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In this paper, we study the orthogonal diagonalization problem of third order symmetric tensors. We define several classes of approximately diagonal tensors, including the ones corresponding to stationary points of the problem. We study relationships between these classes, and other well-known objects, such as tensor eigenvalues and eigenvectors. We also prove a number of convergence properties for the cyclic Jacobi (or Jacobi CoM) algorithm.

Introduction

Arrays with more than two indices have become more and more important in the last two decades because of their usefulness in various fields, including signal processing, numerical linear algebra and data analysis [START_REF] Cichocki | Tensor decompositions for signal processing applications: From two-way to multiway component analysis[END_REF][START_REF] Comon | Tensors: a brief introduction[END_REF][START_REF]Handbook of Blind Source Separation[END_REF][START_REF] Kolda | Tensor decompositions and applications[END_REF][START_REF] Sidiropoulos | Tensor decomposition for signal processing and machine learning[END_REF]. Admitting a common abuse of language, we shall refer to them as tensors, being understood that we are considering associated multilinear forms (and hence fully contravariant tensors) [START_REF] Comon | Tensors: a brief introduction[END_REF]. Real symmetric matrices can be diagonalized by orthogonal transformation, which is a key property leading to spectral decomposition. On the other hand, the orthogonal diagonalization of symmetric tensors has also been addressed, as an exact decomposition in [START_REF] Robeva | Orthogonal decomposition of symmetric tensors[END_REF][START_REF] Kolda | Orthogonal tensor decompositions[END_REF][START_REF] Kolda | Symmetric orthogonal tensor decomposition is trivial[END_REF], or as a low-rank approximation in [START_REF] Comon | Independent component analysis, a new concept ?[END_REF]. In fact, approximate orthogonal diagonalization of third and fourth order cumulant tensors was at the core of Independent Component Analysis [START_REF] Comon | Independent Component Analysis[END_REF][START_REF] Comon | Independent component analysis, a new concept ?[END_REF][START_REF] Comon | Tensor Diagonalization, A useful Tool in Signal Processing[END_REF], and finds many applications [START_REF]Handbook of Blind Source Separation[END_REF]. However, the latter problem is much more difficult than the spectral decomposition of symmetric matrices since it is well known that not every symmetric tensor can be diagonalized by orthogonal transformation [START_REF] Robeva | Orthogonal decomposition of symmetric tensors[END_REF][START_REF] Kolda | Orthogonal tensor decompositions[END_REF].

Notation. Let R n×n×n def = R n ⊗ R n ⊗ R n be the linear space of third order real tensors and S n ⊆ R n×n×n be the set of symmetric ones, whose entries do not change under any permutation of indices [START_REF] Comon | Symmetric tensors and symmetric tensor rank[END_REF][START_REF] Qi | Tensor analysis: Spectral theory and special tensors[END_REF]. Let O n ⊆ R n×n be the orthogonal group. Let SO n ⊆ R n×n be the special orthogonal group, that is, the set of orthogonal matrices with determinant 1. We denote by • the Frobenius norm of a tensor or a matrix, or the Euclidean norm of a vector. Tensor arrays, matrices, and vectors, will be respectively denoted by bold calligraphic letters, e.g. A, with bold uppercase letters, e.g. M , and with bold lowercase letters, e.g. u; corresponding entries will be denoted by A ijk , M ij , and u i . Operator • p denotes contraction on the pth index of a tensor; when contracted with a matrix, it is understood that summation is always performed on the second index of the matrix. For instance, [A

• 1 M ] ijk =
A jk M i . When contraction is performed on vectors, the subscript p can be omitted. For A ∈ S n and a fixed set of indices {i, j}, 1 ≤ i < j ≤ n, we denote by A (i,j) the 2-dimensional subtensor obtained from A by allowing its indices to vary in {i, j} only. Similarly for 1 ≤ i < j < k ≤ n, we denote by A (i,j,k) the 3-dimensional subtensor obtained by allowing indices of A to vary in {i, j, k} only. The identity matrix of size n is denoted by I n , and its columns by e i , 1 ≤ i ≤ n, which form the canonical orthonormal basis.

Contribution. We formulate the approximate orthogonal symmetric tensor diagonalization problem as the maximization of diagonal terms [START_REF] Comon | Tensor diagonalization by orthogonal transforms[END_REF]. More precisely, let A ∈ S n , Q ∈ SO n , and

W = A • 1 Q T • 2 Q T • 3 Q T .
This problem is to find

Q * = argmax Q∈SOn f (Q), (1) 
where

f (Q) def = diag{W} 2 = n i=1 W 2 iii . (2) 
Methods based on Jacobi rotations (e.g., the well-known Jacobi CoM algorithm [START_REF] Comon | Independent Component Analysis[END_REF][START_REF] Comon | Independent component analysis, a new concept ?[END_REF][START_REF] Comon | Tensor Diagonalization, A useful Tool in Signal Processing[END_REF]) are widely used in practice [START_REF]Handbook of Blind Source Separation[END_REF][START_REF] Martin | A jacobi-type method for computing orthogonal tensor decompositions[END_REF] to solve problem [START_REF] Cichocki | Tensor decompositions for signal processing applications: From two-way to multiway component analysis[END_REF]. These methods aim at making a symmetric tensor as diagonal as possible by successive Jacobi rotations. They are particularly attractive due to the low computational cost of iterations. Other popular methods include Riemannian optimization methods [START_REF] Absil | Optimization algorithms on matrix manifolds[END_REF] that alternate between descent steps and retractions.

The above methods are typically known to converge (globally or locally) to stationary points [START_REF] Absil | Optimization algorithms on matrix manifolds[END_REF][START_REF] Li | Globally convergent jacobi-type algorithms for simultaneous orthogonal symmetric tensor diagonalization[END_REF], though the convergence of the original Jacobi CoM method has not been studied.

The main goal of this paper is to quantify the notion of approximate diagonality, by introducing several classes of approximately diagonal tensors and studying relationships between them. These classes include stationary diagonal tensors, Jacobi diagonal tensors, locally maximally diagonal tensors, maximally diagonal tensors, generally maximally diagonal tensors and pseudo diagonal tensors. We characterize (i) the class of Jacobi diagonal tensors by the stationary diagonal ratio, and (ii) the orbit of pseudo diagonal tensors by Z-eigenvalue and Z-eigenvectors. Moreover, we study (iii) the class of locally maximally diagonal tensors based on Riemannian Hessian. We show that this class is not equal to the class of Jacobi diagonal tensors, and thus Jacobi-type algorithms may converge to a saddle point of [START_REF] Comon | Tensors: a brief introduction[END_REF]. We also study (iv) whether a symmetric tensor is maximally diagonal if and only if it is generally maximally diagonal. Several problems related to low rank orthogonal approximation are proved to be equivalent to the fact that these two classes are equal when the dimension is greater than 2. We present a counterexample to these equivalent problems based on the decomposition of orthogonal matrices. Moreover, we prove a result that can be seen as an orthogonal analogue of the so-called Comon's Conjecture [START_REF] Zhang | Comon's conjecture, rank decomposition, and symmetric rank decomposition of symmetric tensors[END_REF]. The second goal is to study the convergence properties of the Jacobi CoM algorithm [START_REF] Comon | Tensor Diagonalization, A useful Tool in Signal Processing[END_REF].

Organization. The paper is organized as follows. In section 2, we recall basic properties of the cost function, introduce notation for derivatives, and present the scheme of Jacobi-type algorithms. In section 3, we define the classes of approximately diagonal tensors, considered in this paper. Some basic relationships between these classes are shown. The stationary diagonal ratio is introduced, and the orbit of pseudo diagonal tensors is studied. In section 4, we study the class of locally maximally diagonal tensors using Riemannian Hessian. In section 5, we study the relationship between maximally diagonal tensors and generally maximally diagonal tensors. Section 6 contains results on convergence of the Jacobi CoM algorithm. Finally, Appendix A contains long proofs.

Optimization problem: properties and algorithms

Riemannian gradient and stationary points

First, we recall that the Riemannian gradient of (2

) [17, §4.1], is, by definition, Proj∇ f (Q) = QΛ(Q), (3) 
where Λ(Q) is the matrix with entries

Λ(Q) k,l = 3(W lll W llk -W lkk W kkk ). (4) 
The matrix Q is a stationary point of (2) if and only if Proj∇ f (Q) = 0. A local maximum point of (2), of course, is a stationary point. A reasonable local optimization algorithm should at least converge to a stationary point.

Elementary rotations and Jacobi-type algorithms

Let (i, j) be a pair of indices with 1 ≤ i < j ≤ n. We denote the Givens rotation (by an angle θ ∈ R) matrix to be

G (i,j,θ) =              1 . . . 0 cos θ -sin θ . . . sin θ cos θ 0 . . . 1              ,
i.e., the matrix defined by

(G (i,j,θ) ) k,l =                1, k = l, k ∈ {i, j}, cos θ, k = l, k ∈ {i, j}, sin θ, (k, l) = (j, i), -sin θ, (k, l) = (i, j), 0, otherwise for 1 ≤ k, l ≤ n.
Jacobi-type algorithms proceed by successive optimization of the cost function with respect to elementary rotations, summarized in the following scheme.

Algorithm 1. Input: A ∈ S n and Q 0 = I n . Output: a sequence of iterations {Q k : k ∈ N}.

• For k = 1, 2, . . . until a stopping criterion is satisfied do:

-

Choose the pair (i k , j k ) according to a certain pair selection rule. -Compute the angle θ * k that maximizes the function

h k (θ) def = f (Q k-1 G (i k ,j k ,θ) ). (5) 
- Update Q k = Q k-1 G (i k ,j k ,θ * k ) .
• End for

The algorithm is similar in spirit to block-coordinate descent. Important differences are: the coordinate system is changing at every iteration, and, for each elementary rotation, the global maximum is achieved. Recently, local and global convergence to stationary points [START_REF] Ishteva | Jacobi algorithm for the best low multilinear rank approximation of symmetric tensors[END_REF][START_REF] Li | Globally convergent jacobi-type algorithms for simultaneous orthogonal symmetric tensor diagonalization[END_REF] have been established for variants of Algorithm 1. Apart from Jacobi-type algorithms, Jacobi rotations are also very useful in computing fast retractions [16, p. 58] in Riemannian optimisation methods [START_REF] Absil | Optimization algorithms on matrix manifolds[END_REF].

Directional derivatives

First we introduce some useful notation that will be used throughout the paper.

Definition 2.1. Let A ∈ S n and 1 ≤ i < j ≤ n. Define

d i,j (A) def = A iii A iij -A ijj A jjj , ω i,j (A) def = A 2 iii + A 2 jjj -3A 2 iij -3A 2 ijj -2A iii A ijj -2A iij A jjj .
In order to simplify notation, we will consider the analogues of univariate functions [START_REF] Sidiropoulos | Tensor decomposition for signal processing and machine learning[END_REF] with

Q = I n : hi,j (θ) def = diag{A • 1 (G (i,j,θ) ) T • 2 (G (i,j,θ) ) T • 3 (G (i,j,θ) ) T } 2
for 1 ≤ i < j ≤ n as in [START_REF] Sidiropoulos | Tensor decomposition for signal processing and machine learning[END_REF].

Then it holds that [17, Lemma 5.7] h i,j (0) = 6d i,j (A) and h i,j (0) = -6ω i,j (A).

3. Classes of approximately diagonal tensors

Definitions of classes

In this subsection, we define several classes of third order symmetric tensors. Some of them are related to stationary points of problem [START_REF] Cichocki | Tensor decompositions for signal processing applications: From two-way to multiway component analysis[END_REF] or the points where Algorithm 1 may stop. For simplification, we look at the derivatives of (1) at Q = I n . Definition 3.1. (i) Let A, B ∈ S n . Then A is orthogonally similar [START_REF] Qi | Tensor analysis: Spectral theory and special tensors[END_REF][START_REF] Qi | Z-eigenvalue methods for a global polynomial optimization problem[END_REF] 

to B if there exists Q ∈ O n such that B = A • 1 Q • 2 Q • 3 Q.
(ii) Let C ⊆ S n be a subset. Define the orbit 1 of C to be:

O(C) def = {A • 1 Q • 2 Q • 3 Q, A ∈ C, Q ∈ O n }.
Definition 3.2. We denote by D = D n the set of diagonal tensors in S n , and O(D) the set of orthogonally decomposable tensors ( referred to as "odeco" in [START_REF] Robeva | Orthogonal decomposition of symmetric tensors[END_REF]). More precisely, any A ∈ O(D) can be decomposed as

A = n k=1 λ k u k ⊗ u k ⊗ u k where λ k ∈ R and u 1 , • • • u n ∈ R n form an orthonormal basis.
Remark 3.3. In the definitions of tensor classes we will often drop the subscript, if the dimension is clear from the context. Definition 3.4. Let A ∈ S n . The class of pseudo diagonal tensors is defined to be

PD = PD n def = {A : A ijj = A iij = 0, for any 1 ≤ i < j ≤ n}. Remark 3.5. It is clear that D ⊆ PD and O(D) ⊆ O(PD).
In section 3.4, we will give characterizations of PD and O(PD) from the perspective of tensor spectral theory. Besides, it is well known that O(D) S n , that is, not every symmetric tensor can be diagonalized by orthogonal transformation [START_REF] Kolda | Orthogonal tensor decompositions[END_REF][START_REF] Robeva | Orthogonal decomposition of symmetric tensors[END_REF].

Definition 3.6. Let A ∈ S n . (i) The class of stationary diagonal tensors is defined to be SD = SD n def = {A : d i,j (A) = 0, for any 1 ≤ i < j ≤ n}.
1 Classically, the notion of orbit is defined for a single element (e.g., C ∈ Sn). In this paper, we use the word "orbit" as a shorthand for saying "the action of O on C".

(ii) The class of Jacobi diagonal tensors is defined to be

JD = JD n def = {A : 0 ∈ argmax θ∈R hi,j (θ), for any 1 ≤ i < j ≤ n}.
(iii) The class of locally Jacobi diagonal tensors is defined to be

LJD = LJD n def = {A : 0 is a local maximum point of hi,j (θ), for any 1 ≤ i < j ≤ n}. Remark 3.7. From (4), it follows that A ∈ SD if and only if Proj∇ f (I n ) = 0 in (3).
In other words, A ∈ SD if and only if I n is a stationary point of (2). This is the reason why we call the tensors in SD stationary diagonal. Moreover, it can be seen that Algorithm 1 stops at A if A ∈ JD. This is the reason why we call the tensors in JD Jacobi diagonal. [START_REF] Robeva | Orthogonal decomposition of symmetric tensors[END_REF]. Now we prove that (iii)⇒(i). We have

Lemma 3.8. Let A ∈ S n . The following are equivalent. (i) A ∈ JD. (ii) A ∈ LJD. (iii) d i,j (A) = 0 and ω i,j (A) ≥ 0 for any 1 ≤ i < j ≤ n. Proof. (i)⇒(ii) is clear. (ii)⇒(iii) follows from
h i,j (θ) -h i,j (0) = 3 (1 + x 2 ) 2 (2d i,j (A)(x -x 3 ) -ω i,j (A)x 2 ) (7) 
for any 1 ≤ i < j ≤ n by [START_REF] Martin | A jacobi-type method for computing orthogonal tensor decompositions[END_REF]. Note that

h i,j (θ) -h i,j (0) ≡ 0 if d i,j (A) = ω i,j (A) = 0. If d i,j ( 
A) = 0 and ω i,j (A) ≥ 0, then h i,j (θ) reaches its maximum value at θ = 0, by [START_REF] Kolda | Orthogonal tensor decompositions[END_REF]. It follows that A ∈ JD.

Definition 3.9. Let A ∈ S n and f be as in [START_REF] Comon | Tensors: a brief introduction[END_REF].

(i) The class of maximally diagonal tensors is defined to be

MD = MD n def = {A : I n ∈ argmax Q∈SOn f (Q)}.
(ii) The class of locally maximally diagonal tensors is defined to be

LMD = LMD n def = {A : I n is a local maximum point of f (Q)}.
(iii) The class of generally maximally diagonal tensors is defined to be

GMD = GMD n def = {A : (I n , I n , I n ) ∈ argmax P ,Q,R∈SOn F(P , Q, R)},
where

F(P , Q, R) def = diag{A • 1 P T • 2 Q T • 3 R T } 2 . ( 8 
) Remark 3.10. Note that O n ⊆ R n×n is a compact submanifold and (2) is continuous. Since (2) takes the same maximum on O n and SO n , we get that O(MD n ) = S n . Note that MD n ⊆ LMD n . It follows that O(LMD n ) = S n .
In other words, for any A ∈ S n , there exists

Q * and Q * * in SO n such that A • 1 Q T * • 2 Q T * • 3 Q T * ∈ LMD and A • 1 Q T * * • 2 Q T * * • 3 Q T * * ∈ MD,
respectively. How to find Q * or Q * * is the goal of problem (1).

Basic relations

The tensor classes defined in section 3.1 have the following relationships. The first row and column denote the corresponding orbits, i.e. arrows stand for the action of O n .

O(D) O(PD) S n O(D) D PD JD O(GMD) GMD JD SD S n S n MD LMD LJD ⊆ ⊆ ⊆ = ⊆ = ⊆ ⊆
Remark 3.11. Most of the above relationships are easy to get by Definition 3.6 and Definition 3.9. We only derive some of them for S 2 , which are not obvious.

(i) Note that SO 2 coincides with the set of Jacobi rotations. We see that

MD 2 = LMD 2 = JD 2 = LJD 2
by Lemma 3.8. It will be shown that GMD 2 = MD 2 in Theorem 5.3. It follows that

GMD 2 = MD 2 = LMD 2 = JD 2 = LJD 2 .
(ii) PD and JD will be characterized in Remark 3.13 and Theorem 3.14. It follows by these characterizations that PD 2 JD 2 .

(iii) Note that D 2 = PD 2 . It follows by (i) and (ii) that

D 2 GMD 2 .
(iv) By Theorem 3.14, we see that JD 2 SD 2 .

(v) Note that D 2 = PD 2 and O(D 2 ) S 2 by Remark 3.5. We have that O(PD 2 ) S 2 .

Stationary diagonal ratio

In this subsection, we define the stationary diagonal ratio for the tensors in SD, which can be used to characterize JD and PD. Definition 3.12. Let A ∈ SD and 1 ≤ i < j ≤ n. The stationary diagonal ratio, denoted by γ ij , is defined as follows.

γ ij def = 0, if A (i,j) = 0; ∞, if A iii = A jjj = 0 and A 2 ijj + A 2 iij = 0;
otherwise, γ ij is the (unique) number such that

A ijj A iij = γ ij A iii A jjj . Remark 3.13. Let A ∈ SD. Then A ∈ PD if and only if γ ij = 0 for any 1 ≤ i < j ≤ n. Theorem 3.14. Let A ∈ SD. Then A ∈ JD if and only if γ ij ∈ [-1, 1/3] for any 1 ≤ i < j ≤ n.
Proof. Note that A ∈ JD if and only if d i,j (A) = 0 and ω i,j (A) ≥ 0 for any 1 ≤ i < j ≤ n by Lemma 3.8. We only need to show that ω i,j (A) ≥ 0 if and only if

γ ij ∈ [-1, 1/3]. If γ ij = ∞, then ω i,j (A) < 0. If γ ij < ∞, by Definition 3.
12, we have that

-ω i,j (A) = (3γ 2 ij + 2γ ij -1)(A 2 iii + A 2 jjj ).
It follows that ω i,j (A) ≥ 0 if and only if

γ ij ∈ [-1, 1/3].

Orbit of the pseudo diagonal tensors 3.4.1. Characterization

In this subsection, we characterize the equivalence class of pseudo diagonal tensors based on the Z-eigenvalue and Z-eigenvectors defined in [START_REF] Qi | Tensor analysis: Spectral theory and special tensors[END_REF]. [START_REF] Qi | Tensor analysis: Spectral theory and special tensors[END_REF] of A. This vector is called the Z-eigenvector associated with λ. 

Definition 3.15. Let A ∈ S n and λ ∈ R. If λ satisfies A • u • u = λ u for a unit vector u ∈ R n . Then λ is called a Z-eigenvalue
A = B • 1 Q T • 2 Q T • 3 Q T and A • u • u = λ u for λ ∈ R and a unit vector u ∈ R n , then B • (Qu) • (Qu) = λ Qu.
Theorem 3.17. Let A ∈ S n . We have two necessary and sufficient conditions below:

(i) A ∈ PD if and only if {e i : 1 ≤ i ≤ n} is a set of Z-eigenvectors. This is equivalent to that A • e i • e i • e j = 0
for any 1 ≤ i = j ≤ n.

(ii) A ∈ O(PD) if and only if there exists an orthonormal set of Z-eigenvectors {u i : 1 ≤ i ≤ n}. This is equivalent to that

A • u i • u i • u j = 0 for any 1 ≤ i = j ≤ n. In this case, A • 1 Q T * • 2 Q T * • 3 Q T * ∈ PD for Q * = [u 1 , • • • , u n ]. Proof. (i) By definition, A ∈ PD if and only if A • e i • e i • e j = 0 for any 1 ≤ i = j ≤ n. But if A • e i • e i is orthogonal
to every e j , j = i, it must be collinear to e i , which means:

A • e i • e i = λe i
for some nonzero λ, which turns out to be λ = A • e i • e i • e i .

(ii) The second result follows from (i) and Remark 3.16. 

A • e i • e j ∈ span{e i , e j }
for any

1 ≤ i = j ≤ n. (ii) Let A ∈ O(PD n ).
Let {u i : 1 ≤ i ≤ n} be the set of orthonormal Z-eigenvectors, proved to exist in Theorem 3.17 (ii). Then A ∈ O(D n ) if and only if

A • u i • u j ∈ span{u i , u j } for any 1 ≤ i = j ≤ n.
Proof. First note that A • e i • e j ∈ span{e i , e j } for any 1 ≤ i < j ≤ n if and only if A ijk = 0 for any 1 ≤ i < j < k ≤ n. Then (i) is proved. Next, (ii) follows from (i) and Remark 3.16.

Locally maximally diagonal tensors

Even if Givens rotations span SO n , it is not obvious that a sequence of optimally chosen Givens rotations will find the optimal orthogonal transform in SO n . In other words, we know that LMD ⊆ LJD, but the converse may not be true. This motivates the comparison between LJD and LMD.

Riemannian Hessian

In this subsection, we study the conditions that a tensor in S n is locally maximally diagonal based on the Riemannian Hessian [START_REF] Absil | Optimization algorithms on matrix manifolds[END_REF][START_REF] Absil | An Extrinsic Look at the Riemannian Hessian[END_REF][START_REF] Edelman | The geometry of algorithms with orthogonality constraints[END_REF].

Lemma 4.1. Let A ∈ S n and f be as in (2). Let T Q O n be the tangent vector space at Q; it contains matrices of the form Q∆, where ∆ are skew matrices satisfying ∆ T = -∆. Next, define:

U = A • 3 Q T , V = A • 2 Q T • 3 Q T , X = V • 1 (Q∆) T , Y = U • 1 (Q∆) T • 2 (Q∆) T , Z = V • 1 (Q∆ 2 ) T .
Let Hessf (Q) be the Riemannian Hessian of

f at Q. Then Hessf (Q)(∆ 1 , ∆ 2 ) is a bilinear form defined on T Q O n .
We have:

Hessf (Q)(Q∆, Q∆) = 6 j (3X 2 jjj + 2Y jjj W jjj -Z jjj W jjj ).
Proof. By [23, eqn. (2.55)], it can be calculated that 

Hessf (Q)(Q∆, Q∆) = i,j,k,l ∂ 2 f ∂Q i,j ∂Q k,l (Q∆) ij (Q∆) kl + 1 2 tr((∇f (Q)) T Q∆ 2 + ∆(∇f (Q)) T Q∆) = 6 i,j,k (3V ijj V kjj + 2W jjj U ikj )(Q∆) ij (Q∆) kj + tr((∇f (Q)) T Q∆ 2 ) = 6 i,j,k (3V ijj V kjj + 2W jjj U ikj )(Q∆) ij (Q∆) kj -6 i,j,k,l Q ik V ijj W jjj ∆ kl ∆ jl (9) = 6 j (3X 2 jjj + 2Y jjj W jjj + Z jjj W jjj ).
Hessf (I n )(∆, ∆) = 6 i,j,k (3A ijj A kjj + 2A jjj A ikj )∆ ij ∆ kj -6 i,j,k A kii A iii ∆ ij ∆ kj = 6 i,j (3A 2 ijj + 2A jjj A iij -A 2 iii )∆ 2 ij + 6 i,j,k,k =i (3A ijj A kjj + 2A jjj A ikj -A kii A iii )∆ ij ∆ kj Remark 4.3. Let A ∈ JD n . (i) If Hessf (I n )(∆, ∆) < 0 for any ∆ ∈ T In O n \ {0}, then A ∈ LMD n . (ii) If A ∈ LMD n , then Hessf (I n )(∆, ∆) ≤ 0 for any ∆ ∈ T In O n .

Euclidean Hessian matrix for S 3

Note that LMD ⊆ JD and LMD is corresponding to the local maximum point of (2). In this subsection, based on Corollary 4.2, we show how to determine whether A ∈ JD 3 is locally maximally diagonal or not. 

+ 2γ 23 -1)(b 2 + c 2 ).   Theorem 4.5. Let A ∈ JD 3 . If M A is negative definite, then A ∈ LMD. If A ∈ LMD, then M A is negative semidefinite. Proof. Let ∆ =   0 u v -u 0 w -v -w 0   ∈ T I3 O 3 .
Define Φ(u, v, w) def = Hessf (I 3 )(∆, ∆). By Corollary 4.2, we have that

Φ(u, v, w) = 6[(3γ 2 12 + 2γ 12 -1)(a 2 + b 2 )u 2 + (3γ 2 13 + 2γ 13 -1)(c 2 + a 2 )v 2 + (3γ 2 23 + 2γ 23 -1)(b 2 + c 2 )w 2 + 4g(auv + cvw -bwu) + 6(γ 12 γ 13 bcuv + γ 13 γ 23 abvw -γ 23 γ 12 cawu) -2(γ 23 bcuv + γ 12 abvw -γ 13 cawu)] = 6 ξ T M A ξ, (10) 
where ξ = (u, v, w) T . By Remark 4.3, the proof is complete.

Example 4.6. Let A ∈ JD 3 be such that

A 111 = A 222 = A 333 = 1, γ 12 = γ 13 = γ 23 = γ. (i) Then Φ(u, v, w) = 12(u 2 + v 2 + w 2 ) (3γ 2 + 2γ -1) -(3γ 2 -γ + 2A 123 ) uw -uv -vw u 2 + v 2 + w 2
for any (u, v, w) ∈ R 3 \{(0, 0, 0)} by [START_REF] Comon | Independent Component Analysis[END_REF]. Note that

uw -uv -vw u 2 + v 2 + w 2 ∈ [-1/2, 1].
Since 3γ 2 + 2γ -1 ≤ 0 by Theorem 3.14, it follows that A ∈ LMD if

3 2 γ - 1 2 < A 123 < - 9 2 γ 2 - 3 2 γ + 1.
Moreover, we have that A / ∈ LMD, if

A 123 < 3 2 γ - 1 2 or A 123 > - 9 2 γ 2 - 3 2 γ + 1. (ii) If γ = 0, then Φ(u, v, w) = -12(u 2 + v 2 + w 2 )[1 + 2A 123 uw -uv -vw u 2 + v 2 + w 2 ].
for any (u, v, w) ∈ R 3 \{(0, 0, 0)}. Note that

uw -uv -vw u 2 + v 2 + w 2 ∈ [-1/2, 1]. It follows that A ∈ LMD if A 123 ∈ (-1/2, 1). Moreover, if A 123 / ∈ [-1/2, 1], then A / ∈ LMD.
Example 4.7. Let A ∈ S n with n > 3. Suppose that

A (i,j,k) ∈ LMD 3
for any 1 ≤ i < j < k ≤ n. It may be interesting to wonder whether it holds that A ∈ LMD n .

In fact, the answer is negative. Let A ∈ PD 4 with

A ijk =      1, i = j = k, 3/4, i = j = k, 0, otherwise.
By Example 4.6 (ii), we see that

A (i,j,k) ∈ LMD 3 for any 1 ≤ i < j < k ≤ n. Let ∆ * =     0 1 1 1 -1 0 0 0 -1 0 0 0 -1 0 0 0     ∈ T I4 O 4 .
By Corollary 4.2, we get that Hessf (I 4 )(∆ * , ∆ * ) = 18 > 0. It follows that A / ∈ LMD 4 .

Orbit of generally maximally diagonal tensors

Equivalent problem formulations

In this subsection, we first prove that the statement O(GMD) = S n is equivalent to several other optimization problems in Proposition 5.2. Then we give a positive answer to these equivalent problems when the dimension is 2 in Theorem 5.3. Proof. We only have to prove that

GMD n = MD n if O(GMD n ) = S n . In fact, if A ∈ MD n , there exists Q * such that A • 1 Q T * • 2 Q T * • 3 Q T * ∈ GMD n .
Let f be as in [START_REF] Comon | Tensors: a brief introduction[END_REF] and F be as in [START_REF] Kolda | Symmetric orthogonal tensor decomposition is trivial[END_REF]. It follows that

f (I n ) ≥ f (Q * ) = max P ,Q,R∈SOn F(P , Q, R) ≥ f (I n ).
Then we have that A ∈ GMD n .

Proposition 5.2. Denote

GO(D)

def = {A • 1 P T • 2 Q T • 3 R T , A ∈ D, P , Q, R ∈ O n }.
The following statements are equivalent.

(i) GMD n = MD n . (ii) For any A ∈ S n , max Q∈SOn f (Q) = max P ,Q,R∈SOn F(P , Q, R),
where f be as in (2) and F be as in [START_REF] Kolda | Symmetric orthogonal tensor decomposition is trivial[END_REF].

(iii) For any A ∈ S n , it holds that

min ui⊥uj ,∀i =j, µ k ∈R A - n k=1 µ k u k ⊗ u k ⊗ u k = min xi⊥xj ,y i ⊥y j , zi⊥zj ,∀i =j,λ k ∈R A - n k=1 λ k x k ⊗ y k ⊗ z k . ( 11 
)
(iv) For any A ∈ S n and for the Euclidean distance d, it holds that

d(A, O(D)) = d(A, GO(D)).
(v) Let A ∈ S n . The best rank-n orthogonal approximation can always be chosen to be symmetric, that is, there exist µ k ∈ R and orthonormal basis {u k , 1 ≤ k ≤ n} such that

A - n k=1 µ k u k ⊗ u k ⊗ u k = min xi⊥xj ,y i ⊥y j , zi⊥zj ,∀i =j,λ k ∈R A - n k=1 λ k x k ⊗ y k ⊗ z k .
Proof. (i)⇔(ii). Suppose that (i) holds and

Q * = arg max Q∈SOn f (Q). Let W * = A • 1 Q T * • 2 Q T * • 3 Q T * .
Then W * ∈ MD and thus W * ∈ GMD. It follows that (ii)⇔(iii). By [24, Proposition 5.1], [24, (5.6)] and [24, (5.23)], we get that

f (Q * ) = max P ,Q,R∈SOn F(P , Q, R).

If (ii) holds and

max Q∈SOn f (Q) = A 2 - min ui⊥uj ,∀i =j, µ k ∈R A - n k=1 µ k u k ⊗ u k ⊗ u k 2 , max P ,Q,R∈SOn F(P , Q, R) = A 2 - min xi⊥xj ,y i ⊥y j , zi⊥zj ,∀i =j,λ k ∈R A - n k=1 λ k x k ⊗ y k ⊗ z k 2 . It follows that (ii)⇔(iii). (iii)⇔(iv) is clear. (iii)⇔(v). Note that O(D) is closed, hence there exist µ k ∈ R and orthonormal basis {u * k , 1 ≤ k ≤ n} such that A - n k=1 µ k u k ⊗ u k ⊗ u k = min vi⊥vj ,∀i =j, µ k ∈R A - n k=1 µ k v k ⊗ v k ⊗ v k . Theorem 5.3. It holds that MD 2 = GMD 2 .
Proof. We only need to prove that

A ∈ GMD 2 if A ∈ MD 2 . Let W = A • 1 P T • 2 Q T • 3 R T with P , Q, R ∈ SO 2 .
These rotations can be written as

P = 1 √ 1 + x 2 1 -x x 1 , Q = 1 1 + y 2 1 -y y 1 and R = 1 √ 1 + z 2 1 -z z 1 for x, y, z ∈ R. Define F(x, y, z) def = diag{W} 2
as in [START_REF] Kolda | Symmetric orthogonal tensor decomposition is trivial[END_REF]. Denote 

F(x, y, z) = a 2 + d 2 + (a 2 + d 2 )(γ + 1) (1 + x 2 )(1 + y 2 )(1 + z 2 ) σ (x, y, z). where σ(x, y, z) def = 
(γ -1)(x 2 + y 2 + z 2 + x 2 y 2 + y 2 z 2 + z 2 x 2 ) + 2γ(x 2 yz + xy 2 z + xyz 2 + xy + yz + zx).
Note that F(0, 0, 0) = a 2 + d 2 . We only need to prove that σ(x, y, z) ≤ 0 for any x, y, z ∈ R. If γ ∈ [0, 1/3], then γ -1 ≤ -2γ, and thus

σ(x, y, z) ≤ -2γ[(x 2 + y 2 + z 2 + x 2 y 2 + y 2 z 2 + z 2 x 2 ) -(x 2 yz + xy 2 z + xyz 2 + xy + yz + zx)] = -γ[(x -y) 2 + (y -z) 2 + (z -x) 2 + (xy -yz) 2 + (yz -zx) 2 + (zx -xy) 2 ] ≤ 0. If γ ∈ [-1, 0), then σ(x, y, z) = -(1 + γ)(x 2 + y 2 + z 2 + x 2 y 2 + y 2 z 2 + z 2 x 2 ) + γ[(x + y) 2 + (y + z) 2 + (z + x) 2 + (xy + yz) 2 + (yz + zx) 2 + (zx + xy) 2 ] ≤ 0.

Symmetric tensors of dimension n > 2

In this subsection, we first present a counterexample to show that the equivalent problems in Proposition 5.1 and Proposition 5.2 have a negative answer when n > 2. Then we prove a related result, which can be seen as an orthogonal analogue of the Comon's conjecture.

A counterexample

Lemma 5.4. Define ρ(Q) def = Q 2 11 Q 2 12 Q 2 13 + Q 2 21 Q 2 22 Q 2 23 + Q 2 31 Q 2 32 Q 2 33 ( 12 
)
for Q ∈ O 3 . We have that ρ(Q) < 1/12 for any Q ∈ SO 3 .

The proof of Lemma 5.4 can be found in Appendix A.

Example 5.5. Let A be as in Example 3.18. Let F be as in [START_REF] Kolda | Symmetric orthogonal tensor decomposition is trivial[END_REF]. Suppose that

P * =   1 0 0 0 1 0 0 0 1   , Q * =   0 0 1 1 0 0 0 1 0   , R * =   0 1 0 0 0 1 1 0 0   .
Then F(P * , Q * , R * ) = 3. However, easy calculations show that

f (Q) = 36ρ(Q) < 3,
where the last inequality follows by Lemma 5.4. Thus, we see that

f (Q) < 3 = F(P * , Q * , R * )
for any Q ∈ O 3 . It follows that Proposition 5.2 (ii) has a negative answer when n > 2.

Moreover, we have O(GMD) S n when n > 2 by Proposition 5.1.

Remark 5.6. It was proved that the best rank-1 approximation of any A ∈ S n can always be chosen to be symmetric [START_REF] Friedland | Best rank one approximation of real symmetric tensors can be chosen symmetric[END_REF][START_REF] Zhang | The best rank-1 approximation of a symmetric tensor and related spherical optimization problems[END_REF]. Example 5.5 provides a counterexample to Proposition 5.2 (v) when n > 2. It will be interesting to study whether the best rank-p (1 < p < n) orthogonal approximation can be chosen to be symmetric when n > 2, which can be seen as an orthogonal analogue of [27, Conjecture 8.7].

An orthogonal analogue of Comon's conjecture

Although Proposition 5.2 (iii) has a negative answer by Example 5.5 when n > 2, we have the following result. Proposition 5.7. Let A ∈ S n . Then for any p

min xi⊥xj ,y i ⊥y j , zi⊥zj ,∀i =j,λ k ∈R A - p k=1 λ k x k ⊗ y k ⊗ z k = 0 implies min ui⊥uj ,∀i =j, µ k ∈R A - p k=1 µ k u k ⊗ u k ⊗ u k = 0.
Proof. Suppose that p ∈ N and

A = p k=1 λ k x k ⊗ y k ⊗ z k , (13) 
where λ k ∈ R/{0} and x i ⊥ x j , y i ⊥ y j , z i ⊥ z j for any i = j. We assume that x k , y k and z k are all unit vectors without loss of generality. Note that A is symmetric. Then

A • 3 z k = λ k x k ⊗ y k
is a symmetric matrix for any 1 ≤ k ≤ p. It follows that x k = ±y k . In a similar way, we can prove that y k = ±z k . The proof is complete. Remark 5.9. (i) Proposition 5.7 can be seen as an orthogonal analogue of the Comon's conjecture [START_REF] Comon | Symmetric tensors and symmetric tensor rank[END_REF][START_REF] Friedland | Remarks on the symmetric rank of symmetric tensors[END_REF][START_REF] Zhang | Comon's conjecture, rank decomposition, and symmetric rank decomposition of symmetric tensors[END_REF], which conjectured that rank and symmetric rank of a symmetric tensor are equal, that is,

min x k = y k = z k =1, λ k ∈R A- p k=1 λ k x k ⊗y k ⊗z k = 0 ⇒ min u k =1,µ k ∈R A- p k=1 µ k u k ⊗u k ⊗u k = 0
for any A ∈ S n and p ∈ N minimal.

(ii) An alternative proof of Corollary 5.8 can be found in [START_REF] Boralevi | Orthogonal and unitary tensor decomposition from an algebraic perspective[END_REF]Proposition 32].

6. Convergence results for cyclic Jacobi algorithm

Cyclic Jacobi algorithm description

In this subsection, we recall the cyclic Jacobi algorithm (also called the Jacobi CoM algorithm) given in [START_REF] Comon | Independent component analysis, a new concept ?[END_REF], which is a special case of Algorithm 1.

Algorithm 2. Input: A ∈ S n and Q 0 = I n . Output: a sequence of iterations {Q k : k ∈ N}.

• For k = 1, 2, . . . until a stopping criterion is satisfied do:

-

Choose the pair (i k , j k ) according to the following cyclic-by-row rule

(1, 2) → (1, 3) → • • • → (1, n) → (2, 3) → • • • → (2, n) → • • • → (n -1, n) → (1, 2) → (1, 3) → • • • - Compute the angle θ * k that maximizes the function h k (θ) defined in (5). - Update Q k = Q k-1 G (i k ,j k ,θ * k ) .
• End for

Derivatives and relations between them

In this subsection, we present some basic properties of Algorithm 2. More details can be found in [START_REF] Comon | Independent component analysis, a new concept ?[END_REF][START_REF] Li | Globally convergent jacobi-type algorithms for simultaneous orthogonal symmetric tensor diagonalization[END_REF]. We first give a definition.

Take the k-th iteration with pair (i k , j k ) in Algorithm 2. Let

W (k-1) = A • 1 Q T k-1 • 2 Q T k-1 • 3 Q T k-1 .
By ( 5), we have that

h k (θ) = diag{W (k-1) • 1 (G (i k ,j k ,θ) ) T • 2 (G (i k ,j k ,θ) ) T • 3 (G (i k ,j k ,θ) ) T } 2 . ( 14 
)
Let x = tan(θ), and define

τ k : R → R by τ k (x) def = h k (arctan(x)).
In the rest of this subsection, with some abuse of notation, we use a shorthand notation

d k = d i k ,j k (W (k-1) ) and ω k = ω i k ,j k (W (k-1) ).
It can be calculated that [START_REF] Li | Globally convergent jacobi-type algorithms for simultaneous orthogonal symmetric tensor diagonalization[END_REF]Lemma 5.8]. 

τ k (x) -τ k (0) = 3 (1 + x 2 ) 2 (2d k (x -x 3 ) -ω k x 2 ), (15) 
τ k (x) = 6 (1 + x 2 ) 3 (d k (1 -6x 2 + x 4 ) -ω k (x -x 3 )), (16) 
τ k (x) = 6 (1 + x 2 ) 4 [2d k (-9x + 14x 3 -x 5 ) -ω k (1 -8x 2 + 3x 4 )].
d k (1 -6x * k 2 + x * k 4 ) -ω k (x * k -x * k 3 ) = 0. ( 17 
) (i) If x * k -x * k 3 = 0, we get that ω k = (1 -6x * k 2 + x * k 4 ) x * k (1 -x * k 2 ) d k , and thus τ k (x * k ) -τ k (0) = 3x * k (1 -x * k 2 ) d k . (ii) If 1 -6x * k 2 + x * k 4 = 0, we get that d k = x * k (1 -x * k 2 ) (1 -6x * k 2 + x * k 4 ) ω k ,
and thus

τ k (x * k ) = -6ω k 1 -6x * k 2 + x * k 4 , τ k (x * k ) -τ k (0) = 3x * k 2 (1 -6x * k 2 + x * k 4 ) ω k . (18) 

Convergence properties

In this subsection we prove some results about the convergence properties of Algorithm 2. Before that, we first quote a lemma, which could be proved easily by the fact that any multivariate polynomial is continuous. Proposition 6.2. Suppose that A ∈ S n and {Q

k : k ∈ N} ⊆ SO n are the iterations of Algorithm 2. If Q k → Q * and W * = A • 1 Q T * • 2 Q T * • 3 Q T * ,
then d i,j (W * ) = 0 and ω i,j (W * ) ≥ 0 for any 1 ≤ i < j ≤ n.

Proof. Fix any 1 ≤ i * < j * ≤ n. We choose a subsequence L ⊆ N such that

(i +1 , j +1 ) = (i * , j * )
for any ∈ L. It follows by Q k → Q * that x * +1 → 0 when ∈ L tends to infinity. Then we get that d i * ,j * (W ( ) ) → 0 by [START_REF] Li | Globally convergent jacobi-type algorithms for simultaneous orthogonal symmetric tensor diagonalization[END_REF]. Note that τ +1 (x * +1 ) ≤ 0 for any ∈ L. By ( 18), we have that ω i * ,j * (W ( ) ) ≥ 0 when ∈ L is large enough. Since Q → Q * , the result follows from continuity of the function

Q → A • 1 Q T • 2 Q T • 3 Q T . (19) 
Proposition 6.3. Let A ∈ S n and {Q k : k ∈ N} ⊆ SO n be the iterations of Algorithm 2. Suppose that there are a finite number of accumulation points of {Q k : k ∈ N}.

(i) Let Q * ∈ SO n be any accumulation point and

W * = A • 1 Q T * • 2 Q T * • 3 Q T * .
Then there exists 1 ≤ i * < j * ≤ n such that d i * ,j * (W * ) = ω i * ,j * (W * ) = 0.

(ii) For any 1 ≤ i * < j * ≤ n, there exists an accumulation point Q * ∈ SO n such that

W * = A • 1 Q T * • 2 Q T * • 3 Q T * satisfies d i * ,j * (W * ) = 0 and ω i * ,j * (W * ) ≥ 0. (iii)
We have that the directional derivative (6) tends to zero:

h k+1 (0) = 6d i k+1 ,j k+1 (W (k) ) → 0.
The proof can be found in Appendix A.

Corollary 6.4. Suppose that A ∈ S n and {Q k : k ∈ N} ⊆ SO n are the iterations of Algorithm 2. Let Q * ∈ SO n be an accumulation point and

W * = A • 1 Q T * • 2 Q T * • 3 Q T * .
If ω i,j (W * ) > 0 for any 1 ≤ i < j ≤ n, then either Q k → Q * , or there exist an infinite number of accumulation points in the iterations.

Remark 6.5. By Theorem 6.2 and Lemma 3.8, we see that if the iterations of Algorithm 2 converge to Q * ∈ O n , then

W * = A • 1 Q T * • 2 Q T * • 3 Q T * satisfies W * ∈ JD.
In other words, Q * is a stationary point of (2) by Remark 3.7. By Example 4.6, we see that LMD 3 JD 3 . Note that Algorithm 2 stops at any tensor in JD. It follows that Algorithm 2 may converge to a saddle point of (2).

Conclusions

In this paper, we studied several classes of third order approximately diagonal tensors, which are closely related to Jacobi-type algorithms and the approximate diagonalization problem [START_REF] Cichocki | Tensor decompositions for signal processing applications: From two-way to multiway component analysis[END_REF]. We believe that these classes provide a better understanding of problem (1) and behaviour of optimisation algorithms; some examples in this paper can be used as test cases for the algorithms. There are some open questions left for future research, such as the global convergence of Algorithm 2 for third (or higher) order symmetric tensors is still unknown.

Appendix A. Long proofs

Proof of Lemma 5.4. Since ( 12) is invariant with respect to changes of signs of the columns of Q, it suffices to prove the statement for Q ∈ SO 3 .

Step 1. By [29, p. 10], any Q ∈ SO 3 can be decomposed as

Q T = Q 1 (x)Q 2 (y)Q 3 (z)
, where The similar result holds if z = 0. Therefore, we only need to prove that ρ(x, y, z) < 1/12 in the case that xz = 0.

Q 1 (x) = 1 √ 1 + x 2   √ 1 + x 2 0 0 0 1 -x 0 x 1   , Q 2 (y) =
Step 2. Let

u = x - 1 x and v = z - 1 z .
Note that ϕ(u, y) = 2(y 4 + y 2 + y 2 + 1 y 2 + 1y 2 )u 2 + 4y 2 + 1 (u 2 + 4) 2 (1 + y 2 for any x, y, z ∈ R, which completes the proof.

Remark 3 . 16 .

 316 Let A, B ∈ S n . If A is orthogonally similar to B, then A and B have the same Z-eigenvalues [13, Thm 2.20]. In fact, if

3. 4 . 2 . 1 + e 2 ⊗ e 1 ⊗ e 3 + e 3 ⊗ e 1 ⊗ e 2 + e 3 ⊗ e 2 ⊗ e 1 .

 421213312321 Relationship with orthogonally decomposable tensors Example 3.18. We present an example to show that O(D n ) O(PD n ) for S n . Let A = e 1 ⊗ e 2 ⊗ e 3 + e 1 ⊗ e 3 ⊗ e 2 + e 2 ⊗ e 3 ⊗ e It is easy to see that A ∈ O(PD 3 ). On the other hand, it is known [21, Prop. 3.1 and 4.3] that the symmetric tensor rank is srank{A} = 4, hence A cannot be in O(D 3 ) (otherse it would have rank at most 3). Proposition 3.19. (i) Let A ∈ PD n . Then A ∈ D n if and only if

Corollary 4 . 2 .

 42 Let Q = I n in Lemma 4.1. The tangent vector space T In O n contains the skew symmetric matrices ∆. It follows by (9) that

Definition 4 . 4 .

 44 Let A ∈ JD 3 . Let γ 12 , γ 13 and γ 23 be the stationary diagonal ratios introduced in Definition 3.12. Denote by a = A 111 , b = A 222 , c = A 333 and g = A 123 .We define the Euclidean Hessian matrix of A to be M A def

Proposition 5 . 1 .

 51 Let n ≥ 2. Then O(GMD n ) = S n if and only if GMD n = MD n .

  A ∈ MD, then I n = arg max Q∈SOn f (Q) and thus (I n , I n , I n ) = arg max P ,Q,R∈SOnF(P , Q, R),which implies that A ∈ GMD.

  a = A 111 , b = A 112 , c = A 122 , d = A 222 , γ = γ 12 the stationary diagonal ratio in Definition 3.12. Then c = γa and b = γd by definition. Moreover, γ ∈ [-1, 1/3] by Theorem 3.14. It can be calculated that

Corollary 5 . 8 .

 58 Let A ∈ S n . Then we have d(A, GO(D)) = 0 ⇒ d(A, O(D)) = 0, that is, O(D) = S n ∩ GO(D).

Remark 6 . 1 .

 61 Denote by x * k = tan(θ * k ) the optimal point of τ k (x). Note that τ k (x * k ) = 0. It follows by (16) that

  y, z ∈ R. It can be calculated that ρ(x, y, z)def = ρ(Q) = 1 (1 + x 2 ) 2 (1 + y 2 ) 3 (1 + z 2 ) 2 [(y 4 z 2 + y 2 z 2 )(x 4 + 1) + 2 y 2 + 1y 3 (z 3 -z)(x 3 -x) + (y 4 z 4 -4y 4 z 2 + y 4 + y 2 z 4 + y 2 + z 2 )x 2 ]. If x = 0, then ρ(0, y, z) = y 2 z 2 (1 + y 2 ) 2 (1 + z 2 )

) 3 ≥ 9 ) 6 * * + 18y 4 * * + 11y 2 * * - 1 .* * 28y 4 * * + 22y 2 * * - 1 , 4 .

 3964214214 ψ(u, y) for any u, y ∈ R. It is enough to prove that ϕ(u, y) < 1/12 for any u, y ∈ R. Let (u * * , y * * ) be the maximal point of ϕ(u, y). By ∂ϕ ∂u (u * * , y * * ) = ∂ϕ ∂y (u * * , y * * ) = 0, we have that y * * (4u 2 * * y 4 * * -4u 2 * * + 8y 2 * * -1) = 0, (A.7) u * * (2u 2 * * y 4 * * + 2u 2 * * y 2 * * -8y 4 * * -4y 2 * * + 1) = 0. (A.8) If y * * = 0, then u * * = 0 by (A.8). If u * * = 0, then y * * = 0 or y 2 * * = 1/8 by (A.7). It is easy to check that ϕ(u * * , y * * ) < 1/12 in all these cases. Now we assume that y * * = 0 and u * * = 0. Then eqn. (A.8) can be rewritten as By substituting (A.9) into (A.6), we get that ϕ(u * * , y * * ) = 4y 4 * * 16y Next, we substitute (A.9) into (A.7), and get that y * * should satisfy (1 -8y 2 * * )(2y 4 * * + 2y 2 * * ) = (4y 4 * * -4)(8y 4 * * + 4y 2 * * -1), After division by (y 2 * * + 1), we have 16y 6 * * -11y 2 * * + 2 = 0, (A.10) which is a 3-rd degree polynomial equation in y 2 * * ; there are two positive solutions of (A.10) given by positive roots of the polynomial, i.e. y 2 * * ≈ 0.7162 or y 2 * * ≈ 0.1921. Taking into account (A.10), we have have that ϕ(u * * , y * * ) = 4y 4 hence ϕ(u * * , y * * ) ≈ 0.0757 < 1/12 or ϕ(u * * , y * * ) ≈ 0.0653 < 1/12 in these two cases.Step Above all, we prove that ρ(x, y, z) ≤ max u,v,y∈R Φ(u, v, y) = max u,y∈R ψ(u, y) ≤ ϕ(u * * , y * * ) < 1 12

We use a simplified notation for subsequences in order to avoid multilevel indices.

Acknowledgements

The authors would like to thank the referees for their valuable comments and suggestions. This work was supported by the ERC project "DECODA" no.320594, in the frame of the European program FP7/2007-2013. The first author was partially supported by the National Natural Science Foundation of China (No.11601371).

We define Φ(u, v, y) def = ρ(x, y, z) = 1 (u 2 + 4)(v 2 + 4)(1 + y 2 ) 3 [(y 4 + y 2 )u 2 + 2 y 2 + 1y 3 vu + (y 4 + y 2 )(v 2 + 4) + 1 -4y 4 ].

Let (u * , v * , y * ) be the maximal point. If y * = 0, then

Moreover, by (A.1) and (A.2), we also get

which implies that

By (A.3) and (A.4), we get that 1 -4y 4 * = 0. It follows that u * v * = 0 by (A.3), which contradicts the assumption that u * = 0. Therefore, we prove that u 2 * = v 2 * .

Step 3. Now we define

Proof of Proposition 6.3. Since there are finite number of accumulation points, there exists δ > 0 such that the δ-neighborhoods of these accumulation points have positive distance to each other. (i) Let Q * be any accumulation point. Let L ⊆ N be a subsequence such the subsequence 2 {Q , ∈ L} is located in the δ-neighborhood N (Q * , δ) and Q → Q * when ∈ L tends to infinity. Note that Q * is not the unique accumulation point. There exists a pair (i * , j * ) such that it appears for an infinite number of times in the sequence of pairs

Now we construct a subsequence P ⊆ L such that

for any p ∈ P. Note that the δ-neighborhoods of different accumulation points have positive distance to each other. There exists σ > 0 such that |x * p+1 | > σ for any p ∈ P. Note that |x * p+1 | ≤ 1 for any p ∈ P. There exists

We assume that x * p+1 → ζ 0 for simplicity. Now we prove that d i * ,j * (W (p) ) → 0 and ω i * ,j * (W (p) ) → 0 when p ∈ P tends to infinity, and thus get (i) by the continuity of [START_REF] Ishteva | Jacobi algorithm for the best low multilinear rank approximation of symmetric tensors[END_REF].

Denote by

By ( 15) and ( 17), we see that

0 when p ∈ P tends to infinity. Then M p is invertible when p is large enough. Note that ϑ p → 0. It follows that

when p ∈ P tends to infinity.

(ii) Let (i * , j * ) be any pair. There exists an accumulation point

, then (i * , j * ) appears for an infinite number of times in the sequence of pairs {(i +1 , j +1 ), ∈ L}.

(a) If it appears for an infinite number of times in

then the result follows by the same reasoning as in (i).

(b) Otherwise, it appears for an infinite number of times in

We construct the subsequence {Q p , p ∈ P} of {Q , ∈ L} such that (i p+1 , j p+1 ) = (i * , j * ) and

Note that Q p → Q * and Q p+1 → Q * when p ∈ P tends to infinity. We get that x * p+1 → 0, and eventually from the proof of Theorem 6.2: d i * ,j * (W (p) ) → 0 and ω i * ,j * (W (p) ) ≥ 0 when p ∈ P is large enough. Then we prove (ii) by the continuity of ( 19). Next, we have that d i +1 ,j +1 (W ( ) ) → 0, which follows by [START_REF] Li | Globally convergent jacobi-type algorithms for simultaneous orthogonal symmetric tensor diagonalization[END_REF] if ζ 0 = 0, and by a reasoning similar to (i) if ζ 0 = 0. Finally, note that there exist a finite number of accumulation points in {x * k }, hence the proof is complete.