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FLUID-KINETIC MODELLING FOR RESPIRATORY AEROSOLS

WITH VARIABLE SIZE AND TEMPERATURE ∗

Laurent Boudin1, Céline Grandmont2, Bérénice Grec3, Sébastien Martin 3,

Amina Mecherbet4 and Frédérique Noël5

Abstract. In this paper, we propose a coupled fluid-kinetic model taking into account the radius

growth of aerosol particles due to humidity in the respiratory system. We aim to numerically inves-

tigate the impact of hygroscopic effects on the particle behaviour. The air flow is described by the

incompressible Navier-Stokes equations, and the aerosol by a Vlasov-type equation involving the air

humidity and temperature, both quantities satisfying a convection-diffusion equation with a source

term. Conservations properties are checked and an explicit time-marching scheme is proposed. Two-

dimensional numerical simulations in a branched structure show the influence of the particle size

variations on the aerosol dynamics.

Résumé. Dans cet article, nous proposons un modèle couplé fluide-cinétique prenant en compte la

croissance en rayon des particules d’un aérosol due à l’humidité dans les voies respiratoires. Nous nous

intéressons en particulier à l’étude numérique de l’impact des effets hygroscopiques sur le comportement

des particules. L’air est décrit par les équations de Navier-Stokes incompressibles, et l’aérosol par une

équation de type Vlasov impliquant l’humidité et la température de l’air. Chacune de ces deux quantités

vérifie une équation de convection-diffusion avec un terme source. Nous montrons que le modèle couplé

vérifie de bonnes propriétés de conservation. Il est ensuite discrétisé par un schéma explicite en temps.

Enfin, des simulations numériques en deux dimensions dans une bifurcation montrent l’influence de la

croissance en rayon sur la dynamique de l’aérosol.

Introduction

Aerosol therapy is one of the major curative way to treat chronic obstructive pulmonary diseases (COPD).
Since in vivo observations of drug delivery in the human airways induce many difficulties, it appears crucial to
model and to be able to numerically simulate the aerosol flow in the lung with a good enough accuracy, the
main question being linked to the deposition phenomenon, and particularly its location.

The aerosol constitutes a set of very numerous particles. Those particles happen to have hygroscopic proper-
ties, i.e. abilities to exchange water with the bronchial air, which is full of humidity. Consequently, the aerosol

∗ This work was partially funded by the French ANR-13-BS01-0004 project Kibord and ANR-15-CE40-0010 project IFSMACS.

1 Sorbonne Université, Université Paris-Diderot SPC, CNRS, Inria, Laboratoire Jacques-Louis Lions, équipe REO, F-75005
Paris, France
2 Inria, Sorbonne Université, Université Paris-Diderot SPC, CNRS, Laboratoire Jacques-Louis Lions, équipe REO, F-75012
Paris, France
3 MAP5, CNRS UMR 8145, Sorbonne Paris Cité, Université Paris Descartes, F-75006 Paris, France
4 IMAG, University of Montpellier, CNRS, Montpellier, France
5 Laboratoire JA Dieudonné, UMR CNRS 7351, Université Côte d’Azur, Nice, France

© EDP Sciences, SMAI 2019



2 ESAIM: PROCEEDINGS AND SURVEYS

particle sizes may vary in time, as it was assessed in [8–10]. Assuming that the droplets remain spherical, we
intended to study the influence of radius growth on deposition (number of deposited particles, characteristic
times of propagation/deposition inside a given realistic geometry, deposition areas...). It is worth noticing that
those hygroscopic properties strongly rely on thermal effects, and the model we investigate involves both air
and aerosol temperatures.

There are several kinds of models allowing to describe the aerosol motion in the air, two-phase models,
agent-based ones and kinetic ones. In the first situation, the aerosol droplets are considered as a fluid which
constitues a mixture with the ambient air in the lung. Then one focuses on the aerosol concentration in the air,
see [1, 5] for instance. Nevertheless, with those models, it may be difficult to determine the aerosol deposition
areas. The second situation, which is used in [12,15] for instance, raises many difficulties to track the trajectory
of numerous particles, in particular when there is a strong coupling between the particles and the air flow.

We here choose to use a kinetic approach, as in [2, 6], which is relevant from the modelling point of view:
there are lots of particles in the aerosol, but their volume is negligible compared to the airways volume. In this
framework, the aerosol behaviour is described through a distribution function which depends on macroscopic
variables (time, space position) as well as on microscopic ones (velocity, for instance). The Vlasov-type equation
satisfied by the distribution function is usually coupled with the incompressible Navier-Stokes equations to
describe the airflow [4]. The model we present here is an extension of the latter one, where the air temperature,
the mass fraction of the water vapour in the air and the dependence of the distribution function on both the size
and temperature of the particles are taken into account. Note that it is also investigated from the mathematical
point of view in [11].

This article is divided into four main parts. The first one aims to present the model(s) we study. In the brief
second one, we formally check some relevant balance properties of our model. Then we discuss the numerical
method we use to discretize our model in the third section. Eventually, the last section is dedicated to numerical
experiments which point out the aerosol size growth importance in the deposition phenomenon.

1. Building the model

As stated above, this section aims to explain and present a model describing the behaviour of a therapeutic
aerosol in the respiratory system, where the size of the aerosol particles can vary because of the ambient water
vapour in the airflow.

We use a simplified fluid domain, denoted by Ω: in our setting, Ω can be chosen as a cylinder or a branch,
and is assumed not to depend on time. Its boundary Γ = ∂Ω is divided into three subsets, the wall Γwall, the
inlet Γin and the outlet Γout, see Figure 1.

As we already stated, we use a kinetic viewpoint to model the aerosol, which constitutes a dispersed phase.
Let us consider a distribution function f representing the density of particles per unit volume in the domain
of interest Ω ⊂ R

3. It depends on time t ≥ 0, position x ∈ Ω, velocity v ∈ R
3, radius r > 0 and temperature

T > 0. The usual dependence of f with respect to the variables t, x, and v is supplemented by the one with
respect to the size and temperature of the droplets. Indeed, the condensation phenomenon which induces the
size variation involves matter and thermal exchanges between the aerosol and the air. Note that we assume
that the particles remain spherical and do not interact with each other. The latter hypothesis relies on the fact
that there are not enough particles for their collisions to be significant.

In the respiratory system, the aerosol moves in the air, which can be assumed to be Newtonian and incom-
pressible. In particular, this means that the air mass density ̺air is constant. The air flow is then classically
described through the air velocity u and its pressure p.

In order to consider the growth of particles and describe the matter and thermal exchanges with the air, we
also need to work with the water vapour mass fraction in the air Yv,air and the air temperature Tair. All those
quantities indexed by “air” depend on t and x (except ̺air, of course). Note that the water vapour mass density
in the air considered as a gaseous mixture can be computed as ̺airYv,air.

Let us now focus on the various equations satisfied by the aerosol and air-related quantities, starting with
the dispersed phase.
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Γin

Γout

Γout

Γwall

Figure 1. Domain Ω

The aerosol density f satisfies a Vlasov-type equation, which can be written as:

∂tf + v · ∇xf + divv[(α(u − v) + g)f ] + ∂r(af) + ∂T (bf) = 0, (1)

where g is the gravitational field, α(u − v) the drag acceleration undergone by the aerosol from the air, and a
and b respectively represent the radius and temperature growth evolutions of the particles. The Vlasov equation
is supplemented with the following boundary and initial conditions







f = f in on R+ × Γin × R
3 × R

∗

+ × R
∗

+,
f(t, ·) = 0 on Γwall × R

3 × R
∗

+ × R
∗

+, if v · n ≤ 0, a.e. t,
f(0, ·) = finit on Ω× R

3 × R
∗

+ × R
∗

+,
(2)

where f in : R+×Γin×R
3×R

∗

+×R
∗

+ → R and finit : Ω×R
3×R

∗

+×R
∗

+ → R are given. The boundary condition

on Γwall is standard, it ensures that any droplet landing on the wall remains deposited on the wall afterwards.
We still need to define the functions α, a and b in (1). In order to do so, it is important to first understand

how a particle behaves and what kind of phenomenon we deal with.
The main new phenomena taken into account in the model are the water vapour condensation on the droplet

surface and the water evaporation from the droplet surface. In each particle, one can find active products (drug),
excipient and water. Let us introduce some equivalent radii to simplify the situation. Denote by rdrug the radius
such that 4

3πr
3
drug̺drug is the drug mass inside the droplet and by rex the one such that 4

3π(r
3
ex − r3drug)̺ex is

the excipient mass inside the droplet (see Figure 2). Obviously, ̺drug and ̺ex respectively are the (constant)
drug and excipient mass densities. The latter equivalent radius rex will also be named the particle dry radius,
in the sense that there is no water in a dry particle.

Denoting by ̺w the water mass density, assumed to be constant in the situations we investigate, it is now
possible to define the mass and mass density of the particle, which both depend on r, i.e.

m(r) =
4

3
π
[

r3drug̺drug + (r3ex − r3drug)̺ex + (r3 − r3ex)̺w
]

, (3)

̺d(r) =
1

r3
[

r3drug̺drug + (r3ex − r3drug)̺ex + (r3 − r3ex)̺w
]

. (4)
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rdrug

rex

r

Figure 2. Equivalent radii in a droplet

This allows to properly define α. Indeed, we have, as in [4],

α(r) =
6πηr

m(r)
, (5)

where η is the constant air dynamic viscosity, so that the drag force satisfies the Stokes law.
We rely on [9] to build the functions a and b. Since we want to take into account condensation and evaporation,

the key physical quantities are the heat fluxes between the air and the droplets, the convective one Qd and the
evaporating one LvNd, where Lv is the latent heat of water vaporisation. The convective flux depends on r,
T , but also on t and x through Tair. The evaporating heat flux involves the water mass flux Nd at the droplet
surface. This flux depends on r, T , and also on t and x again, but this time through Yv,air, and also governs
the size evolution of the droplets. The expressions of the functions a and b can then be written in terms of Nd

and Qd as

a(r, T, Yv,air(t, x)) = −
Nd(r, T, Yv,air(t, x))

̺w
, (6)

b(r, T, Yv,air(t, x), Tair(t, x)) =
3

̺d(r)cPd
r
(−Qd(r, T, Tair(t, x)) − LvNd(r, T, Yv,air(t, x))), (7)

where cPd
is the constant specific heat of the droplet.

Let us now detail the expressions of Qd and Nd. We can first write

Qd(r, T, Tair(t, x)) =
NuκairCT

2r
(T − Tair(t, x)), (8)

where Nu is the droplet Nusselt number in the air, κair the thermal conductivity of the air as a gaseous mixture,
and CT the Knudsen correlation for non-continuum effects, all of them being considered as constants in our
case.

Second, the water mass flux Nd involves Yv,air and also the mass fraction Yv,surf of water vapour at the droplet
surface, which depends on r and T . That quantity Yv,surf is quite intricate to be defined from the modelling
viewpoint. We do not provide any detailed explanation on the model itself, the reader is invited to refer to [9]
for more details. We first need the water vapour saturation pressure, which depends on T , and is here expressed
in the cgs unit system:

Pv,sat(T ) = 10 exp

(

23.196−
3816.44

T − 46.13

)

. (9)
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Then the influence of the Kelvin effect on the droplet surface concentration of water vapor is expressed thanks
to

K(r, T ) = exp

(

2σ

r̺d(r)RvT

)

, (10)

where Rv is the gas constant of water vapour and the droplet surface tension σ is assumed to be constant too
in our framework (in particular not depending on T ). Eventually, we need the water activity coefficient given
by

S(r) =

̺w(r
3 − r3ex)

Mw

̺w(r
3 − r3ex)

Mw
+ idrug

̺drugr
3
drug

Mdrug
+ iex

̺ex(r
3
ex − r3drug)

Mex

, (11)

where Mw, Mdrug and Mex respectively denote the molar masses of water, drug and excipient, and the constants
idrug and iex are the so-called van’t Hoff factors of the drug and the excipient, allowing to take into account the
molecular dissociation during dissolution. Note that the previous expression S is different from the one in [9].
Indeed, S equals 0 when the particle is dry, i.e. when r = rex, which was not possible in [9], but otherwise, of
course, we recover the same value for S. We can now write the expression of Yv,surf , that is

Yv,surf(r, T ) =
S(r)K(r, T )Pv,sat(T )

̺d(r)RvT
. (12)

The expression of the water mass flux subsequently comes

Nd(r, T, Yv,air(t, x)) = ̺air
ShDv(Tair)Cm

2r

Yv,surf(r, T )− Yv,air(t, x)

1− Yv,surf(r, T )
, (13)

where Sh is the Sherwood number describing the water transfer between the air and the droplet, Cm is the mass
Knudsen number correction, and the binary diffusion coefficient Dv of water vapour in the air is given, in the
cgs unit system, by

Dv(Tair(t, x)) = 0.216

(

Tair(t, x)

273.15

)1.8

. (14)

The definitions (6)–(8) and (13) of a, b, Qd and Nd allow to determine lower bounds for the support of the
distribution function with respect to both r and T . We know that a governs the time evolution of this support.
Assume that, at initial time, the droplets all have a radius greater than rex. In that situation, if r somehow
reaches the value rex, as we already pointed out, we have S(rex) = 0 and subsequently Yv,surf = 0, which implies
Nd ≤ 0 and a ≥ 0. That ensures that r cannot go below rex in the model. For the support of f with respect
to T , from the mathematical viewpoint, even if the formulae leading to (13) do not hold in the considered
temperature range, one can check that if T somehow reaches 46.13 K (the value in Pv,sat), Nd is non positive,
since Yv,surf = 0 again. And Qd is clearly non positive too. That ensures that T cannot go below 46.13 K in
the model. Anyway, if all the functions involved are smooth enough, if finit is chosen with a compact support
in all its variables, that compactness property should hold at least for small times. Note that, from the physical
viewpoint, it seems relevant to assume that all the temperatures remain around 300 K, and that Yv,air remains
positive.

Let us now tackle the air equations. To begin with, the fluid velocity u(t, x) ∈ R
3 and its pressure p(t, x) ∈ R

classically [4] satisfy the incompressible Navier-Stokes equations

̺air[∂tu+ (u · ∇xu)]− η∆xu+∇xp = F, (15)

divx u = 0, (16)
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on R+ × Ω, completed with the following boundary and initial conditions:















u = uin on R+ × Γin,
u = 0 on R+ × Γwall,

σ(u, p) · n = 0 on R+ × Γout,
u(0, ·) = uinit on Ω,

(17)

where σ(u, p) = ∇xu+(∇xu)
⊺−p Id is the stress tensor, n is the outgoing normal vector from Γ, uin : R+×Γin →

R
3 is chosen to be a Poiseuille flow and uinit : Ω → R

3 is the initial datum. Eventually, the aerosol retroaction
F on the air is given by

F (t, x) = −

∫∫∫

R3
×R+×R

m(r)α(r)(u(t, x) − v)f(t, x, v, r, T ) dv dr dT

= −

∫∫∫

R3
×R

∗

+
×R

∗

+

6πηr(u(t, x) − v)f(t, x, v, r, T ) dv dr dT.

In our numerical simulations, that latter term will be neglected (F = 0) because of its smallness related to the
investigated particle size range, see [4], but we keep it for the time being, in order to remain consistent with
respect to the total momentum conservation of our system.

We still need to write equations to describe the evolution of the air temperature Tair and the water vapour
mass fraction Yv,air in the air. The water vapor mass fraction Yv,air satisfies an advection-diffusion equation
including a source term SY which accounts for the water mass exchanges between the bronchial air and the
aerosol. Other effects such as turbulence effects could also be taken into account (see [8, 10]). Thus, we write,
on R+ × Ω,

̺air[∂tYv,air + (u · ∇x)Yv,air]− divx(Dv(Tair)∇xYv,air) = SY , (18)

completed with the following boundary and initial conditions















Yv,air = Y in
v,air on R+ × Γin,

Yv,air = Yv,wall on R+ × Γwall,
∇xYv,air · n = 0 on R+ × Γout,
Yv,air(0, ·) = Yv,air,init on Ω,

(19)

where Yv,air,init, Y
in
v,air, Yv,wall > 0 are given. The boundary condition on Γwall ensures that the wall continuously

provides water vapour to the air mixture. The source side term SY of (18) is defined, very similarly to the one
from [9], as

SY (t, x) = ̺w

∫∫∫

R3
×R

∗

+
×R

∗

+

4πr2Nd(r, T, Yv,air(t, x)) f(t, x, v, r, T ) dv dr dT. (20)

Finally, the air temperature also satisfies an advection-diffusion equation on R+ × Ω, which writes

̺aircPair
[∂tTair + (u · ∇x)Tair]− κair∆xTair = ST , (21)

completed with the following boundary and initial conditions















Tair = T in
air on R+ × Γin,

Tair = Twall on R+ × Γwall,
∇xTair · n = 0 on R+ × Γout,
Tair(0, ·) = Tair,init on Ω,

(22)
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where Tair,init, T
in
air, Twall > 0 are given. The source side term ST of (21) represents the heat transfer between

the air and the aerosol through the water vapour, and is given, again very similarly to the one from [9], by

ST (t, x) =

∫∫∫

R3×R
∗

+
×R

∗

+

4πr2Qd(r, T, Tair(t, x)) f(t, x, v, r, T ) dv dr dT. (23)

In what follows, equations (1)–(23), which include all the effects related to aerosol size and temperature
variation, will be referred to as the (A) model. If we drop the temperature effects, the (B) model is given by
(1)–(6) and (9)–(20), with b = 0. And for the (C) model, where no aerosol size or temperature variation is
allowed, we consider equations (1)–(5) and (15)–(17) with a = 0 and b = 0. To summarise the models under
study, we rewrite below the PDEs for each one of them, without the boundary and initial conditions:

(A)















∂tf + v · ∇xf + divv[(α(u − v) + g)f ] + ∂r(af) + ∂T (bf) = 0,
̺air[∂tu+ (u · ∇xu)]− η∆xu+∇xp = 0, divx u = 0,
̺air[∂tYv,air + (u · ∇x)Yv,air]− divx(Dv(Tair)∇xYv,air) = SY ,
̺aircPair

[∂tTair + (u · ∇x)Tair]− κair∆xTair = ST ,

varying size and temperature,

(B)







∂tf + v · ∇xf + divv[(α(u − v) + g)f ] + ∂r(af) = 0,
̺air[∂tu+ (u · ∇xu)]− η∆xu+∇xp = 0, divx u = 0,
̺air[∂tYv,air + (u · ∇x)Yv,air]− divx(Dv(Tair)∇xYv,air) = SY ,

varying size,
no temperature variation,

(C)

{

∂tf + v · ∇xf + divv[(α(u − v) + g)f ] = 0,
̺air[∂tu+ (u · ∇xu)]− η∆xu+∇xp = 0, divx u = 0,

no size
nor temperature variation.

2. Checking the physical conservations

In this section, we discuss the physical conservations of various quantities related to the (A) system, and we
focus on two quantities which involve water vapour. The first one focuses on the water vapour mass exchange.
More precisely, the water vapour coming from the air is supposed to lead to a size variation of the aerosol
droplets. That property is stated in the following proposition.

Proposition 1. Assume that u = 0 and ∇xYv,air · n = 0 on ∂Ω, and that f = 0 on ∂Ω×R
3 ×R

∗

+ ×R
∗

+. Then

we have

d

dt

[

∫

Ω

(

̺airYv,air(t, x) +

∫∫∫

R3
×R

∗

+
×R

∗

+

m(r)f(t, x, v, r, T ) dv dr dT

)

dx

]

= 0.

Proof. On the one hand, multiplying (1) by m(r), integrating with respect to all the variables except t, and
eliminating the conservative terms through integrations by parts, we obtain

d

dt

[

∫

Ω

∫∫∫

R3
×R

∗

+
×R

∗

+

m(r)f(t, x, v, r, T ) dv dr dT dx

]

=

∫

Ω

∫∫∫

R3
×R

∗

+
×R

∗

+

m′(r) a(r, T, Yv,air(t, x)) f(t, x, v, r, T ) dv dr dT dx.
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On the other hand, integrating (18) on Ω, we get, thanks to (20),

d

dt

[
∫

Ω

̺airYv,air(t, x) dx

]

=

∫

Ω

SY (t, x) dx

=

∫

Ω

∫∫∫

R3×R
∗

+
×R

∗

+

4πr2̺wNd(r, T, Yv,air(t, x)) f(t, x, v, r, T ) dv dr dT dx

= −

∫

Ω

∫∫∫

R3
×R

∗

+
×R

∗

+

m′(r) a(r, T, Yv,air(t, x)) f(t, x, v, r, T ) dv dr dT dx.

That clearly concludes the formal proof. �

The exchanges of thermal energy associated to water transfers between the air and the aerosol are more
intricate to understand. The following proposition holds.

Proposition 2. Assume that u = 0 and ∇xTair · n = 0 on ∂Ω, and that f = 0 on ∂Ω× R
3 × R

∗

+ × R
∗

+. Then

we have

d

dt

[

∫

Ω

(

̺aircPair
Tair(t, x) +

∫∫∫

R3
×R

∗

+
×R

∗

+

m(r)cPd
Tf(t, x, v, r, T ) dv dr dT

)

dx

]

= −

∫

Ω

∫∫∫

R3
×R

∗

+
×R

∗

+

4πr2(Lv + cPd
T )Nd(r, T, Yv,air(t, x)) f(t, x, v, r, T ) dv dr dT dx. (24)

Proof. On the one hand, we integrate (21) over Ω to obtain

d

dt

[
∫

Ω

̺aircPair
Tair(t, x) dx

]

=

∫

Ω

ST (t, x) dx.

Then we multiply (1) by m(r)cPd
T and integrate it with respect to all the variables except t to get

d

dt

[

∫

Ω

∫∫∫

R3×R
∗

+
×R

∗

+

m(r)cPd
T f(t, x, v, r, T ) dv dr dT dx

]

=

∫

Ω

∫∫∫

R3×R
∗

+
×R

∗

+

[m′(r)cPd
T a(r, T, Yv,air(t, x)) f(t, x, v, r, T )

+m(r) b(r, T, Yv,air(t, x), Tair(t, x)) f(t, x, v, r, T )] dv dr dT dx.

Then we sum both previous equalities to recover (24), noticing that the term involving Qd vanishes, keeping
two terms involving Nd: one with Lv to take the change of physical state into account and one with the added
thermal energy in the aerosol due to the mass exchange. �

For the total momentum conservation, when the retroaction term is involved, in fact, the formal proof is
exactly the same as in [4]. We do not present any more details about the conservation of this quantity and the
total kinetic energy decreasing.

3. Numerical method

Before studying some relevant physical situations from the computational viewpoint, let us describe, in this
section, the numerical scheme we implemented to solve system (A).

We proceed in the same way as in [4], by using a time-marching scheme and uncoupling the fluid and aerosol
equations. First, we solve the three fluid equations (15)–(16), (18) and (21) with the source terms computed



ESAIM: PROCEEDINGS AND SURVEYS 9

at the previous time step for both equations for Yv,air and Tair (recall that F is chosen equal to 0). Then we
solve the Vlasov equation (1) using the updated fluid quantities. For the fluid equations, we use a finite-element
method, and the aerosol is computed thanks to a particle method. All the computations are performed in a
two-dimensional setting with FreeFem++ [7], on a time interval [0, τ ], where τ > 0 is given. For a time step
∆t > 0 such that τ/∆t ∈ N

∗, we denote tn = n∆t for any n, with 0 ≤ n ≤ N . The domain Ω is discretized as
a tetrahedric mesh Ωh.

Let us provide more details about the numerical solving. As already stated, we start by solving the fluid
equations, and use a finite element method to do so. If we write weak formulations of those equations, we
introduce the following test functions: χ ∈ L2(Ω) for (16), and ν, ψ, φ ∈ H1(Ω), vanishing on Γin and Γwall,
respectively for (15), (18) and (21). Then, for the discretization, we are led to use P2 functions for the velocities
u and ν and P1 functions for p, Yv,air, Tair, χ, ψ and φ.

To go from tn to tn+1, assume that un, Y n
v,air, T

n
air, S

n
T and Sn

Y are known. In order to handle the convective

term in (15), we introduce the approximated characteristic flow Xn, which approximates the solution X to the
Cauchy problem, set on [tn, tn+1],

Ẋ(s) = un(s,X(s)), X(tn+1) = x,

for any x ∈ Ωh. The approximation Xn is computed thanks to the FreeFem++ command convect. Hence, we
define un+1 as the solution to the following discrete weak formulation

̺air

∫

Ω

un+1 − un ◦Xn

∆t
· ν dx+ η

∫

Ω

∇xu
n+1 : ∇xν dx−

∫

Ω

pn+1 divx ν dx+

∫

Ω

divx u
n+1 χ dx = 0.

We proceed in the same way to define Y n+1
v,air and T n+1

air as the solutions to the discrete weak formulations

̺air

∫

Ω

Y n+1
v,air − Y n

v,air ◦X
n

∆t
φdx+Dv

∫

Ω

∇xY
n+1
v,air · ∇xφdx =

∫

Ω

Sn
Y φdx,

̺aircPair

∫

Ω

T n+1
air − T n

air ◦X
n

∆t
ψ dx+ κair

∫

Ω

∇xT
n+1
air · ∇xψ dx =

∫

Ω

Sn
Tψ dx.

Note that, in the considered air temperature range, the value of Dv, which theoretically depends on Tair, only
has a 2% variation, so we choose not to update Dv with respect to Tair in this equation.

Next comes the aerosol numerical solving. Since we use a particle method, we discretize the distribution
function f as a weighted sum of Dirac masses in the position, velocity, radius and temperature variables. More
precisely, we consider Nnum ∈ N

∗ numerical particles, each of them having the representativity ω ∈ N
∗, so that

the total number of physical particles is Naero = ωNnum. Note that, for obvious computational cost reasons,
Nnum must be chosen to be small with respect to Naero, but large enough to faithfully represent the distribution
of the aerosol particles.

The distribution function is then approximated by

f(t, x, v, r, T ) ≃ ω

Nnum
∑

p=1

δxp(t) ⊗ δvp(t) ⊗ δrp(t) ⊗ δTp(t)(x, v, r, T ),

where xp(t), vp(t), rp(t), Tp(t) are the coordinates, in the space phase of f , of the numerical particle p ∈
{1, . . . , Nnum} at time t.
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The particle coordinates solve the following differential system















ẋp(t) = vp(t),
v̇p(t) = α(rp(t))(u(t, xp(t))− vp(t)) + g,
ṙp(t) = a(rp(t), Tp(t), Yv,air(t, xp(t))),

Ṫp(t) = b(rp(t), Tp(t), Yv,air(t, xp(t)), Tair(t, xp(t))),

(25)

supplemented with initial data chosen to fit the distribution of droplets given by finit.
The ODE on rp is solved thanks to a RK4 scheme, in order to remain very accurate for the radii computa-

tions, involving the newly computed value Y n+1
v,air at the current position of the particle xnp . The velocity and

temperature ODEs are solved with a semi-implicit Euler scheme, respectively involving un+1, and Y n+1
v,air , T

n+1
air ,

all of them again being valued at xnp . Eventually, the position xn+1
p is updated using the newly computed vn+1

p .

Once we know (xn+1
p , vn+1

p , rn+1
p , T n+1

p ) for all p = 1, . . . , Nnum, we define the source terms for the next time

step tn+1 as

Sn+1
Y = ω̺w

Nnum
∑

p=1

4π
(

rn+1
p

)2
Nd(r

n+1
p , T n+1

air (xn+1
p ), Y n+1

v,air (x
n+1
p ))δ

x
n+1
p

,

Sn+1
T = ω

Nnum
∑

p=1

4π
(

rn+1
p

)2
Qd(r

n+1
p , T n+1

p , T n+1
air (xn+1

p ))δ
x
n+1
p

.

In order to take into account the deposition or exiting conditions from (2), in the previous definition of the
discrete source terms at time tn+1, we drop the indices p such that xn+1

p is outside the domain Ωh in the sum

p ∈ {1, . . . , Nnum}. It means that, at time tn+1, the corresponding particle p either deposited on the wall or
went out of the domain through the outlet (depending on its distance to Γwall and Γout at time tn) . Note that
a particle p is also considered to be deposited if the distance between xp and Γwall is smaller that rp. The same
goes for Γout for exiting the domain. Once the particle is deposited or out, it is of course not treated numerically
anymore.

It appears mandatory to perform a time-subcycling for the aerosol computations. Without that subcycling,
the particle would be able to go across various cells during the same (fluid) time step. Moreover, it is particularly
relevant when dealing with the particle temperatures because, if we compute the coefficients involved, we can
check that the temperature ODE is very stiff.

4. Numerical simulations

In this section, we numerically investigate various situations. Let us first provide the specific setting of our
numerical experiments. Note that the values of the physical constants appearing in our models are gathered in
Appendix A.

4.1. Experimental context, reference situation

The final time is set at τ = 1 s. Our domain is supposed to represent the trachea and the first bifurcation
in the human airways, see Figure 1). Its characteristic sizes and shape are the ones described in [13,14], taking
into account a 3D-2D correction coefficient for each branch length. More precisely, the diameter of the trachea
is set at D0 = 1.80 cm, and its length at ℓ0 = 7.52 cm. The right-hand bronchus has an angle of 25° with the
tracheal axis, it is quite short (ℓ10 = 3.75 cm), but its diameter quite large, D10 = 1.50 cm. The left-hand
bronchus has an angle of 45° with the tracheal axis, it is longer than the first one (ℓ01 = 6.75 cm), but its
diameter is smaller, with D01 = 1.00 cm. Let us emphasize that the right-hand bronchus is the left branch on
Figure 1, and conversely: we have the outsider’s view, not the patient’s.



ESAIM: PROCEEDINGS AND SURVEYS 11

The middle of the boundary inlet Γin is the origin of the space coordinate system, with horizontal and vertical
axes.

Let us now provide the boundary and initial conditions for the fluid equations. The velocity fluid is initialized
at uinit = 0, and, at the inlet, uin follows a Poiseuille law, i.e. it is vertically oriented from up to bottom and
its modulus is given, for any x ∈ Γin, by

|uin(x)| =
4u0

D0
2

(

D0
2

4
− x1

2

)

,

where u0 = 50.0 cm.s−1. The air temperature uses the following values

Tair,init = 37°C = 310 K, T in
air = 24°C = 297 K, Twall = 37°C = 310 K.

The initial and boundary values of Yv,air uses the ones of the relative humidities in the airways, here chosen as
RHlung = 0.990 and RHwall = 1.00. Then we write

Yv,air,init =
RHlungPv,sat(Tair,init)

̺airRvTair,init
, Y in

v,air =
RHlungPv,sat(T

in
air)

̺airRvT in
air

, Yv,wall =
RHwallPv,sat(Twall)

̺airRvTwall
.

Figure 3 shows the values of |u|, Yv,air and Tair at final time, where some kind of stationary state is reached
for the fluid.
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Figure 3. Distribution of the velocity |u|, water vapor mass fraction in the air Yv,air and
temperature Tair at final time τ = 1 s.

Let us next describe the computational and experimental parameters for the aerosol. We consider 5 injections
in the domain of 100 numerical particles each with representativity ω = 104, periodically released between initial
time and t = 0.25 s. Hence, we deal with Nnum = 500 numerical particles and Naero = 5 106 physical particles.
All the numerical particles initially have the same vertical velocity vp,2(0) = −100 cm.s−1, the same radius
rp(0) = 2.25 10−5 cm, and the same temperature Tp(0), equal to the air temperature T in

air at the inlet. They
are released from random positions xp(0) ∈ Γin with its first coordinate in [−D0/4, D0/4], following a uniform
law. We choose this latter interval instead of [−D0/2, D0/2] so that it allows a larger deposition phenomenon.
Since we use a particle method, it is mandatory, in order to obtain meaningful results, to perform averaging
computations over several initial randomly chosen distributions of droplets, in our case, 10 different distributions.
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Figure 4. Dynamics of the particles with the air velocity, at time t = 0.00, 0.08, 0.16, ..., 0.80 s and at final time τ = 1 s.
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Figure 5. Dynamics of the particles with the air temperature, at time t = 0.00, 0.08, 0.16, ..., 0.80 s and at final time τ = 1 s.
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This parameter set defines what we name the reference situation, which was first used to validate the code.
Indeed, we checked, at the computational level, the total mass conservation in the water vapour exchange
between air and aerosol and the thermal energy balance implied by the thermodynamic state change of water
vapour. The next subsection also lies in the framework of the reference situation, in order to give an almost
exhaustive overview of all the phenomena.

4.2. Numerical tests

We first show, for the (A) model, the behaviour of the air velocity u and temperature Tair at different times,
as well as the movement in the domain of the various aerosol releases, in Figures 4–5. We do not provide
snapshots for the water vapor mass fraction Yv,air because they would look like Figure 3(b): Yv,air seems to
reach a stationary state very fast, whereas u and Tair only do so near time 0.48 s.
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Figure 6. Local effects of the aerosol on the air temperature, here at time 0.25 + ∆t (in seconds).

Figure 6, where the air temperature is shown just after the last aerosol release at time 0.25 s, plotting or
not the particle positions, allows to point out an effect which could not be seen in the snapshots from Figure 5,
because of the plotting of the particles in the domain. Indeed, for all aerosol releases except for the first one,
there is a local air temperature increasing at the location of the particles. This effect is clearly not explained
by direct thermal phenomena, hence it comes from the water vapour mass exchange between the humidified air
and the droplets.

On Figure 7, we represent the particle trajectories obtained with the (A) model. In this example, most of
the droplets (348 over 500) go out of the domain through the left branch. A less significant number of particles
(98) go out through the right branch, and a smaller part of them (47) deposit on the wall (more precisely, on
the “internal” wall of the left branch). There are still 7 droplets in the domain at final time. The major exit at
the left branch is of course no surprise: because of its diameter, the branch is the most natural way out for the
aerosol.

Let us now focus on Figure 8. The plots show the time evolution of (a) the radius and (b) the temperature
of all the numerical particles from one of the initial distributions we used, in the (A) model. It is clear from
Figure 8(a) that, at first, the droplets from the first release do not behave in the same way as the ones from
the other releases: the size growth happens more slowly. The difference is confirmed by Figure 8(b): the
temperature plots for the first release again behave very differently from the others. In particular, even if the
temperatures of the first injected particles are initially 297 K, they almost instantaneously become close to
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(a) (b) (c)

Figure 7. Particle trajectories (a) towards the left branch, (b) towards the right branch, (c) deposition.
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Figure 8. Radius and temperature evolution of all the particles with respect to time.

310 K because they move in an air at 310 K, see Figure 5(a). On the contrary, the other releases live in a cooler
air, see Figure 5(b)–(e), and hence are not submitted to a thermal shock. Then, we can check on Figure 8 that
each plot seems to have a characteristic time of behaviour change. It is definitively clear on Figure 8(b). For
all releases except for the first one, there is a temperature jump which is, for the second one, located in time
at approximately 0.25 s. If we observe the temperature snapshot 5(d), we can see that the corresponding time,
which is 0.24 s, is approximately the one when the second release goes into the branches, where the diameters
are significantly smaller than in the trachea, and where the wall effect consequently appears stronger. This
explains the fact that the particle temperatures increase more.

Then, on Figures 9–11, we compare the radius and temperature evolution, with respect to time, of particular
droplets of the second release evolving in models (A), (B) and (C). Figure 9 focuses on a droplet exiting the
domain through the left branch with the (A) model, Figure 10 through the right branch, and Figure 11 on a
droplet depositing. Note that those same particles share the same future in models (A) and (C), but are all
deposited in the (B) model.
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Figure 9. Radius and temperature evolution of a particular droplet which goes out through
the left branch, comparison in the three models.
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Figure 10. Radius and temperature evolution of a particular droplet which goes out through
the right branch, comparison in the three models.
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Figure 11. Radius and temperature evolution of a particular droplet which deposits, compar-
ison in the three models.
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Let us first comment Figures 9(b)–11(b), i.e. the temperature plots. Of course, in the (B) and (C) models,
the temperature remains constant, whereas, in the (A) model, the particle temperature grows until it (approxi-
mately) reaches Twall. This may seem peculiar. Indeed, the aerosol enters the domain at 297 K, and, except for
the first aerosol release, it evolves in a cooled air. Since the droplet temperature variations cannot be explained
because of the ambient air temperature, it means that they are triggered by hygroscopic phenomena. This leads
us to study more carefully Figures 9(a)–11(a). As one can see, in the three situations, model (B) induces a larger
size growth than model (A): this may explain the fact that the particle deposits in model (B). The hygroscopic
effects imply radius variations for both models, but a part of this variation existing in the (B) model also has a
temperature effect in the (A) model, which justifies that the radius for (A) is smaller than the one for (B).

Let us finally provide some statistical behaviours of the aerosol for each model. In Table 1, we first give the
following values, all of them being computed from the 10 initial aerosol distributions used to solve the Vlasov
equation:

• the droplets mean radius and temperature at “final” time (in the sense that, when a particle exits or
deposits during the computation, its radius and temperature do not change anymore until the end of
the simulation),

• the mean percentage of deposited particles and of particles reaching the boundaries Γout (right and left)
among the 500 particles,

• the corresponding mean event time, i.e. the time when the particles exit or deposit.

Models (A) (B) (C)
Mean radius (cm) 6.55 10−4 1.67 10−3 2.25 10−5

Mean temperature (K) 309 297 297
Deposited particles 7.6% 35.5% 0.0%
Left exiting particles 69.0% 64.5% 69.6%
Right exiting particles 22.4% 0.0% 24.7%
Mean depos. time (s) 0.409 0.270 –
Mean left exit time (s) 0.289 0.261 0.296
Mean right exit time (s) 0.509 – 0.461

Table 1. Statistics in the reference case.

As seen in Figures 9(a)–11(a), the particle mean radius in the (A) model is intermediate between the ones
from (C) and (B), and, as already emphasized, when we neglect the temperature effects, the particle radius must
bear the whole hygroscopic effect in the (B) model. Besides, the size growth between (C) and (A) is significant.
It seems to be the main reason for aerosol deposition in that case. Otherwise, (A) and (C) models have closer
mean behaviours, which may imply that the (B) model is not relevant.

Finally, Table 2 gives the droplets mean radius at final time depending on their evolution (deposition,
left/right exiting) for (A) and (B) models, since the radius remains constant to 2.25 10−5 cm with the (C)
model. There exists a significant variation of the radius, which can be linked to the mean event times in
Table 1. In the (A) model, the particles going out through the right branch remain longer in the domain, thus
undergoing a larger radius growth. For the (B) model, deposition or exiting happen more or less at the same
time, leading to very similar radii for the particles.

Deposited particles Left exiting particles Right exiting particles
Mean radius (cm) with model (A) 6.43 10−4 6.25 10−4 7.42 10−4

Mean radius (cm) with model (B) 1.68 10−3 1.67 10−3 –

Table 2. Statistics for the particles depending on their future (depositing/exiting).



18 ESAIM: PROCEEDINGS AND SURVEYS

5. Conclusion

The previous section allowed to point out the relevance of model (A) compared to (B) and (C) to properly
take into account the hygroscopic effects on aerosols in the airways.

Besides, in our opinion, there are plenty of situations remaining to investigate, which should be addressed in
further works. Let us mention some of them below.

First, observe that the source term modelled by function b given by (7), which drives the behaviour of the
aerosol particles, is naturally composed of two terms, which we may denote by b1 and b2 (the first one involves
Qd and the second one Nd). In fact, b1 and b2 happen to have opposite signs and the same order of magnitude,
around 2 105 K/s at initial time, whereas b approximately equals 400 K/s (see Figure 12). Even if the model
seems to behave nicely with respect to temperatures (the temperature of the corresponding numerical particle is
given on Figure 13), it is only because we used a very fine subcycling time step to guarantee numerical accuracy
in the description of the thermal effects. From the computational viewpoint, this can probably be improved.
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Figure 12. Order of magnitude of each thermal effect b1 and b2 for a given particle.

We did not provide any numerical tests with the presence of excipient in the aerosol, i.e. we chose rex = rdrug,
though we wrote the (A) model involving the excipient. Nevertheless, since standard values of ̺drug and ̺ex are
close to each other, it is unlikely that the excipient implies major behaviour changes on the aerosol.

Moreover, the air flow we here studied was only related to the inspiration part of the respiration. However,
it seems difficult to tackle the expiration part, because boundary conditions on f at Γout are then unclear.

The computational domain here represents the upper part of the airways, including the trachea. It would
be relevant to study the model behaviour within other domains, not necessarily with a vertical main axis, to
understand the effect of the geometrical variability.

Eventually, as it was emphasized in [4] where 3D computations are performed, compared to [3] in a 2D
domain, two-dimensional simulations tend to increase the aerosol deposition phenomenon. In order to study
the model very faithfully, it is probably mandatory to work in a 3D setting.
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Figure 13. Temperature evolution of the chosen particle in Figure 12.

A. Values of the physical constants

All the values of the physical constants used in our numerical simulations are given in Table 3.

Quantity Symbol Value Unit (cgs)
Gravitation |g| 980 cm.s−2

Air mass density ̺air 1.18 10−3 g.cm−3

Air specific heat cPair
1.01 107 cm2.s−2.K−1

Air thermal conductivity κair 2.60 103 erg.cm−1.s−1.K−1 (g.cm.s−3.K−1)
Air dynamic viscosity η 1.18 10−4 g.cm−1.s−1

Water mass density ̺w 0.997 g.cm−3

Drug mass density ̺drug 1.34 g.cm−3

Excipient mass density ̺ex 2.17 g.cm−3

Water molar mass Mw 18.0 g.mol−1

Drug molar mass Mdrug 577 g.mol−1

Excipient molar mass Mex 58.4 g.mol−1

Drug van’t Hoff coefficient idrug 2.10 –
Excipient van’t Hoff coefficient iex 2.10 –

Droplet specific heat cPd
4.18 107 cm2.s−2.K−1

Droplet mass Knudsen number correction Cm 1.00 –
Droplet temperature Knudsen correlation CT 1.00 –

Droplet Nusselt number Nu 2.00 –
Droplet Sherwood number Sh 2.00 –

Water vaporization latent heat Lv 2.26 1010 cm2.s−2

Droplet surface tension σ 72.0 dyn.cm−1

Water vapor specific gas constant Rv 4.61 106 cm2.s−2.K−1

Table 3. Value of the physical constants.
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