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Introduction

We consider a general second-order elliptic equation [START_REF] Alberti | Generalized N-property and Sard theorem for Sobolev maps[END_REF] Lu := -div(a∇u + bu) + c • ∇u + qu = 0 in Ω,

where Ω ⊆ R d , d ≥ 2, is a bounded and smooth domain. We assume that L is uniformly elliptic, namely,

(2)

a (x) ξ • ξ ≥ λ |ξ| 2 , a.e. x ∈ Ω, ξ ∈ R d ,
for some λ > 0. The parameters of equation ( 1) are assumed to satisfy mild regularity assumptions, namely either (3)

a ∈ C -1,α Ω; R d×d , b ∈ C -1,α (Ω; R d ), c ∈ W -1,∞ (Ω; R d ), q ∈ W -1,∞ (Ω; R),
with ≥ 1 and α ∈ (0, 1), or

(4) a ∈ L ∞ Ω; R d×d , b, c ∈ L ∞ Ω; R d , q ∈ L ∞ Ω; R d ,
which will be referred to as = 0. By classical elliptic regularity theory [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF][START_REF] Giaquinta | An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs[END_REF][START_REF] Morrey | Multiple integrals in the calculus of variations[END_REF], the solutions to (1) belong to C ,α loc (Ω; R) and, provided that the boundary conditions are chosen in the appropriate trace space, such a regularity extends up to the boundary, namely u ∈ C ,α Ω; R . In the case = 0, the Hölder exponent α is for example the one given by the De Giorgi-Nash-Moser theorem.

This paper focuses on how to enforce pointwise constraints on the solutions of (1). Our motivation for studying such a question comes from hybrid imaging. Hybrid, or multi-physics, imaging problems are a type of parameter identification problems that in many cases involve the reconstruction of the coefficients of a PDE from the knowledge of some internal functional of its solutions [START_REF] Ammari | An introduction to mathematics of emerging biomedical imaging[END_REF][START_REF] Widlak | Hybrid tomography for conductivity imaging[END_REF][START_REF] Bal | Hybrid inverse problems and internal functionals[END_REF][START_REF] Kuchment | Mathematics of hybrid imaging: a brief review[END_REF][START_REF] Ammari | Mathematics of superresolution biomedical imaging[END_REF][START_REF] Alberti | Lectures on elliptic methods for hybrid inverse problems[END_REF]. Amongst all these constraints, the most ubiquitous one is the non-vanishing Jacobian problem. It can be reworded as follows: given L as in [START_REF] Alberti | Generalized N-property and Sard theorem for Sobolev maps[END_REF] and a compact set K ⊆ Ω, how can one choose boundary conditions g 1 , . . . , g N such that [START_REF] Alberti | Absence of Critical Points of Solutions to the Helmholtz Equation in 3D[END_REF] rank (∇u 1 , . . . , ∇u N ) = d everywhere in K,

where Lu i = 0 in Ω, u i = g i on ∂Ω, i = 1, . . . , N ?

The difficulty here is that, apart from the fact that a, b, c and q are relatively smooth and coercive, nothing is known about these coefficients, which are the unknowns of the inverse problem. When d = 2, b = 0, c = 0 and q = 0, that is, L is simply Lu = -div(a∇u), it turns out that the Radó-Kneser-Choquet Theorem can be extended to this setting (without regularity assumptions) [START_REF] Alessandrini | Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions[END_REF][START_REF] Alessandrini | Univalent σ-harmonic mappings[END_REF][START_REF] Alessandrini | Estimates for the dilatation of σ-harmonic mappings[END_REF][START_REF] Alessandrini | Quantitative estimates on Jacobians for hybrid inverse problems[END_REF]. Only two boundary conditions, independent of the matrix valued function a, are required for the constraint to be satisfied globally. This result cannot be extended to higher dimensions [START_REF] Wood | Lewy's theorem fails in higher dimensions[END_REF][START_REF] Laugesen | Injectivity can fail for higher-dimensional harmonic extensions[END_REF][START_REF] Capdeboscq | On a counter-example to quantitative Jacobian bounds[END_REF][START_REF] Alberti | Critical points for elliptic equations with prescribed boundary conditions[END_REF][START_REF] Alberti | Lectures on elliptic methods for hybrid inverse problems[END_REF], even locally: it is not possible to find suitable boundary conditions independently of the (unknown) coefficient. For more general models, when b, c or q are not null, such as the Helmholtz equation, no solace can be found in any dimension, since the Radó-Kneser-Choquet Theorem, whose proof uses the maximum principle, does not apply.

One is therefore drawn to ask whether using a large number of boundary conditions would help. Again, counter-examples to several claims can be derived [START_REF] Alberti | Lectures on elliptic methods for hybrid inverse problems[END_REF]Corollary 6.18]; nevertheless, it is possible to construct open sets of boundary conditions valid for open sets of parameters for the relevant elliptic operator L. Two main strategies have been used to achieve this goal: complex geometrical optics (CGO) solutions [START_REF] Triki | Uniqueness and stability for the inverse medium problem with internal data[END_REF][START_REF] Bal | Inverse diffusion theory of photoacoustics[END_REF][START_REF] Bal | Quantitative thermo-acoustics and related problems[END_REF][START_REF] Bal | Multi-source quantitative photoacoustic tomography in a diffusive regime[END_REF][START_REF] Ammari | Microwave imaging by elastic deformation[END_REF][START_REF] Kocyigit | Acousto-electric tomography and CGO solutions with internal data[END_REF][START_REF] Monard | Inverse diffusion problems with redundant internal information[END_REF][START_REF] Bal | Hybrid inverse problems and internal functionals[END_REF][START_REF] Monard | Inverse anisotropic diffusion from power density measurements in two dimensions[END_REF][START_REF] Bal | Inverse diffusion from knowledge of power densities[END_REF][START_REF] Bal | Reconstruction of coefficients in scalar second-order elliptic equations from knowledge of their solutions[END_REF][START_REF] Habib Ammari | Quantitative thermoacoustic imaging: an exact reconstruction formula[END_REF][START_REF] Bal | Ultrasound-modulated bioluminescence tomography[END_REF][START_REF] Bal | Inverse anisotropic conductivity from internal current densities[END_REF] and the Runge approximation property [START_REF] Bal | Inverse anisotropic conductivity from internal current densities[END_REF][START_REF] Monard | Inverse anisotropic conductivity from power densities in dimension n ≥ 3[END_REF][START_REF] Bal | Reconstruction of coefficients in scalar second-order elliptic equations from knowledge of their solutions[END_REF][START_REF] Bal | Ultrasound-modulated bioluminescence tomography[END_REF]. Both strategies had earlier been used in the context of electrical impedance tomography [START_REF] Kohn | Determining conductivity by boundary measurements. II. Interior results[END_REF][START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF]. Other approaches based on frequency variations [START_REF] Alberti | On multiple frequency power density measurements[END_REF][START_REF] Alberti | On multiple frequency power density measurements II. The full Maxwell's equations[END_REF][START_REF] Alberti | Enforcing local non-zero constraints in PDEs and applications to hybrid imaging problems[END_REF][START_REF] Alberti | Absence of Critical Points of Solutions to the Helmholtz Equation in 3D[END_REF][START_REF] Alberti | On local non-zero constraints in PDE with analytic coefficients[END_REF][START_REF] Alberti | Multi-frequency acoustoelectromagnetic tomography[END_REF][START_REF] Habib Ammari | Admittivity imaging from multi-frequency micro-electrical impedance tomography[END_REF] or dynamical systems [START_REF] Bal | Boundary control of elliptic solutions to enforce local constraints[END_REF] were also developed: these are not discussed here.

CGO solutions are only available for isotropic coefficients a, that is, a = γI d where γ is a real-valued function. The CGO solution method provides a nonvanishing Jacobian globally inside the domain for a suitable choice of (d complexvalued) boundary conditions. This approach requires high regularity assumptions on the coefficients. On the other hand, the Runge approximation property holds provided that the unique continuation property holds [START_REF] Lax | A stability theorem for solutions of abstract differential equations, and its application to the study of the local behavior of solutions of elliptic equations[END_REF], such a property being enjoyed by a much larger class of problems [START_REF] Alessandrini | The stability for the Cauchy problem for elliptic equations[END_REF]. A drawback is that the argument is local, applied on a covering of the domain by small balls, and so many boundary conditions are needed. Further, while CGO solutions are constructed (depending on the coefficients), the Runge approximation provides an existence result of suitable solutions, but not a constructive method to derive them.

In this work, we combine a Whitney projection argument [START_REF] Whitney | Analytic coordinate systems and arcs in a manifold[END_REF], as described in [START_REF] Greene | Whitney's imbedding theorem by solutions of elliptic equations and geometric consequences[END_REF][START_REF] Greene | Embedding of open Riemannian manifolds by harmonic functions[END_REF], with the Runge approximation. Conditions of the form (5) are related to the embeddings of manifolds; using Withney's argument to reduce the ambient dimension iteratively, we reduce the number of solutions needed. Not only do we provide an explicit bound on the number of boundary conditions to be considered, but we also obtain that these constitute an open and dense set. For instance, the set of 2d boundary conditions such that [START_REF] Alberti | Absence of Critical Points of Solutions to the Helmholtz Equation in 3D[END_REF] is satisfied is open and dense in H 1/2 (∂Ω; R) 2d . Our result applies to more general constraints than [START_REF] Alberti | Absence of Critical Points of Solutions to the Helmholtz Equation in 3D[END_REF], so that it is in particular applicable to a variety of imaging problems (see section 2 for details). Our result confirms what has been observed in numerical simulations in the setting of scalar (isotropic) diffusion coefficients, where good reconstructions are obtained for a relatively small set of boundary conditions [START_REF] Monard | Inverse diffusion problems with redundant internal information[END_REF][START_REF] Monard | Inverse anisotropic conductivity from power densities in dimension n ≥ 3[END_REF][START_REF] Bal | Boundary control of elliptic solutions to enforce local constraints[END_REF][START_REF] Bal | Reconstruction of coefficients in scalar second-order elliptic equations from knowledge of their solutions[END_REF]. After the first version of this manuscript was published, we were made aware of the recent preprint [START_REF] Cekić | The Calderón problem for the fractional Schrödinger equation with drift[END_REF], where similar techniques are used for the fractional Calderón problem.

This paper is structured as follows. In section 2, we state our main results and discuss some open problems. Section 3 is devoted to the Runge approximation property. Finally, in section 4 we provide the proof of the main result.

Main results

Let K ⊆ Ω be a smooth compact set and

ζ : C ,α (K) → C 0,α (K) n
be a continuous linear map, with n ≥ 1. Let H(K) denote the set of solutions to (1) that are smooth in K, namely ( 6)

H(K) = u ∈ C ,α (K) ∩ H 1 (Ω) : Lu = 0 in Ω , equipped with the norm u H(K) = u C ,α (K) + u H 1 (Ω)
. We are interested in solutions u i ∈ H(K) satisfying the constraint [START_REF] Alberti | Critical points for elliptic equations with prescribed boundary conditions[END_REF] det

   ζ (u 1 ) . . . ζ (u n )    (x) = 0,
in K, locally or globally.

Example 1. Constraints of the form [START_REF] Alberti | Critical points for elliptic equations with prescribed boundary conditions[END_REF] appear in various problems.

• When n = 1, = 0 and ζ (u) = u, the constraint corresponds to avoiding nodal points, namely u 1 (x) = 0. This is useful whenever a division by u 1 is required. • When n = d, = 1, and ζ (u) = ∇u (taken as row vector), the constraint imposes a non-vanishing Jacobian. In that case, (u 1 , . . . , u d ) defines a local C 2 diffeomorphism. This is the case discussed in the introduction. andζ (u) = u ∇u (taken as a row vector) the constraint imposes a non-vanishing "augmented" Jacobian. The additional potential u may represent a scaled time derivative, in a time harmonic model. This constraint may also correspond to the non-vanishing Jacobian for v i = ui+1 u1 , i = 1, . . . , d. Such constraints appear in quantitative photoacoustic tomography [START_REF]Explicit Reconstructions in QPAT, QTAT, TE, and MRE[END_REF][START_REF] Bal | Reconstruction of coefficients in scalar second-order elliptic equations from knowledge of their solutions[END_REF][START_REF] Bal | Inverse diffusion theory of photoacoustics[END_REF][START_REF] Bal | Multi-source quantitative photoacoustic tomography in a diffusive regime[END_REF], in quantitative thermoacoustic tomography [START_REF] Bal | Quantitative thermo-acoustics and related problems[END_REF][START_REF] Habib Ammari | Quantitative thermoacoustic imaging: an exact reconstruction formula[END_REF][START_REF] Alberti | Enforcing local non-zero constraints in PDEs and applications to hybrid imaging problems[END_REF], in acousto-electric tomography (also known as electrical impedance tomography by elastic deformation or ultrasound modulated electrical impedance tomography) [START_REF] Ammari | Electrical impedance tomography by elastic deformation[END_REF][START_REF] Capdeboscq | Imaging by modification: numerical reconstruction of local conductivities from corresponding power density measurements[END_REF][START_REF] Monard | Inverse anisotropic diffusion from power density measurements in two dimensions[END_REF][START_REF] Bal | Inverse diffusion from knowledge of power densities[END_REF][START_REF] Kuchment | Stabilizing inverse problems by internal data[END_REF][START_REF] Monard | Inverse anisotropic conductivity from power densities in dimension n ≥ 3[END_REF][START_REF] Kuchment | Stabilizing inverse problems by internal data. II: non-local internal data and generic linearized uniqueness[END_REF], in microwave imaging by elastic deformation [START_REF] Ammari | Microwave imaging by elastic deformation[END_REF][START_REF] Alberti | On multiple frequency power density measurements[END_REF][START_REF] Alessandrini | Global stability for a coupled physics inverse problem[END_REF][START_REF] Triki | Uniqueness and stability for the inverse medium problem with internal data[END_REF], in current density imaging [START_REF] Hasanov | A new approach to current density impedance imaging[END_REF][START_REF] Lee | A reconstruction formula and uniqueness of conductivity in MREIT using two internal current distributions[END_REF][START_REF] Nachman | Current density impedance imaging. Tomography and Inverse Transport Theory[END_REF][START_REF] Bal | Inverse anisotropic conductivity from internal current densities[END_REF], in dynamic elastography [START_REF]Explicit Reconstructions in QPAT, QTAT, TE, and MRE[END_REF][START_REF] Bal | Reconstructions for some coupled-physics inverse problems[END_REF][START_REF] Bal | Reconstruction of coefficients in scalar second-order elliptic equations from knowledge of their solutions[END_REF] and in other hybrid imaging modalities. We refer to [START_REF] Alberti | Lectures on elliptic methods for hybrid inverse problems[END_REF] for additional methods and further explanations on some of the models we have mentioned.

• When n = d + 1, = 1,
We introduce the following notation. Definition 2. Let K ⊆ Ω be a smooth compact set in R d and ζ : C ,α (K) → C 0,α (K) n be a continuous linear map, with l ≥ 0, n ≥ 1 and α ∈ (0, 1). The candidate set C(K) is the set of all x ∈ K for which there exist u 1 , . . . , u n ∈ H(K) so that det

   ζ (u 1 )
. . .

ζ (u n )    (x) = 0. The admissible set E(K) is the set of all u = (u 1 , . . . , u [ d+n α ] ) ∈ H(K) [ d+n α ] such that [ d+n α ] i1,...,in=1 | det    ζ (u i1 ) . . . ζ (u in )    (x)| > 0, for all x ∈ K.
Here,

d+n α = max N ∈ N : N ≤ d+n α denotes the integer part of d+n α . Remark 1. In other words, u ∈ H(K) [ d+n α ] belongs to E(K) if and only if for every x ∈ K there exist i 1 , . . . , i n ∈ {1, . . . , d+n α } such that (8) det    ζ (u i1 ) . . . ζ (u in )    (x) = 0,
namely, if and only if the desired constraint is satisfied everywhere in K for a suitable subset of the solutions u 1 , . . . , u [ d+n α ] . The candidate set is the subset of K where satisfying the constraint pointwise is possible at all. If C(K) = K, then E (K) is empty.

Remark 2. If the coefficients of the PDE are smooth enough, so that α > d+n d+n+1 , then the number of solutions is d+n = d+n α . Furthermore, the number of solutions increases as the coefficients become rougher, which reflects the irregular structure of the zero level-sets of [START_REF] Alberti | Critical points for elliptic equations with prescribed boundary conditions[END_REF].

In this general setting, we have the following result.

thm 3. Take a smooth compact set K ⊆ Ω. The admissible set E (K) is open in H (K) [ d+n α ] . If the candidate set satisfies (9) C (K) = K, then E (K) is dense in H (K) [ d+n α ] .
Remark 3. Similar admissibility sets were previously proved to be open in [START_REF] Monard | Inverse anisotropic diffusion from power density measurements in two dimensions[END_REF]. Since a finite intersection of open and dense sets is open and dense, Theorem 3 immediately extends to the case when finitely many constraints are imposed simultaneously.

Remark 4. As observed in Remark 1, the solutions in the admissible set E(K) satisfy the constraint (8) in K. It would be interesting to consider a quantitative version of this condition, namely an estimate of the form

| det    ζ (u i1 ) . . . ζ (u in )    (x)| ≥ C
for some constant C > 0 given a priori. However, in this case the corresponding admissible set would be neither open nor dense. The study of this scenario would need to make the argument presented below more quantitative.

In section 3 we observe, using the Runge Approximation Property, that assumption ( 9) is satisfied for a large class of examples, since C(Ω) = Ω.

Our initial focus was on boundary value problems, since such problems are relevant for non-invasive imaging methods, as explained in the introduction. The following corollary is a rewording of our result for boundary value problems. cor 4. Take a compact set K ⊆ Ω. Suppose that for every g ∈ H 1/2 (∂Ω) the problem

(10) Lu = 0 in Ω, u = g on ∂Ω,
admits a unique solution u g ∈ H 1 (Ω). If (9) holds true, then the set

g 1 , . . . , g [ d+n α ] ∈ H 1/2 (∂Ω) [ d+n α ] : u g1 , . . . , u g [ d+n α ] ∈ E(K)
is open and dense in H 1/2 (∂Ω) [ d+n α ] .

Proof. Consider the map

ψ : H 1/2 (∂Ω) [ d+n α ] → H 1 (Ω) [ d+n α ] , g 1 , . . . , g [ d+n α ] → u g1 , . . . , u g [ d+n α ] ,
where u gi is defined by [START_REF] Alessandrini | Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions[END_REF]. Because problem [START_REF] Alessandrini | Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions[END_REF] is well-posed, we have u g H 1 (Ω) ≤ C(L) g H 1/2 (∂Ω) for every g ∈ H 1/2 (∂Ω). Further, because of our outstanding regularity assumptions on the coefficients (3) we also have u g C ,α (K) ≤ C(L) g H 1/2 (∂Ω) . This shows that the map ψ :

H 1/2 (∂Ω) [ d+n α ] → H (K) [ d+n α
] is continuous. Its inverse is given by the trace operator acting component-wise, and is also continuous. In other words, ψ is an isomorphism, and the result immediately follows from Theorem 3, since the set under consideration is ψ -1 (E(K)).

Remark 5. Corollary 4 was stated for simplicity only if K is a proper subset of Ω. When K touches ∂Ω, for instance if K = Ω, the same result holds, provided that H 1/2 (∂Ω) is replaced with a suitable trace space consisting of smoother functions, e.g., H +α+ 1 2 (d-1) (∂Ω) or C ,α (∂Ω).

Future perspectives. The regularity assumptions we made are important in all generality, because we use a Unique Continuation Principle argument. For a specific problem, with a given geometry and/or coefficient structure, appropriate extension can often be envisioned (see e.g. [START_REF] Ball | On uniqueness for time harmonic anisotropic Maxwell's equations with piecewise regular coefficients[END_REF] for a strategy on how to handle a large class of piecewise regular coefficients). We have limited ourselves to elliptic PDE with real coefficients. Considering the case of complex valued coefficients (which appear in thermo-acoustic tomography [START_REF] Bal | Quantitative thermo-acoustics and related problems[END_REF][START_REF] Habib Ammari | Quantitative thermoacoustic imaging: an exact reconstruction formula[END_REF]) is a natural extension of this work. Maxwell's equation [START_REF] Seo | Electrical tissue property imaging using MRI at dc and Larmor frequency[END_REF][START_REF] Guo | Reconstruction of complex-valued tensors in the Maxwell system from knowledge of internal magnetic fields[END_REF][START_REF] Bal | Hybrid inverse problems for a system of Maxwell's equations[END_REF][START_REF] Alberti | On multiple frequency power density measurements II. The full Maxwell's equations[END_REF][START_REF] Alberti | Enforcing local non-zero constraints in PDEs and applications to hybrid imaging problems[END_REF] and linear elasticity [START_REF] Barbone | Adjointweighted variational formulation for the direct solution of inverse problems of general linear elasticity with full interior data[END_REF][START_REF] Mclaughlin | Calculating tissue shear modules and pressure by 2D log-elastographic methods[END_REF][START_REF] Lai | Uniqueness and stability of Lamé parameters in elastography[END_REF][START_REF] Bal | Reconstruction of constitutive parameters in isotropic linear elasticity from noisy full-field measurements[END_REF][START_REF] Bal | Reconstruction of a fully anisotropic elasticity tensor from knowledge of displacement fields[END_REF] are not considered here and are natural frameworks where this method could be applied. With the current argument, based on Lemma 7, the number of solutions d+n α depends monotonically on the regularity of the solutions. It would be interesting to establish whether that is necessary, and if the number of solutions d+n α is optimal. Finally, note that while a rough description of our result could be that a "random" choice of d+n α boundary condition suffices, we have not established such a claim. It would be interesting to move from an open and dense set of admissible boundary conditions to a random choice of boundary conditions with high probability (or indeed probability 1). This may allow handling the setup discussed in Remark 4.

The Runge approximation property and assumption (9)

For simplicity of exposition, in this section we restrict ourselves to considering only the constraints associated to the maps ζ given in Example 1, namely:

• n = 1, = 0, ζ (u) = u; • n = d, = 1, ζ (u) = ∇u; • or n = d + 1, = 1, ζ ( 
u) = u ∇u . However, with minor modifications to the argument, many other constraints can be considered, since this approach is very general. The main tool to satisfy (9), namely to show that there always exist global solutions satisfying the desired constraints locally, is the following result: it is sufficient to build suitable solutions of the PDE with constant coefficients, and without lower order terms. prop 5. Let L be the elliptic operator defined in [START_REF] Alberti | Generalized N-property and Sard theorem for Sobolev maps[END_REF]. In addition to (2), (3) if = 1 and (4) if = 0, assume that a(x) is a symmetric matrix for every x ∈ Ω and, if d ≥ 3, a ∈ C 0,1 Ω; R d×d . Take x 0 ∈ Ω. Let r > 0 and u 1 , . . . , u n ∈ C ,α (Ω; R) be solutions to the constant coefficient problem -div (a (x 0 ) ∇u i ) = 0 in B(x 0 , r), i = 1, . . . , n.

If (11) det    ζ (u 1 ) . . . ζ (u n )    (x 0 ) = 0, then x 0 ∈ C(Ω).
Remark 6. This result can in some cases be extended to operators L with piecewise Lipschitz coefficients with possibly countably many pieces, following the strategy given in [START_REF] Ball | On uniqueness for time harmonic anisotropic Maxwell's equations with piecewise regular coefficients[END_REF].

Proof. This result, even though not in this exact form, was first derived in [START_REF] Bal | Reconstruction of coefficients in scalar second-order elliptic equations from knowledge of their solutions[END_REF], and later discussed in [9, Section 7.3] (only in the case x 0 ∈ Ω). Here we provide only a sketch of the proof in order to highlight the main features; the reader is referred to the references mentioned for the details of the argument. The proof is split into three steps.

Step 1: approximation of u i with local solutions v i to Lv i = 0. Using standard elliptic regularity estimates, it is possible to find r ∈ (0, r] and v i ∈ H 1 (B(x 0 , r)∩Ω) such that Lv i = 0 in B(x 0 , r) ∩ Ω and u i -v i C 1 (B(x0,r)∩Ω) is arbitrarily small (provided that r is chosen small enough). It is worth observing that, even if in [START_REF] Bal | Reconstruction of coefficients in scalar second-order elliptic equations from knowledge of their solutions[END_REF] the lower order terms are kept in the PDE with constant coefficients, that is not needed [START_REF] Alberti | Lectures on elliptic methods for hybrid inverse problems[END_REF]Proposition 7.10].

Step 2: approximation of v i with global solutions w i to Lw i = 0. Thanks to the regularity assumptions on the coefficients, the elliptic operator L enjoys the unique continuation property [START_REF] Alessandrini | The stability for the Cauchy problem for elliptic equations[END_REF]. This is equivalent to the Runge approximation property [START_REF] Lax | A stability theorem for solutions of abstract differential equations, and its application to the study of the local behavior of solutions of elliptic equations[END_REF], by which it is possible to approximate local solutions with global solutions. Thus, in our setting, there exist w i ∈ H 1 (Ω) solutions to Lw i = 0 in Ω such that w i -v i H 1 (B(x0,r)∩Ω) is arbitrarily small. By elliptic regularity, we can ensure that w i -v i C 1 (B(x0,r/2)∩Ω) is arbitrarily small too.

Step 3: (w 1 , . . . , w n ) satisfy the constraint in x 0 . Combining the previous steps, we have that u i -w i C 1 (B(x0,r/2)∩Ω) is arbitrarily small. For the maps ζ considered above, this immediately implies that |ζ(u i ) -ζ(w i )|(x 0 ) is arbitrarily small. Thus, by [START_REF] Alessandrini | Global stability for a coupled physics inverse problem[END_REF], r and w i may be chosen in such a way that det

   ζ (w 1 )
. . .

ζ (w n )    (x 0 ) = 0, which shows that x 0 ∈ C(Ω).
Let us now verify that for the maps ζ mentioned above, we always have C(Ω) = Ω; in other words, the assumptions of Theorem 3 are satisfied with K = Ω. cor 6. Let L be the elliptic operator defined in [START_REF] Alberti | Generalized N-property and Sard theorem for Sobolev maps[END_REF]. In addition to (2), (3) if = 1 and (4) if = 0, assume that a(x) is a symmetric matrix for every x ∈ Ω and, if

d ≥ 3, a ∈ C 0,1 Ω; R d×d . If ζ is one of the maps considered in Example 1, then C(K) = K for any K ⊆ Ω.
Proof. We consider the three constraints separately:

• n = 1, = 0, ζ (u) = u: set u 1 = 1. • n = d, = 1, ζ (u) = ∇u: set u 1 = x 1 , . . . , u n = x n . • n = d + 1, = 1, ζ (u) = u ∇u : set u 1 = 1, u 2 = x 1 , . . . , u n+1 = x n .
Given x 0 ∈ Ω, for any a(x 0 ), there holds

-div(a(x 0 )∇u i ) = 0 in R d , i = 1, . . . , n, and det    ζ (u 1 ) . . . ζ (u n )    (x 0 ) = 0.
The conclusion follows from Proposition 5.

Proof of Theorem 3

We need two lemmata. For k ≥ 2 and a ∈ R k-1 let P a : R k → R k-1 denote the linear map given by P a (y) = (y 1 -a 1 y k , . . . , y k-1 -a k-1 y k ) .

In the following, we shall identify the matrices in R k×n with k rows and n columns with the linear maps from R n into R k . We shall denote the Lebesgue measure in R m by | • | m . lem 7. Take a smooth and compact set K ⊆ R d and a positive integer k > d+n α . Let F : K → R k×n be of class C 0,α and such that

F x : R n → R k is injective for all x ∈ K. Let G ⊆ R k-1 be the set of those a ∈ R k-1 for which P a • F x : R n → R k-1 is injective for all x ∈ K, namely G = x∈K a ∈ R k-1 : P a • F x : R n → R k-1 is injective . Then |R k-1 \ G| k-1 = 0.
Proof. Note that ker P a = span{(a 1 , . . . , a k-1 , 1)}. Thus, since F x is injective, we have for

x ∈ K P a • F x is injective ⇐⇒ ran F x ∩ ker P a = {0} ⇐⇒ (a 1 , . . . , a k-1 , 1) / ∈ ran F x .
Then, a ∈ R k-1 \ G if and only if there exists x ∈ K such that (a 1 , . . . , a k-1 , 1) ∈ ran F x , namely (a 1 , . . . , a k-1 , 1) ∈ ∪ x∈K ran F x . Therefore, using the projection

π : R k → R k-1 , (b 1 , . . . , b k ) → (b 1 , . . . , b k-1 ), we can express R k-1 \ G as R k-1 \ G = π (B) , B = x∈K ran F x ∩ b ∈ R k : b k = 1 .
Hence, it remains to prove that

H k-1 (B) = 0,
where H k-1 denotes the Hausdorff measure of dimension k -1.

Consider the map

f : K × R n → R k , (x, v) → F x v.
By construction, ran f = x∈K ran F x . Note that dim(K × R n ) = d + n < αk, so that H αk (K × R n ) = 0. Thus, since f is of class C 0,α , by Proposition 10 applied to f N = f | K×B(0,N ) for N ∈ N, we obtain

H k x∈K ran F x = H k (ran f ) = H k N ∈N ran f N ≤ N ∈N H k (ran f N ) = 0.
By linearity of v → F x v, the set x∈K ran F x is closed under scalar multiplication, and so x∈K ran

F x ⊇ R + • B, which implies H k (R + • B) = 0.
Using the change of variables formula and Tonelli theorem, we deduce H k-1 (B) = 0, as desired.

The following result is in the spirit of Whitney's projection argument, and states that, given k solutions satisfying the necessary constraints, it is possible to reduce the number to k -1 by taking suitable linear combinations, provided that k is big enough. . . .

ζ (u k )    (x) = n, x ∈ K. Let G ⊆ R k-1 be the set of those a ∈ R k-1 such that rank      ζ (u 1 -a 1 u k ) ζ (u 2 -a 2 u k ) . . . ζ (u k-1 -a k-1 u k )      (x) = n, x ∈ K. Then |R k-1 \ G| k-1 = 0.
Proof. Let F : K → R k×n be the map of class C 0,α defined by

F x =    ζ (u 1 ) . . . ζ (u k )    (x) : R n → R k .
By assumption, we have that F x is injective for all x ∈ K. Observe that, by linearity of ζ, we have

P a • F x =    ζ (u 1 ) (x) -a 1 ζ (u k ) (x) . . . ζ (u k-1 ) (x) -a k-1 ζ (u k ) (x)    =    ζ (u 1 -a 1 u k ) . . . ζ (u k-1 -a k-1 u k )    (x)
and so the conclusion immediately follows by Lemma 7.

We are now ready to prove Theorem 3.

Proof of Theorem 3.

Step

1: E(K) is open in H(K) [ d+n α ] . Take u ∈ E(K). By definition, we have [ d+n α ] i1,...,in=1 | det    ζ (u i1 ) . . . ζ (u in )    (x)| > 0, x ∈ K.
Since ζ(u ij ) are C 0,α maps in K, and in particular continuous, and K is compact, we have that

[ d+n α ] i1,...,in=1 | det    ζ (u i1 ) . . . ζ (u in )    (x)| ≥ C, x ∈ K, for some constant C > 0. Finally, since the map ζ is continuous itself, if v ∈ H(K) [ d+n α ] is chosen close enough to u we have [ d+n α ] i1,...,in=1 | det    ζ (v i1 ) . . . ζ (v in )    (x)| ≥ C 2 , x ∈ K,
which implies v ∈ E(K). This concludes the first step.

Step 2:

E(K) is dense in H(K) [ d+n α ] . Take H = (h 1 , . . . , h [ d+n α ] ) ∈ H(K) [ d+n α ] .
By assumption, for all x ∈ K there exist u 1,x , . . . , u n,x ∈ H(K) such that

| det    ζ (u 1,x ) . . . ζ (u n,x )    (x)| > 0.
By continuity of ζ (u i,x ), there exist neighbourhoods U x x such that

| det    ζ (u 1,x ) . . . ζ (u n,x )    (y)| > 0, y ∈ U x ∩ K.
Since K ⊆ ∪ x∈K U x , by compactness there exist x 1 , . . . , x N ∈ K such that K ⊆ ∪ N j=1 U xj . Thus, for all x ∈ K there exists j ∈ {1, . . . , N } such that

| det    ζ u 1,xj . . . ζ u n,xj    (x)| > 0.
Consider all the M = nN corresponding solutions

(u 1 , . . . , u M ) = (u 1,x1 , . . . , u n,x1 , u 1,x2 , . . . , u n,x2 , . . . , u 1,x N , . . . , u n,x N ) , so that rank    ζ(u 1 ) . . . ζ(u M )    (x) = n, x ∈ K.
In particular, we have rank

          ζ(h 1 ) . . . ζ(h [ d+n α ] ) ζ(u 1 ) . . . ζ(u M )           (x) = n, x ∈ K.
By Lemma 8, since k = d+n α + M > d+n α , we have k > d+n α , and so for almost every a ∈ R k-1 we have rank

           ζ(h 1 -a 1 u M ) . . . ζ(h [ d+n α ] -a [ d+n α ] u M ) ζ(u 1 -a [ d+n α ]+1 u M ) . . . ζ(u M -1 -a k-1 u M )            (x) = n, x ∈ K.
Repeating this argument M times (as long as k > d+n α ) with very small weights a, we obtain that there exist ξ i,j ∈ R (i = 1, . . . , d+n α , j = 1, . . . , M ) which can be chosen arbitrarily small such that rank    ζ(h 1 -ξ 1,j u j ) . . .

ζ(h [ d+n α ] -ξ [ d+n α ],j u j )    (x) = n, x ∈ K,
where we used Einstein summation convention of repeated indices. This implies that (h 1 -ξ 1,j u j , . . . , h [ d+n α ] -ξ [ d+n α ],j u j ) ∈ E(K), which, since the weights ξ i,j are chosen arbitrarily small, concludes the proof.

Appendix A. Hausdorff measure and Hölder functions

We recall an elementary property of Hausdorff measures that is used in the proof of Lemma 7. For further details, the reader is referred to [1, In particular, if H αs (A) = 0, then H s (f (A)) = 0.

Proof. Fix δ > 0 and let Taking infima over all such sets {C i } ∞ i=1 , we find H s cδ α (f (A)) ≤ c s 2 αs γ(s) 2 s γ(αs) H αs δ (A).

{C i } ∞ i=1 ⊆ R m be such that diam C i ≤ δ, A ⊆ ∪ ∞ i=1 C i . Then diam f (C i ∩ B) ≤ c (diam C i ) α ≤ c δ α and f (A) ⊆ ∪ ∞ i=1 f (C i ∩ B) . Thus
Taking the limit as δ → 0 the result follows.

lem 8 .

 8 Take a smooth and compact set K ⊆ Ω and a positive integer k > d+n α . Let u 1 , . . . , u k ∈ H(K) be such that rank

2 Γ( s 2

 22 section 4.1] or [41, section 2.4.1].Definition 9.Let A ⊆ R m , 0 ≤ s < ∞, 0 < δ ≤ ∞. We write +1) and Γ is the gamma function. The quantityH s (A) := lim δ→0 H s δ (A) = sup δ>0 H s δ (A)is the s-dimensional Hausdorff measure of A.prop 10. Take B ⊆ R m , s ∈ [0, +∞), c > 0 and α ∈ (0, 1]. Let f : B → R k be such that |f (x 1 ) -f (x 2 )| ≤ c|x 1 -x 2 | α , x 1 , x 2 ∈ B.ThenH s (f (A)) ≤ c s 2 αs γ(s) 2 s γ(αs) H αs (A), A ⊆ B.

  H s cδ α (f (A)) ≤ ∞ i=1 γ(s) diam f (C i ∩ B) 2 s ≤ c s 2 αs γ(s) 2 s γ(αs) ∞ i=1 γ(αs) diam C i 2 αs .
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