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We prove a local well posedness result for the modified Korteweg-de Vries equation in a critical space designed so that is contains self-similar solutions. As a consequence, we can study the flow of this equation around self-similar solutions: in particular, we give an asymptotic description of small solutions as t → +∞.

INTRODUCTION

In this paper, we are interested in the dynamics near self-similar solutions for the modified Korteweg-de Vries equation:

∂ t u + ∂ 3 x u + ε∂ x (u 3 ) = 0, u : t × x → . (mKdV)
The signum ε ∈ {±1} indicates whether the equation is focusing or defocusing. In our framework, ε will play no major role. The (mKdV) equation enjoys a natural scaling: if u is a solution then u λ (t, x) := λ 1/3 u(λt, λ 1/3 x) is also a solution to (mKdV). As a consequence, the self-similar solutions, which preserve their shape under scaling S(t, x) = t -1/3 V (t -1/3 x), are therefore of special interest. Self-similar solutions play an important role for the (mKdV) flow: they exhibit an explicit blow up behavior, and are also related to the long time description of solutions. For smooth and decaying data, this problem (the so-called soliton resolution conjecture) can be studied via the inverse transform method: (mKdV) is integrable. For generic such initial data, a self similar solution appears in the self-similar region t -1/3 x = O(1); we refer to Deift and Zhou [START_REF] Deift | A steepest descent method for oscillatory riemann-hilbert problems. asymptotics for the mkdv equation[END_REF] for the defocusing case and the recent work by Chen and Liu [START_REF] Chen | Soliton resolution for the modified kdv equation[END_REF] and the references therein for the focusing case, with a description involving solitons and breathers outside of the self-similar region.

Even if one considers small (and smooth, decaying) initial data -an assumption which rules out solitons and breathers -solutions to (mKdV) display a modified scattering where selfsimilar solutions appear: we refer to Hayashi and Naumkin [START_REF] Hayashi | Large time behavior of solutions for the modified Korteweg-de Vries equation[END_REF][START_REF] Hayashi | On the modified Korteweg-de Vries equation[END_REF], which was revisited by Germain, Pusateri and Rousset [START_REF] Germain | Asymptotic stability of solitons for mKdV[END_REF] and Harrop-Griffiths [START_REF] Harrop-Griffiths | Long time behavior of solutions to the mKdV[END_REF].

Another example where self-similar solutions of the (mKdV) equation are relevant is in the long time asymptotics of the so-called Intermediate Long Wave (ILW) equation. This equation occurs in the propagation of waves in a one-dimensional stratified fluid in two limiting cases.

In the shallow water limit, the propagation reduces to the KdV equation, while in the deep water limit, it reduces to the so-called Benjamin-Ono equation. In a recent work, Bernal-Vilchis and Naumkin [START_REF] Bernal | Self-similar asymptotics for solutions to the intermediate long wave equation[END_REF] study the large-time behavior of small solutions of the (modified) (ILW), and they prove that in the so-called self-similar region the solutions tend at infinity to a self-similar solution of (mKdV). Self-similar solutions and the (mKdV) flow are also related to some other simplified models in fluid dynamics. More precisely, Goldstein and Petrich [START_REF] Goldstein | Solitons, Eulers equations, and vortex patch dynamics[END_REF] find a formal connection between the evolution of the boundary of a vortex patch in the plane under Euler equations and a hierarchy of completely integrable dispersive equations. The first element of this hierarchy is:

∂ t z = -∂ 3 s z + ∂ s z(∂ 2 s z) 2 , |∂ s z| 2 = 1, (1) 
where z = z(t, s) is complex-valued and parametrizes a plane curve (by its arclength s) which evolves in time t. A direct computation shows that its curvature solves the focusing (mKdV) (with ε = 1), and self-similar solutions with initial data

U(t) cδ 0 + α v.p. 1 x as t → 0 + , α, c ∈ , (2) 
correspond to logarithmic spirals making a corner, see [START_REF] Perelman | Self-similar planar curves related to modified Korteweg-de Vries equation[END_REF]. Finally, (mKdV) is a member of a two parameter family of geometric flows that appears as a model for the evolution of vortex filaments. In this case, the filaments are curves that propagate in 3d, and their curvature and torsion determined a complex valued function that satisfies a non-linear dispersive equation. This equation, that depends on the two free parameters, is a combination of a cubic non-linear Schrödinger equation (NLS) and a complex modified KdV equation. The particular case of cubic (NLS) has received plenty of attention. The corresponding geometric flow is known as either the binormal curvature flow or the Localized Induction Approximation, a name that is more widely used in the literature of fluid dynamics. In this setting, the relevant role played by the self-similar solutions, including also logarithmic spirals, has been largely studied. We refer the reader to the recent paper by Banica and Vega [START_REF] Banica | Evolution of polygonal lines by the binormal flow[END_REF] and the references therein. Among other things, the authors prove that self-similar solutions have finite energy, when the latter is properly defined. Moreover, they give a well-posedness result in an appropriately chosen space of distributions that contains the self-similar solutions.

Our goal in this paper is to continue our work initiated in [START_REF] Correia | Asymptotics in Fourier space of self-similar solutions to the modified Korteweg-de Vries equation[END_REF], and to study the (mKdV) flow in spaces in which self-similar solutions naturally live. As we will see, the number of technical problems increases dramatically with respect to the case of (NLS). This is due to the higher dispersion, which makes the algebra rather more complicated, and to the presence of derivatives in the non-linear term. In this article, we give the first steps to deal with these issues. In order to have a hint at one of the main challenges we face, let us recall the main result of [START_REF] Correia | Asymptotics in Fourier space of self-similar solutions to the modified Korteweg-de Vries equation[END_REF], which gives a description in Fourier space of self-similar solutions.

Theorem. Given c, α ∈ small enough, there exists unique a ∈ , A, B ∈ and a self-similar solution S(t, x) = t -1/3 V (t -1/3 x), where V satisfies for p 2, e -i t p 3 V (p) = Ae ia ln |p| + B e 3ia ln |p|-i 8 9 p 3 p 3 + z(p), [START_REF] Chen | Soliton resolution for the modified kdv equation[END_REF] for |p| 1, e -i t p 3 V (p) = c + 3iα 2π sgn(p) + z(p), [START_REF] Correia | Asymptotics in Fourier space of self-similar solutions to the modified Korteweg-de Vries equation[END_REF] where z ∈ W 1,∞ ( ), z(0) = 0 and for any k < 4 7 , |z(p)| + |pz (p)| = O(|p| -k ) as |p| → +∞. One sees that there is no decay for high frequencies: this is a standard feature for a selfsimilar solution. The jump at frequency 0 for α = 0 (as in ( 2)) encodes a different geometric information: for example, in the context of the vortex patch [START_REF] Banica | Evolution of polygonal lines by the binormal flow[END_REF], it is related to the angle of the curve at the corner. We emphasize that self-similar solutions do not fit in any of the functional spaces considered for the use of the inverse scattering transform as in [START_REF] Deift | A steepest descent method for oscillatory riemann-hilbert problems. asymptotics for the mkdv equation[END_REF][START_REF] Chen | Soliton resolution for the modified kdv equation[END_REF] or in the setting derived from [START_REF] Hayashi | On the modified Korteweg-de Vries equation[END_REF]: both due to the behavior at high frequency, and to the jump at frequency 0. In those works, the lack of decay for high frequency was not important because self-similar solutions were only relevant in a bounded region (for fixed time); and decaying initial data means that α = 0 so that there was no jump. Hence, the analysis therein does not suit our purposes: the study of the (mKdV) flow around self-similar solutions must be done in sharper spaces than in earlier works, and preferably in a critical space.

DEFINITIONS AND MAIN RESULTS

2.1. Notations and functional setting. We start with some notations. û represents the Fourier transform of u (in its space variable x only, if u is a space time function), and we will often denote by p the variable dual to x in the Fourier side. We denote by (t) the linear KdV group:

(t)v(p) = e i t p 3 v(p), for any v ∈ ( ). Given a (space-time) function u, we denote ũ, the profile of u, defined by ũ(t, p) := (-t)u(t)(p) = e -i t p 3 û(t, p). [START_REF] Côte | Scaling-sharp dispersive estimates for the Korteweg-de Vries group[END_REF] In all the following, C denotes various constants, which can change from one line to the next, but does not depend on the other variables which appear. As usual, we use the conventions a b and a = O(b) to abbreviate a C b. We will also use the Landau notation a = o n (b) when a and b are two complex quantities (depending in particular of n) such that a/b → 0 as n → +∞; and mutatis mutandis a = o (b) when a/b → 0 as → 0. We use often the japanese bracket 〈 y〉 = 1 + | y| 2 , and the (complex valued) Airy-Fock function [START_REF] Deift | A steepest descent method for oscillatory riemann-hilbert problems. asymptotics for the mkdv equation[END_REF] Ai(z

) := 1 π +∞ 0 e ipz+ip 3 d p.
For v ∈ ( ) such that v ∈ L ∞ ∩ Ḣ1 , and for t > 0, we define the norm (depending on t) with which we will mostly work:

v (t) := (-t)v L ∞ ( ) + t -1/6 ∂ p (-t)v L 2 ((0,+∞)) . ( 7 
)
Let us remark that we will only consider real-valued functions u, and so û(t, -p) = û(t, p). As a consequence, the knowledge of frequencies p > 0 is enough to completely determine u(t). In the above definition, the purpose of considering L 2 ((0, +∞)) is to allow a jump at 0 as discussed above. Observe that the (t) norm is scaling invariant, in the following sense:

u λ (t) (t) = u(λt) (λt) , λ > 0.
In particular, self-similar solutions have constant (t) norm for t ∈ (0, +∞). If u is a space-time function defined on a time interval I ⊂ (0, +∞), we extend the above definition and denote

u (I) := sup t∈I u(t) (t) = sup t∈I ũ(t) L ∞ ( ) + t -1/6 ∂ p ũ(t) L 2 ((0,+∞)) .
In the same spirit, we define the functional space

(1) := {u ∈ ( ) : u (1) < +∞},
and for I ⊂ (0, +∞),

(I) = {u : I → ( ) : ũ ∈ (I, b ((0, +∞))), ∂ p ũ ∈ L ∞ (I, L 2 ((0, +∞)))}, (8) 
endowed with the norm • (I) .

Main results.

We can now state our results. Our main result is a local well-posedness result in the space (I), for initial data u 1 ∈ (1) at time t = 1.

Theorem 1. Let u 1 ∈ (1). Then there exist T > 1 and a solution u ∈ ([1/T, T ]) to (mKdV) such that u(1) = u 1 .
Furthermore, one has forward uniqueness. More precisely, let 0 < t 1 < t 2 and u and v be two solutions to (mKdV) 

such that u, v ∈ ([t 1 , t 2 ]). If u(t 1 ) = v(t 1 ), then for all t ∈ [t 1 , t 2 ], u(t) = v(t).
For small data in (1), the solution is actually defined for large times, and one can describe the asymptotic behavior. This is the content of our second result.

Theorem 2. There exists δ > 0 small enough such that the following holds. If u 1 (1) δ, the corresponding solution satisfies u ∈ ([1, +∞)). Furthermore, let S be the self-similar solution such that

Ŝ(1, 0 + ) = û1 (0 + ) ∈ . Then u(t) -S(t) L ∞ u 1 (1) t -5/6 - . Moreover, there exists a profile U ∞ ∈ b ( \ {0}, ), with |U ∞ (0 + )| = lim p→+∞ | Ŝ(1, p)| is well-defined, and ũ(t, p) -U ∞ (p) exp - iε 4π |U ∞ (p)| 2 log t δ 〈p 3 t〉 1 12 u 1 (1) .
As a consequence, one has the asymptotics in the physical space.

Corollary 3. We use the notations of Theorem 2, and let

y = -x/3t, if x < 0, 0, if x > 0.
One has, for all t 1 and x ∈ ,

u(t, x) - 1 t 1/3 Re Ai x t 1/3 U ∞ ( y) exp - iε 6 |U ∞ ( y)| 2 log t δ t 1/3 x/t 1/3 3/10 . (9) 
2.3. Outline of the proofs, comments and complementary results. In proving Theorem 1 and 2, we use a framework derived from the work of Hayashi and Naumkin [START_REF] Hayashi | On the modified Korteweg-de Vries equation[END_REF], improved so that only critically invariant quantities are involved (see Section 3). In particular, we use very similar multiplier identities and vector field estimates. An important new difficulty though is that to perform such energy-type inequalities, the precise algebraic structure of the problem has to be respected (for example, in integration by parts): it seems that one cannot use a perturbative argument like a fixed point, as the method truly requires nonlinear solutions.

On the other hand, the rigorous derivation of such inequalities at our level of regularity is quite nontrivial. This problem does not appear in [START_REF] Hayashi | On the modified Korteweg-de Vries equation[END_REF] as the authors work in a (weighted) subspace of H 1 , for which a nice local (and global) well-posedness result holds ((mKdV) is actually well-posed in H s for s 1/4, see Kenig, Ponce and Vega [START_REF] Kenig | Well-posedness and scattering result for the generalized Korteweg-De Vries equation via contraction principle[END_REF]). However, no nontrivial self-similar solution belongs to these spaces, as it can be seen from the lack of decay for large p in (3). Let us also mention the work by Grünrock and Vega [START_REF] Grünrock | Local well-posedness for the modified kdv equation in almost critical H s rspaces[END_REF], where local well-posedness is proved in

H s r = {u ∈ ( ) : 〈p〉 s û L r < +∞} for 1 < r 2, s 1 2 - 1 2r .
This framework is still not enough: self-similar belong to H 0 1 but not better. When finding a remedy for this, let us emphasize again that, due to the jump at the zero frequency for self-similar solutions displayed in [START_REF] Correia | Asymptotics in Fourier space of self-similar solutions to the modified Korteweg-de Vries equation[END_REF], one must take extra care on the choice of the functional setting. In particular, smooth functions are not dense in spaces (and they can not approximate self-similar solutions). In a nutshell, we face antagonist problems coming from low and high frequencies, and we were fortunate enough to be able to take care of both simultaneously.

An important effort of this paper is to solve first an amenable approximate problem (in Section 4), for which we will then derive uniform estimates in the ideology of [START_REF] Hayashi | On the modified Korteweg-de Vries equation[END_REF]. This approximate problem is actually a variant of the Friedrichs scheme where we filter out high frequencies via a cut-off function χ n (in Fourier space). We solve it via a fixed point argument: the cut-off takes care of the lack of decay for large frequencies, but again, smooth functions are not dense in the space X n where the fixed point is found (X n is a version of where high frequencies are tamed, but the jump at frequency 0 remains). In order to obtain uniform estimates, due to the absence of decay for large frequencies of self-similar solutions, boundary terms cannot be neglected -unless the cut-off function χ n is chosen in a very particular way. At this point, we pass to the limit in n (Section 5), and a delicate but standard compactness argument allows to prove the existence part of Theorem 1 and Theorem 2. The description for large time (the second part of Theorem 2 and Corollary 3) is then a byproduct of the above analysis.

The forward uniqueness result given in Theorem 1 requires a different argument. We consider the variation of localized L 2 norm of the difference w of two solutions. Our solutions do not belong to L 2 , but we make use of an improved decay of functions in (I) on the right (for x > 0): in this region, one has a decay of 〈x〉 -3/4 and therefore they belong to L 2 ([0, +∞)). The use of a cut-off ϕ which is zero for x -1 allows to make sense of the L 2 quantity. When computing the derivative of this quantity, one bad term can not be controlled a priori. Fortunately, if ϕ is furthermore chosen to be non-decreasing, this bad term has a sign, and can be discarded as long as one works forward in time (which explains the one-sided result). This is related to a monotonicity property first observed and used by Kato [START_REF] Kato | On the Cauchy problem for the (generalized) Korteweg-de Vries equation[END_REF], and a key feature in the study of the dynamics of solitons by Martel and Merle [START_REF] Martel | A Liouville theorem for the critical generalized Korteweg-de Vries equation[END_REF]. We can then conclude the uniqueness property via a Gronwall-type argument. Using the forward uniqueness properties, we can improve the continuity properties of the solution u: the derivative of its Fourier transform is continuous to the right in L 2 , see Proposition 18 for the details.

Backward uniqueness for solutions in remains an open problem. One can recover it under some extra decay information, namely that u 1 ∈ L 2 ( ) (of course this is no longer a critical space). This is the content of our next result, proved in Section 6.

Proposition 4. Let u 1 ∈ (1) ∩ L 2 ( ).
Then the solution u ∈ ([1/T, T ]) to (mKdV) given by Theorem 1 is unique and furthermore, there is persistence of regularity: u ∈ ([1/T, T ], L 2 ( )).

The stability of self-similar solutions at blow-up time t = 0, or more generally the behavior of solutions with initial data in (1) near t = 0 is a challenging question. This will be the purpose of future work.

PRELIMINARY ESTIMATES

Throughout this section, I ⊂ (0, +∞) is an interval.

Lemma 5 (Decay estimates). Let u ∈ (I)). Then u ∈ (I, W

1,∞ loc ( )) and more precisely, for t ∈ I and x ∈ , one has

|u(t, x)| 1 t 1/3 |x|/t 1/3 1/4 u(t) (t) (10) 
|∂ x u(t, x)| 1 t 2/3 |x|/t 1/3 1/4 u(t) (t) . (11) Consequently, u(t) 3 L 6 t -5 6 u(t) 3 (t) (12) 
u(t)∂ x u(t) L ∞ t -1 u(t) 2 (t) . ( 13 
)
Moreover, for x > t 1/3 , |u(t, x)| 1 t 1/3 x/t 1/3 3/4 u(t) (t) , (14) 
|∂ x u(t, x)| 1 t 2/3 x/t 1/3 1/4 u(t) (t) , (15) 
and for x < -t 1/3 ,

(16) u(t, x) - 1 t 1/3 Re Ai x t 1/3 ũ t, |x| 3t 1 t 1/3 |x|/t 1/3 3/10 u(t) (t) .
Proof. The statement and proof are very similar to Lemma 2.1 in [START_REF] Hayashi | On the modified Korteweg-de Vries equation[END_REF]; notice, however, that the norm • X therein is stronger than ours, so that we in fact need to systematically improve their bounds. For the convenience of the reader, we provide a complete proof. We recall that ũ(t) is not continuous at 0, and may (and will) have a jump (because we only control ∂ p u L 2 (0,+∞) : in the following computations ũ(t, 0) will mean the limit ũ(t, 0 + )). Setting

z = x 3 t , y = - x t for x 0, y = 0 for x > 0,
we have the identity

u(t, x) = 1 π Re ∞ 0 e ip x+i p 3 t ũ(t, p)d p, q = p 3 t = 1 π 3 t Re ∞ 0 e iqz+iq 3 ũ(t, y) + ũ t, q 3 t -ũ(t, y) dq = 1 3 t Re Ai x 3 t ũ(t, y) + R(t, x). ( 17 
)
In the case x 0, we integrate by parts in the remainder R:

R(t, x) = 1 π 3 t Re ∞ 0 ∂ q qe iqz+iq 3 1 1 + iq(3q 2 + z) ũ t, q 3 t -ũ(t, y) dq = 1 π 3 t Re ∞ 0 e iqz+iq 3 1 + iq(3q 2 + z) × iq(6q 2 + z) 1 + iq(3q 2 + z) ũ t, q 3 t -ũ(t, y) - q 3 t ∂ p ũ t, q 3 t dq.
Since

|ũ(t, p) -ũ(t, 0)| p 0 ∂ p ũ(t, q)dq p ∂ p ũ(t) L 2 ((0,+∞)) ,
we can estimate the remainder in the following way:

|R(t, x)| 1 3 t ∞ 0 1 1 + q(3q 2 + z) ũ t, q 3 t -ũ(t, 0) + q 3 t ∂ p ũ t, q 3 t dq 1 t ∂ p ũ(t) L 2 ∞ 0 qdq 1 + q(3q 2 + z) + 1 3 t 2 ∞ 0 ∂ p ũ t, q 3 t 2 dq 1 2 ∞ 0 q 2 dq (1 + q(3q 2 + z)) 2 1 2 1 t 1 + |x| t 1/3 -1/4 ∂ p ũ(t) L 2 ((0,+∞)) .
In the case x < 0, we denote r = -z/3. Integrating by parts, we get

R(t, x) = 1 π 3 t Re ∞ 0 ∂ q (q -r)e iqz+iq 3 1 1 + 3i(q -r) 2 (q + r) ũ t, q 3 t -ũ(t, y) dq = - 1 π 3 t Re ∞ 0 e iqz+iq 3 1 + 3i(q -r) 2 (q + r) 3i(q -r) 2 (3q + r) 1 + 3i(q -r) 2 (q + r) ũ t, q 3 t -ũ(t, y) + q -r 3 t ∂ p ũ t, q 3 t dq - r π 3 t Re ũ(t, 0) -ũ(t, y) 1 + 3ir 3 .
Then we can estimate

|R(t, x)| 1 3 t ∞ 0 1 1 + (q -r) 2 (q + r) ũ t, q 3 t -ũ(t, y) + |q -r| 3 t ∂ p ũ t, q 3 t dq + 1 t 〈r〉 ∂ p ũ(t) L 2 ((0,+∞)) 1 t ∞ 0 |q -r|dq 1 + (q -r) 2 (q + r) + ∞ 0 (q -r) 2 dq (1 + (q -r) 2 (q + r)) 2 1/2 × ∂ p ũ(t) L 2 ((0,+∞)) + 1 t 〈r〉 ∂ p ũ(t) L 2 ((0,+∞)) 1 t 〈r〉 ∂ p ũ(t) L 2 ((0,+∞)) .
It now follows from the decay of the Airy-Fock function |Ai(z

)| 〈z〉 -1 4 that |u(t, x)| t -1/3 x t 1/3 -1/4 ũ(t) L ∞ + t -1 6 ∂ p ũ(t) L 2 ((0,+∞)) 1 3 t x/t 1/3 1/4 u(t) (t) .
This concludes the proof of [START_REF] Fokas | Novokshenov. Painlevé transcendents[END_REF]. For [START_REF] Germain | Asymptotic stability of solitons for mKdV[END_REF], we split once again between the cases x 0 and x < 0. In the second case, we have as in ( 17)

∂ x u(t, x) = 1 3 t 2 Re Ai x 3 t ũ(t, y) + R(t, x), with R(t, x) := 1 π 3 t 2 Re ∞ 0 iqe iqz+iq 3 ũ t, q 3 t -ũ(t, y) dq. Analogous computations done for R yield | R(t, x)| 1 3 t 2 ∞ 0 q 1 + (q -r) 2 (q + r) ũ t, q 3 t -ũ(t, y) + |q -r| 3 t ∂ p ũ t, q 3 t dq ũ(t) L ∞ 3 t 2 ∞ 0 qdq 1 + 3(q -r) 2 (q + r) + ∂ p ũ(t) L 2 ((0,+∞)) 6 t 5 ∞ 0 q 2 (q -r) 2 dq (1 + 3(q -r) 2 (q -r)) 2 1 2 1 t 2/3 1 + |x| t 1/3 1/4 ũ(t) L ∞ + t -1 6 ∂ p ũ(t) L 2 ((0,+∞)) 1 t 2/3 x t 1/3 1/4 u(t) (t) ,
and the bound for ∂ x u follows from the bound on the Airy-Fock function | Ai (z)| 〈z〉 1 4 . For x 0, we write

∂ x u(t, x) = 1 π 3 t 2 Re ∞ 0 ie iqz+iq 3 qũ t, q 3 t dq = 1 π 3 t 2 Re ∞ 0 ie iqz+iq 3 q ũ(t, 0) + q 0 ∂ p ũ t, r 3 t d r 3 t dq = 1 πt Re ∞ 0 ∞ r ie iqz+iq 3 qdq ∂ p ũ t, r 3 t d r.
For z, r > 0, we have

∞ r e iqz+iq 3 qdq 1 z + r 2 .
Applying Cauchy-Schwarz, we obtain

|∂ x u(t, x)| 1 6 t 5 ∂ p ũ(t) L 2 ((0,+∞)) ∞ r e iqz+iq 3 qdq L 2 ((0,∞),d r) 1 3 t 2 〈z〉 -1 4 ∂ p ũ(t) L 2 ((0,+∞)) .
Hence [START_REF] Germain | Asymptotic stability of solitons for mKdV[END_REF] follows. The estimate for ∂ x u in ( 14) is also a consequence of the above estimate. Now we prove the first estimate in [START_REF] Harrop-Griffiths | Long time behavior of solutions to the mKdV[END_REF]. To that end, we integrate by parts the expression for u:

u(t, x) = 1 π ∞ 0 e i p x+i p 3 t ũ(t, p)d p = ũ(t, 0) πx - 1 π ∞ 0 e ipx+ip 3 t ∂ p ũ(t, p) x + 3p 2 t d p = ũ(t, 0) πx - 1 π ∞ 0 e i p x+ip 3 t ∂ p ũ(t, p) x + 3p 2 t d p + ∞ 0 e ipx+ip 3 t 6pt ũ(t, p) (x + 3p 2 t) 2 d p.
The first and third terms are bounded directly, while the second term is bounded using Cauchy-Schwarz:

∞ 0 e i p x+i p 3 t ∂ p ũ(t, p) x + 3p 2 t d p ∂ p ũ(t) L 2 ((0,+∞)) ∞ 0 d p (x + 3p 2 t) 2 1/2 t 1/6 1 t 1/4 x 3/4 ∂ p ũ(t) L 2 ((0,+∞)) 1 t 1/3 x/t 1/3 ∂ p ũ(t) L 2 ((0,+∞)) .
Finally, estimate [START_REF] Hayashi | On the modified Korteweg-de Vries equation[END_REF] follows from [11, Lemma 2.9]. For completeness, we present the proof: define 0 ∈ so that 2 0 ∼ t -1/3 (|x|/t 1/3 ) -1/5 .

We split the estimate for

R(t, x) = 1 π Re ∞ 0 e i tΦ(p) (ũ(t, p) -ũ(t, y))d p, Φ(p) = x t p + p 3 ,
in three regions, using appropriate cut-off functions

χ A + χ B + χ C = 1:
Region A: |p -y| y/2. Over this region, ∂ p Φ(p) max{ y, p}. Then an integration by parts yields

∞ 0 e i tΦ(p) (ũ(t, p) -ũ(t, y))χ A (p)d p 1 t 1/3 (|x|/t 1/3 ) 3/4 u(t) (t) . Region B: |p -y| 2 0 . If |p -y| ∼ 2 l , with l 0 , then |∂ p Φ(p)|
2 l y and the same integration by parts gives

contribution of |p -y| ∼ 2 l 1 t 5/6 2 l/2 y + 1 t2 l y u(t) (t) . Summing in l 0 , ∞ 0 e i tΦ(p) (ũ(t, p) -ũ(t, y))χ B (p)d p 1 t 5/6 2 0 /2 y + 1 t2 0 y u(t) (t) 1 t 1/3 (|x|/t 1/3 ) 3/10 u(t) (t) .
Region C: |p -y| 2 0 . We decompose the integral as

∞ 0 e i tΦ(p) (ũ(t, p) -ũ(t, y))χ C (p)d p = ∞ 0 e i tΦ(p)-i t(Φ( y)+3 y(p-y) 2 ) (ũ(t, p) -ũ(t, y))χ C (p)d p + e i tΦ( y) ∞ 0 e 3i t y(p-y) 2 (ũ(t, p) -ũ(t, y))χ C (p)d p = I 1 + I 2 . Since |ũ(t, p) -ũ(t, y)| t 1/6 |p -y| 1/2 u(t) (t)
, one easily bounds these integrals:

|I 1 | t2 4 0 u t -1/3 (|x|/t 1/3 ) 4/5 u(t) (t) |I 2 | t 1/6 2 3 0 /2 u(t) (t) t -1/3 (|x|/t 1/3 ) 3/10 u (t) . □
Let u ∈ (I, ) be a solution to (mKdV) in the distributional sense. Taking the Fourier transform of

(∂ t + ∂ x x x )u = -ε∂ x (u 3 ) using ũ(t, p) = e i t p 3 û(t, p), one obtains (18) ∂ t ũ(t, p) + iεp 4π 2 p 1 +p 2 +p 3 =p e i t(p 3 -p 3 1 -p 3 2 -p 3 3 ) ũ(t, p 1 )ũ(t, p 2 )ũ(t, p 3 )d p 1 d p 2 = 0.
This leads us to define (with the change of variables

p i = pq i ) (19) [u](t, p) = i p 3 q 1 +q 2 +q 3 =1
e -i t p 3 (1-q 3 1 -q 3 2 -q 3

3 ) ũ(t, pq 1 )ũ(t, pq 2 )ũ(t, pq 3 )dq 1 dq 2 , so that

∂ t ũ(t, p) = - ε 4π 2 [u](t, p). ( 20 
)
The following result is a stationary phase lemma for [u]. Similar statements may be found in [START_REF] Hayashi | On the modified Korteweg-de Vries equation[END_REF]Lemma 2.4] and [START_REF] Germain | Asymptotic stability of solitons for mKdV[END_REF].

Lemma 6 (Asymptotics of the nonlinearity on the Fourier side). Let u ∈ (I). One has the following asymptotic development for [u]: for all t ∈ I and p > 0,

[u](t, p) = πp 3 〈p 3 t〉 i|ũ(t, p)| 2 ũ(t, p) - 1 3 e -8i t p 3 9 ũ3 t, p 3 + R[u](t, p) (21)
where the remainder R satisfies the bound

|R[u](t, p)| p 3 u(t) 3 (t) (p 3 t) 5/6 〈p 3 t〉 1/4 . ( 22 
)
Proof. This essentially relies on a stationary phase type argument. We must however emphasize that the computations and the estimations of the errors have to be performed very carefully, because our setting allows few integration by parts and functions have limited spatial decay. We postpone the proof to Appendix A. □ Lemma 7. Let I ⊂ (0, +∞) be an interval and t 1 ∈ I. Let u ∈ (I) be a solution to (mKdV) in the distributional sense. Then, for some universal constant C (independent of I) and for all t ∈ I,

ũ(t) L ∞ ũ(t 1 ) L ∞ + C( u 3 (I) + u 5 (I) ), ∂ t ũ(t) L ∞ 1 t u(t) 3 (t) .
Furthermore, if we denote

E u (t, p) := exp -iε t t 1 p 3 〈p 3 s〉 |ũ(s, p)| 2 ds , (23) one has, for all t, τ ∈ I (24) |(ũE u )(t, p) -(ũE u )(τ, p)| ( u 3 (I) + u 5 (I) ) min |t -τ| 〈p 3 〉 , 1 〈τp 3 〉 1 12
.

Proof. Since ũ(t, -p) = ũ(t, p), it suffices to consider p > 0. Using Lemma 6,

∂ t ũ(s, p) = - ε 4π p 3 〈p 3 s〉 1 3 e -8isp 3 9 ũ3 (s, p/3) -i|ũ(s, p)| 2 ũ(s, p) (25) + O p 3 u 3 (t) (p 3 t) 5/6 〈p 3 t〉 1/4 . (26) Denote v(t, p) = ũ(t, p)E u (t, p). Then the integration in time of (25) on [τ, t] ⊂ I yields v(t, p) = v(τ, p) -ε t τ p 3 4π 3 〈p 3 s〉 e -8isp 3 9 E u (s, p)ũ 3 s, p 3 ds (27) + O p 3 u 3 (I) t τ ds (p 3 s) 5/6 〈p 3 s〉 1/4 . ( 28 
)
We claim that (29)

t τ p 3 〈p 3 s〉 e -8isp 3 9 E u (s, p)ũ 3 s, p 3 ds ( u 3 (I) + u 5 (I) ) min 1 〈p 3 τ〉 , |t -τ| 〈p 3 〉
Indeed, integrating by parts,

t τ p 3 〈p 3 s〉 e -8isp 3 9 E u (s, p)ũ 3 s, p 3 ds = t τ ∂ s se -8isp 3 9 1 1 - 8isp 3 9 p 3 〈p 3 s〉 E u (s, p)ũ 3 s, p 3 ds = - t τ E u (s, p) e -8isp 3 9 
1 -8isp 3 9 ũ3 (s, p/3) O(p 6 s)

1 - 8isp 3 9 〈p 3 s〉 + 3sp 3 〈p 3 s〉 ũ2 (s, p/3)ũ s (s, p/3) + ip 3 sp 3 〈p 3 s〉 2 ũ3 (s, p/3)|ũ(s, p)| 2 ds +   E u (s, p)e -8isp 3 9 ũ3 (s, p/3) 1 - 8isp 3 9   s=t s=τ .
From (25), we have

|∂ t ũ(s, p)| s -1 ũ(s) 3 L ∞ s -1 u 3 (s)
. Taking absolute values in the above expression,

t τ p 3 〈p 3 s〉 e -8isp 3 9 E u (s, p)ũ 3 s, p 3 ds ( u 3 ([τ,t]) + u 5 ([τ,t]) ) t τ p 3 ds 〈p 3 s〉 2 ( u 3 (I) + u 5 (I) ) min 1 〈p 3 τ〉 , |t -τ| 〈p 3 〉
as claimed. We plug this estimate with τ = t 1 in (27),

ũ(t) L ∞ = v(t) ∞ v(t 1 ) L ∞ + C( u 3 (I) + u 5 (I)
). Estimate (24) follows from (29):

|v(t, p) -v(τ, p)| t τ p 3 4π 3 〈p 3 s〉 e -8isp 3 9 E u (s, p)ũ 3 s, p 3 ds + O p 3 u 3 (I) t τ ds (p 3 s) 5/6 〈p 3 s〉 1/4 ( u 3 (I) + u 5 (I) ) min |t -τ| 〈p 3 〉 , 1 〈τp 3 〉 1 12
. □

CONSTRUCTION OF AN APPROXIMATING SEQUENCE

Let (χ n ) n∈ ⊂ ( ) be a sequence of even decreasing functions such that

• for all n ∈ , 0 < χ n 1, χ 1/2 n ∈ ( ), • for all p ∈ , χ n (p) → 1 as n → +∞. • sup p∈ |p(χ 1/2 n ) (p)| → 0 as n → +∞.
The existence of such a sequence is not completely obvious, let us sketch how to construct one.

Claim 8. There exists a sequence (χ n ) n∈ satisfying the above conditions.

Proof. Define the function ϕ n as follows: ϕ n is even and

ϕ n (p) =    1 if |p| n 1 -1 n ln(p/n) if n p α n e -p if p α n .
where

α n > 0 is chosen so that ϕ n is continuous, that is 1- 1 n ln α n n = e -α n . One can check that α n ∈ [ne n -1, ne n ]. It follows that 0 < ϕ n 1, ϕ n is non-increasing on [0, +∞), and sup p∈ |pϕ n (p)| = O(1/n).
Then let ψ ∈ ( ) be non-negative, even, with support in [-1, 1] and ψ L 1 = 1. One can see that χ n := (ϕ n * ψ) 2 answers the question. □ Define, for any u ∈ ( ),

Π n u(p) = χ n (p)û(p).
Throughout this section, we shall study the properties of the solutions of

(Π n -mKdV) ∂ t u + ∂ 3 x u + εΠ n ∂ x (u 3 ) = 0, u(1) = Π n u 1 ,
where u 1 ∈ (1) is given. Equivalently, we consider the equation (30)

∂ t ũ = - εχ n 4π 2 [u], ũ(1) = χ n ũ1 .
(with the slight abuse of notation ũ1 = (-1)u 1 ). Define

(31) u X n (t) := (-t)uχ -1 n L ∞ + ∂ p ( (-t)u)χ -1/2 n L 2 ((0,+∞))
and the space

X n (t) := u ∈ ( ) : u X n (t) < ∞ .
Similarly, if I ⊂ (0, +∞) is an interval and u a space-time function, we denote

u X n (I) := sup t∈I u(t) X n (t) = sup t∈I ũ(t)χ -1 n L ∞ + ∂ p ũ(t)χ -1/2 n L 2 ((0,+∞)) ,
and

X n (I) := u ∈ (I, ( )) : ũχ -1 n ∈ (I, b ((0, +∞))), ∂ p ũχ -1/2 n ∈ (I, L 2 ((0, +∞))) .
Observe that if u ∈ (1), then

Π n u 1 X n (1) u 1 (1) . Proposition 9. Given any u 1 ∈ (1), there exists T -,n < 1, T +,n > 1 and a unique u n ∈ X n ((T -,n , T +,n )) maximal solution of (Π n -mKdV). Moreover, if T +,n < ∞, then lim t→T + u n (t) X n (t) = +∞. (A similar statement holds at T -). In particular, u ∈ ((T -,n , T +,n )).
Proof. This is a standard fixed-point argument (in the estimates below, the implicit constants are allowed to depend on n). We work for times larger than 1, the other case is similar. For

T > 1, M > 0, let (32) B n (T, M ) = u ∈ X n ([1, T ]) : u X n ([0,T ]) M
endowed with the natural distance

d(u, v) = u -v X n ([0,T ]) ,
and

(Ψ(u))(t, p) = χ n (p)ũ 1 (p) - εχ n (p) 4π 2 t 1 [u](s, p)ds.
Using the strong decay on the Fourier side, that is, for any u ∈ X n (T, M ),

∀t ∈ [1, T ], ∀p ∈ , |ũ(t, p)| M χ n (p),
one may easily obtain the necessary bounds on Ψ. Indeed, we estimate

| [u|(t, p)| |p| q 1 +q 2 +q 3 =p χ n (q 1 )χ n (q 2 )χ n (q 3 )dq 1 dq 2 u 3 X n (33) |p| sup |q 3 | |p/3| χ n (q 3 ) χ n 2 L 1 u 3 X n u 3 X n
, where we used the fact that at least one of the variables q 1 , q 2 and q 3 has modulus at least |p/3| . Hence for t ∈ [1, T ],

û(t)χ -1 n L ∞ = ũ(t)χ -1 n L ∞ χ n ũ1 χ -1 n L ∞ + t 1 [u](s)ds L ∞ ũ1 L ∞ + (T -1) sup t∈[1,T ] [u](t) L ∞ ũ1 L ∞ + (T -1)M 3 .
Similar to estimate (33), we have

|∂ p [u](t, p)| t|p| q 1 +q 2 +q 3 =p (|p| 2 + |q 3 | 2 )χ n (q 1 )χ n (q 2 )χ n (q 3 )dq 1 dq 2 u 3 X n + |p| q 1 +q 2 +q 3 =p χ n (q 1 )χ n (q 2 )|∂ p u(q 3 )|dq 1 dq 2 u 2 X n |p| sup |q 3 | |p/3| (p 2 + q 2 3 )χ n (q 3 ) χ n 2 L 1 u 3 X n + |p| q 1 +q 2 +q 3 =p χ n (q 1 ) 2 χ n (q 2 )χ n (q 3 )dq 1 dq 2 1/2 × χ n (q 2 )|∂ p u(q 3 )| 2 χ -1 n (q 3 )dq 2 dq 3 1/2 u 2 X n u 3 X n .
This implies the direct bound

∂ p ũ(t)χ -1/2 n L 2 ((0,+∞)) χ n ∂ p ũ1 χ -1/2 n L 2 ((0,+∞)) + (T -1) χ 1/2 n H 1 sup t∈[1,T ] [u](t) W 1,∞ ∂ p ũ1 L 2 ((0,+∞)) + (T -1) u 3 X n . Thus (Ψ(u)) X n ([0,T ]) C u 1 (1) + (T -1)M 3 .
Analogous computations yield

d(Ψ(u), Ψ(v)) C(T -1)M 2 d(u, v)
(since is a trilinear operator). Choosing M and T such that

C ũ1 X n + (T -1)M 3 M ,
and

C(T -1)M 1/2, we see that Ψ : B n (T, M ) → B n (T, M
) is a contraction. The result now follows from Banach's fixed-point theorem. □

To conclude the construction of a solution, we need the time interval on which the approximating sequence is defined to remain wide independently of n. To that end, we need some a priori bounds.

Lemma 10 (L ∞ bound for (Π n -mKdV)). Given u 1 ∈ (1), denote u the corresponding solution of (Π n -mKdV), given by Proposition 9 and defined on

(T -,n , T +,n ). Let I ⊂ (T -,n , T +,n ). Then (34) ∀t ∈ I, ũn (t)χ -1 n L ∞ ũ1 χ -1 n L ∞ + C( u n 3 (I) + u n 5 (I)
) and

∂ t ũn χ -1 n L ∞ 1 t u n 3 (I) .
Moreover, if one defines

E n (t, p) = exp -iε t 1 p 3 χ n (p) 4π 〈p 3 s〉 |ũ n (s, p)| 2 ds .
then for all t, τ ∈ I,

|(ũE n )(t, p) -(ũE n )(τ, p)|χ -1 n (p) C( u n 3 (I) + u n 5 (I) )) min |t -τ| 〈p 3 〉 , 1 〈τp 3 〉 1 12
.

Proof. The proof follows the lines of Lemma 7, we leave the details to the reader. □

Now we look for an a priori bound for ∂ p ũn . Define the operator

u(t, p) = i∂ p û(t, p) - 3i t p ∂ t û(t, p) = ie i t p 3 ∂ p ũ - 3t p ∂ t ũ ,
which corresponds to the formal operator

x + 3t x -∞ ∂ t d x .
Using the definition, one may check that, if

Π n u := χ n û then (Π n u) = Π n u + iΠ n u. Moreover, if we let L = ∂ t + ∂ 3 x , L u = Lu + 3i p Lu, (u 3 ) x = 3u 2 ( u) x -3u 3 .
Lemma 11 ( Ḣ1 bound for (Π n -mKdV)). Given u 1 ∈ (1), the corresponding solution u n of (Π n -mKdV) satisfies

u n ∈ 1 ((T -,n , T +,n ), L 2 ((0, +∞), χ -1 n d p)
). There exists a universal constant κ > 0, such that, for

1 < t < T +,n , ∀t ∈ [1, T +,n ) ∞ 0 | u n (t, p)| 2 χ -1 n d p 1/2 ∞ 0 | u n (1, p)|χ -1 n d p 1/2 t κ u n 2 ([1,t]) + o n (1) u n 3 ([1,t]) t 1/6 , ( 35 
) ∀t ∈ (T -,n , 1], ∞ 0 | u n (t, p)| 2 χ -1 n d p 1/2 ∞ 0 | u n (1, p)|χ -1 n d p 1/2 t -κ u n 2 ([t,1]) + o n (1) u n 3 ([t,1]) t 1/6 . ( 36 
)
Proof. Fix > 0. First of all, notice that, by Lemma 10, we have

u n = ie -i t p 3 ∂ p ũn - 3t p ∂ t ũn ∈ L 2 ([ , +∞), χ -1 n d p),
which justifies the finiteness of all the following integrations. On the other hand,

∂ t u n -i p 3 u n = L u n = Lu n -3ε Π n (u 3 n ) = -ε (Π n (u 3 n ) x ) -3εχ n u 3 n = -εχ n (u 3 n ) x -iεχ n (u 3 n ) x -3εχ n u 3 n = -ε 3χ n u 2 ( u n ) x + ipχ n u 3 n .
Multiplying by u n χ -1 n , integrating on \ (-, ) and taking the real part, 1 2

d d t \(-, ) | u n (p)| 2 χ -1 n (p)d p = -εRe \(-, ) p 1 +p 2 =p u 2 n (p 1 )p 2 u n (p 2 ) u n (p)d p 2 d p -εRe \(-, ) pχ n (p)χ -1/2 n (p) u 3 n (p) u n (p)χ -1/2 n (p)d p = I 1 + I 2 .
For I 1 , we split the integral in p 2 :

\(-, ) - u n (p) u n (p 2 )p 2 u 2 n (p 1 )d p 2 d p u n L 2 ( \(-, )) u n L 2 ((0,+∞)) u 2 n L 1 → 0 as → 0. (Indeed u 2 n L 1 ũn 2 L 1 < +∞). Then observe that Re \(-, ) \(-, ) u 2 n (p 1 )p 2 u n (p 2 ) u n (p)d p 2 d p = Re \(-, ) \(-, ) u 2 n (p 1 )(p -p 1 ) u n (p 2 ) u n (p)d p 2 d p = -Re \(-, ) \(-, ) p 1 u 2 n (p 1 ) u n (p 2 ) u n (p)d p 2 d p -Re \(-, ) \(-, ) u 2 n (p 1 )p 2 u n (p 2 ) u n (p)d p 2 d p.
Hence, if we define the operator

v = \(-, ) v, then Re \(-, ) \(-, ) u 2 n (p 1 )p 2 u n (p 2 ) u n (p)d p 2 d p = 1 2 Re \(-, ) \(-, ) p 1 u 2 n (p 1 ) u(p 2 ) u n (p)d p 2 d p p 1 u 2 n (p 1 ) u(p 2 ) u n (p)d p 2 d p (u 2 n ) x (x)| ( u n )(x)| 2 d x u n ∂ x u n L ∞ ( u n ) 2 L 2 u n ∂ x u n L ∞ \(-, ) | u n (p)| 2 χ -1 n (p)d p.
Now, to estimate I 2 , we use Cauchy-Schwarz:

|I 2 | \(-, ) | u n (p)| 2 χ -1 n (p)d p 1/2 |pχ n (p)χ -1/2 n | 2 | u 3 n | 2 d p 1/2 \(-, ) | u n (p)| 2 χ -1 N (p)d p 1/2 u n (t) 3 L 6 sup p∈ |p(χ 1/2 n ) (p)|
Here we crucially use the third condition on χ n . Putting together these estimates, using Lemma 5 and the symmetry ûn (t, -p) = ûn (t, p),

d d t ∞ | u n (p)| 2 χ -1 n (p)d p 1/2 u n ∂ x u n L ∞ ∞ | u n (p)| 2 χ -1 n (p)d p 1/2 + o (1) + o n (1) u n (t) 3 L 6 (37) u n (t) 2 (t) t ∞ | u n (p)| 2 χ -1 n (p)d p 1/2 + o (1) + o n (1) u n (t) 3 (t) t 5/6
It follows that, for t 1 and some universal constant κ > 0,

∞ | u n (p)| 2 χ -1 n (t, p)d p 1/2 ∞ | u n (p)| 2 (1, p)χ -1 n (p)d p 1/2 t κ u n 2 (1,t) + o (t) + u n (t) 3 (t) o n (t 1/6
). Taking → 0, the result follows. An analogous computation yields the inequality for t < 1.

□ Proposition 12 (Global existence). Given u 1 ∈ (1) small, let u n be the unique maximal solution of (Π n -mKdV) given by Proposition 9. Then there exists T = T ( u 1 (1) ) < 1 such that, if n is large enough, u n is defined on [T, +∞) and

(38) u n ([T,+∞)) C u 1 (1) . Proof. Fix δ 0 > u 1 (1) . Define (39) f n (t) = ũn (t)χ -1 n L ∞ + t -1/6 ∂ p ũn (t)χ -1/2 N L 2 ((0,+∞))
and let J n be the maximal connected interval containing t = 1 such that

f n (t) 4Cδ 0 , t ∈ J n .
For δ 0 sufficiently small and some T < 1 close to 1, it follows from Lemma 11 that, given

t ∈ J n , t > T , ∞ 0 | u(t, p)| 2 χ -1 n d p 1/2 2 ∞ 0 | u(1, p)| 2 χ -1 n d p 1/2 + o n (1) f n (s) 3 t 1/6 .
Recalling that

∂ p ũn = -ie i t p 3 u n + 3t p ∂ t ũn = -ie i t p 3 u n + 3tχ n e -i t p 3 u 3 n ,
we derive the bound for ∂ p ũn : 3 . Together with the L ∞ bound (34), we infer

∂ p ũn (t)χ -1/2 n L 2 ((0,+∞)) u n (t)χ -1/2 n L 2 ((0,+∞)) + 3t u 3 n (t)χ 1/2 n L 2 t 1/6 u n (1)χ -1/2 n L 2 ((0,+∞)) + o n (1) f n (t) + 3t u n 3 L 6 t 1/6 u n (1)χ -1/2 n L 2 ((0,+∞)) + o n (1) f n (t) + f n (t)
f n (t) C χ -1 n ũ(1) L ∞ + χ -1/2 n ∂ p ũ(1) L 2 ((0,+∞)) + o n (1) f n (t) + f n (t) 3 C u 1 (1) + o N (1) f n (t) + f n (t) 3 .
If n large and 4C u 1 < δ 0 , then a continuity argument implies that

(40) ∀t ∈ J n , t > T, f n (t) 2C u 1 (1) < δ 0 2 .
Hence J n must be equal to [T, T +,n ). By the definition of J n and the blow-up alternative, T +,n = +∞. □

WELL-POSEDNESS ON THE CRITICAL SPACE

Proposition 13 (Existence for small data). There exists C, δ > 0 such that, given u 1 ∈ (1) with u 1 (1) < δ, there exist T = T ( u 1 (1) ) < 1 and a unique u ∈ ([T, ∞)) solution of (mKdV) in the distributional sense such that u(1) = u 1 . Moreover, there exists a universal constant C > 1 such that

(41) u ([T,∞)) C u 1 (1) .
Proof.

Step 1. Approximate solutions and a priori bounds. For each n ∈ , define u n as the unique solution of (Π n -mKdV). By Proposition 12, for n large enough, u n is defined on [T, +∞) and u n ([T,+∞)) Cδ.

Step 2. Convergence on the profile space. Since the sequence (ũ n ) n∈ is uniformly bounded in ([T, ∞), Ḣ1 ((0, +∞)) ∩ L ∞ ( )), the Sobolev embedding implies that |ũ n (t, p)ũn (t, q)| |p -q| 1/2 , p, q > 0.

Moreover, by Lemma 10, we have ũn uniformly bounded in

W 1,∞ ([T, ∞), L ∞ ( )). Hence (ũ n ) n∈ is equicontinuous on [T, ∞) × [0, R],
for any R > 0. By Ascoli-Arzelà theorem, we conclude that there exists ũ ∈ C b ([T, ∞) × (0, +∞)) such that, up to a subsequence, Hence, when t → s,

ũN → ũ uniformly in [T, T ] × [0, R], T > T, R > 0. Given p < 0, we set ũ(t, p) = ũ(t, -p). Step 3. ũ ∈ C b ([T, ∞) × ) ∩ L ∞ ((T, ∞), Ḣ1 ((0, +∞))). Define E u (t, p) = exp -iε t 1 p 3 4π 〈p 3 s〉 |ũ(s, p)| 2 ds , E n (t, p) = exp -
ũ(t) -ũ(s) L ∞ ( ) ũ(t)E u (t) -ũ(s)E u (s) L ∞ ( ) + ũ(s) (E u (t) -E u (s)) L ∞ ( ) → 0 and so ũ ∈ ([T, ∞), L ∞ ( )).
Fix t ∈ [T, ∞). Since (ũ n (t)) n∈ is bounded in Ḣ1 ((0, +∞)), up to a subsequence, there exists g(t) ∈ L 2 ((0, +∞)) such that

∂ p ũn (t) g(t), g(t) L 2 ((0,+∞)) lim inf ∂ p ũn (t) L 2 ((0,+∞)) δ. Since ũn (t) → ũ(t) in L ∞ l oc ( ), we have ũ(t) ∈ Ḣ1 ((0, +∞)) and ∂ p ũ(t) = g(t). Moreover, the uniform bound on g(t) implies ũ ∈ C b ([T, ∞) × ) ∩ L ∞ ((T, ∞), Ḣ1 ((0, +∞))).
Step 4. Convergence on the physical space. We already now that

|ũ n (t, p) -ũn (t, 0 + )|, |ũ(t, p) -ũ(t, 0 + )| |p| 1/2 .
Hence, ũn (t) → ũ(t) in ( ). Therefore u(t) = (e i t p 3 ũ) ∨ (t) is well-defined and we have

u n → u in ((T, ∞) × ), We now claim that u is in L ∞ ((T, ∞) × ) and that u n (t) → u(t) in L ∞ ( ), for any t ∈ [T, ∞). Since (u n ) n∈ is bounded in ([T, ∞)), Lemma 5 implies that, for any K ⊂ compact and T > T , ∀t ∈ [T, T ], u n (t) L ∞ (K) , (u n ) x (t) L ∞ (K) T ,K δ,
and ∀x ∈ , ∀t ∈ [T, T ], |u n (t, x)| C(T ) 〈x〉 -1 4 .
Again by Ascoli-Arzelà theorem, there exists h(t) ∈ ( ) such that

u n k (t) → h(t) uniformly in K, for any K ⊂ compact. and |h(t, x)| C(T ) 〈x〉 -1 4 ,
x ∈ . This implies that h is, in fact, bounded over (T, T )× . Since u n → u in the distribution sense, h = u. Hence the limit h(t) is unique and we conclude that the whole sequence (u n (t)) n∈ must converge to h(t):

u n (t) → h(t) = u(t) uniformly in K, for any K ⊂ compact.
Finally, the uniform decay of u n and u imply that this convergence holds over ,

u n (t) → u(t) in L ∞ ( ).
The claim is proven.

Step 5. u is a solution of (mKdV) in ([T, +∞)). Since u n (t) → u(t) in L ∞ ( ), one has

(u n ) 3 → u 3 in ((T, ∞) × ).
Recalling that (∂ t +∂ 3

x )u n = -εΠ n ((u n ) 3 ) x , one may now pass to the limit in the distributional sense and 

(∂ t + ∂ 3 x )u = -ε(u 3 ) x . By Step 3, u ∈ ([T, +∞))
∀t 1, u(t) L 2 ((0,+∞)) u(1) L 2 ((0,+∞)) t -κδ 2 . ( 43 
)
We now consider the large data case. Here, the only delicate point is to prove that the lifespan [T -,n , T +,n ] does not become trivial as n tends to ∞. Afterwards, the arguments of the previous proof may be applied mutatis mutandis.

Lemma 15 (Uniform local existence for large data). Given u 1 ∈ (1), there exists T

-(u 1 ) < 1, T + (u 1 ) > 1, C = C( u 1 (1)
) such that, for large n, the corresponding solution u n of (Π n -mKdV) is defined on [T -(u 1 ), T + (u 1 )] and

u n ([T -(u 1 ),T + (u 1 )]) C u 1 (1) .
Proof. Due to the critical nature of the space , we are unable to obtain a uniform timecontinuity estimate for the solutions u n . Instead, we argue by contradiction. We focus on showing the existence of T + (u 1 ) > 1, the other case being completely analogous. Let C 1 > 0 be a large constant to be chosen later. For each n, let t n > 1 be the first time satisfying

u n (t n ) (t n ) = C 1 u 1 (1) .
Suppose, for the sake of contradiction, that t n → 1 (in particular t n 2). The uniform bound of ũn

(t n ) in L ∞ ∩ Ḣ1 ((0, +∞)) implies the existence of v such that ∂ p ũn (t n ) ∂ p v in L 2 (0, +∞), ũn (t n ) → v in L ∞ (K), for any K ⊂ compact
On the other hand, by Lemma 10,

|(ũ n E n )(t n , p) -ũ1 (p)| = |(ũ n E n )(t n , p) -(ũ n E n )(1, p)| + |ũ n (1, p) -ũ1 (p)| ( u n (t n ) 3 (t n ) + u n (t n ) 5 (t n ) ) |t n -1| + |Π n (p) -1| → 0 (44)
which means that v = ũ1 . Moreover, the decay estimates of Lemma 5 imply that

u n (t n ) → u 1 in L 6 ( ).
Due to (35) from Lemma 11, we have

( u n )(t n ) L 2 ((0,+∞)) ∞ 0 | u n (1)| 2 χ -1 n d p 1/2 t C 2 1 κ u 1 2 (1) n + o n (1)t 1/6 n u n (1) (1) .
For n large, t

C 2 1 κ u 1 2 (1) n 2.
Using once more the formula

∂ p ũn = -ie i t p 3 u n + 3tχ n e -i t p 3 u 3 n , ( 45 
)
we get that for large n,

u n (1)χ -1/2 n L 2 ((0,+∞)) ∂ p ũn (1)χ -1/2 n L 2 ((0,+∞)) + u 3 n (1)χ 1/2 n L 2 ((0,+∞)) u 1 (1) + u 1 3 L 6 u 1 (1) (1 + u 1 2 (1)
). As a consequence, we get

( u n )(t n ) L 2 ((0,+∞)) u 1 (1) (1 + u 1 2 (1)
). In the above estimate, we emphasize that the implied constant does not depend on C 1 . Using (45) yet another time gives

∂ p ũn (t n ) L 2 ((0,+∞)) ( u n )(t n ) L 2 ((0,+∞)) + 3t n u 3 n (1) L 2 ((0,+∞)) u 1 (1) (1 + u 1 2 (1)
). Moreover, it follows from (44) that ũn (t n ) L ∞ 2 u 1 (1) for large n. In other words, for some absolute constant C 0 and large n,

u n (t n ) (t n ) C 0 u 1 (1) (1 + u 1 2 (1) ). Choose now C 1 = 2C 0 (1 + u 1 2
(1) ): this is a contradiction. Hence t n → 1, and the proof is complete.

□

We can now follow the same arguments as for the proof of Proposition 13, and get the analoguous result for large data given below.

Proposition 16 (Existence for large data). Let u 1 ∈ (1)

. There exist T -(u 1 ) < 1 and T + (u 1 ) > 1 and a solution u ∈ ([T -(u 1 ), T + (u 1 )]) solution of (mKdV) in the distributional sense such that u(1) = u 1 .

We now turn to the forward uniqueness result. It relies on completely different arguments, related to a monotonicity formula.

Proposition 17 (Forward uniqueness). If u, v ∈ ([t 1 , t 2 ]
) are two solutions of (mKdV) and u(t 1 ) = v(t 1 ), then u ≡ v.

Proof.

Step 1. In this proof, we abbreviate u

([t 1 ,t 2 ]) by u . The difference w = u -v satisfies (∂ t + ∂ 3 x )w = -ε((w + v) 3 -v 3 ) x , w(t 1 ) = 0. For any x 1 < x 2 , take φ ∈ C ∞ ( ) increasing such that φ(x) = 0 for x < x 1 and φ(x) = 1 for x > x 2 . A formal computation yields (46) 1 2 w(t) 2 φd x = t t 1 - 3 2 w 2 x φ x -w x wφ x x -ε((w + v) 3 -v 3 ) x

wφ d x ds

This can be rigorously justified by a regularization process: for any δ > 0, take

ψ ∈ C ∞ c ( ) such that Supp(ψ) ⊂ [t 1 , t 2 ] and ψ ≡ 1 over [t 1 + δ, t 2 -δ]. Then ψw solves (∂ t + ∂ 3 x )(ψw) = ψ w -εψ (w + v) 3 -v 3 x in ( × ).
Taking a sequence of mollifiers (in both space and time) (ρ ) >0 , one has

(∂ t + ∂ 3 x )(ρ * (ψw)) = ρ * (ψ w) -ερ * ψ((w + v) 3 -v 3 ) x , t ∈ [t 1 , t 2 ]
. Writing w = ρ * (ψw), one now multiplies the above equation by w φ and integrates over [t 1 + δ, t] × :

w (t) 2 φd x -w (t 1 + δ) 2 φd x = t t 1 +δ - 3 2 (∂ x w ) 2 φ x -(∂ x w )w φ x x d x ds (47) + t 1+δ ρ * (ψ w -εψ((w + v) 3 -v 3 ) x )w φd x ds (48)
Using the decay properties of w and v (cf. Lemma 5), one may show that

w ∈ L 2 (φd x), ∂ x w ∈ L 6 (φd x), ∂ x w ∈ L 2 (φ x d x), w∂ x w ∈ (Supp(φ x x )), uniformly in t ∈ [t 1 , t 2 ]. Furthermore, since w ∈ ([t 1 , t 2 ], L ∞ loc ( )) and |w(t, x)| C w x -1 for x 1, it is trivial to check, using the dominated convergence theorem, that w 2 φ ∈ ([t 1 , t 2 ], L 1 ( ))
. These bounds are sufficient to show that, when → 0 in (47), one obtains

1 2 w(t) 2 φd x - 1 2 w(t 1 + δ) 2 φd x (49) = t t 1 +δ - 3 2 w 2 x φ x -w x wφ x x -ε((w + v) 3 -v 3 ) x wφ d x ds.
Finally, using once again the continuity of w 2 (t)φ L 1 , the limit δ → 0 yields (46).

Step 2. Fix φ 0 ∈ C ∞ ( ) non-decreasing with φ(x) = 0 for x < 0 and φ(x) = 1 for x > 1.

Define the sequence φ n (x) = φ 0 (1 + x/n), which satisfies

φ n (x) → 1 as n → ∞, (φ n ) x L 2 = (φ 0 ) x L 2 n . Applying (46) to φ n , 1 2 w(t) 2 φ n d x t t 1 w x w L ∞ (φ n ) x x L 1 -ε ((w + v) 3 -v 3 ) x wφ n d x ds.
We expand the last term:

(w 3 ) x wφ n d x = 3ww x w 2 φ n d x, (vw 2 ) x wφ n d x = (v x w + 2w x v)w 2 φ n d x (v 2 w) x wφ n d x = 2v x vw 2 φ n d x + 1 2 v 2 (w 2 ) x φ n d x = v x vw 2 φ n d x - 1 2 v 2 w 2 (φ n ) x d x.
Recall that, from Lemma 5, as

u, v ∈ ([t 1 , t 2 ]), u(t)v x (t) L ∞
u v /t (and similarly with w). Also,

v(t) 2 w(t) 2 (φ n ) x d x (φ n ) x L 2 v(t) L ∞ v(t) L 6 w(t) 2 L 6
1 n

1 t 7/6 ( u 4 + v 4 ). Hence 1 2 w(t) 2 φ n d x t t 1 w 2 (φ n ) x x L 1 ds s + t t 1 ( u 2 + v 2 ) w(s) 2 φ n d x ds s + t t 1 ( u 4 + v 4 ) (φ n ) x L 2 ds s u 2 + v 2 n ln t t 1 + u 4 + v 4 nt 1/6 1 + ( u 2 + v 2 ) t t 1 w(s) 2 φ n d x ds s . If we denote M = 4C(1 + u 4 + v 4 ) ln t 2 t 1 + 1 t 1/6 1
(where C is the implicit constant in the above) we obtained

w(t) 2 φ n d x M n + M t t 1 w(s) 2 φ n ds s .
Applying Gronwall's inequality, there holds, for all t

∈ [t 1 , t 2 ] w(t) 2 φ n d x M n t t 1 M . Fix t ∈ [t 1 , t 2 ].
Taking the limit n → ∞ and using Fatou's lemma, we infer

w(t) 2 d x lim inf n w 2 (t)φ n d x lim inf n M n t t 1 M = 0.
Thus w ≡ 0 and u ≡ v. □

Using the forward uniqueness property, we are able to obtain some further continuity information on the solution u we constructed.

Proposition 18 (Continuity properties on

∂ p ũ). Let u ∈ ([T -(u 1 ), T + (u 1 )]) be the solution constructed in Proposition 16. The map t → ∂ p ũ(t) is continuous in weak-L 2 on [T -(u 1 ), T + (u 1 )], continuous to the right in L 2 , and it is continuous at t = 1. Proof. Step 1. Continuity at t = 1 in L 2 . Given a sequence t k → 1 + , since ũ ∈ L ∞ ((T, ∞), Ḣ1 ((0, +∞))), one may extract a subse- quence so that ∂ p ũ(t k ) z weakly in L 2 ((0, +∞)). The continuity of t → ũ(t) ∈ L ∞ ( ) implies that z = ∂ p ũ(1). Since u ∈ ([T, ∞)), given any compact set K ⊂ , the estimates of Lemma 5 imply that (u(t k )) k∈ is in W 1,∞ (K).
Hence, by Ascoli-Arzelá theorem, up to a subsequence, there exists v ∈ ( ) such that

u(t k ) → v in L ∞ (K), K compact subset of .
Moreover, due to the uniform decay of u(t k ), one sees that this convergence is valid over L ∞ ( ). Since, by Step 3, ũ(t k ) → ũ(1) in L ∞ ( ), one must have v = u(1). Together with the decay estimate [START_REF] Fokas | Novokshenov. Painlevé transcendents[END_REF], the Dominated Convergence theorem implies that

ũ(t k ) → ũ(1) in L 6 ( ).
Hence

e -i t k p 3 u(t k ) = i ∂ p ũ(t k ) - 3t k 4π e i t k p 3 u 3 (t k ) e -ip 3 u(1) in L 2 ((0, +∞)).
On the other hand, using (35) from Lemma 11,

( u)(t k ) L 2 ((0,+∞)) lim n ∞ 0 | u(t k )| 2 χ -1 n d p 1/2 lim n ∞ 0 | u(1)| 2 χ -1 n d p + o n (1)δ 3 t 1/6 k = ( u)(1) L 2 ((0,+∞)) t 1/6 k . Therefore e -i t k p 3 u(t k ) → e -ip 3 u(1) in L 2 ((0, +∞)) and (50) ∂ p ũ(t k ) = -ie -i t k p 3 u(t k ) + 3t k 4π e i t k p 3 u 3 (t k ) → ∂ p ũ(1) in L 2 ((0, +∞)).
The continuity to the left of t = 1 follows from the same arguments and (36).

Step 2. Continuity to the right in L 2 . Now we observe that ũ is continuous to the right with values in Ḣ1 ((0, +∞)).

Given t 0 ∈ [T -(u 1 ), T + (u 1 )), Proposition 16 show that one may build v satisfying ṽ ∈ ([t 0 -, t 0 + ]), for some > 0, with v a solution to (mKdV) in ((t 0 -, t 0 + ) × ) and v(t 0 ) = u(t 0 ).

Step 1 shows that we can furthermore assume continuity at t 0 : ∂ p ṽ(t) → ∂ p ṽ(t 0 ) in L 2 ((0, +∞)) as t → t 0 . However, by forward uniqueness, v ≡ u on [t 0 , t 0 + ], which means that ∂ p ũ is continuous to the right at t 0 .

Step 3. Continuity in weak-L 2 .

Let (t n ) n∈ be a sequence of times in [T -(u 1 ), T + (u 1 )] such that t n → t * . We already saw that ũ(t n ) → ũ(t * ) in L ∞ . Since ∂ p ũ(t n ) in bounded in L 2 ((0, +∞))
, any subsequence admits a sub-subsequence converging in weakly in L 2 , to a limit which can only be u(t * ). This proves that the full sequence converges:

∂ p ũ(t n ) ∂ p u(t * ) weakly in L 2 . □ Remark 19.
If backward uniqueness holds, then the same proof shows full continuity:

∂ p ũ ∈ ([T -(u 1 ), T + (u 1 )], L 2 ).
Proposition 20 (Forward uniqueness implies a backward blow-up alternative). Let u ∈ ((T -, T + )) be a maximal solution of (mKdV). Proof.

If T -> 0, then lim sup t→T - u(t) (t) = ∞. Proof.
Set w = u -v. Then (∂ t + ∂ 3 x )w = -ε(u 3 -v 3 ) x . The right-hand side of the equation is in L ∞ ((t 1 , t 2 ), L 2 ( )): (u 3 ) x (t) L 2 u x u(t) L ∞ u(t) L 2 u (t 1 ,t 2 ) u L ∞ ((t 1 ,t 2 ),L 2 ) .
Applying w to the equation, we see that 1 2

d d t w(t) 2 2 ( u x u(t) L ∞ + v x v(t) L ∞ ) w(t) 2 L 2
( u (t 1 ,t 2 ) + u (t 1 ,t 2 ) ) w(t) 2 L 2 . By Gronwall's lemma, we obtain w ≡ 0. □

We now prove existence of solutions in L 2 ( ) ∩ , which can be translated into a persistence result:

Proposition 22 (Persistence of L 2 integrability). Given u 1 ∈ (1) ∩ L 2 ( ), consider the corresponding solution u ∈ (I) of (mKdV) given by Proposition 13. Then u ∈ (I, L 2 ( )).

Proof. Consider the approximate solutions u n of (Π n -mKdV). Since u n χ -1 n ∈ (I, L ∞ ( )), we have ũn χ -1/2 n ∈ (I, L 2 ( )). It then follows by direct integration that 1 2

d d t |ũ n (t, p)| 2 χ -1 n d p = (u 3 n ) x (t, p)û n (t, p)d p = 1 2 (u 2 n ) x u 2 n d x = 0 and so ũχ -1/2 n (t) 2 L 2 (
) is conserved. In the limit n → ∞, we obtain u ∈ L ∞ (I, L 2 ( )). We then infer L 2 -conservation by direct integration of the equation for u:

u(t) L 2 = u 1 L 2 .
Together with the weak L 2 -continuity, we conclude that u ∈ (I, L 2 ( )). □

ASYMPTOTIC BEHAVIOUR AS t → +∞

Given ν ∈ (0, 1/2), consider the norm

u ν t = t ν 3 -1 6 ∂ p ũ L 2 + sup p∈ |p| -ν p 3 t ν 3 -1 6 |ũ(p)|
and define

ν t = u ∈ ( ; ) : ũ(0) = 0, u ν t < ∞ .
For the sake of completeness, we recall the following technical lemma.

Lemma 23 ([16, Lemma 2.2]). Given ν ∈ (9/20, 1/2), let u, v, w ∈ ([1, T ]) be such that w(t, 0) = 0. Then there exists a universal constant C > 0 such that

(51) ∀t ∈ [1, T ], u(t)v(t)w(t) L 2 C t -5 6 -ν 3 u(t) (t) v(t) (t) w(t) ν t . Furthermore, (52) w(t, x) - 1 t 1/3 Re Ai x t 1/3 w(t, y) t -1/3-ν/3 |x|/t 1/3 -1/4 w(t) ν t ,
where

(53) y = -x/3t, x < 0 0, x > 0 .
Proposition 24 (Asymptotics in the Fourier space). Since

Given u ∈ ([1, ∞)) solution of (mKdV) with u ([1,+∞)) δ, let S ∈ ([1, ∞)) be a self-similar solution with S(1)(0 + ) = u(1)(0 + ).
| 〈s〉 -s| = s 1 + 1 s 2 1/2 -1 s -1 ,
we have

| ( y)| 1 y 2 . Thus, t 1 p 3 |ũ(s, p)| 2 ds 4π(p 3 s) 1-γ/2 〈p 3 s〉 γ/2 -Ψ(p) - 1 4π |U(p)| 2 (p 3 ) - 1 4π |U(p)| 2 log t δ (p 3 t) 1 12
.

Defining

U ∞ (p) = U(p) exp -iεΨ(p) - iε 4π |U(p)| 2 (p 3 ) , (57) and (58) imply ũ 
(t, p) -U ∞ (p) exp - iε 4π |U ∞ (p)| 2 log t δ 〈p 3 t〉 1 12
.

Proof of (56): Using (54) and (55),

||S(t, p)| -|U ∞ (p)|| |p| ν t p 3 1 6 -ν 3 + 1 〈p 3 t〉 1 12
Take, at the same time, t p 3 → +∞ and p → 0 + so that the right-side goes to zero. Then Then, for any ν ∈ (9/20, 1/2), ( 59)

u(t) -S(t) L ∞ δ t 1/3+ν/3 .
support of φ j does not include the stationary points with q k = -1, k = j. Therefore, without loss of generality, in order to study the asymptotics for , it suffices to consider p 3 q 1 +q 2 +q 3 =1 e i t p 3 Q f (pq 1 )g(pq 2 )h(pq 3 )φ(q 1 , q 2 )dq 1 dq 2 ,

were φ := φ 3 and the relevant stationary points are

1 3 , 1 3 , 1 3 
, (1, 1, -1).

If the general stationary phase argument was applicable, then

(t, p) = k 1 (t, p)e -8i t p 3 9 f p 3 g p 3 h p 3 + k 2 (t, p) f (p)g(p)h(p)
+ remainder.

If one takes smooth cutoff functions around the stationary points ψ 1/3 and ψ 1 , then the stationary phase argument for smooth functions (see, for example, [START_REF] Fedoryuk | Asymptotic methods in analysis[END_REF]) implies that, up to a small remainder,

1 3 k 1 (t, p)e -8i t p 3 9 f p 3 g p 3 h p 3 = f p 3 g p 3 h p 3 p 3 q 1 +q 2 +q 3 =1 e i t p 3 Q ψ 1/3 (q 1 , q 2 )φ(q 1 , q 2 )dq 1 dq 2 ,
and

k 2 (t, p) f (t, p)g(t, p)h(t, p) = f (p)g(p)h(p) p 3 q 1 +q 2 +q 3 =1 e i t p 3 Q ψ 1 (q 1 , q 2 )φ(q 1 , q 2 )dq 1 dq 2 .
This implies that the remainder in the stationary phase argument is given by (64) p 3 q 1 +q 2 +q 3 =1 e i t p 3 Q Φdq 1 dq 2

where

Φ := f (pq 1 )g(pq 2 )h(pq 3 ) -f (p)g(p)h(p)ψ 1 (q 1 , q 2 ) -f p 3 g p 3 h p 3 ψ 1/3 (q 1 , q 2 ).
We now explain the main ideas behind the computations for the remainder. The function Φ, due to the fact that f , g and h are Hölder continuous of degree 1/2, satisfies

|Φ| p 1/2 t 1/6 ( |q 1 -1/3| + |q 2 -1/3|) and |Φ| p 1/2 t 1/6 ( |q 1 -1| + |q 2 -1|).
There are three regions of integration:

• the inner region: q 3 > 1/6,

• the middle region: -2 < q 3 < 1/5,

• the outer region: q 3 < -3/2.

In the first and the second regions, we are close to a stationary point and we shall use the Hölder estimate. In the third region, q 1 and q 2 are large, meaning that we are far from any possible singularity coming from integration by parts. The splitting of the integral into these three regions can be accomplished by using appropriate cut-off functions; however, to simplify the exposition of the proof, we omit these terms.

Instead of applying the usual relation

i t p 3 (∂ Q)e i t p 3 Q = ∂ (e i t p 3 Q ), we use (65) Ke i t p 3 Q = 1 1 + i t p 3 K∂ Q ∂ (Ke i t p 3 Q ), ∂ K ≡ 1, K = 0 at the stationary point.
The introduction of K leads to some simplifications: firstly, there is no singularity appearing in the integration by parts; second, the K in the numerator will add some degeneracy.

The required decay has to come from two integration by parts (one integration eliminates the p 3 factor but does not show decay). This has to be done carefully, since f , g and h cannot be differentiated more than once. The key fact is that one may differentiate, for example,

f p (pq 1 )g(pq 2 )h(pq 3 )
in the q 2 (or q 3 ) direction. Therefore, the two required integration by parts are made in different directions, so that no second derivatives of f appear. Even though one could perform all the computations in the q 1 , q 2 coordinates, we introduce some linear change of variables so that it becomes clearer in which direction we integrate by parts and which terms are irrelevant in each region. For example, we shall say that q 1 is irrelevant on the middle region and throw it away when taking absolute values in the integrand.

We now bound the remainder terms in detail. Throughout this proof, τ = t p 3 and p > 0.

Consider the change of variables

1 -q 1 = λ -µ, 1 -q 2 = λ + µ, 1 -q 3 = 2(1 -λ).
Notice that both stationary points satisfy µ = 0. We now use the relation

e iτQ = 1 1 + 4iτµ 2 (1 -λ) ∂ µ (µe iτQ )
and integrate by parts (64):

e iτQ Φdq 1 dq 2 = e iτQ Φ 8iτµ 2 (1 -λ) (1 + 4iτµ 2 (1 -λ)) 2 dq 1 dq 2 + e iτQ Φ q 1 µ 1 + 4iτµ 2 (1 -λ) dq 1 dq 2 - e iτQ Φ q 2 µ 1 + 4iτµ 2 (1 -λ) dq 1 dq 2 = M 1 + M 2 -M 3 .
The estimate for M 3 follows from similar computations as those for M 2 .

We will bound M 1 and M 2 separately, depending whether τ is less or greater than 1, in the four claims below.

Let us focus first of M 1 . We take η = µ 1 -λ and use, for a fixed λ 0 ∈ {0, 2/3},

e iτQ = 1 1 + 2iτ(λ -λ 0 )λ(2 -3λ) ∂ λ ((λ -λ 0 )e iτQ ).
Hence

M 1 = e iτQ Φ 8iτµ 2 (1 -λ) (1 + 4iτµ 2 (1 -λ)) 2 dq 1 dq 2 = e iτQ Φ 8iτη 2 (1 + 4iτη 2 ) 2 dηdλ 1 -λ = e iτQ Φ q 1 1 + µ 2(1 -λ) + Φ q 2 1 - µ 2(1 -λ) -2Φ q 3 × 8iτ(λ -λ 0 )η 2 dλdη (1 + 4iτη 2 ) 2 (1 -λ) 1/2 (1 + 2iτ(λ -λ 0 )λ(2 -3λ)) + e iτQ Φ - 1 2 (1 -λ) + 2iτ (λ(2 -3λ) + (λ -λ 0 )(2 -3λ) -3(λ -λ 0 )λ) 1 + 3iτ(λ -λ 0 )λ(2 -3λ) × 8iτ(λ -λ 0 )η 2 dλdη (1 + 4iτη 2 ) 2 (1 -λ) 1/2 (1 + 2iτ(λ -λ 0 )λ(2 -3λ))
.

Claim 28. For τ 1, we have the bound on M 1 :

|M 1 | τ -13/12 .
Proof. Bounds in the inner region: here we choose λ 0 = 0. Since

2 -3λ, 1 -λ, 1 ± µ 2(1 -λ) are irrelevant, a direct bound on M 1 yields |M 1 | |τη 2 λ| |1 + iτη 2 | 2 |1 + iτλ 2 | (|Φ q 1 | + |Φ q 2 | + |Φ q 3 |)dλdη + |Φ| |τλη 2 | |1 + iτλ 2 ||1 + iτη 2 | 2 + |τλ 2 ||τη 2 | |1 + iτλ 2 | 2 |1 + iτη 2 | 2 dλdη.
The first term is bounded by Cauchy-Schwarz:

|τη 2 λ| |1 + iτη 2 | 2 |1 + iτλ 2 | (|Φ q 1 | + |Φ q 2 | + |Φ q 3 |)dλdη τ 1/2 τη 2 dη |1 + iτη 2 | 2 λ 2 dλ |1 + iτλ 2 | 2 1/2 τ -13/12 .
For the second and the third term, we use the Hölder estimate for |Φ|:

|Φ| τ 1/6 ( |λ| + |η|) and obtain |Φ| |τλη 2 |dλdη |1 + iτλ 2 ||1 + iτη 2 | 2 τ 1/6 |λ| 3/2 |τη 2 | + |τλ||η| 5/2 |1 + iτλ 2 ||1 + iτη 2 | 2 dλdη τ -13/12
and

|Φ| |τλ 2 ||τη 2 |dλdη |1 + 3iτλ 2 | 2 |1 + iτη 2 | 2 τ 1/6 |τ| 2 (|λ| 5/2 |η| 2 + |λ| 2 |η| 5/2 ) |1 + iτλ 2 | 2 |1 + iτη 2 | 2 dλdη τ -13/12 .
Bounds in the middle region: here we take λ 0 = 2/3. Since

λ, 1 -λ, 1 ± µ 2(1 -λ) are irrelevant, a direct bound on M 1 yields |M 1 | |τη 2 (λ -2/3)| |1 + iτη 2 | 2 |1 + iτ(λ -2/3) 2 | (|Φ q 1 | + |Φ q 2 | + |Φ q 3 |)dλdη + |Φ| |τ(λ -2/3)η 2 | |1 + iτ(λ -2/3) 2 ||1 + iτη 2 | 2 + |τ(λ -2/3) 2 ||τη 2 | |1 + iτ(λ -2/3) 2 | 2 |1 + iτη 2 | 2 dλdη.
and the estimate follows as in the inner region. Bounds in the outer region: we consider λ 0 = 0 and use /12 , where the terms with |η|/|λ| 3/2 is taken care with Cauchy-Schwarz in the η-variable. □ Claim 29. For τ < 1, we have the bound on M 1 |M 1 | τ -5/6 .

1 ± µ 2(1 -λ) ∼ 1 ± η |λ| 3/2 , 1 + 3λ ∼ λ, 1 + 3iτλ 2 ∼ τλ 2 to obtain |M 1 | |λη 2 | |1 + iτη 2 | 2 |λ| 7/2 1 + |η| |λ| 3/2 (|Φ q 1 | + |Φ q 2 |) + |Φ q 3 | + 1 |λ| 1/2 |Φ| τ -13
Proof. In the outer region, we take λ 0 = 0 and estimate

|M 1 | τ|λη 2 | |1 + iτη 2 | 2 |λ| 1/2 |1 + iτλ 3 | 1 + |η| |λ| 3/2 (|Φ q 1 | + |Φ q 2 |) + |Φ q 3 | + 1 |λ| 1/2 |Φ| τ -5/6 .
In the inner and middle regions, we simply use the fact that Φ is bounded and conclude to a better bound than needed: e i t p 3 Q Φdq 1 dq 2 1. □ Claim 30. For τ 1, we have the bound on M 2 :

|M 2 | τ -13/12 .
Proof. We consider the change of variables

µ = 3ζ + ξ -2 2 , λ = 2 -ζ + ξ 2 .
One may obtain this transformation by going back to the ξ variables, switching q 1 with q 3 and then redoing the λ, µ transformation. In this way, q 1 depends on a single variable ζ.

In this coordinate system, the stationary points are (ξ, ζ) = (0, 2/3) and (-1, 1).

In the inner region, we use the relation

e iτQ = 1 1 + 4iτξ 2 (1 -ζ)
∂ ξ (ξe iτQ ).

Define

A = 1 + 4iτξ 2 (1 -ζ), B = 1 + 4iτµ 2 (1 -λ) = 1 + iτ(3ζ + ξ -2) 2 (ζ -ξ)/2.
We now integrate by parts:

M 2 = e iτQ µΦ q 1 B dξdζ = ξe iτQ Φ q 1 q 2 µ AB + Φ q 1 AB + µΦ q 1 A ξ A 2 B + B ξ AB 2 dξdζ.
Since, in this region,

1 ζ, 1 -z ∼ 1, ξA ξ A 1, B ∼ 1 + iτµ 2 , B ξ ∼ τµ,
we can now estimate M 2 as follows:

|M 2 | |ξµ|||Φ q 1 q 2 | + |ξ||Φ q 1 | |1 + iτξ 2 ||1 + iτµ 2 | + |µ||Φ q 1 | 1 |1 + iτξ 2 ||1 + iτµ 2 | + |τµξ| |1 + iτξ 2 ||1 + iτµ 2 | 2 dξdµ.
We apply Cauchy-Schwarz to all four terms: In the middle region, we use the following relation to capture the stationary point:

|ξµ|||Φ q 1 q 2 | |1 + iτξ 2 ||1 + iτµ 2 | dξdµ τ 1/
e iτQ = 1 1 + 2iτξ(ξ + 1)(1 -ζ)
∂ ξ ((ξ + 1)e iτQ ).

After an integration by parts, the computations are similar to those of the inner region and are left to the reader.

In the outer region, we consider the case |1 -ζ| < 1/100 first. Then µ ∼ ξ, 1 -λ ∼ ξ, |ξ| 1 and so

|M 2 | ξ |1 + iτξ 2 ζ||1 + iτξ 3 | ξΦ q 1 q 2 + Φ q 1 + ξΦ q 1 |τξζ| |1 + iτξ 2 ζ| + |τξ 3 | |1 + iτξ 3 | dξdζ.
We now estimate each term separately. 

|ξ 2 Φ q 1 q 2 | |1 + iτξ 2 ζ||1 + iτξ 3 | dξdζ τ 1/3 ξ 4 dξdζ |1 + iτξ 2 ζ| 2 |1 + iτξ 3 | 2 1 2 τ -2/3 |ξ| τ 1/3 ξ 2 dξ |1 + iξ 3 | 2 dζ |1 + iζ| 2

  lim p→0 + |U ∞ (p)| = lim t p 3 →+∞ |S(t, p)|. □ Remark 26. If u is an L 2 solution of (mKdV), then (55) implies that U ∞ ∈ L p ( ), for p large.On the other hand, if one takes u as a self-similar solution, then |U ∞ | is a constant.Corollary 27 (Asymptotics in the physical space). Given u ∈ ([1, ∞)) solution of (mKdV) with u ([1,+∞)) δ, let S ∈ ([1, ∞)) be the self-similar solution with S(1)(0 + ) = u(1)(0 + ).

  iε

	By Lemma 10,				
	|ũ n E n (t.p) -ũn E n (s, p)|	|t -s| 〈p 3 〉	.
	Taking n → ∞, we get				
	|ũE u (t.p) -ũE u (s, p)|	|t -s| 〈p 3 〉	,
	which means that ũE u ∈ ([T, ∞), L ∞ ( )). On the other hand,
	|E u (t, p) -E u (s, p)|	s	t	p 3 〈p 3 s〉	|ũ(s, p)| 2 ds |t -s|.
	1	t	χ n (p)p 3 4π 〈p 3 s〉	|ũ n (s, p)| 2 ds .

  and the bound (41) follows from the corresponding bound for u n . The proof is complete. □ Remark 14. As a consequence of the above proof and Lemma 11, one may easily see that, if u 1 (1) < δ < δ 0 , then

	(42)	∀t 1,	u(t) L 2 ((0,+∞))	u(1) L 2 ((0,+∞)) t κδ 2	, and

  By contradiction, suppose that ∀t ∈ (T -, 1), u(t) (t) < M .It follows from Step 3, proof of Proposition 13, that ũ is Lipschitz in time with values in L ∞ ( ). Moreover, since T -> 0, ũ is bounded in Ḣ1 ((0, +∞)). This means that u may be extended up tot = T -: u ∈ ([T -, 1]). Now consider the solution v ∈ ([T --, T -+ ) of (mKdV) with v(T -) = u(T -). By forward uniqueness, u ≡ v for t > T -.This means that u is not maximal, a contradiction. □6. WELL-POSEDNESS ON L 2 ( ) ∩In this section, we prove Proposition 4, that is, once we restrict the critical space to L 2integrable functions, the local well-posedness theory works in both directions of time. We split it into two statements: one for uniqueness and another for persistence of L 2 integrability. Proposition 21 (Backward uniqueness). If u, v ∈ ([t 1 , t 2 ]) are two solutions of (mKdV) with u, v ∈ ([t 1 , t 2 ], L 2 ( )) and u(t 2 ) = v(t 2 ), then u 1 ≡ u 2 .

  |τµ 2 ξ||Φ q 1 | |1 + iτξ 2 ||1 + iτµ 2 | 2 dξdµ τ 1/6 |ξ| 2 dξ |1 + iτξ 2 | 2 1 2 |τµ 2 |dµ |1 + iτµ 2 | 2 τ -13/12 , which gives suitable bounds.

		3	|µ| 2 dµ |1 + iτµ 2 | 2	1 2	|ξ| 2 dξ |1 + iτξ 2 | 2	1 2	τ -7/6 ,
	|ξ||Φ q 1 | |1 + iτξ 2 ||1 + iτµ 2 |	dξdµ τ 1/6	dµ |1 + iτµ 2 |	|ξ| 2 dξ |1 + iτξ 2 | 2	1 2	τ -13/12 ,
	|µ||Φ q 1 | |1 + iτξ 2 ||1 + iτµ 2 |	dξdµ τ 1/6	|µ| 2 dµ |1 + iτµ 2 | 2	1 2	dξ |1 + iτξ 2 |	τ -13/12 ,

  In the remaining case where |1 -ζ| > 1/100, we further split in the cases |µ| < 1/100 and |µ| > 1/100. In the former case,ζ ∼ -ξ, 1z ∼ -ξ, |τξ 2 ζ| 1 ||1 + iτµ 2 ξ| |µΦ q 1 q 2 | + |Φ q 1 | + |µΦ q 1 | 1 + |τµξ| |1 + iτµ 2 ξ| dξdµ. ||1 + iτµ 2 ξ| |µΦ q 1 q 2 |dξdµ τ -2/3 µ 2 dµdξ ξ 4 |1 + iτµ 2 ξ| 2 ||1 + iτµ 2 ξ| dξdµ τ -13/12 .Finally, in the latter case where |µ| > 1/100, one has|1 + iτξ 2 ζ| |τξ 2 ζ|, |1 + iτµ 2 (1 -λ)| |τµ 2 (1 -λ)|.This implies directly the even better bound |M 2 | τ -5/3 . □ Claim 31. For τ < 1, we have the bound on M 2 :|M 2 | τ -2/3 .Proof. In the outer region, we further split depending on the sizes of ζ and µ. Assume first that |ζ| < 1/100. Proceeding as in Claim 30, we obtain|M 2 | τ -2/3 .If |ζ| > 1/100 and |µ| < 1/100, thenζ ∼ -ξ, 1 -λ ∼ -ξ. ||1 + iτµ 2 ξ| |Φ q 1 q 2 |dξdµ τ 1/3 ξ 2 µ 2 dξdµ |1 + iτξ 3 | 2 |1 + iτµ 2 ξ| 2 ||1 + iτµ 2 ξ| |Φ q 1 |dξdµ τ 1/6 dξ |1 + iτξ 3 | Finally, if |µ| > 1/100, then µ ∼ ζ + ξ, 1 -λ ∼ ζ -ξ,and so(|ζ| + |ξ|)|ξ| |1 + iτξ 2 ζ||1 + iτ(ζ + ξ) 2 (ζ -ξ)| |Φ q 1 q 2 |dζdξ τ 1/3 (|ζ| 2 + |ξ| 2 )|ξ| 2 |1 + iτξ 2 ζ| 2 |1 + iτ(ζ + ξ) 2 (ζ -ξ)| 2 |dζdξ |ξ| |1 + iτξ 2 ζ||1 + iτ(ζ + ξ) 2 (ζ -ξ)| |Φ q 1 |dζdξ τ 1/6 dξ |ξ| 2 dζ |1 + iτξ 2 ζ| 2 |1 + iτ(ζ + ξ) 2 (ζ -ξ)| 2Finally, in the inner and middle regions, we proceed as in Claim 29: the fact that Φ is bounded yields the better bounde i t p 3 Q Φdq 1 dq 2 1. □Gathering all these bounds, and taking into account the main order term, gives the expansion (62) together with the bound (63) on the remainder. The proof is complete. □Basque Center for Applied Mathematics BCAM Alameda de Mazarredo 14, 48009 Bilbao, Spain lvega@bcamath.org

	1 2 |τξ 3 1 |ξ||Φ q 1 | |1 + iτξ 2 ζ||1 + iτξ 3 | dξdζ τ 1/6 dξ |1 + iτξ 3 | ξ 2 dζ |1 + iτξ 2 ζ| 2 1 2 τ -7/6 , τ -7/6 , ξ 2 |Φ q 1 | |1 + iτξ 2 ζ||1 + iτξ 3 | dξdζ τ 1/6 |ξ|dξ |1 + iτξ 3 | ξ 2 dζ |1 + iτξ 2 ζ| 2 1 2 τ -7/6 . meaning that |M 2 | |ξ| |τξ 3 Again using Cauchy-Schwarz inequality, |ξ| 2 τ -17/12 , |ξ| |τξ 3 ||1 + iτµ 2 ξ| |Φ q 1 |dξdµ τ -5/6 dξ ξ 2 dµ |1 + iτµ 2 ξ| 1 2 τ -13/12 , |µξΦ q 1 | |τξ 3 ||1 + iτµ 2 ξ| 1 + |τµξ| |1 + iτµ 2 ξ| dξdµ |ξ||Φ q 1 | |µξ| |1 + iτξ 3 1 2 τ -2/3 , |ξ| |1 + iτξ 3 ξ 2 dµ |1 + iτµ 2 ξ| 2 1 2 τ -2/3 . 1 2 τ -2/3 , 1 |τξ 3 This yields the estimates 2 τ -2/3 .
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1

Due to the self-similar structure of S, S = 0 and so ∂ p S = 3t e i t p 3 S 3 .

Since (∂ t + ∂ x x x )w = -ε(w 3 -3uw 2 + 3u 2 w) x , wp (t) L 2 ((0,+∞)) w(t) L 2 ((0,+∞)) + 3t (w 3 -3uw 2 + 3u 2 w)(t) L 2 u(t) L 2 ((0,+∞)) + 30δ 3 t

Moreover, since w(0) = 0,

which is a contradiction. Hence w(t) ν t < 30δ, t 1 and (54) follows. Proof of (55). From (24), we have

, t τ where we recall that (see ( 23))

.

Writing

we have

Therefore there exists

On the other hand,

where y is defined by (53).

Proof. Define w(t) := u(t, x) -S(t, x). Then, by Proposition 24, w(t) ν t < 30δ. The definition of the norm of ν t and the decay estimate for the Airy-Fock function imply

Together with (52), we obtain (59). Finally, (60) follows from ( 16) and (55). □

APPENDIX A. ASYMPTOTIC DEVELOPMENT OF THE NONLINEARITY

Proof of Lemma 6. We actually prove a slightly stronger version: our goal here is to obtain the right asymptotics for

e -i t p 3 (1-q 3 1 -q 3 2 -q 3

3 ) f (pq 1 )g(pq 2 )h(pq 3 )dq 1 dq 2 assuming that f (and mutatis mutandis g, h) satisfies

Specifically, we prove that

where the remainder R satisfies the bound

The usual stationary phase arguments either use high regularity assumptions or that all the functions involved have enough spatial decay (specifically L 2 , in order to apply Parseval's identity), which fail in our setting: as mentioned earlier, the way the computations are performed is critical in order to close the argument with suitable bounds. Before we proceed, let us first explain the ideas of the computations, and start with the main order term. The phase

3 ) has four stationary points:

, (1, 1, -1), (-1, 1, 1), (1, -1, 1).

The last three are connected through the symmetry between q 1 , q 2 and q 3 . Then we split the domain of integration using three cutoff functions φ j with φ 1 + φ 2 + φ 3 = 1 such that the SIMÃO CORREIA