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Abstract

We report the results of Monte Carlo simulation of electron dynamics in stationary and space-

and time-dependent electric fields in compensated GaN samples. We have determined the frequency

and wavevector dependencies of the dynamic conductivity, σω,q. We have found that the spatially

dependent dynamic conductivity of the drifting electrons can be negative under stationary electric

fields of moderate amplitudes, 2..5 kV/cm. This effect is realized in a set of frequency windows. The

low-frequency window with negative dynamic conductivity is due to the Cherenkov mechanism.

For this case the time-dependent field induces a traveling wave of the electron concentration in

real space and a standing wave in the energy/momentum space. The higher frequency windows of

negative dynamic conductivity are associated with the optical phonon transient time resonances.

For this case the time-dependent field is accompanied by oscillations of the electron distribution in

the form of the traveling waves in both the real space and the energy/momentum space. We discuss

the optimal conditions for the observation of these effects. We suggest that the studied negative

dynamic conductivity can be used to amplify electromagnetic waves at the expense of energy of

the stationary field and current.
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permission of the author and AIP Publishing. This article appeared in (J. Appl. Phys. 125, 135704
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1

http://arxiv.org/abs/1904.08681v1


I. INTRODUCTION

In polar semiconductor materials and heterostructures, such as III-V compounds, group-

III nitrides, ZnO/MgO and others, at low lattice temperature the optical phonon emission

is the dominant scattering mechanism for hot electrons, which considerably suppresses their

mobility. Meanwhile the electrons can have a high low-field mobility. Indeed, at low tem-

peratures, when e−h̄ωop/kBT0 ≪ 1 (ωop, kB and T0 are the optical phonon frequency, the

Boltzmann constant and the temperature, respectively) the absorption/emission of optical

phonons by the equilibrium electrons is practically absent and the electron mobility is lim-

ited only by weak quasi-elastic scattering by impurities and acoustic phonons. Under these

conditions the dynamics of an electron subjected to a steady-state high electric field F0 is

the following. The electron is almost ballistically accelerated by the field until reaching the

optical phonon energy, h̄ωop. Then, an optical phonon emission occurs so that the electron

looses practically all its energy and stops, then this process is repeated again. This electron

dynamics gives rise to temporal and spatial modulation of the electron momentum, p, ve-

locity, v, and concentration, ne, with characteristic time period, τF = pop/eF0, and space

period, lF = eF0τ
2
F/2m

∗ ≡ h̄ωop/eF0, where pop =
√

2m∗h̄ωop, e is the elementary charge

and m∗ is the electron effective mass. This is essentially a single-electron physical picture,

which is valid at low or modest electron concentrations, when e-e collisions do not destroy

the cyclic motion. Note that such a cyclic electron dynamics in real and momentum/energy

spaces due to strong scattering by optical phonons was predicted many decades ago by

Shockley.1

Experimental evidences of the cyclic dynamics in real space were found by analyzing

low temperature I-V characteristics of short diodes made from different polar materials:

InSb,2 InGaAs,3 GaAs,4 and InP5. At low temperatures tens of cycles were identified. For

electrically biased short InN and GaN diodes, the formation of stationary one-dimensional

gratings of electron concentration and velocity was predicted for nitrogen temperature in

Refs. [6,7].

In the frequency domain, the cyclic electron dynamics gives rise to a resonance phe-

nomenon at the transit-time frequency ωF = 2π/τF , frequently called optical phonon transit

time (OPTT) resonance. Among a number of interesting effects induced by the OPTT reso-

nance (see Refs. [8], [9]) the most interesting is the appearance of a negative high-frequency
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(HF) conductivity, σ(ω), of electrons at the frequencies, ω ∼ ωF , which leads to the pos-

sibility of amplification and generation of electromagnetic waves in the sub-THz and THz

frequency regions. The OPTT resonance generation was studied theoretically in details for

bulk materials8,9 and low-dimensional heterostructures10–13. This type of high-frequency

generation was observed experimentally in InP samples for the frequency range 50 to 300

GHz.14

The cyclic electron dynamics also gives rise to a complex motion in the phase space

associated with time-periodic oscillations (waves) of the electron concentration/charge in

real space and synchronized electron redistribution in momentum space. This results in

a significant (resonant) spatio-temporal dispersion of the electron response to nonuniform

electromagnetic waves with (angular) frequency, ω and wavevector q: σ(ω,q). As shown

in Ref. 15, the oscillations in the phase space can be realized as self-supporting and weakly

damped excitations of the drifting electron gas. The excitations are quite different from

the well known plasmons. Indeed, their frequency-wavevector relations are presented by an

infinite number of continuous branches, ωk(q), with q being the wave vector of the excitations

and k = 0,±1,±2.... The damping of these oscillations is weak or even absent, when the

frequency and/or the wavevector are multiples of ωF and/or qF = 2π/lF , respectively, i.e.,

under conditions of time- and/or space resonances.

This novel type of spatio-temporal resonant phenomena was studied analytically in15 by

using the approximation of infinitely fast emission of optical phonons by the electrons with

energy exceeding h̄ωop. In fact, a finite rate of the electron relaxation on the optical phonons

is critically important. Indeed, this relaxation can limit the temperature interval and the

electric field range, where these resonances may be observed and practically exploited.

In this paper, we present a numerical study of the spatio-temporal dispersion of the HF

conductivity σ(ω, q) under the OPTT resonance effect. The calculations were carried out in

the framework of the Monte Carlo method taking into account all actual relaxation processes.

As a result, we found and investigated wave-like excitations of the electron gas and confirmed

the existence of pronounced spatio-temporal resonances in σ(ω,q) at ω ≈ ωF and q ≈ 2π/lF

in perfect bulk GaN crystals subjected to an electric field of moderate strength. Finally, we

determined the {ω, q}-regions, where the real part of the HF conductivity is negative, the

drifting electron gas is unstable and an external electromagnetic wave with corresponding ω

and q can be amplified at the expense of the stationary field and current.
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II. TRANSPORT MODEL

The analysis of semiconductor materials with strong electron-optical phonon interaction

has showed that the group-III nitrides are among the most promising materials for the

study, observation and application of the OPTT resonance phenomena11,12. In this paper

we consider a bulk-like GaN sample with cubic lattice structure and given concentration of

ionized impurities, Ni. We assume that the sample is compensated to exclude quenching

effect on the OPTTR by electron-electron scattering, i.e. ne < Ni where ne is the electron

concentration. At electric fields of moderate strength, all electrons remain in the Γ valley

and can be characterized by a parabolic dispersion law with effective mass m∗ = 0.2m0,

where m0 is the free electron mass. The stationary, F0, and alternating, F̃ , electric fields

are assumed to be parallel and both directed along the OZ-axis. The alternating field is

assumed to be in the form of a wave propagating along the OZ-axis:

F̃ (z, t) = Fω,q cos(qz − ωt) . (1)

To find the small-signal response, the alternating field should be considered as a small one:

|Fω,q| ≪ |F0|.

To calculate the electron transport characteristics including the electron distribution func-

tion, the current-voltage characteristics and the electron response, σ(ω,q), to the alternating

field (1), we exploit the single-particle Monte Carlo procedure16,17, which is extensively used

to solve a wide variety of problems involving transport at a kinetic level. To simulate the

electrons dynamics we use, as usual, the Newton equation with the force −e[F0 + F̃ (z, t)]

to describe the free flight of the electron between two subsequent scatterings and take into

account three main scattering mechanisms: interactions with ionized impurities, acoustic

phonons and polar optical phonons. For the ionized impurity scattering, we exploit the

mixed scattering model unifying the Brooks-Herring and Conwell-Weisskopf models. The

latter approach is more appropriate for the analysis of compensated materials17, on which

our analysis is focalised. The Monte Carlo simulation of electron transport in stationary

fields is a standard procedure whose application to GaN material can be found elsewhere18,19.

In paper20, the single particle Monte Carlo algorithm was applied to the calculation of

the electron response to a time-periodic perturbation. We extended this approach to the

electron system subjected to both uniform stationary and time- and space-dependent electric
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fields. The details of the calculation algorithm, its accuracy, stability and convergence are

discussed in the Appendix.

As an example, in Fig.1 (a) we present a 3D-plot of the alternating current, j̃(z, t) =

Jz(z, t) − Jz,0 within a single time and spatial periods of the alternating electric signal

(see Eqs. (3) and (4) in Appendix). These results are obtained for a stationary field

F0 = 3 kV/cm and an alternating field with parameters: Fω,q = 0.3 kV/cm, ω = 0.2 THz,

q = 105 cm−1. The impurity concentration, the electron concentration and the ambient

temperature are Ni = 1016 cm−3, ne = 1015 cm−3 and T0 = 30 K, respectively.
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FIG. 1: (a): Alternating current j̃(z, t) normalized to the characteristic current, jop = enepop/m
∗.

(b): Time dependence of j̃ at a given z. (c): Spatial dependence of j̃ at a given t. The dash-dotted

lines in (b) and (c) show the alternating electric field for comparison. The simulation parameters

are ω = 0.2 THz, q = 105 cm−1, T0 = 30 K, F0 = 3 kV/cm, Fω,q = 0.1× F0.

We remark that the alternating current j̃(z, t) exhibits a nearly plane-wave behavior.

Figures 1 (b) and (c) allow to compare the spatial and temporal dependencies of the alter-

nating current with those of the wave field F̃ (z, t). From these figures one can conclude that

between the alternating current and the alternating field there is a phase-shift ∆ϕω,q.
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Below we present the obtained results in terms of the complex HF conductivity. Note that

since σω,q is the linear response to the field in the form of Eq. (1), we will use the following

properties:

Re[σω,q] = Re[σ−ω,−q], Re[σω,−q] = Re[σ−ω,q],

Im[σω,q] = −Im[σ−ω,−q], Im[σω,−q] = −Im[σ−ω,q].

Due to these relationships, we will present the result only for q > 0 while ω will take both

positive and negative values.

III. FREQUENCY AND WAVEVECTOR DISPERSIONS OF THE HF CONDUC-

TIVITY

The obtained HF conductivity, σω,q, is dependent on the frequency, ω, and the wavevector,

q, i.e. both temporal and spatial dispersions of the HF conductivity are important.
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FIG. 2: Spectrum of the high-frequency conductivity of the drifting electron gas (solid lines). (a):

Re[σω,q]. (b): Im[σω,q]. The parameters F0, q, T0 are the same as in Fig. 1. In the inset of panel (a):

magnified high-frequency region of interest. Dashed-dotted lines are obtained at Fω,q = 0.015×F0.

(c): steady-state dependencies of the drift velocity vs electric field.

A typical spectral dependence of the HF conductivity in the THz frequency range for

the drifting electron gas is illustrated in Fig. 2 for a given |q|. In this and other figures we

show the ratio σω,q/ene, which is the specific conductivity per one electron21. Comparing

the presented results for the frequency regions ω > 0 and ω < 0, we see that the drift of
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the electrons in the stationary field leads to a strong non-reciprocal effect in the dynamic

conductivity: indeed a change of the sign of q (which is equivalent to a change of the sign of

ω keeping q unchanged) strongly modifies the frequency dependence of the HF conductivity.

This corresponds to essentially different responses of the electron gas to the electric field

waves propagating along and against the electron drift.

Another remarkable feature of the frequency dispersion of the HF conductivity of the

drifting electrons is nonmonotonous behavior of both Re[σω,q] and Im[σω,q] with a set of

”frequency windows”, where the real part of the HF conductivity, Re[σω,q], becomes neg-

ative. To illustrate the importance of such frequency windows, we consider the density of

the electric power received by the electrons from the alternating field, P = j̃(z, t)× F̃ (z, t).

Using Eqs. (6) from Appendix we obtain for the time- and space-averaged power: 〈P〉 =

1

2
σω,qF

2
ω,q cos(∆ϕω,q) =

1

2
Re[σω,q]F

2
ω,q. As mentioned above, the dissipative electron motion

generates an alternating current with a phase shift, ∆ϕω,q, with respect to the external al-

ternating field. This phase shift is responsible for attenuation/amplification of the external

alternating signal: if ∆ϕω,q is such that cos(∆ϕω,q) > 0, the electrons dissipate the electrical

power, if cos(∆ϕω,q) < 0 (i.e. Re[σω,q] < 0) the electrons supplies the power to the alternat-

ing field at the expense of the stationary field and current: this means that an amplification

of the external field will take place. In the case of Fig. 2, for the frequencies 0.2 and 1 THz

indicated by the points A and C, cos(∆ϕω,q) < 0 and the amplification is obtained, while

for the frequency 0.5 THz (point B), cos(∆ϕω,q) > 0 and the field F̃ is attenuated.

The physical explanations of the appearance of the negative HF conductivity, Re[σω,q],

are different for the low frequency window and the windows at higher frequencies. The

low-frequency window is characterized by a large effect of the negative HF conductivity: it

can be treated as a manifestation of the well known Cherenkov effect i.e. an amplification

of a wave by electrons drifting with velocity exceeding the phase velocity of this wave. The

Cherenkov amplification occurs only for waves propagating along the direction of the electron

drift. For example, at ω/2π = 0.2 THz and q = 105 cm−1 corresponding to the point A in

Fig. 2, the phase velocity, ω/q, is equal to 1.2 × 107 cm/s, while calculations give a drift

velocity Vdr = 1.6 × 107 cm/s at the stationary field F0 = 3 kV/cm (see Fig. 2(c)). The

Cherenkov effect in the frequency dependent HF conductivity with a spatial dispersion is

of general character. The dependence of this effect on the wavevector q and a widening of

the corresponding window are illustrated in Fig. 3. We remark that the treatment of this
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effect can be made even in the framework of the simplified space-dependent hydrodynamic

model. However, this treatment leads to the divergence of σω,q at ω = Vdrq. In contrast, the

Monte Carlo method provides a finite results for σω,q and the correct determination of the

frequency window of the Cherenkov effect.
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FIG. 3: Spectra of the high-frequency conductivity of the drifting electron gas at three different

wave vectors q = 0.5, 1, 1.5× 105 cm−1 (curves 1, 2, 3, respectively). (a): Re[σω,q]. (b): Im[σω,q].

Dash-dotted curves are for σω,0. The panels (c) and (d) show the magnified frequency dependencies

Re[σω,q] for the windows related to the space-dependent OPTT resonance. Results are presented

for T0 = 30 K and F0 = 3 kV/cm.

The windows with Re[σω,q] < 0 at higher frequencies are characterized by a smaller, but

noticeable, effect on the negative HF conductivity (see also the panels 3(c) and 3(d)). The

physical reason of this effect is the space-dependent OPTT resonance, when the electrons

oscillate in the nearly-streaming regime in real and momentum spaces resonantly with the

space- and time-dependent electric field. The space-dependent OPTT resonance can occur

at both signs of q, i.e., for the electric wave propagating along as well as against the electron

drift. At increasing wavevector q, these frequency windows are shifted by the factor Vdr|q|, as

seen from Fig. 3. The amplitudes of the negative HF conductivity under the space-dependent

OPTT resonance are about one order of magnitude smaller than in the Cherenkov regions.
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As seen from Fig. 3 (a) these resonances vanish with the increasing of the wavevector q.

The spectra of Im[σω,q] also exhibit a nontrivial behavior (see Fig. 3 (b)). To understand

the differences between the negative HF conductivity of Cherenkov-type and under the

OPTT resonance, we analyzed the dynamics of the electron gas in both real and momentum

spaces. Such dynamics can be described through the spatial and temporal dependencies of

the average electrons density with given longitudinal Pz and transversal P⊥ momenta with

respect to the electric field direction. To illustrate the obtained results, here we present the

density of the electrons with P⊥(Px, Py) = 0 and a given energy ǫ = P 2
z /2m

∗ in the form:

ñ(ǫ, z, t) = ñω,q(ǫ) cos(qz − ωt+∆ϕω,q(ǫ)) , (2)

where ñω,q(ǫ) and ∆ϕω,q(ǫ) have been obtained by the Monte Carlo simulations. In Fig. 4

the dependence of ñ(ǫ, z, t) on ǫ is shown at a given spatial coordinate z for two values of

the frequency corresponding to the windows with the Cherenkov effect (Fig. 4 (a)) and the

OPTT resonance (Fig. 4 (b)).

From Eq. (2) and Fig. 4 (a) it follows that in the Cherenkov frequency window the

alternating field of Eq. (1) induces a traveling wave of the electron concentration in the real

space and a kind of standing wave in the energy/momentum space. In the Fig. 4 (c), the

phase shift ∆ϕ(ǫ) corresponding to the Cherenkov frequency window is presented: for most

of the electrons having energy ǫ < h̄ωop (the so-called passive region) this phase shift exceeds

π/2, thus, according to the above analysis, these electrons amplify the external electric wave.

The minority of electrons with energy ǫ > h̄ωop (the so-called active region) have a phase

shifts smaller than π/2 and contributes to the absorption of the electric wave.

In the frequency windows corresponding to the OPTT resonance (Fig. 4 (d)), the electric

wave of Eq. (1) is accompanied by oscillations of the electron distribution in the form of

traveling waves in both the real and the energy/momentum spaces. The Fig. 4 (d) shows

that the phase shift of these oscillations varies from π/2 to −π depending on the electron

energy. As a consequence, only high-energy electrons in the passive region ǫ < h̄ωop amplify

the external wave. The temporal dynamics of the electron distribution in the active region

(ǫ > h̄ωop) is similar to that of the Cherenkov frequency window. These results qualitatively

explain the distinction of the effects of the negative HF conductivity for the Cherenkov and

OPTT resonance frequency windows.

A similar behavior of the spectra of the HF conductivity with the wavevector dependence
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FIG. 4: Electron density defined by Eq. (2) as a function of the energy, ǫ, at a given coordinate,

z = 0, and different moments of time t = 0, T/10, T/4, 2T/5, T/2 . (a): ω/2π = 0.2 THz; (b):

ω/2π = 1 THz. The panels (c) and (d) show the energy dependencies of the phase shift, ∆ϕ(ǫ)

for the case of ω/2π = 0.2 THz and ω/2π = 1 THz, respectively. For both panels q = 105 cm−1.

Other parameters are the same as in Fig. 3.

was obtained using an approximate solution of the Boltzmann transport equation for two-

dimensional electron gas in a polar material15.

IV. DISCUSSION

For observation of the negative HF conductivity effects of the Cherenkov and OPTT

resonance types, low lattice temperatures are favorable. The Cherenkov effect is less sensitive

to the temperature and exists even at 300 K as illustrated in Fig. 5, though it is realized in

a narrower frequency region, because of a smaller drift velocity, Vdr ≈ 0.5 × 107 cm/s (see

Fig. 2(c)) at F0 = 3 kV/cm. It is clear that at room temperature this effect also is less

pronounced than at low temperatures (compare with Figs. 3). The OPTT resonances are

present only at low temperatures, typically lower than nitrogen temperature, i.e. T0 ≤ 77

K.

For the given parameters of the GaN crystal and temperature, the HF conductivity is de-

pendent on two quantities: ω and q. Therefore, to characterize the negative HF conductivity

effect and possible amplification of an external wave, one can use the {ω, q}-plane and plot
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FIG. 5: The same as in Fig. 3 for T0 = 300K.

the set of isolines corresponding to certain values of Re[σω,q]. Such a mapping is presented

in Fig. 6 for Re[σω,q] ≤ 0 at T0 = 30 K and 300 K. In particular, the isolines corresponding to

Re[σω,q] = 0 separate the {ω, q}-regions with negative HF conductivity. For the case of the

Cherenkov effect, this region is the unlimited sector between the lines ω = 0 and ω = Vdrq

at q > 0. For T0 = 30 K and wavevectors q ≤ 2 × 105 cm−1, the negative HF conductivity

occurs in the frequency range 0÷0.45 THz. In this frequency range the specific negative HF

conductivity can reach values of several thousands of cm2/Vs. For T0 = 300 K, the negative

HF conductivity values are of the order of several hundreds of cm2/Vs at frequencies lower

than 0.15 THz. Such a suppression of the Cherenkov effect is due to the decrease of the

drift velocity at room temperature.

From Fig. 6, one can see that at T0 = 30 K the spatially dependent OPTT resonance and

the negative HF conductivity occur in a wide frequency range from 0.6 to 1.2 THz, when the

wavevector varies from 0 to 1.5×106 cm−1. At q = 0, i.e. in the absence of space dependence

of the alternating field of Eq.(1), the negative HF conductivity due to the OPTT resonance

is possible only in the narrow frequency range of 0.6 ÷ 0.73 THz. However, the maximum

effect is realized at q = 0 and ω/2π = 0.65 THz where Re[σω,q/ene] = −230 cm2/Vs.

We suggest that the discovered features associated with the response of the drifting

electrons to high-frequency and spatially nonuniform electromagnetic fields are of general

character. Indeed, similar features of the electron response were found for different drifting

electron systems: two-dimensional electrons22,23, electrons in graphene strips24 and two-

dimensional electrons in GaN quantum wells15. Very recently,25 an oscillation behavior
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of the HF conductivity and frequency windows with its negative values were found and

explained in the collisionless limit for structure with GaAs quantum wells. The important

condition to obtain these effects is an anisotropy of the distribution function of the drifting

electrons. For example, in GaAs quantum wells, electric fields of order of a few kV/cm

(0.5 - 2 kV/cm) induce enough anisotropic distribution of electrons to provide a negative

Re[σ(ω, q)] in the THz frequency range at q of the order of 105 cm−1 (see Ref.25).

The dependence of σω,q on the wavevector q, i.e. the spatial dispersion, becomes partic-

ularly important for samples with submicron- and nanosized structuring. Indeed, a plane

electromagnetic wave illuminating a nonuniform sample induces electric field components

varying both in space and time, which interact with the electrons. The spatial dependence

of these field components is defined by the characteristic scales of the structuring of the

sample. Examples of such nonuniform structures are grating-gated semiconductor struc-

tures, surface-relief grating, plasmonic and metamaterial nanodevices, etc. (see review in

Ref. [26]). These structures can be used for different applications, including detecting and

emitting devices of far-infrared and terahertz radiation.

The knowledge of σω,q is also important for the electrodynamic modeling of the high-

frequency characteristics such as transmission, reflection and absorption. Moreover, the

spatially dependent high-frequency conductivity is directly related to the plasmonic proper-

ties of the electron gas.
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In conclusion, using Monte Carlo simulations of the electron motion in stationary and

space- and time-dependent electric fields, we have determined the wavevector dependence

of the HF conductivity, σω,q, for compensated GaN samples. In particular, we have found

that the spatially dependent HF conductivity of the drifting electrons can be negative under

stationary electric field of moderate amplitude (2..5 kV/cm). This effect is realized in some

frequency windows. The physics underlying this negative HF conductivity is different for the

low-frequency and the high-frequency windows. The low-frequency windows are due to the

Cherenkov mechanism. The detailed analysis has shown that the alternating field induces

a traveling wave of the electron concentration in the real space and a kind of standing wave

in the energy/momentum space. The high-frequency windows are explained by the OPTT

resonances. For this case the alternating field is accompanied by oscillations of the electron

distribution in the form of traveling waves in both the real and the energy/momentum

spaces. For the observation of both types of negative HF conductivity effects, low lattice

temperatures are favorable. Finally, the negative HF conductivity can be used to amplify

electromagnetic waves at the expense of the energy of the stationary field and current.
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VI. APPENDIX

An electron subjected to the electric field F0 + F̃ (z, t) and undergoing scatterings by

defects and phonons moves along a complex trajectory in the three-dimensional real space.

To find the alternating electric current induced by the field F̃ (z, t), we analyze the projection

of the electron trajectory along the OZ-axis, i.e. the dependence ze(t) with z being the

electron coordinate and t ≥ 0, i.e. the projection ze(t) lies in the right-half of the {t, z}-

plane. We discretize this half-plane with rectangular cells of height Λ = 2π/q, and width

T = 2π/ω, where Λ and T are the spatial and temporal periods of the field given by Eq. (1).
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A generic {Vt,Vz}-cell is defined as

TVt < tVt
< T (Vt + 1), ΛVz < zVz

< Λ(Vz + 1)

with Vt = 0, 1, 2...NT − 1 and Vz = 0,±1,±2.... Here NT indicates the number of simulated

time periods. Then we divide each cell into small meshes of sizes T/MT × Λ/MZ , so that

the {νt,Vt; νz,Vz}-mesh is determined as:

T (Vt + νt/MT ) < tVt,νt < T (Vt + (νt + 1)/MT )

Λ(Vz + νz/MZ) < zVz ,νz < Λ(Vz + (νz + 1)/MZ)

with νt = 0, 1, 2, ...MT − 1 and νz = 0, 1, 2, ...MZ − 1; the numbers MZ , MT are integer and

large. Note that the temporal and spatial periodicities of the external signal imply that

all electron characteristics should have the same periodicity. This means that any mesh

corresponding to the same spatial phase, qz, and temporal phase, ωt, are equivalent within

a factor 2π × integer

The calculations of the electron current requires the simulation of electron trajectory

also in the momentum space. Here, we restrict ourself to the electron current component in

the direction of the applied electric field thus we discretize the momentum space along the

OZ-direction as follows:

−Pmax(1− (νp +MP )/MP ) < Pz,νp < −Pmax ×

(1− (νp + 1 +MP )/MP )

where νp = −MP ...MP −1 and Pmax is selected so that the probability of finding an electron

with momentum Pz = Pmax and higher is negligible.

To follow the periodic electron motion induced by the alternating field during the simula-

tion of a sufficiently long trajectory in the {z, Pz}-phase space, we count in each {νt, νz}-mesh

the number of electron appearances Nνp,νt,νz in all meshes with equivalent spatial, qzνz , and

temporal, ωtνt, phases and recorded the corresponding momentum projection, Pz,νp,νt,νz .

Having these data we can calculate the spatial- and temporal- dependence of the current

density, jz(zνz , tνt), within one spatial and temporal period as:

Jz(zνz , tνt) = −
e

m∗
neMTMz

∑

νp

Pz,νp,νt,νzWνp,νt,νz , (3)
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where Wνp,νt,νz is the probability to find electron in the {νt, νz}-mesh with momentum pro-

jection, Pz,νp that is Wνp,νt,νz = Nνp,νt,νz/
∑

νp,νt,νz
Nνp,νt,νz .

By averaging Eq. (3) with respect to the coordinate and time we can obtain the steady-

state current density, Jz,0(F0),

Jz,0 = −
e

m∗
ne

∑

νp,νt,νz

Pz,νp,νt,νzWνp,νt,νz , (4)

as well as different Fourier harmonics of the alternating current, j̃(z, t) = Jz(z, t)−Jz,0. For

example, the first-order Fourier harmonic describing the linear response can be calculated

as:




Re[jω,q]

Im[jω,q]



 = −
2e

m∗
ne

∑

νp,νt,νz

Pz,νp,νt,νzWνp,νt,νz ×





cos(qzνz − ωtνt)

sin(qzνz − ωtνt)



 (5)

The calculated values of Jz,0, Re[jω,q] and Im[jω,q] parametrically depends on the magnitude

of the stationary field F0. In the small-signal limit, Fω,q/F0 << 1, the ratios of Re[jω,q]/Fω,q

and −Im[jω,q]/Fω,q become independent of the alternating field amplitude, Fω,q and give the

real, Re[σω,q], and imaginary, Im[σω,q], parts of the complex HF conductivity, respectively.

In this case the alternating current j̃(z, t) has the almost harmonic form:

j̃(z, t) ≈ σω,qFω,q cos(qz − ωt+∆ϕω,q) , (6)

where σω,q =
√

Re[σω,q]2 + Im[σω,q]2 and the phase shift between the alternating field and

the current is ∆ϕω,q = arctan(Im[σω,q]/Re[σω,q]).

To prove the accuracy of the simulation, we checked the convergence of the calculations

varying the numbers and sizes of the cells and the meshes used in the simulation of space-

and time dependent electron transport. As an example, Fig. 7 presents the alternating

currents obtained using different numbers of the temporal period, NT , for three frequencies

(marked by points in Fig.2) of the field F̃ . For the used mesh sizes, Λ/MZ , T/MT we set

MZ = MT = 100. As seen from Fig. 7, the two curves calculated for NT = 106 and NT = 108

coincide within a small statistical error for two cases of low frequencies ωA/2π = 0.2 and

ωB/2π = 0.5 THz (Fig. 7 (a) and (b)). At higher frequency, ωC/2π = 1 THz, only the use

of NT = 108 is sufficient to obtain a satisfactory accuracy of the computations (Fig. 7 (c)).
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FIG. 7: Time dependencies of the alternating current calculated for NT = 106 (thin curve) and

NT = 108 (thick curve). (a), (b) and (c) correspond to the frequencies ωA, ωB and ωC presented in

the text. The time is normalized to the corresponding period of the alternating field whose time-

dependence is shown by the dash-dotted lines. Results are presented for z = 0 and Fω,q = 0.1×F0.

By varying the field amplitude Fω,q from 0.015× F0 to 0.1× F0, we found that the ratio

jω,q/Fω,q does not depend on the amplitude Fω,q for Fω,q ≤ 0.1F0.

In the previous sections, we have presented results for theNT = 108,MT = 100,MZ = 100

and Fω,q/F0 = 0.1. For such parameters the relative error of the calculation of σω,q does

not exceed 1% in the range of investigated frequencies and wavevectors. The computational

parameters related to the momentum space were MP = 500 and Pmax = 3× pop.
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