1/3(q1, q2)φ(q1, q2)dq1dq2

�
,

and

k2(t, p) f (t, p)g(t, p)h(t, p)

= f (p)g(p)h(p)

�
p3

∫∫
q1+q2+q3=1

ei t p3Qψ1(q1, q2)φ(q1, q2)dq1dq2

�
.

This implies that the remainder in the stationary phase argument is given by

(64) p3

∫∫
q1+q2+q3=1

ei t p3QΦdq1dq2

where

Φ := f (pq1)g(pq2)h(pq3)− f (p)g(p)h(p)ψ1(q1, q2)− f
� p

3

�
g
� p

3

�
h
� p

3

�
ψ1/3(q1, q2).

We now explain the main ideas behind the computations for the remainder.
The function Φ, due to the fact that f , g and h are Hölder continuous of degree 1/2, satisfies

|Φ|® p1/2 t1/6(
Æ|q1 − 1/3|+Æ|q2 − 1/3|)

and
|Φ|® p1/2 t1/6(

Æ|q1 − 1|+Æ|q2 − 1|).
There are three regions of integration:

• the inner region: q3 > 1/6,
• the middle region: −2< q3 < 1/5,
• the outer region: q3 < −3/2.
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In the first and the second regions, we are close to a stationary point and we shall use the
Hölder estimate. In the third region, q1 and q2 are large, meaning that we are far from
any possible singularity coming from integration by parts. The splitting of the integral into
these three regions can be accomplished by using appropriate cut-off functions; however, to
simplify the exposition of the proof, we omit these terms.

Instead of applying the usual relation i t p3(∂Q)ei t p3Q = ∂ (ei t p3Q), we use

(65) Kei t p3Q =
1

1+ i t p3K∂Q
∂ (Kei t p3Q), ∂ K ≡ 1, K = 0 at the stationary point.

The introduction of K leads to some simplifications: firstly, there is no singularity appearing
in the integration by parts; second, the K in the numerator will add some degeneracy.

The required decay has to come from two integration by parts (one integration eliminates
the p3 factor but does not show decay). This has to be done carefully, since f , g and h cannot
be differentiated more than once. The key fact is that one may differentiate, for example,

fp(pq1)g(pq2)h(pq3)

in the q2 (or q3) direction. Therefore, the two required integration by parts are made in
different directions, so that no second derivatives of f appear.
Even though one could perform all the computations in the q1, q2 coordinates, we introduce
some linear change of variables so that it becomes clearer in which direction we integrate
by parts and which terms are irrelevant in each region. For example, we shall say that q1
is irrelevant on the middle region and throw it away when taking absolute values in the
integrand.

We now bound the remainder terms in detail. Throughout this proof, τ = t p3 and p > 0.
Consider the change of variables

1− q1 = λ−µ, 1− q2 = λ+µ, 1− q3 = 2(1−λ).
Notice that both stationary points satisfy µ= 0. We now use the relation

eiτQ =
1

1+ 4iτµ2(1−λ)∂µ(µeiτQ)

and integrate by parts (64):∫∫
eiτQΦdq1dq2 =

∫∫
eiτQΦ

8iτµ2(1−λ)
(1+ 4iτµ2(1−λ))2 dq1dq2

+

∫∫
eiτQΦq1

µ

1+ 4iτµ2(1−λ)dq1dq2

−
∫∫

eiτQΦq2

µ

1+ 4iτµ2(1−λ)dq1dq2

= M1 +M2 −M3.

The estimate for M3 follows from similar computations as those for M2.
We will bound M1 and M2 separately, depending whether τ is less or greater than 1, in the
four claims below.
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Let us focus first of M1. We take η= µ
p

1−λ and use, for a fixed λ0 ∈ {0, 2/3},
eiτQ =

1
1+ 2iτ(λ−λ0)λ(2− 3λ)

∂λ((λ−λ0)e
iτQ).

Hence

M1 =

∫∫
eiτQΦ

8iτµ2(1−λ)
(1+ 4iτµ2(1−λ))2 dq1dq2 =

∫∫
eiτQΦ

8iτη2

(1+ 4iτη2)2
dηdλp
1−λ

=

∫∫
eiτQ

�
Φq1

�
1+

µ

2(1−λ)
�
+Φq2

�
1− µ

2(1−λ)
�
− 2Φq3

�
× 8iτ(λ−λ0)η2dλdη
(1+ 4iτη2)2(1−λ)1/2(1+ 2iτ(λ−λ0)λ(2− 3λ))

+

∫∫
eiτQΦ

�
− 1

2
p
(1−λ) +

2iτ (λ(2− 3λ) + (λ−λ0)(2− 3λ)− 3(λ−λ0)λ)
1+ 3iτ(λ−λ0)λ(2− 3λ)

�
× 8iτ(λ−λ0)η2dλdη
(1+ 4iτη2)2(1−λ)1/2(1+ 2iτ(λ−λ0)λ(2− 3λ))

.

Claim 28. For τ¾ 1, we have the bound on M1:

|M1|® τ−13/12.

Proof. Bounds in the inner region: here we choose λ0 = 0. Since

2− 3λ, 1−λ, 1± µ

2(1−λ) are irrelevant,

a direct bound on M1 yields

|M1|®
∫∫ |τη2λ|
|1+ iτη2|2|1+ iτλ2|(|Φq1

|+ |Φq2
|+ |Φq3

|)dλdη

+

∫∫
|Φ|
� |τλη2|
|1+ iτλ2||1+ iτη2|2 +

|τλ2||τη2|
|1+ iτλ2|2|1+ iτη2|2

�
dλdη.

The first term is bounded by Cauchy-Schwarz:∫∫ |τη2λ|
|1+ iτη2|2|1+ iτλ2|(|Φq1

|+ |Φq2
|+ |Φq3

|)dλdη

® τ1/2

∫
τη2dη
|1+ iτη2|2

�∫
λ2dλ
|1+ iτλ2|2

�1/2

® τ−13/12.

For the second and the third term, we use the Hölder estimate for |Φ|:
|Φ|® τ1/6(

Æ|λ|+Æ|η|)
and obtain∫∫

|Φ| |τλη2|dλdη
|1+ iτλ2||1+ iτη2|2 ® τ

1/6

∫∫ |λ|3/2|τη2|+ |τλ||η|5/2
|1+ iτλ2||1+ iτη2|2 dλdη® τ−13/12
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and∫∫
|Φ| |τλ2||τη2|dλdη
|1+ 3iτλ2|2|1+ iτη2|2 ® τ

1/6

∫∫ |τ|2(|λ|5/2|η|2 + |λ|2|η|5/2)
|1+ iτλ2|2|1+ iτη2|2 dλdη® τ−13/12.

Bounds in the middle region: here we take λ0 = 2/3. Since

λ, 1−λ, 1± µ

2(1−λ) are irrelevant,

a direct bound on M1 yields

|M1|®
∫∫ |τη2(λ− 2/3)|
|1+ iτη2|2|1+ iτ(λ− 2/3)2|(|Φq1

|+ |Φq2
|+ |Φq3

|)dλdη

+

∫∫
|Φ|
� |τ(λ− 2/3)η2|
|1+ iτ(λ− 2/3)2||1+ iτη2|2 +

|τ(λ− 2/3)2||τη2|
|1+ iτ(λ− 2/3)2|2|1+ iτη2|2

�
dλdη.

and the estimate follows as in the inner region.
Bounds in the outer region: we consider λ0 = 0 and use

1± µ

2(1−λ) ∼ 1± η

|λ|3/2 , 1+ 3λ∼ λ, 1+ 3iτλ2 ∼ τλ2

to obtain

|M1|®
∫∫ |λη2|
|1+ iτη2|2|λ|7/2

��
1+
|η|
|λ|3/2

�
(|Φq1
|+ |Φq2

|) + |Φq3
|+ 1
|λ|1/2 |Φ|

�
® τ−13/12,

where the terms with |η|/|λ|3/2 is taken care with Cauchy-Schwarz in the η-variable. □

Claim 29. For τ < 1, we have the bound on M1

|M1|® τ−5/6.

Proof. In the outer region, we take λ0 = 0 and estimate

|M1|®
∫∫

τ|λη2|
|1+ iτη2|2|λ|1/2|1+ iτλ3|

��
1+
|η|
|λ|3/2

�
(|Φq1
|+ |Φq2

|) + |Φq3
|+ 1
|λ|1/2 |Φ|

�
® τ−5/6.

In the inner and middle regions, we simply use the fact that Φ is bounded and conclude to a
better bound than needed: ����∫∫ ei t p3QΦdq1dq2

����® 1. □

Claim 30. For τ¾ 1, we have the bound on M2:

|M2|® τ−13/12.

Proof. We consider the change of variables

µ=
3ζ+ ξ− 2

2
, λ=

2− ζ+ ξ
2

.

One may obtain this transformation by going back to the ξ variables, switching q1 with q3
and then redoing the λ,µ transformation. In this way, q1 depends on a single variable ζ.
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In this coordinate system, the stationary points are

(ξ,ζ) = (0, 2/3) and (−1, 1).

In the inner region, we use the relation

eiτQ =
1

1+ 4iτξ2(1− ζ)∂ξ(ξeiτQ).

Define

A= 1+ 4iτξ2(1− ζ), B = 1+ 4iτµ2(1−λ) = 1+ iτ(3ζ+ ξ− 2)2(ζ− ξ)/2.

We now integrate by parts:

M2 =

∫∫
eiτQ

µΦq1

B
dξdζ

=

∫∫
ξeiτQ

�
Φq1q2

µ

AB
+
Φq1

AB
+µΦq1

� Aξ
A2B

+
Bξ

AB2

��
dξdζ.

Since, in this region,

1¾ ζ, 1− z ∼ 1,

����ξAξ
A

����® 1, B ∼ 1+ iτµ2, Bξ ∼ τµ,

we can now estimate M2 as follows:

|M2|®
∫∫ |ξµ|||Φq1q2

|+ |ξ||Φq1
|

|1+ iτξ2||1+ iτµ2|
+ |µ||Φq1

|
�

1
|1+ iτξ2||1+ iτµ2| +

|τµξ|
|1+ iτξ2||1+ iτµ2|2

�
dξdµ.

We apply Cauchy-Schwarz to all four terms:∫∫ |ξµ|||Φq1q2
|

|1+ iτξ2||1+ iτµ2|dξdµ® τ1/3

�∫ |µ|2dµ
|1+ iτµ2|2

� 1
2
�∫ |ξ|2dξ
|1+ iτξ2|2

� 1
2

® τ−7/6,∫∫ |ξ||Φq1
|

|1+ iτξ2||1+ iτµ2|dξdµ® τ1/6

∫
dµ

|1+ iτµ2|
�∫ |ξ|2dξ
|1+ iτξ2|2

� 1
2

® τ−13/12,∫∫ |µ||Φq1
|

|1+ iτξ2||1+ iτµ2|dξdµ® τ1/6

�∫ |µ|2dµ
|1+ iτµ2|2

� 1
2
∫

dξ
|1+ iτξ2| ® τ

−13/12,∫∫ |τµ2ξ||Φq1
|

|1+ iτξ2||1+ iτµ2|2 dξdµ® τ1/6

�∫ |ξ|2dξ
|1+ iτξ2|2

� 1
2
∫ |τµ2|dµ
|1+ iτµ2|2 ® τ

−13/12,

which gives suitable bounds.
In the middle region, we use the following relation to capture the stationary point:

eiτQ =
1

1+ 2iτξ(ξ+ 1)(1− ζ)∂ξ((ξ+ 1)eiτQ).

After an integration by parts, the computations are similar to those of the inner region and
are left to the reader.
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In the outer region, we consider the case |1− ζ|< 1/100 first. Then

µ∼ ξ, 1−λ∼ ξ, |ξ|¦ 1

and so

|M2|®
∫∫

ξ

|1+ iτξ2ζ||1+ iτξ3|
�
ξΦq1q2

+Φq1
+ ξΦq1

� |τξζ|
|1+ iτξ2ζ| +

|τξ3|
|1+ iτξ3|

��
dξdζ.

We now estimate each term separately.∫∫ |ξ2Φq1q2
|

|1+ iτξ2ζ||1+ iτξ3|dξdζ® τ1/3

�∫∫
ξ4dξdζ

|1+ iτξ2ζ|2|1+ iτξ3|2
� 1

2

® τ−2/3

�∫
|ξ|¦τ1/3

ξ2dξ
|1+ iξ3|2

∫
dζ
|1+ iζ|2

� 1
2

® τ−7/6,∫∫ |ξ||Φq1
|

|1+ iτξ2ζ||1+ iτξ3|dξdζ® τ1/6

∫
dξ

|1+ iτξ3|
�∫

ξ2dζ
|1+ iτξ2ζ|2

� 1
2

® τ−7/6,∫∫
ξ2|Φq1

|
|1+ iτξ2ζ||1+ iτξ3|dξdζ® τ1/6

∫ |ξ|dξ
|1+ iτξ3|

�∫
ξ2dζ

|1+ iτξ2ζ|2
� 1

2

® τ−7/6.

In the remaining case where |1− ζ| > 1/100, we further split in the cases |µ| < 1/100 and
|µ|> 1/100. In the former case,

ζ∼ −ξ, 1− z ∼ −ξ, |τξ2ζ|¾ 1

meaning that

|M2|®
∫∫ |ξ|
|τξ3||1+ iτµ2ξ|

�
|µΦq1q2

|+ |Φq1
|+ |µΦq1

|
�

1+
|τµξ|
|1+ iτµ2ξ|

��
dξdµ.

Again using Cauchy-Schwarz inequality,∫∫ |ξ|
|τξ3||1+ iτµ2ξ| |µΦq1q2

|dξdµ® τ−2/3

�∫∫
µ2dµdξ

ξ4|1+ iτµ2ξ|2
� 1

2

® τ−17/12,∫∫ |ξ|
|τξ3||1+ iτµ2ξ| |Φq1

|dξdµ® τ−5/6

∫
dξ
ξ2

�∫
dµ

|1+ iτµ2ξ|
� 1

2

® τ−13/12,∫∫ |µξΦq1
|

|τξ3||1+ iτµ2ξ|
�

1+
|τµξ|
|1+ iτµ2ξ|

�
dξdµ®

∫∫ |ξ||Φq1
|

|τξ3||1+ iτµ2ξ|dξdµ® τ−13/12.

Finally, in the latter case where |µ|> 1/100, one has

|1+ iτξ2ζ|¦ |τξ2ζ|, |1+ iτµ2(1−λ)|¦ |τµ2(1−λ)|.
This implies directly the even better bound |M2|® τ−5/3. □

Claim 31. For τ < 1, we have the bound on M2:

|M2|® τ−2/3.
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Proof. In the outer region, we further split depending on the sizes of ζ and µ. Assume first
that |ζ|< 1/100. Proceeding as in Claim 30, we obtain

|M2|® τ−2/3.

If |ζ|> 1/100 and |µ|< 1/100, then

ζ∼ −ξ, 1−λ∼ −ξ.

This yields the estimates∫∫ |µξ|
|1+ iτξ3||1+ iτµ2ξ| |Φq1q2

|dξdµ® τ1/3

�∫∫
ξ2µ2dξdµ

|1+ iτξ3|2|1+ iτµ2ξ|2
� 1

2

® τ−2/3,∫∫ |ξ|
|1+ iτξ3||1+ iτµ2ξ| |Φq1

|dξdµ® τ1/6

∫
dξ

|1+ iτξ3|
�∫

ξ2dµ
|1+ iτµ2ξ|2

� 1
2

® τ−2/3.

Finally, if |µ|> 1/100, then
µ∼ ζ+ ξ, 1−λ∼ ζ− ξ,

and so ∫∫
(|ζ|+ |ξ|)|ξ|

|1+ iτξ2ζ||1+ iτ(ζ+ ξ)2(ζ− ξ)| |Φq1q2
|dζdξ

® τ1/3

�∫∫
(|ζ|2 + |ξ|2)|ξ|2

|1+ iτξ2ζ|2|1+ iτ(ζ+ ξ)2(ζ− ξ)|2 |dζdξ

� 1
2

® τ−2/3,∫∫ |ξ|
|1+ iτξ2ζ||1+ iτ(ζ+ ξ)2(ζ− ξ)| |Φq1

|dζdξ

® τ1/6

∫
dξ

� |ξ|2dζ
|1+ iτξ2ζ|2|1+ iτ(ζ+ ξ)2(ζ− ξ)|2

� 1
2

® τ−2/3.

Finally, in the inner and middle regions, we proceed as in Claim 29: the fact that Φ is bounded
yields the better bound ����∫∫ ei t p3QΦdq1dq2

����® 1. □

Gathering all these bounds, and taking into account the main order term, gives the expansion
(62) together with the bound (63) on the remainder. The proof is complete. □
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