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Abstract

This paper presents a methodology to derive 
mathematical models of active power components 
based on statistical theory and datasheet 
parameter extraction. The models have the 
objective of providing reliable data of gate-to-drain 
voltage (VGD), gate-to-source voltage (VGS) and 
direct current (ID) for nominal operating 
temperature range using only datasheet points.
For achieving that, statistical learning theory is 
used to fit models in a reliable and systematic way. 
Besides predicting accurately static operation 
points, the proposed model can be used to 
estimate dynamics and switching losses in power 
switches. The model is validated using static and 
dynamic data available in a datasheet. The model 
is used to analyze a MOSFET behavior in typical 
power electronics applications. Finally, it is 
discussed the data availability in datasheets in 
order to easily create accurate models. 

1. Introduction

Designing power converters requires detailed 
information about active power components. While 
component datasheets provide important data for 
the converter design process, this data are often 
incomplete for more complex analysis. The 
evolution in optimization routines and simulation 
software can constitute powerful tools to access 
more detailed data to the power electronic 
engineer [1].
A current solution is to use SPICE models from the 
component manufacturer for support in
simulations. However, these models are not 
always open information and the designers are still 
attached to time domain simulation tool that limit 
their capacities to run optimization routines.

To answer this simulation issue, this work 
proposes to use statistical tools to create 
simulation-ready mathematical models based only 
on the data available in the datasheet of the 
component of interest. This model can be used, in 
turn, to predict the behavior of the given 
component under conditions that are not given by 
the original dataset. A similar idea is used for 
photovoltaic models based on datasheet [2] and 
battery models [3]. 
Once data is extracted from the charts of a 
datasheet, through for instance manual methods 
[4], it can then be used to create a reliable model 
as in a traditional regression problem. There are 
several different techniques to create a regression 
model, mainly parametric techniques, and non-
parametric techniques [5]. This paper focuses on 
applying non-parametric Gaussian process 
regression on several sets of data obtained from 
the charts of a IRF740 MOSFET datasheet and 
create a model as shown in figure 1. The validity of 
the models is tested by predicting charts and data 
given by the same datasheet that have not been 
used to create the models.
The model is then implemented in a time domain
simulation. Several simulations are made, for 
different operation points in terms of temperature, 
gate resistor (Rg), and in different circuits: resistive 
charge, inductive charge + diode. The results of 
the switching energy (ES), turn ON and turn OFF 

Fig. 1. Proposed model in this work: representing a 
MOSFET by statistical functions that represents
variable capacitors and a voltage controlled current 
source.
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times are acquired and new mathematical models 
are created, offering to the final user a way to 
obtain dynamical results without realizing time 
domain simulations. Finally, the work presents 
several possible predictions that the model is 
capable of performing.

2. Statement of the problem

In order to simulate power device dynamics and to 
calculate switching losses in a MOSFET using 
traditional methods, many approximations are 
usually made [6].:

The value of Miller’s plateau is presented 
only in one given operating condition; 
The non-linearity of capacitances Ciss Coss
and Crss is not accurately depicted  
Temperature variations are hardly 
considered. 

This subject is widely discussed in many works [7-
10]. In practice, the calculation of switching losses 
requires a lot of time and effort from the power 
electronics engineer. This would be a 
straightforward task if an accurate model could be 
built from the combination of a simple function that 
represents the static behaviour of a MOSFET and 
a simple simulation setup. This work proposes and 
automated methodology to achieve this end.
The static behaviour function of the MOSFET 
yields (ID) as a function of (VGS x VDS x
Temperature). The simple simulation then consists 
of a current source driven by this static function 
combined with three capacitors (CGS, CDS, CDG)
whose capacitance variance is modelled by its 
charges integral over time, as shown in figure 1.
Based on these models, the user can extract 

important data to better analyses a converter 
operation and obtain data that would be impossible 
obtaining with the more traditional methods.

3. Model Extraction

Two types of active device models are needed for 
analysing its behaviour in a power electronics 
converter. One model considers the static 
behaviour of the power device and the other model 
represents its dynamic behaviour. Their 
combination is used to predict component 
behaviour under any operating conditions. 

A) Static model estimation
For static analysis of a power switch, the 
component datasheet presents two important 
graphs:  

1) Drain-to-Source voltage (VDS) versus Drain 
to source current (ID) for different Gate-to-
Source voltages (VGS) at a fixed 
temperature;

2) Temperature versus Drain to Source ON 
resistance (RON), for a fixed ID and VDS.

These graphs can be used to provide an 
estimation of the transistor static characteristics for 
some specific operating conditions. But for 
accurate analysis and optimization of multiple 
operating conditions, reliable data is not available 
especially with respect to variations in temperature 
[6]. This data is essential for the accurate 
representation of the Millers’ plateau with respect 
to VGS and VDS. In some charts, this is not
available.
For properly modelling dynamic behaviour, the 
static model derived from the graphs above must 
be combined with an accurate static model which 
predicts the relation between the gate to source 
voltage (VGS), the gate to drain voltage (VGD) and 
the voltage-controlled current source (ID).  This is 
critical in the case where this dynamic model is 
used to precisely estimate switching losses in fast 
switching applications, where the gate to source 
current needed to turn OFF the switch is very
large, and the MOSFET channel may be switched 
OFF early in the commutation.
In this scenario, statistical techniques can be used 
as a tool in order to extract models from the 
available data. Based in a representative set of 
points, several different techniques can be used to 
make a regression model. Statistical methods, 
such as linear regression or polynomial regression 
are able to fit wide ranges of data with a pre-
determined acceptable error. Statistical 
techniques are easy to use, do not require long 
statistical training effort from the user and their 
resulting model is interpretable. Statistical 
methods can also be applied to non-linear 
problems, such as the VDS x ID behaviour of the 
MOSFET. 
In this work, Gaussian Process Regression (GPR) 
method is used to predict values of ID for various 
VGS and VDS. GPR is a non-parametrical technique 
that consist in using the data set to build a 
predictive distribution, capable of averaging the 
effect of all possible mathematical functions that 
can describe the phenomenon to estimate the 
missing data points without prohibitive 
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computational cost [11]. It requires a covariance 
distribution, or ‘kernel function’, which extracts the 
information from the input data to generate 
accurate predictions. Kernel functions have 
hyperparameters which must be set according to 
characteristics of the input data set. GPR is a 
flexible type of statistical learning model for fitting 
non-linear problems such as the VGD x VGS x ID
data, as it requires only calculating its kernel 
function to yield highly accurate predictions [12].
In this work the MOSFET IRF740 was chosen to 
be modelled due to its very detailed datasheet and 
its data easily exploitable. It is important to note 
that, any MOSFET with well detailed datasheet 
could be used. In figure 2 it can be seeing four 
different kernel functions tested to fit the VGD x VGS
x ID curves. The data used (red points in the figure) 
were exported from the IRF740 datasheet using 
the tool available in [4]. The input data is made of 
1 value of ID for each 2 V variation of VDS for all 
available VGS, resulting in 240 input data points. 
It is evident in figure 2 that the definition of kernel 
function is fundamental to create a reliable model. 
Just by trusting the basic knowledge one should 
have about a MOSFET, it seems obvious that the 
more flexible functions such as squared 
exponential, created completely incorrect models.

The task to define the best function to use is very 
tricky, once the mainly common used parameters 
to measure the quality of the model cannot be 
trusted to define the model that fits best the real 
characteristics of a MOSFET. For example, table 1 
presents the Root Mean Squared Error (RMSE) for 
each one of the models presented in figure 1.

Method Rational 
Quadratic

Squared 
Exp. Exp. Matern 

5/2
RMSE 0.046 0.137 0.131 0.028

Despite the fact that the Matern 5/2 obtained the
minor value, it is visible in figure 1 that its wiggly 
form does not represent the behaviour of a 
MOSFET. The exponential function, which is a 
much more ‘rigid’ function, was chosen to create 
the model. This type of kernel is infinitely
differentiable, meaning it is very smooth [12], 
which is very adapted for the case of a physical 
behaviour of a switching MOSFET. Some 
adjustments were made in the function before 
creating the definitive model: All values of ID bellow 
0 are considered 0. Values of ID at VDS=0 are 
considered 0.
The final model is presented in figure 3. This model 
represents the VGD x VGS x ID at 25 °C. The same 

Fig. 2. Four different kernel functions tested to create a Gaussian Regression Process. The red dots are the data 
acquired from the IRF740 datasheet.
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procedure was made to represent the MOSFET 
behaviour at 150 °C. However, it is possible to
compute the predictions needed to build 
intermediary temperature planes to cover all 
temperature operating range of the MOSFET. For 
achieving that, it was used the graph Temperature 
versus RON available in the datasheet. This 
relationship can be easily represented by a 2-order
polynomial as presented in figure 4. Using this 
polynomial model, the 25 °C and the 150 °C 
temperature planes, the intermediary planes 
between -60 °C and 150 °C were interpolated.

B) Dynamic model estimation
During the switching transitions, the capacitances 

CDG, CGS and GDS vary according to their 
voltage/charge ratio. These variations impact 
directly the dynamics of the rise time and fall time 
of a switch, as well as the value of the Miller’s 
plateau and interfere directly on switching losses.
In order to have an accurate image of the switching 
transitions, this work proposes to derive 
mathematical models to represents the three 
capacitors aiming to run a simulation capable of 
reproduce accurately the switching process.

As the three capacitors have a non-linear 
behaviour, GPR was also used to model their 
comportment. An exponential Kernel function was 
used for fitting the GPR. The derived models that 
represent CIss, Coss and Crss are presented in figure 
5 together with the data obtained from the 
datasheet charts that were used to fit them.

4. Model Validation

To test and validate the proposed MOSFET static 
model, a comparison between the variation of ID
with respect to VGS given by the statistical model 
was plotted against the data given by this same 
chart presented in the datasheet. It is important to 
notice that this chart was not used to create the 
model. Results are presented in figure 6, which
shows a very accurate result of the obtained 
models.
The validation of the dynamic model composed by 
the capacitor models together with the voltage 
controlled current source static model was done in 
Matlab Simulink. A simulation was made following 
the exact values of the test circuit presented in 
IRF740 datasheet: A 200 V DC source connected 

Fig. 3. IRF740 VGD x VGS x ID data (red points); Fitted 
Gaussian process model (plane)

Fig. 4. RDON versus temperature chart. Points extracted 
from datasheet. Line: 2nd degree polynomial used to 
describe the behavior
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Fig. 4. Typical capacitance vs. VDS chart. Points: Data 
extracted from IRF740 datasheet. Lines: GPR fitted 
models.

Fig. 5. Comparison of ID vs. VGS points extracted from 
the datasheet. Lines plotted by the GPR models.
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to a 10 Ω resistor and the MOSFET model in 
series. Figure 5 presents the simulation results.
The fall time (tf) was estimated 25 ns and the rise 
time (tr) 22 ns. The datasheet provides values of 
27 ns and 24 ns respectively. The errors of 7,4%
and 8% encourage the validity of the model.
Once the proposed models perform accurate 
results in the ‘resistor-switch’ circuit, more complex 
circuits can be simulated, like the commutation 
process of a MOSFET with a diode as commonly 
found in power converters. 

5. Application of the model

This work presents a utilization of the 
mathematical models for providing information of a 
more complex situation existent in power 
converters. However, several other models can be 
created with respect of variations in temperature, 
voltages VDS and VGS, variations in gate 
resistances RG and a mix of this variables can be 
made for multi-dimensional models able to provide 
data that are too complex for traditional 
mathematical solutions and models that can be 
inserted in optimization routines.

5.1. Analysis of switching in different 
temperature conditions
One interesting application is to analyse the 
switching energy in the MOSFET during a 

MOSFET-to-diode switching with respect to the
temperature. For this analysis, a simulation circuit 
of a voltage source connected to a MOSFET and 
an inductance with a free-wheel diode was 
implemented.
In figure 7 is presented the MOSFET turn ON at 25 
°C and at 150 °C. Although they have similar 
shapes, it is visible that while operating in higher 
temperature the MOSFET presents a different 
behavior during the driving process. Especially, 
the voltage and current switching are delayed by 
about 5nsec. The modeling technic can be used to 
investigate the optimization of the dead time 
inverter harm with respect to temperature.
These time domain simulations can also be used 
to estimate switching losses. By integrating the 
power consumed by the MOSFET during the 
switching it is possible to find the switching energy. 
Simulations at 25 °C and 150 °C resulted in 26.66 
μJ and 29.80 μJ of energy respectively for a 
blocking + driving switching.
Supported by these simulation results, it is 
possible to forecast the losses for various 
operating points, just by changing the operating 
conditions. Based on several simulations results a 
multidimensional map representing the switching 
cell behavior with respect to numerous parameters 
such as: component junction temperatures, 
switched voltage and current, gate driver 
characteristics (RG and VGSmin&max) and switching 

Fig. 7. Dynamical model validation. Simulation results 
of a turn ON and turn OFF switching processes. Fall 
time tf and rise time tr (10% - 90%) highlighted.

Fig. 9. Turn OFF and turn ON process of the MOSFET 
in different temperatures. Dashed line at 25°C, solid 
line at 150 °C. Switching process to a diode-inductive 
charge at 6 A, 200 V.
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cell inductance. Based on the time domain 
simulation results, a math model can be derived
and implemented in an optimization routine, giving 
the opportunity to avoid time domain simulations in 
optimization loop. The math model outputs can be 
related to voltage and current switching speed, 
commutation energy losses, ON state losses with 
respect to switching frequency and duty cycle. 
Depending of accuracy and data availability, OFF 
state losses can also be computed. From that 
model, the designer can extract quickly and 
accurately many results and optimizations. The 
next paragraph provides an illustration on a basic 
case with one parameter variation.  

5.2. Switching losses in switching-
sinusoidal waveform
Several applications of power electronics 
converters have sinusoidal current waveforms, 
such as inverters or rectifiers with power factor 
correction. In this typical situation, the switching 
losses are complicated to calculate accurately in 
time domain simulation since the time constants 
are too different between the switching time and 
the sinus period. Besides, since every switching 
event considers a different operating point, it is 
difficult to derive the losses accurately over a line 
period. A simple design of experiment can be set 
to illustrate how a simple math model can be used 
here to solve the issues. 
Several simulations were performed to analyze the 
switching process with different current levels. 
Figure 8 presents this time domain simulation 
results considering the turn ON and OFF switching 
losses with respect to the switched current. A 
second order polynomial equation represents this 
behavior. Supported by this relation between 
current and switching losses energy, a designer is 
able to calculate the switching losses of a 

MOSFET + freewheeling diode for any current 
periodic shape or mission profile.
This work presents how math models are used to 
provide information of a more complex situation 
existent in power converters. However, several 
other models can be created with respect of 
variations in temperature, voltages VDS and VGS,
variations in gate resistances RG and a mix of this 
variables can be made for multi-dimension models 
able to provide data that are too complex for 
traditional mathematical solutions and models that 
can be inserted in optimization routines.

6. Conclusion

This work presented an innovative method to 
create detailed static and dynamic models of a 
MOSFET. The method can determine the electro-
thermal behaviour of a MOSFET for any VDS, VGS
and ID based only in the charts presented in its 
datasheet. It was used to calculate precise 
conduction and switching losses for any operating 
point of (ID, VDS, VGS, Ig, T) in any switching 
condition (hard switching, partial soft switching 
ZVS/ZCS). One important result is that the models 
can be operated in math format, to enable usage 
in optimization routines. 
The use of Gaussian process regression to create 
a model to represent the MOSFET is an interesting 
and powerful technique. This work achieved 
satisfactory results using an exponential kernel 
function to create the model. The compromise 
between flexibility and accuracy of the model is 
something to be better evaluated. More complex 
kernel functions might create models that achieve 
more precise representability of the true behaviour 
of the MOSFET.
The proposed model can be used for studying 
several different situations in power electronics 
converters, as analysis of switching losses, 
optimization of dead time for MOSFET-MOSFET 
switching transitions, etc. All taking in account the 
temperature variation and behaviour of the intrinsic 
capacitances in a MOSFET.

7. References

[1] P. L. Evans et al, "Design Tools for Rapid 
Multidomain Virtual Prototyping of Power 
Electronic Systems," in IEEE Transac. on Power 
Elec., vol. 31, no. 3, pp. 2443-2455, March 2016.

Fig. 10. Comparison of ID vs. VGS points extracted from 
the datasheet. Lines plotted by the GPR models.

0

20

40

60

80

100

0 5 10 15

Sw
itc

hi
ng

 E
ne

rg
y 

[μ
J]

Current [A]

200 V
300 V
100 V

PCIM Europe 2018, 5 – 7 June 2018, Nuremberg, Germany

ISBN 978-3-8007-4646-0 © VDE VERLAG GMBH · Berlin · Offenbach1929



[2] D. Sera, R. Teodorescu and P. Rodriguez, "PV 
panel model based on datasheet values," 2007 
IEEE International Symp. on Ind. Elec., Vigo, 
Spain, 2007, pp. 2392-2396.
[3] M. Petricca et al. "An automated framework for 
generating variable-accuracy battery models from 
datasheet information," Int. Symposium on Low 
Power Elec. and Design (ISLPED), Beijing, 2013.
[4] Rohatgi, Ankit. "WebPlotDigitizer." URL 
http://arohatgi. info/WebPlotDigitizer/app (2011).
[5] James, Gareth, et al, “An introduction to 
statistical learning,” Vol. 112. NY: springer, 2013.
[6] Kuang Sheng et al, "A review of IGBT models," 
in IEEE Transac. on Pow. Elec., vol. 15, Nov 2000.
[7] Graovac et al, "MOSFET Power Losses
Calculation Using the Data-Sheet Parameters."
[8] B. Agrawal et al "Estimating switching losses for 
SiC MOSFETs with non-flat miller plateau region," 
2017 IEEE Applied Power Elec. Conf. and Exp. 
(APEC), Tampa, FL, 2017, pp. 2664-2670.
[9] Y. Xiong et al, "New Physical Insights on Power 
MOSFET Switching Losses," in IEEE Transac. on 
Power Elec., vol. 24, no. 2, pp. 525-531, Feb. 
2009.
[10] G. Verneau, L. Aubard, J. C. Crebier, C. 
Schaeffer and J. L. Schanen, "Empirical power 
MOSFET modeling: practical characterization and 
simulation implantation," Conference Record of 
the 2002 IEEE Industry Applications Conference. 
Pittsburgh, PA, USA, 2002, pp. 2425-2432 vol.4.
[10] K. Murphy, Machine Learning: A Probabilistic 
Perspective. Cambridge, MA, USA: MIT Press, 
2012 p. 1098.
[11] J. Bernardo, J. Berger, A. Dawid, A. Smith, 
“Regression and classification using Gaussian 
process priors,” in Bayesian statistics, 1998, Jun. 
6;6:475
[12] D. Duvenaud. “Automatic model construction 
with Gaussian processes.” Diss. University of 
Cambridge, 2014.

PCIM Europe 2018, 5 – 7 June 2018, Nuremberg, Germany

ISBN 978-3-8007-4646-0 © VDE VERLAG GMBH · Berlin · Offenbach1930


