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Introduction
Background:
Recent space missions, such as Copernicus Sentinel-2a, provide high resolution Satellite
Image Time Series (SITS) to study continental surfaces, with a very short revisit period
(5 days for sentinel-2). In order to process such data, statistical models are regularly
used [1, 2], which usually require a regular temporal sampling. However, for SITS, clouds
and shadows (eg. figure from [3]), as well as the satellite orbite, an irregular temporal
sampling is common.
Contribution:
A new statistical approach using Gaussian processes is proposed to classify irregularly sam-
pled signals without temporal rescaling. Moreover, the model offers a theoretical framework
to impute missing values such as cloudy pixels.

ahttps://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-2

Model
Gaussian Processes (GP) model:
Let S =

{
(yi, zi)

}n

i=1 a set of multidimensional and irregularly sampled
signals. A signal Y is modeled as a vector of p independent random
processes T → Rp, with T = [0, T ]. The associated label is modeled
by a discrete random variable Z taking its values in {1, . . . , C}. The
model introduced here is based on two assumptions: 1) The coordinate
processes Yb, b ∈ {1, . . . , p} of Y are independent, 2) Each process Yb is,
conditionally to Z = c, a Gaussian process. Then

Yb(t)|Z = c ∼ GP(mb,c(t),Kb,c(t, s)),

where mb,c : T → Rp is a mean function, and Kb,c a covariance kernel
with hyperparameters θb,c. For example θb,c = {γ2

b,c, hb,c, σ
2
b,c} with

Kb,c(t, s) = γ2
b,ck(t, s|hb,c) + σ2

b,cδt,s

An irregularly sampled noisy signal yi is observed on Ti time stamps
{ti1, . . . , tiTi

} ∈ T and its bth coordinate is represented by a vector in RTi .
We write yi,b = [Y i

b (ti1), . . . , Y i
b (tiTi

)]T , with

yi,b|Zi = c ∼ NTi

(
µi,b,c,Σi

b,c

)
.

There µi,b,c = Bi
bαb,c is the sampled mean projected on a finite-

dimensional space (Bi
b is the fixed design matrix, αb,c is the unknown

vector of coordinates). Σi
b,c is the matrix kernel Kb,c evaluations at

{ti1, . . . , tiTi
}.

Estimation:
• αb,c and θb,c are estimated by maximizing the log-likelihood,

−1
2
∑

i|Zi=c

log
∣∣Σi(θb,c)

∣∣+ (yi,b −Bi
bαb,c)>Σi(θb,c)−1(yi,b −Bi

bαb,c).

• αb,c is given by an explicit formula, while θb,c is computed thanks to a
gradient technique.

Classification and Imputation of missing values
The assigned class is given by the MAP rule from the posterior probability

P (Z = c|yj) =
π̂c

∏p
b=1 fTj

(
yj ,Bj

bα̂b,c,Σj(θ̂b,c)
)

K∑̀
=1
π̂`

∏p
b=1 fTj

(
yj ,Bj

bα̂b,`,Σj(θ̂b,`)
) .

When the class is known to be c, the missing value at t∗ is estimated
through the computation of conditional expectation.

Ŷ i
b,c(t∗) =Bi

b(t∗)α̂b,c +Kb,c(t∗, t1:Ti
)>Σi(θ̂b,c)−1(yi,b −Bi

bα̂b,c)

var(Ŷ i
b,c(t∗)) =Kb,c(t∗, t∗)

−Kb,c(t∗, t1:Ti
)Σi(θ̂b,c)−1Kb,c(t1:Ti

, t∗)

We also generalized this imputation when the class is unknown.

Validation (Synthetic data)

0 10 20 30 40 50
t: temporal instants

2

1

0

1

2

3

4

5

6

Y(
t):

 A
m

pl
itu

de
 (1

 b
an

d)

Example of two signals (dots) that belongs to two different classes

Classification rate based on average time samples
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Accsin (%) 64.3 85.3 100 100 100
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Imputation on two signals belonging to the same class.

Future work
We are now implementing the model for massive real data (Sentinel-2).
We are also working on a new model when the bands are correlated.
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