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Abstract

In this paper, we study the orthogonal diagonalization problem of third order symmetric
tensors. We define several classes of approximately diagonal tensors, including the ones
corresponding to stationary points of the problem. We study relationships between these
classes, and other well-known objects, such as tensor eigenvalues and eigenvectors. We
also prove a number of convergence properties for the cyclic Jacobi (or Jacobi CoM)
algorithm.
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1. Introduction

Arrays with more than two indices have become more and more important in the
last two decades because of their usefulness in various fields, including signal processing,
numerical linear algebra and data analysis [1, 2, 3, 4, 5]. Admitting a common abuse of
language, we shall refer to them as tensors, being understood that we are considering
associated multilinear forms (and hence fully contravariant tensors) [2]. Real symmetric
matrices can be diagonalized by orthogonal transformation, which is a key property
leading to spectral decomposition. On the other hand, the orthogonal diagonalization of
symmetric tensors has also been addressed, as an exact decomposition in [6, 7, 8], or as a
low-rank approximation in [9]. In fact, approximate orthogonal diagonalization of third
and fourth order cumulant tensors was at the core of Independent Component Analysis
[10, 9, 11], and finds many applications [3]. However, the latter problem is much more
difficult than the spectral decomposition of symmetric matrices since it is well known
that not every symmetric tensor can be diagonalized by orthogonal transformation [6, 7].

Notation. Let Rn×n×n def
= Rn ⊗ Rn ⊗ Rn be the linear space of third order real

tensors and Sn ⊆ Rn×n×n be the set of symmetric ones, whose entries do not change
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under any permutation of indices [12, 13]. Let On ⊆ Rn×n be the orthogonal group. Let
SOn ⊆ Rn×n be the special orthogonal group, that is, the set of orthogonal matrices with
determinant 1. We denote by ‖ · ‖ the Frobenius norm of a tensor or a matrix, or the
Euclidean norm of a vector. Tensor arrays, matrices, and vectors, will be respectively
denoted by bold calligraphic letters, e.g. A, with bold uppercase letters, e.g. M , and
with bold lowercase letters, e.g. u; corresponding entries will be denoted by Aijk, Mij ,
and ui. Operator •p denotes contraction on the pth index of a tensor; when contracted
with a matrix, it is understood that summation is always performed on the second index
of the matrix. For instance, [A •1 M ]ijk =

∑
`A`jkMi`. When contraction is performed

on vectors, the subscript p can be omitted. For A ∈ Sn and a fixed set of indices {i, j},
1 ≤ i < j ≤ n, we denote by A(i,j) the 2-dimensional subtensor obtained from A by
allowing its indices to vary in {i, j} only. Similarly for 1 ≤ i < j < k ≤ n, we denote by

A(i,j,k) the 3-dimensional subtensor obtained by allowing indices of A to vary in {i, j, k}
only. The identity matrix of size n is denoted by In, and its columns by ei, 1 ≤ i ≤ n,
which form the canonical orthonormal basis.

Contribution. We formulate the approximate orthogonal symmetric tensor diag-
onalization problem as the maximization of diagonal terms [14]. More precisely, let
A ∈ Sn, Q ∈ SOn, and

W = A •
1
QT •

2
QT •

3
QT.

This problem is to find
Q∗ = argmax

Q∈SOn

f(Q), (1)

where

f(Q)
def
= ‖ diag{W}‖2 =

n∑
i=1

W2
iii. (2)

Methods based on Jacobi rotations (e.g., the well-known Jacobi CoM algorithm [10,
9, 11]) are widely used in practice [3, 15] to solve problem (1). These methods aim at
making a symmetric tensor as diagonal as possible by successive Jacobi rotations. They
are particularly attractive due to the low computational cost of iterations. Other popular
methods include Riemannian optimization methods [16] that alternate between descent
steps and retractions.

The above methods are typically known to converge (globally or locally) to stationary
points [16, 17], though the convergence of the original Jacobi CoM method has not been
studied.

The main goal of this paper is to quantify the notion of approximate diagonality,
by introducing several classes of approximately diagonal tensors and studying relation-
ships between them. These classes include stationary diagonal tensors, Jacobi diagonal
tensors, locally maximally diagonal tensors, maximally diagonal tensors, generally max-
imally diagonal tensors and pseudo diagonal tensors. We characterize (i) the class of
Jacobi diagonal tensors by the stationary diagonal ratio, and (ii) the orbit of pseudo
diagonal tensors by Z-eigenvalue and Z-eigenvectors. Moreover, we study (iii) the class
of locally maximally diagonal tensors based on Riemannian Hessian. We show that this
class is not equal to the class of Jacobi diagonal tensors, and thus Jacobi-type algorithms
may converge to a saddle point of (2). We also study (iv) whether a symmetric tensor is
maximally diagonal if and only if it is generally maximally diagonal. Several problems
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related to low rank orthogonal approximation are proved to be equivalent to the fact
that these two classes are equal when the dimension is greater than 2. We present a
counterexample to these equivalent problems based on the decomposition of orthogonal
matrices. Moreover, we prove a result that can be seen as an orthogonal analogue of
the so-called Comon’s Conjecture [18]. The second goal is to study the convergence
properties of the Jacobi CoM algorithm [11].

Organization. The paper is organized as follows. In section 2, we recall basic
properties of the cost function, introduce notation for derivatives, and present the scheme
of Jacobi-type algorithms. In section 3, we define the classes of approximately diagonal
tensors, considered in this paper. Some basic relationships between these classes are
shown. The stationary diagonal ratio is introduced, and the orbit of pseudo diagonal
tensors is studied. In section 4, we study the class of locally maximally diagonal tensors
using Riemannian Hessian. In section 5, we study the relationship between maximally
diagonal tensors and generally maximally diagonal tensors. Section 6 contains results on
convergence of the Jacobi CoM algorithm. Finally, Appendix A contains long proofs.

2. Optimization problem: properties and algorithms

2.1. Riemannian gradient and stationary points

First, we recall that the Riemannian gradient of (2) [17, §4.1], is, by definition,

Proj∇ f(Q) = QΛ(Q), (3)

where Λ(Q) is the matrix with entries

Λ(Q)k,l = 3(WlllWllk −WlkkWkkk). (4)

The matrix Q is a stationary point of (2) if and only if Proj∇ f(Q) = 0. A local
maximum point of (2), of course, is a stationary point. A reasonable local optimization
algorithm should at least converge to a stationary point.

2.2. Elementary rotations and Jacobi-type algorithms

Let (i, j) be a pair of indices with 1 ≤ i < j ≤ n. We denote the Givens rotation (by
an angle θ ∈ R) matrix to be

G(i,j,θ) =



1
. . . 0

cos θ − sin θ
. . .

sin θ cos θ

0
. . .

1


,
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i.e., the matrix defined by

(G(i,j,θ))k,l =



1, k = l, k 6∈ {i, j},
cos θ, k = l, k ∈ {i, j},
sin θ, (k, l) = (j, i),

− sin θ, (k, l) = (i, j),

0, otherwise

for 1 ≤ k, l ≤ n.
Jacobi-type algorithms proceed by successive optimization of the cost function with

respect to elementary rotations, summarized in the following scheme.

Algorithm 1. Input: A ∈ Sn and Q0 = In.
Output: a sequence of iterations {Qk : k ∈ N}.

• For k = 1, 2, . . . until a stopping criterion is satisfied do:

– Choose the pair (ik, jk) according to a certain pair selection rule.

– Compute the angle θ∗k that maximizes the function

hk(θ)
def
= f(Qk−1G

(ik,jk,θ)). (5)

– Update Qk = Qk−1G
(ik,jk,θ

∗
k).

• End for

The algorithm is similar in spirit to block-coordinate descent. Important differences
are: the coordinate system is changing at every iteration, and, for each elementary
rotation, the global maximum is achieved. Recently, local and global convergence to
stationary points [19, 17] have been established for variants of Algorithm 1. Apart from
Jacobi-type algorithms, Jacobi rotations are also very useful in computing fast retractions
[16, p. 58] in Riemannian optimisation methods [16].

2.3. Directional derivatives

First we introduce some useful notation that will be used throughout the paper.

Definition 2.1. Let A ∈ Sn and 1 ≤ i < j ≤ n. Define

di,j(A)
def
= AiiiAiij −AijjAjjj ,

ωi,j(A)
def
= A2

iii +A2
jjj − 3A2

iij − 3A2
ijj − 2AiiiAijj − 2AiijAjjj .

In order to simplify notation, we will consider the analogues of univariate functions
(5) with Q = In:

h̄i,j(θ)
def
= ‖ diag{A •

1
(G(i,j,θ))T •

2
(G(i,j,θ))T •

3
(G(i,j,θ))T}‖2

for 1 ≤ i < j ≤ n as in (5).
Then it holds that [17, Lemma 5.7]

h̄
′

i,j(0) = 6di,j(A) and h̄
′′

i,j(0) = −6ωi,j(A). (6)
4



3. Classes of approximately diagonal tensors

3.1. Definitions of classes

In this subsection, we define several classes of third order symmetric tensors. Some
of them are related to stationary points of problem (1) or the points where Algorithm 1
may stop. For simplification, we look at the derivatives of (1) at Q = In.

Definition 3.1. (i) Let A,B ∈ Sn. Then A is orthogonally similar [13, 20] to B if
there exists Q ∈ On such that

B = A •
1
Q •

2
Q •

3
Q.

(ii) Let C ⊆ Sn be a subset. Define the orbit1 of C to be:

O(C)
def
= {A •

1
Q •

2
Q •

3
Q, A ∈ C, Q ∈ On}.

Definition 3.2. We denote by D = Dn the set of diagonal tensors in Sn, and O(D) the
set of orthogonally decomposable tensors ( referred to as “odeco” in [6]). More precisely,
any A ∈ O(D) can be decomposed as

A =

n∑
k=1

λk uk ⊗ uk ⊗ uk

where λk ∈ R and u1, · · ·un ∈ Rn form an orthonormal basis.

Remark 3.3. In the definitions of tensor classes we will often drop the subscript, if the
dimension is clear from the context.

Definition 3.4. Let A ∈ Sn. The class of pseudo diagonal tensors is defined to be

PD = PDn
def
= {A : Aijj = Aiij = 0, for any 1 ≤ i < j ≤ n}.

Remark 3.5. It is clear that

D ⊆ PD and O(D) ⊆ O(PD).

In section 3.4, we will give characterizations of PD and O(PD) from the perspective of
tensor spectral theory. Besides, it is well known that O(D) $ Sn, that is, not every
symmetric tensor can be diagonalized by orthogonal transformation [7, 6].

Definition 3.6. Let A ∈ Sn.
(i) The class of stationary diagonal tensors is defined to be

SD = SDn
def
= {A : di,j(A) = 0, for any 1 ≤ i < j ≤ n}.

1Classically, the notion of orbit is defined for a single element (e.g., C ∈ Sn). In this paper, we use
the word “orbit” as a shorthand for saying “the action of O on C”.
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(ii) The class of Jacobi diagonal tensors is defined to be

JD = JDn
def
= {A : 0 ∈ argmax

θ∈R
h̄i,j(θ), for any 1 ≤ i < j ≤ n}.

(iii) The class of locally Jacobi diagonal tensors is defined to be

LJD = LJDn
def
= {A : 0 is a local maximum point of h̄i,j(θ), for any 1 ≤ i < j ≤ n}.

Remark 3.7. From (4), it follows that A ∈ SD if and only if Proj∇ f(In) = 0 in
(3). In other words, A ∈ SD if and only if In is a stationary point of (2). This is the
reason why we call the tensors in SD stationary diagonal. Moreover, it can be seen that
Algorithm 1 stops at A if A ∈ JD. This is the reason why we call the tensors in JD

Jacobi diagonal.

Lemma 3.8. Let A ∈ Sn. The following are equivalent.
(i) A ∈ JD.
(ii) A ∈ LJD.
(iii) di,j(A) = 0 and ωi,j(A) ≥ 0 for any 1 ≤ i < j ≤ n.

Proof. (i)⇒(ii) is clear. (ii)⇒(iii) follows from (6). Now we prove that (iii)⇒(i). We
have

hi,j(θ)− hi,j(0) =
3

(1 + x2)2
(2di,j(A)(x− x3)− ωi,j(A)x2) (7)

for any 1 ≤ i < j ≤ n by (15). Note that hi,j(θ)− hi,j(0) ≡ 0 if di,j(A) = ωi,j(A) = 0.
If di,j(A) = 0 and ωi,j(A) ≥ 0, then hi,j(θ) reaches its maximum value at θ = 0, by (7).
It follows that A ∈ JD.

Definition 3.9. Let A ∈ Sn and f be as in (2).
(i) The class of maximally diagonal tensors is defined to be

MD = MDn
def
= {A : In ∈ argmax

Q∈SOn

f(Q)}.

(ii) The class of locally maximally diagonal tensors is defined to be

LMD = LMDn
def
= {A : In is a local maximum point of f(Q)}.

(iii) The class of generally maximally diagonal tensors is defined to be

GMD = GMDn
def
= {A : (In, In, In) ∈ argmax

P ,Q,R∈SOn

F(P ,Q,R)},

where
F(P ,Q,R)

def
= ‖ diag{A •

1
P T •

2
QT •

3
RT}‖2. (8)

Remark 3.10. Note that On ⊆ Rn×n is a compact submanifold and (2) is continuous.
Since (2) takes the same maximum on On and SOn, we get that O(MDn) = Sn. Note
that MDn ⊆ LMDn. It follows that O(LMDn) = Sn. In other words, for any A ∈ Sn,
there exists Q∗ and Q∗∗ in SOn such that

A •
1
QT
∗ •

2
QT
∗ •

3
QT
∗ ∈ LMD and A •

1
QT
∗∗ •

2
QT
∗∗ •

3
QT
∗∗ ∈MD,

respectively. How to find Q∗ or Q∗∗ is the goal of problem (1).
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3.2. Basic relations

The tensor classes defined in section 3.1 have the following relationships. The first
row and column denote the corresponding orbits, i.e. arrows stand for the action of On.

O(D) O(PD) Sn

O(D) D PD JD

O(GMD) GMD JD SD Sn

Sn MD LMD LJD

⊆ $

⊆

⊆

$

$

=

⊆ $

$

=

$

⊆ ⊆

Remark 3.11. Most of the above relationships are easy to get by Definition 3.6 and
Definition 3.9. We only derive some of them for S2, which are not obvious.
(i) Note that SO2 coincides with the set of Jacobi rotations. We see that

MD2 = LMD2 = JD2 = LJD2

by Lemma 3.8. It will be shown that GMD2 = MD2 in Theorem 5.3. It follows that

GMD2 = MD2 = LMD2 = JD2 = LJD2.

(ii) PD and JD will be characterized in Remark 3.13 and Theorem 3.14. It follows by
these characterizations that PD2 & JD2.
(iii) Note that D2 = PD2. It follows by (i) and (ii) that

D2 & GMD2.

(iv) By Theorem 3.14, we see that JD2 & SD2 .
(v) Note that D2 = PD2 and O(D2) $ S2 by Remark 3.5. We have that

O(PD2) $ S2.

3.3. Stationary diagonal ratio

In this subsection, we define the stationary diagonal ratio for the tensors in SD, which
can be used to characterize JD and PD.

Definition 3.12. Let A ∈ SD and 1 ≤ i < j ≤ n. The stationary diagonal ratio,
denoted by γij, is defined as follows.

γij
def
=

{
0, if A(i,j) = 0;

∞, if Aiii = Ajjj = 0 and A2
ijj +A2

iij 6= 0;

otherwise, γij is the (unique) number such that(
Aijj
Aiij

)
= γij

(
Aiii
Ajjj

)
.

7



Remark 3.13. Let A ∈ SD. Then A ∈ PD if and only if γij = 0 for any 1 ≤ i < j ≤ n.

Theorem 3.14. Let A ∈ SD. Then A ∈ JD if and only if γij ∈ [−1, 1/3] for any
1 ≤ i < j ≤ n.

Proof. Note that A ∈ JD if and only if di,j(A) = 0 and ωi,j(A) ≥ 0 for any 1 ≤ i < j ≤ n
by Lemma 3.8. We only need to show that ωi,j(A) ≥ 0 if and only if γij ∈ [−1, 1/3]. If
γij =∞, then ωi,j(A) < 0. If γij <∞, by Definition 3.12, we have that

−ωi,j(A) = (3γ2ij + 2γij − 1)(A2
iii +A2

jjj).

It follows that ωi,j(A) ≥ 0 if and only if γij ∈ [−1, 1/3].

3.4. Orbit of the pseudo diagonal tensors

3.4.1. Characterization

In this subsection, we characterize the equivalence class of pseudo diagonal tensors
based on the Z-eigenvalue and Z-eigenvectors defined in [13].

Definition 3.15. Let A ∈ Sn and λ ∈ R. If λ satisfies

A •u •u = λu

for a unit vector u ∈ Rn. Then λ is called a Z-eigenvalue [13] of A. This vector is called
the Z-eigenvector associated with λ.

Remark 3.16. Let A,B ∈ Sn. If A is orthogonally similar to B, then A and B have
the same Z-eigenvalues [13, Thm 2.20]. In fact, if

A = B •
1
QT •

2
QT •

3
QT and A •u •u = λu

for λ ∈ R and a unit vector u ∈ Rn, then B • (Qu) • (Qu) = λQu.

Theorem 3.17. Let A ∈ Sn. We have two necessary and sufficient conditions below:
(i) A ∈ PD if and only if {ei : 1 ≤ i ≤ n} is a set of Z-eigenvectors. This is equivalent
to that

A • ei • ei • ej = 0

for any 1 ≤ i 6= j ≤ n.
(ii) A ∈ O(PD) if and only if there exists an orthonormal set of Z-eigenvectors {ui : 1 ≤
i ≤ n}. This is equivalent to that

A •ui •ui •uj = 0

for any 1 ≤ i 6= j ≤ n. In this case, A •1 QT
∗ •2 Q

T
∗ •3 Q

T
∗ ∈ PD for Q∗ = [u1, · · · ,un].

Proof. (i) By definition, A ∈ PD if and only if A • ei • ei • ej = 0 for any 1 ≤ i 6= j ≤ n.
But if A • ei • ei is orthogonal to every ej , j 6= i, it must be collinear to ei, which means:

A • ei • ei = λei

for some nonzero λ, which turns out to be λ = A • ei • ei • ei.
(ii) The second result follows from (i) and Remark 3.16.
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3.4.2. Relationship with orthogonally decomposable tensors

Example 3.18. We present an example to show that O(Dn) $ O(PDn) for Sn. Let

A = e1 ⊗ e2 ⊗ e3 + e1 ⊗ e3 ⊗ e2 + e2 ⊗ e3 ⊗ e1
+ e2 ⊗ e1 ⊗ e3 + e3 ⊗ e1 ⊗ e2 + e3 ⊗ e2 ⊗ e1.

It is easy to see that A ∈ O(PD3). On the other hand, it is known [21, Prop. 3.1 and
4.3] that the symmetric tensor rank is

srank{A} = 4,

hence A cannot be in O(D3) (otherse it would have rank at most 3).

Proposition 3.19. (i) Let A ∈ PDn. Then A ∈ Dn if and only if

A • ei • ej ∈ span{ei, ej}

for any 1 ≤ i 6= j ≤ n.
(ii) Let A ∈ O(PDn). Let {ui : 1 ≤ i ≤ n} be the set of orthonormal Z-eigenvectors,
proved to exist in Theorem 3.17 (ii). Then A ∈ O(Dn) if and only if

A •ui •uj ∈ span{ui,uj}

for any 1 ≤ i 6= j ≤ n.

Proof. First note that A • ei • ej ∈ span{ei, ej} for any 1 ≤ i < j ≤ n if and only if
Aijk = 0 for any 1 ≤ i < j < k ≤ n. Then (i) is proved. Next, (ii) follows from (i) and
Remark 3.16.

4. Locally maximally diagonal tensors

Even if Givens rotations span SOn, it is not obvious that a sequence of optimally
chosen Givens rotations will find the optimal orthogonal transform in SOn. In other
words, we know that LMD ⊆ LJD, but the converse may not be true. This motivates
the comparison between LJD and LMD.

4.1. Riemannian Hessian

In this subsection, we study the conditions that a tensor in Sn is locally maximally
diagonal based on the Riemannian Hessian [16, 22, 23].

Lemma 4.1. Let A ∈ Sn and f be as in (2). Let TQOn be the tangent vector space at Q;

it contains matrices of the form Q∆, where ∆ are skew matrices satisfying ∆T = −∆.
Next, define:

U = A •
3
QT, V = A •

2
QT •

3
QT,

X = V •
1
(Q∆)T, Y = U •

1
(Q∆)T •

2
(Q∆)T, Z = V •

1
(Q∆2)T.

Let Hessf(Q) be the Riemannian Hessian of f at Q. Then Hessf(Q)(∆1,∆2) is a
bilinear form defined on TQOn. We have:

Hessf(Q)(Q∆,Q∆) = 6
∑
j

(3X 2
jjj + 2YjjjWjjj −ZjjjWjjj).

9



Proof. By [23, eqn. (2.55)], it can be calculated that

Hessf(Q)(Q∆,Q∆)

=
∑
i,j,k,l

∂2f

∂Qi,j∂Qk,l
(Q∆)ij(Q∆)kl +

1

2
tr((∇f(Q))TQ∆2 + ∆(∇f(Q))TQ∆)

= 6
∑
i,j,k

(3VijjVkjj + 2WjjjUikj)(Q∆)ij(Q∆)kj + tr((∇f(Q))TQ∆2)

= 6
∑
i,j,k

(3VijjVkjj + 2WjjjUikj)(Q∆)ij(Q∆)kj − 6
∑
i,j,k,l

QikVijjWjjj∆kl∆jl (9)

= 6
∑
j

(3X 2
jjj + 2YjjjWjjj + ZjjjWjjj).

Corollary 4.2. Let Q = In in Lemma 4.1. The tangent vector space TIn
On contains

the skew symmetric matrices ∆. It follows by (9) that

Hessf(In)(∆,∆) = 6
∑
i,j,k

(3AijjAkjj + 2AjjjAikj)∆ij∆kj − 6
∑
i,j,k

AkiiAiii∆ij∆kj

= 6
∑
i,j

(3A2
ijj + 2AjjjAiij −A2

iii)∆
2
ij

+ 6
∑

i,j,k,k 6=i

(3AijjAkjj + 2AjjjAikj −AkiiAiii)∆ij∆kj

Remark 4.3. Let A ∈ JDn.
(i) If Hessf(In)(∆,∆) < 0 for any ∆ ∈ TInOn \ {0}, then A ∈ LMDn.
(ii) If A ∈ LMDn, then Hessf(In)(∆,∆) ≤ 0 for any ∆ ∈ TIn

On.

4.2. Euclidean Hessian matrix for S3

Note that LMD ⊆ JD and LMD is corresponding to the local maximum point of (2).
In this subsection, based on Corollary 4.2, we show how to determine whether A ∈ JD3

is locally maximally diagonal or not.

Definition 4.4. Let A ∈ JD3. Let γ12, γ13 and γ23 be the stationary diagonal ratios
introduced in Definition 3.12. Denote by

a = A111, b = A222, c = A333 and g = A123.

We define the Euclidean Hessian matrix of A to be MA
def
=(3γ212 + 2γ12 − 1)(a2 + b2) 2ga+ (3γ12γ13 − γ23)bc −2gb− (3γ23γ12 − γ13)ca

2ga+ (3γ12γ13 − γ23)bc (3γ213 + 2γ13 − 1)(c2 + a2) 2gc+ (3γ13γ23 − γ12)ab
−2gb− (3γ23γ12 − γ13)ca 2gc+ (3γ13γ23 − γ12)ab (3γ223 + 2γ23 − 1)(b2 + c2).


Theorem 4.5. Let A ∈ JD3. If MA is negative definite, then A ∈ LMD. If A ∈
LMD, then MA is negative semidefinite.
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Proof. Let

∆ =

 0 u v
−u 0 w
−v −w 0

 ∈ TI3O3.

Define Φ(u, v, w)
def
= Hessf(I3)(∆,∆). By Corollary 4.2, we have that

Φ(u, v, w) = 6[(3γ212 + 2γ12 − 1)(a2 + b2)u2 + (3γ213 + 2γ13 − 1)(c2 + a2)v2

+ (3γ223 + 2γ23 − 1)(b2 + c2)w2 + 4g(auv + cvw − bwu)

+ 6(γ12γ13bcuv + γ13γ23abvw − γ23γ12cawu)− 2(γ23bcuv + γ12abvw − γ13cawu)]

= 6 ξTMA ξ, (10)

where ξ = (u, v, w)T. By Remark 4.3, the proof is complete.

Example 4.6. Let A ∈ JD3 be such that A111 = A222 = A333 = 1, γ12 = γ13 = γ23 = γ.
(i) Then

Φ(u, v, w) = 12(u2 + v2 + w2)
[
(3γ2 + 2γ − 1)− (3γ2 − γ + 2A123)

uw − uv − vw
u2 + v2 + w2

]
for any (u, v, w) ∈ R3\{(0, 0, 0)} by (10). Note that

uw − uv − vw
u2 + v2 + w2

∈ [−1/2, 1].

Since 3γ2 + 2γ − 1 ≤ 0 by Theorem 3.14, it follows that A ∈ LMD if

3

2
γ − 1

2
< A123 < −

9

2
γ2 − 3

2
γ + 1.

Moreover, we have that A /∈ LMD, if

A123 <
3

2
γ − 1

2
or A123 > −

9

2
γ2 − 3

2
γ + 1.

(ii) If γ = 0, then

Φ(u, v, w) = −12(u2 + v2 + w2)[1 + 2A123
uw − uv − vw
u2 + v2 + w2

].

for any (u, v, w) ∈ R3\{(0, 0, 0)}. Note that

uw − uv − vw
u2 + v2 + w2

∈ [−1/2, 1].

It follows that A ∈ LMD if A123 ∈ (−1/2, 1). Moreover, if A123 /∈ [−1/2, 1], then
A /∈ LMD.

Example 4.7. Let A ∈ Sn with n > 3. Suppose that

A(i,j,k) ∈ LMD3

11



for any 1 ≤ i < j < k ≤ n. It may be interesting to wonder whether it holds that

A ∈ LMDn.

In fact, the answer is negative. Let A ∈ PD4 with

Aijk =


1, i = j = k,

3/4, i 6= j 6= k,

0, otherwise.

By Example 4.6 (ii), we see that A(i,j,k) ∈ LMD3 for any 1 ≤ i < j < k ≤ n. Let

∆∗ =


0 1 1 1
−1 0 0 0
−1 0 0 0
−1 0 0 0

 ∈ TI4
O4.

By Corollary 4.2, we get that Hessf(I4)(∆∗,∆∗) = 18 > 0. It follows that A /∈ LMD4.

5. Orbit of generally maximally diagonal tensors

5.1. Equivalent problem formulations

In this subsection, we first prove that the statement O(GMD) = Sn is equivalent to
several other optimization problems in Proposition 5.2. Then we give a positive answer
to these equivalent problems when the dimension is 2 in Theorem 5.3.

Proposition 5.1. Let n ≥ 2. Then O(GMDn) = Sn if and only if GMDn = MDn.

Proof. We only have to prove that GMDn = MDn if O(GMDn) = Sn. In fact, if A ∈
MDn, there exists Q∗ such that

A •
1
QT
∗ •

2
QT
∗ •

3
QT
∗ ∈ GMDn.

Let f be as in (2) and F be as in (8). It follows that

f(In) ≥ f(Q∗) = max
P ,Q,R∈SOn

F(P ,Q,R) ≥ f(In).

Then we have that A ∈ GMDn.

Proposition 5.2. Denote

GO(D)
def
= {A •

1
P T •

2
QT •

3
RT,A ∈ D,P ,Q,R ∈ On}.

The following statements are equivalent.
(i) GMDn = MDn.
(ii) For any A ∈ Sn,

max
Q∈SOn

f(Q) = max
P ,Q,R∈SOn

F(P ,Q,R),

12



where f be as in (2) and F be as in (8).
(iii) For any A ∈ Sn, it holds that

min
ui⊥uj ,∀i 6=j,

µk∈R

‖A−
n∑
k=1

µk uk⊗uk⊗uk‖ = min
xi⊥xj ,yi⊥yj ,

zi⊥zj ,∀i 6=j,λk∈R

‖A−
n∑
k=1

λk xk⊗yk⊗zk‖. (11)

(iv) For any A ∈ Sn and for the Euclidean distance d, it holds that

d(A,O(D)) = d(A,GO(D)).

(v) Let A ∈ Sn. The best rank-n orthogonal approximation can always be chosen to be
symmetric, that is, there exist µk ∈ R and orthonormal basis {uk, 1 ≤ k ≤ n} such that

‖A−
n∑
k=1

µk uk ⊗ uk ⊗ uk‖ = min
xi⊥xj ,yi⊥yj ,

zi⊥zj ,∀i 6=j,λk∈R

‖A−
n∑
k=1

λk xk ⊗ yk ⊗ zk‖.

Proof. (i)⇔(ii). Suppose that (i) holds and Q∗ = arg max
Q∈SOn

f(Q). Let

W∗ = A •
1
QT
∗ •

2
QT
∗ •

3
QT
∗ .

Then W∗ ∈MD and thus W∗ ∈ GMD. It follows that

f(Q∗) = max
P ,Q,R∈SOn

F(P ,Q,R).

If (ii) holds and A ∈MD, then In = arg max
Q∈SOn

f(Q) and thus

(In, In, In) = arg max
P ,Q,R∈SOn

F(P ,Q,R),

which implies that A ∈ GMD.
(ii)⇔(iii). By [24, Proposition 5.1], [24, (5.6)] and [24, (5.23)], we get that

max
Q∈SOn

f(Q) = ‖A‖2 − min
ui⊥uj ,∀i 6=j,

µk∈R

‖A−
n∑
k=1

µk uk ⊗ uk ⊗ uk‖2,

max
P ,Q,R∈SOn

F(P ,Q,R) = ‖A‖2 − min
xi⊥xj ,yi⊥yj ,

zi⊥zj ,∀i 6=j,λk∈R

‖A−
n∑
k=1

λk xk ⊗ yk ⊗ zk‖2.

It follows that (ii)⇔(iii).
(iii)⇔(iv) is clear.
(iii)⇔(v). Note that O(D) is closed, hence there exist µk ∈ R and orthonormal basis
{u∗k, 1 ≤ k ≤ n} such that

‖A−
n∑
k=1

µk uk ⊗ uk ⊗ uk‖ = min
vi⊥vj ,∀i 6=j,

µk∈R

‖A−
n∑
k=1

µk vk ⊗ vk ⊗ vk‖.

13



Theorem 5.3. It holds that MD2 = GMD2.

Proof. We only need to prove that A ∈ GMD2 if A ∈MD2. Let

W = A •
1
P T •

2
QT •

3
RT

with P ,Q,R ∈ SO2. These rotations can be written as

P =
1√

1 + x2

[
1 −x
x 1

]
,Q =

1√
1 + y2

[
1 −y
y 1

]
and R =

1√
1 + z2

[
1 −z
z 1

]
for x, y, z ∈ R. Define

F(x, y, z)
def
= ‖ diag{W}‖2

as in (8). Denote
a = A111, b = A112, c = A122, d = A222,

γ = γ12 the stationary diagonal ratio in Definition 3.12. Then c = γa and b = γd by
definition. Moreover, γ ∈ [−1, 1/3] by Theorem 3.14. It can be calculated that

F(x, y, z) = a2 + d2 +
(a2 + d2)(γ + 1)

(1 + x2)(1 + y2)(1 + z2)
σ(x, y, z).

where

σ(x, y, z)
def
= (γ − 1)(x2 + y2 + z2 + x2y2 + y2z2 + z2x2)

+ 2γ(x2yz + xy2z + xyz2 + xy + yz + zx).

Note that F(0, 0, 0) = a2 + d2. We only need to prove that σ(x, y, z) ≤ 0 for any
x, y, z ∈ R. If γ ∈ [0, 1/3], then γ − 1 ≤ −2γ, and thus

σ(x, y, z) ≤ −2γ[(x2 + y2 + z2 + x2y2 + y2z2 + z2x2)

− (x2yz + xy2z + xyz2 + xy + yz + zx)]

= −γ[(x− y)2 + (y − z)2 + (z − x)2 + (xy − yz)2 + (yz − zx)2 + (zx− xy)2] ≤ 0.

If γ ∈ [−1, 0), then

σ(x, y, z) = −(1 + γ)(x2 + y2 + z2 + x2y2 + y2z2 + z2x2)

+ γ[(x+ y)2 + (y + z)2 + (z + x)2 + (xy + yz)2 + (yz + zx)2 + (zx+ xy)2] ≤ 0.

5.2. Symmetric tensors of dimension n > 2

In this subsection, we first present a counterexample to show that the equivalent
problems in Proposition 5.1 and Proposition 5.2 have a negative answer when n > 2.
Then we prove a related result, which can be seen as an orthogonal analogue of the
Comon’s conjecture.

14



5.2.1. A counterexample

Lemma 5.4. Define

ρ(Q)
def
= Q2

11Q
2
12Q

2
13 +Q2

21Q
2
22Q

2
23 +Q2

31Q
2
32Q

2
33 (12)

for Q ∈ O3. We have that ρ(Q) < 1/12 for any Q ∈ SO3.

The proof of Lemma 5.4 can be found in Appendix A.

Example 5.5. Let A be as in Example 3.18. Let F be as in (8). Suppose that

P ∗ =

1 0 0
0 1 0
0 0 1

 ,Q∗ =

0 0 1
1 0 0
0 1 0

 ,R∗ =

0 1 0
0 0 1
1 0 0

 .
Then F(P ∗,Q∗,R∗) = 3. However, easy calculations show that

f(Q) = 36ρ(Q) < 3,

where the last inequality follows by Lemma 5.4. Thus, we see that

f(Q) < 3 = F(P ∗,Q∗,R∗)

for any Q ∈ O3 . It follows that Proposition 5.2 (ii) has a negative answer when n > 2.
Moreover, we have O(GMD) $ Sn when n > 2 by Proposition 5.1.

Remark 5.6. It was proved that the best rank-1 approximation of any A ∈ Sn can
always be chosen to be symmetric [25, 26]. Example 5.5 provides a counterexample to
Proposition 5.2 (v) when n > 2. It will be interesting to study whether the best rank-p
(1 < p < n) orthogonal approximation can be chosen to be symmetric when n > 2, which
can be seen as an orthogonal analogue of [27, Conjecture 8.7].

5.2.2. An orthogonal analogue of Comon’s conjecture

Although Proposition 5.2 (iii) has a negative answer by Example 5.5 when n > 2, we
have the following result.

Proposition 5.7. Let A ∈ Sn. Then for any p

min
xi⊥xj ,yi⊥yj ,

zi⊥zj ,∀i 6=j,λk∈R

‖A−
p∑
k=1

λk xk ⊗ yk ⊗ zk‖ = 0

implies

min
ui⊥uj ,∀i 6=j,

µk∈R

‖A−
p∑
k=1

µk uk ⊗ uk ⊗ uk‖ = 0.
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Proof. Suppose that p ∈ N and

A =

p∑
k=1

λk xk ⊗ yk ⊗ zk, (13)

where λk ∈ R/{0} and xi ⊥ xj ,yi ⊥ yj , zi ⊥ zj for any i 6= j. We assume that xk,yk
and zk are all unit vectors without loss of generality. Note that A is symmetric. Then

A •
3
zᵀ
k = λk xk ⊗ yk

is a symmetric matrix for any 1 ≤ k ≤ p. It follows that xk = ±yk. In a similar way, we
can prove that yk = ±zk. The proof is complete.

Corollary 5.8. Let A ∈ Sn. Then we have

d(A,GO(D)) = 0 ⇒ d(A,O(D)) = 0,

that is,
O(D) = Sn ∩ GO(D).

Remark 5.9. (i) Proposition 5.7 can be seen as an orthogonal analogue of the Comon’s
conjecture [12, 27, 18], which conjectured that rank and symmetric rank of a symmetric
tensor are equal, that is,

min
‖xk‖=‖yk‖=‖zk‖=1,

λk∈R

‖A−
p∑
k=1

λk xk⊗yk⊗zk‖ = 0⇒ min
‖uk‖=1,µk∈R

‖A−
p∑
k=1

µk uk⊗uk⊗uk‖ = 0

for any A ∈ Sn and p ∈ N minimal.
(ii) An alternative proof of Corollary 5.8 can be found in [28, Proposition 32].

6. Convergence results for cyclic Jacobi algorithm

6.1. Cyclic Jacobi algorithm description
In this subsection, we recall the cyclic Jacobi algorithm (also called the Jacobi CoM

algorithm) given in [9], which is a special case of Algorithm 1.

Algorithm 2. Input: A ∈ Sn and Q0 = In.
Output: a sequence of iterations {Qk : k ∈ N}.
• For k = 1, 2, . . . until a stopping criterion is satisfied do:

– Choose the pair (ik, jk) according to the following cyclic-by-row rule

(1, 2)→ (1, 3)→ · · · → (1, n)→
(2, 3)→ · · · → (2, n)→
· · · →
(n− 1, n)→
(1, 2)→ (1, 3)→ · · ·

– Compute the angle θ∗k that maximizes the function hk(θ) defined in (5).

– Update Qk = Qk−1G
(ik,jk,θ

∗
k).

• End for
16



6.2. Derivatives and relations between them

In this subsection, we present some basic properties of Algorithm 2. More details can
be found in [9, 17]. We first give a definition.

Take the k-th iteration with pair (ik, jk) in Algorithm 2. Let

W(k−1) = A •
1
QT
k−1 •

2
QT
k−1 •

3
QT
k−1.

By (5), we have that

hk(θ) = ‖ diag{W(k−1) •
1
(G(ik,jk,θ))T •

2
(G(ik,jk,θ))T •

3
(G(ik,jk,θ))T}‖2. (14)

Let x = tan(θ), and define

τk : R→ R by τk(x)
def
= hk(arctan(x)).

In the rest of this subsection, with some abuse of notation, we use a shorthand
notation dk = dik,jk(W(k−1)) and ωk = ωik,jk(W(k−1)).

It can be calculated that [17, Lemma 5.8].

τk(x)− τk(0) =
3

(1 + x2)2
(2dk(x− x3)− ωkx2), (15)

τ
′

k(x) =
6

(1 + x2)3
(dk(1− 6x2 + x4)− ωk(x− x3)), (16)

τ
′′

k (x) =
6

(1 + x2)4
[2dk(−9x+ 14x3 − x5)− ωk(1− 8x2 + 3x4)].

Remark 6.1. Denote by x∗k = tan(θ∗k) the optimal point of τk(x). Note that τ
′

k(x∗k) = 0.
It follows by (16) that

dk(1− 6x∗k
2 + x∗k

4)− ωk(x∗k − x∗k
3) = 0. (17)

(i) If x∗k − x∗k
3 6= 0, we get that

ωk =
(1− 6x∗k

2 + x∗k
4)

x∗k(1− x∗k
2)

dk, and thus τk(x∗k)− τk(0) =
3x∗k

(1− x∗k
2)
dk.

(ii) If 1− 6x∗k
2 + x∗k

4 6= 0, we get that

dk =
x∗k(1− x∗k

2)

(1− 6x∗k
2 + x∗k

4)
ωk,

and thus

τ
′′

k (x∗k) =
−6ωk

1− 6x∗k
2 + x∗k

4 ,

τk(x∗k)− τk(0) =
3x∗k

2

(1− 6x∗k
2 + x∗k

4)
ωk.

(18)
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6.3. Convergence properties

In this subsection we prove some results about the convergence properties of Algo-
rithm 2. Before that, we first quote a lemma, which could be proved easily by the fact
that any multivariate polynomial is continuous.

Proposition 6.2. Suppose that A ∈ Sn and {Qk : k ∈ N} ⊆ SOn are the iterations of
Algorithm 2. If Qk → Q∗ and

W∗ = A •
1
QT
∗ •

2
QT
∗ •

3
QT
∗ ,

then di,j(W∗) = 0 and ωi,j(W∗) ≥ 0 for any 1 ≤ i < j ≤ n.

Proof. Fix any 1 ≤ i∗ < j∗ ≤ n. We choose a subsequence L ⊆ N such that

(i`+1, j`+1) = (i∗, j∗)

for any ` ∈ L. It follows by Qk → Q∗ that x∗`+1 → 0 when ` ∈ L tends to infinity. Then

we get that di∗,j∗(W
(`))→ 0 by (17). Note that τ

′′

`+1(x∗`+1) ≤ 0 for any ` ∈ L. By (18),

we have that ωi∗,j∗(W
(`)) ≥ 0 when ` ∈ L is large enough. Since Q` → Q∗, the result

follows from continuity of the function

Q 7→ A •
1
QT •

2
QT •

3
QT. (19)

Proposition 6.3. Let A ∈ Sn and {Qk : k ∈ N} ⊆ SOn be the iterations of Algorithm 2.
Suppose that there are a finite number of accumulation points of {Qk : k ∈ N}.
(i) Let Q∗ ∈ SOn be any accumulation point and

W∗ = A •
1
QT
∗ •

2
QT
∗ •

3
QT
∗ .

Then there exists 1 ≤ i∗ < j∗ ≤ n such that di∗,j∗(W
∗) = ωi∗,j∗(W

∗) = 0.
(ii) For any 1 ≤ i∗ < j∗ ≤ n, there exists an accumulation point Q∗ ∈ SOn such that

W∗ = A •
1
QT
∗ •

2
QT
∗ •

3
QT
∗

satisfies di∗,j∗(W
∗) = 0 and ωi∗,j∗(W

∗) ≥ 0.
(iii) We have that the directional derivative (6) tends to zero:

h′k+1(0) = 6dik+1,jk+1
(W(k))→ 0.

The proof can be found in Appendix A.

Corollary 6.4. Suppose that A ∈ Sn and {Qk : k ∈ N} ⊆ SOn are the iterations of
Algorithm 2. Let Q∗ ∈ SOn be an accumulation point and

W∗ = A •
1
QT
∗ •

2
QT
∗ •

3
QT
∗ .

If ωi,j(W∗) > 0 for any 1 ≤ i < j ≤ n, then either Qk → Q∗, or there exist an infinite
number of accumulation points in the iterations.
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Remark 6.5. By Theorem 6.2 and Lemma 3.8, we see that if the iterations of Algo-
rithm 2 converge to Q∗ ∈ On, then

W∗ = A •
1
QT
∗ •

2
QT
∗ •

3
QT
∗

satisfies W∗ ∈ JD. In other words, Q∗ is a stationary point of (2) by Remark 3.7. By
Example 4.6, we see that LMD3 & JD3. Note that Algorithm 2 stops at any tensor in
JD. It follows that Algorithm 2 may converge to a saddle point of (2).

7. Conclusions

In this paper, we studied several classes of third order approximately diagonal tensors,
which are closely related to Jacobi-type algorithms and the approximate diagonalization
problem (1). We believe that these classes provide a better understanding of problem (1)
and behaviour of optimisation algorithms; some examples in this paper can be used as
test cases for the algorithms. There are some open questions left for future research, such
as the global convergence of Algorithm 2 for third (or higher) order symmetric tensors
is still unknown.

Appendix A. Long proofs

Proof of Lemma 5.4. Since (12) is invariant with respect to changes of signs of the
columns of Q, it suffices to prove the statement for Q ∈ SO3.
Step 1. By [29, p. 10], any Q ∈ SO3 can be decomposed as QT = Q1(x)Q2(y)Q3(z),
where

Q1(x) =
1√

1 + x2

√1 + x2 0 0
0 1 −x
0 x 1

 ,Q2(y) =
1√

1 + y2

1 −y 0
y 1 0

0 0
√

1 + y2

 ,
Q3(z) =

1√
1 + z2

1 0 −z
0
√

1 + z2 0
z 0 1


for x, y, z ∈ R. It can be calculated that

ρ(x, y, z)
def
= ρ(Q) =

1

(1 + x2)2(1 + y2)3(1 + z2)2
[(y4z2 + y2z2)(x4 + 1)

+ 2
√
y2 + 1y3(z3 − z)(x3 − x) + (y4z4 − 4y4z2 + y4 + y2z4 + y2 + z2)x2].

If x = 0, then

ρ(0, y, z) =
y2z2

(1 + y2)2(1 + z2)2
≤ 1

16
<

1

12
.

The similar result holds if z = 0. Therefore, we only need to prove that ρ(x, y, z) < 1/12
in the case that xz 6= 0.
Step 2. Let

u = x− 1

x
and v = z − 1

z
.
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We define

Φ(u, v, y)
def
= ρ(x, y, z) =

1

(u2 + 4)(v2 + 4)(1 + y2)3
[(y4 + y2)u2

+ 2
√
y2 + 1y3vu+ (y4 + y2)(v2 + 4) + 1− 4y4].

Let (u∗, v∗, y∗) be the maximal point. If y∗ = 0, then

Φ(u∗, v∗, 0) =
1

(u2∗ + 4)(v2∗ + 4)
≤ 1

16
<

1

12
.

Now we prove that u2∗ = v2∗ if y∗ 6= 0. Assume that u2∗ 6= v2∗. By

∂Φ

∂u
(u∗, v∗, y∗) =

∂Φ

∂v
(u∗, v∗, y∗) = 0,

we get that

u∗[v
2
∗(y

4
∗ + y2∗) + 1− 4y4∗] = −y3∗

√
1 + y2∗v∗(u

2
∗ − 4), (A.1)

v∗[u
2
∗(y

4
∗ + y2∗) + 1− 4y4∗] = −y3∗

√
1 + y2∗u∗(v

2
∗ − 4). (A.2)

If u∗ = 0, then v∗ = 0 by (A.1), which implies that u2∗ = v2∗. Otherwise, if u∗ 6= 0, then
v∗ 6= 0. It follows that

u2∗(v
2
∗ − 4)[v2∗(y

4
∗ + y2∗) + 1− 4y4∗] = v2∗(u

2
∗ − 4)[u2∗(y

4
∗ + y2∗) + 1− 4y4∗]

by (A.1) and (A.2). It can be calculated that

(y4∗ + y2∗)u
2
∗v

2
∗(u

2
∗ − v2∗) = −4(1− 4y4∗)(u

2
∗ − v2∗).

By the assumption that u2∗ 6= v2∗, we have

u2∗v
2
∗ =
−4(1− 4y4∗)

y4∗ + y2∗
. (A.3)

Moreover, by (A.1) and (A.2), we also get

(1− 4y4∗)(u
2
∗ − v2∗) = −y3∗

√
1 + y2∗u∗v∗(u

2
∗ − v2∗),

which implies that

u∗v∗ =
1− 4y4∗

−y3∗
√

1 + y2∗
. (A.4)

By (A.3) and (A.4), we get that 1 − 4y4∗ = 0. It follows that u∗v∗ = 0 by (A.3), which
contradicts the assumption that u∗ 6= 0. Therefore, we prove that u2∗ = v2∗.
Step 3. Now we define

ψ(u, y)
def
= Φ(u,±u, y) =

2(y4 + y2 +
√
y2 + 1y3)u2 + 4y2 + 1

(u2 + 4)2(1 + y2)3
, (A.5)

ϕ(u, y)
def
=

4y2u2(1 + y2) + 4y2 + 1

(u2 + 4)2(1 + y2)3
. (A.6)
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Note that

ϕ(u, y) =
2(y4 + y2 +

√
y2 + 1

√
y2 + 1y2)u2 + 4y2 + 1

(u2 + 4)2(1 + y2)3
≥ ψ(u, y)

for any u, y ∈ R. It is enough to prove that ϕ(u, y) < 1/12 for any u, y ∈ R. Let (u∗∗, y∗∗)
be the maximal point of ϕ(u, y). By

∂ϕ

∂u
(u∗∗, y∗∗) =

∂ϕ

∂y
(u∗∗, y∗∗) = 0,

we have that

y∗∗(4u
2
∗∗y

4
∗∗ − 4u2∗∗ + 8y2∗∗ − 1) = 0, (A.7)

u∗∗(2u
2
∗∗y

4
∗∗ + 2u2∗∗y

2
∗∗ − 8y4∗∗ − 4y2∗∗ + 1) = 0. (A.8)

If y∗∗ = 0, then u∗∗ = 0 by (A.8). If u∗∗ = 0, then y∗∗ = 0 or y2∗∗ = 1/8 by (A.7). It is
easy to check that ϕ(u∗∗, y∗∗) < 1/12 in all these cases.

Now we assume that y∗∗ 6= 0 and u∗∗ 6= 0. Then eqn. (A.8) can be rewritten as

u2∗∗ =
8y4∗∗ + 4y2∗∗ − 1

2y2∗∗(y
2
∗∗ + 1)

. (A.9)

By substituting (A.9) into (A.6), we get that

ϕ(u∗∗, y∗∗) =
4y4∗∗

16y6∗∗ + 18y4∗∗ + 11y2∗∗ − 1
.

Next, we substitute (A.9) into (A.7), and get that y∗∗ should satisfy

(1− 8y2∗∗)(2y
4
∗∗ + 2y2∗∗) = (4y4∗∗ − 4)(8y4∗∗ + 4y2∗∗ − 1),

After division by (y2∗∗ + 1), we have

16y6∗∗ − 11y2∗∗ + 2 = 0, (A.10)

which is a 3-rd degree polynomial equation in y2∗∗; there are two positive solutions of
(A.10) given by positive roots of the polynomial, i.e. y2∗∗ ≈ 0.7162 or y2∗∗ ≈ 0.1921.
Taking into account (A.10), we have have that

ϕ(u∗∗, y∗∗) =
4y4∗∗

28y4∗∗ + 22y2∗∗ − 1
,

hence ϕ(u∗∗, y∗∗) ≈ 0.0757 < 1/12 or ϕ(u∗∗, y∗∗) ≈ 0.0653 < 1/12 in these two cases.
Step 4. Above all, we prove that

ρ(x, y, z) ≤ max
u,v,y∈R

Φ(u, v, y) = max
u,y∈R

ψ(u, y) ≤ ϕ(u∗∗, y∗∗) <
1

12

for any x, y, z ∈ R, which completes the proof.
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Proof of Proposition 6.3. Since there are finite number of accumulation points, there
exists δ > 0 such that the δ-neighborhoods of these accumulation points have positive
distance to each other.
(i) Let Q∗ be any accumulation point. Let L ⊆ N be a subsequence such the subsequence2

{Q`, ` ∈ L} is located in the δ-neighborhood N (Q∗, δ) and Q` → Q∗ when ` ∈ L tends
to infinity. Note that Q∗ is not the unique accumulation point. There exists a pair
(i∗, j∗) such that it appears for an infinite number of times in the sequence of pairs

{(i`+1, j`+1),Q`+1 /∈ N (Q∗, δ), ` ∈ L}.

Now we construct a subsequence P ⊆ L such that

(ip+1, jp+1) = (i∗, j∗) and Qp+1 /∈ N (Q∗, δ)

for any p ∈ P. Note that the δ-neighborhoods of different accumulation points have
positive distance to each other. There exists σ > 0 such that |x∗p+1| > σ for any p ∈ P.
Note that |x∗p+1| ≤ 1 for any p ∈ P. There exists ζ0 ∈ [−1, 1] such that σ ≤ |ζ0| ≤ 1 and
ζ0 is an accumulation point of {x∗p+1, p ∈ P}. We assume that x∗p+1 → ζ0 for simplicity.
Now we prove that

di∗,j∗(W
(p))→ 0 and ωi∗,j∗(W

(p))→ 0

when p ∈ P tends to infinity, and thus get (i) by the continuity of (19).
Denote by

ϑp
def
= 2di∗,j∗(W

(p))(x∗p+1 − (x∗p+1)
3
)− ωi∗,j∗(W

(p))(x∗p+1)
2

and

Mp
def
=

[
2(x∗p+1 − (x∗p+1)

3
) −(x∗p+1)

2

1− 6(x∗p+1)
2

+ (x∗p+1)
4 −x∗p+1 + (x∗p+1)

3

]
.

By (15) and (17), we see that

Mp

[
di∗,j∗(W

(p))

ωi∗,j∗(W
(p))

]
=

[
ϑp
0

]
.

Note that
det(Mp) = −(x∗p+1)

2
((x∗p+1)

2
+ 1)2 → −ζ20 (ζ20 + 1)2 6= 0

when p ∈ P tends to infinity. Then Mp is invertible when p is large enough. Note that
ϑp → 0. It follows that [

di∗,j∗(W
(p))

ωi∗,j∗(W
(p))

]
= M−1

p

[
ϑp
0

]
→ 0

when p ∈ P tends to infinity.

2We use a simplified notation for subsequences in order to avoid multilevel indices.

22



(ii) Let (i∗, j∗) be any pair. There exists an accumulation point Q∗ ∈ On such that, if
{Q`, ` ∈ L} is the subsequence of {Qk, k ∈ N} located in N (Q∗, δ), then (i∗, j∗) appears
for an infinite number of times in the sequence of pairs {(i`+1, j`+1), ` ∈ L}.

(a) If it appears for an infinite number of times in

{(i`+1, j`+1),Q`+1 /∈ N (Q∗, δ)},

then the result follows by the same reasoning as in (i).
(b) Otherwise, it appears for an infinite number of times in

{(i`+1, j`+1),Q`+1 ∈ N (Q∗, δ)}.

We construct the subsequence {Qp, p ∈ P} of {Q`, ` ∈ L} such that

(ip+1, jp+1) = (i∗, j∗) and Qp+1 ∈ N (Q∗, δ).

Note that Qp → Q∗ and Qp+1 → Q∗ when p ∈ P tends to infinity. We get that x∗p+1 → 0,
and eventually from the proof of Theorem 6.2:

di∗,j∗(W
(p))→ 0 and ωi∗,j∗(W

(p)) ≥ 0

when p ∈ P is large enough. Then we prove (ii) by the continuity of (19).
(iii) Note that there exist a finite number of accumulation points and |x∗k| ≤ 1 for any
k > 1. The sequence {x∗k, k} has a finite number of accumulation points. Let ζ0 be any
one of them. Then ζ0 ∈ [−1, 1]. There exists a subsequence L ⊆ N such that x∗`+1 → ζ0
when ` ∈ L tends to infinity.

Next, we have that
di`+1,j`+1

(W(`))→ 0,

which follows by (17) if ζ0 = 0, and by a reasoning similar to (i) if ζ0 6= 0. Finally,
note that there exist a finite number of accumulation points in {x∗k}, hence the proof
is complete.
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