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COMBINING THE RUNGE APPROXIMATION AND THE

WHITNEY EMBEDDING THEOREM IN HYBRID IMAGING

GIOVANNI S. ALBERTI AND YVES CAPDEBOSCQ

Abstract. This paper addresses enforcing non-vanishing constraints for so-

lutions to a second order elliptic partial differential equation by appropriate
choices of boundary conditions. We show that, in dimension d ≥ 2, under

suitable regularity assumptions, the family of 2d solutions such that their Ja-

cobian has maximal rank in the domain is both open and dense. The case
of less regular coefficients is also addressed, together with other constraints,

which are relevant for applications to recent hybrid imaging modalities. Our

approach is based on the combination of the Runge approximation property
and the Whitney projection argument [Greene and Wu, Ann. Inst. Fourier

(Grenoble), 25(1, vii):215–235, 1975]. The method is very general, and can be

used in other settings.

1. Introduction

We consider a general second-order elliptic equation

(1) Lu := −div(a∇u+ bu) + c · ∇u+ qu = 0 in Ω,

where Ω ⊆ Rd, d ≥ 2, is a bounded and smooth domain. We assume that L is
uniformly elliptic, namely,

(2) a (x) ξ · ξ ≥ λ |ξ|2 , a.e. x ∈ Ω, ξ ∈ Rd,

for some λ > 0. The parameters of equation (1) are assumed to satisfy mild
regularity assumptions, namely either
(3)
a ∈ C`−1,α

(
Ω;Rd×d

)
, b ∈ C`−1,α(Ω;Rd), c ∈W `−1,∞(Ω;Rd), q ∈W `−1,∞(Ω;R),

with ` ≥ 1 and α ∈ (0, 1), or

(4) a ∈ L∞
(
Ω;Rd×d

)
, b, c ∈ L∞

(
Ω;Rd

)
, q ∈ L∞

(
Ω;Rd

)
,

which will be referred to as ` = 0. By classical elliptic regularity theory [43, 42,

61], the solutions to (1) belong to C`,αloc (Ω;R) and, provided that the boundary
conditions are chosen in the appropriate trace space, such a regularity extends up
to the boundary, namely u ∈ C`,α

(
Ω;R

)
. In the case ` = 0, the Hölder exponent

α is for example the one given by the De Giorgi–Nash–Moser theorem.
This paper focuses on how to enforce pointwise constraints on the solutions of (1).

Our motivation for studying such a question comes from hybrid imaging. Hybrid,
or multi-physics, imaging problems are a type of parameter identification problems
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that in many cases involve the reconstruction of the coefficients of a PDE from the
knowledge of some internal functional of its solutions [16, 67, 26, 51, 19, 9].

Amongst all these constraints, the most ubiquitous one is the non-vanishing
Jacobian problem. It can be reworded as follows: given L as in (1) and a compact
set K ⊆ Ω, how can one choose boundary conditions g1, . . . , gN such that

(5) rank (∇u1, . . . ,∇uN ) = d everywhere in K,

where {
Lui = 0 in Ω,
ui = gi on ∂Ω,

i = 1, . . . , N?

The difficulty here is that, apart from the fact that a, b, c and q are relatively smooth
and coercive, nothing is known about these coefficients, which are the unknowns of
the inverse problem.

When d = 2, b = 0, c = 0 and q = 0, that is, L is simply

Lu = −div(a∇u),

it turns out that the Radó–Kneser–Choquet Theorem can be extended to this set-
ting (without regularity assumptions) [10, 12, 13, 14]. Only two boundary con-
ditions, independent of the matrix valued function a, are required for the con-
straint to be satisfied globally. This result cannot be extended to higher dimen-
sions [68, 54, 39, 7, 9], even locally: it is not possible to find suitable boundary
conditions independently of the (unknown) coefficient. For more general models,
when b, c or q are not null, such as the Helmholtz equation, no solace can be found
in any dimension, since the Radó–Kneser–Choquet Theorem, whose proof uses the
maximum principle, does not apply.

One is therefore drawn to ask whether using a large number of boundary con-
ditions would help. Again, counter-examples to several claims can be derived [9,
Corollary 6.18]; nevertheless, it is possible to construct open sets of boundary con-
ditions valid for open sets of parameters for the relevant elliptic operator L. Two
main strategies have been used to achieve this goal: complex geometrical optics
(CGO) solutions [65, 32, 30, 29, 18, 48, 59, 26, 58, 24, 34, 20, 31, 27] and the Runge
approximation property [27, 60, 34, 31]. Both strategies had earlier been used in
the context of electrical impedance tomography [49, 64]. Other approaches based
on frequency variations [2, 4, 3, 5, 8, 6, 21] or dynamical systems [25] were also
developed: these are not discussed here.

CGO solutions are only available for isotropic coefficients a, that is, a = γId
where γ is a real-valued function. The CGO solution method provides a non-
vanishing Jacobian globally inside the domain for a suitable choice of (d complex-
valued) boundary conditions. This approach requires high regularity assumptions
on the coefficients. On the other hand, the Runge approximation property holds
provided that the unique continuation property holds [55], such a property being
enjoyed by a much larger class of problems [15]. A drawback is that the argument
is local, applied on a covering of the domain by small balls, and so many boundary
conditions are needed. Further, while CGO solutions are constructed (depending on
the coefficients), the Runge approximation provides an existence result of suitable
solutions, but not a constructive method to derive them.

In this work, we combine a Whitney projection argument [66], as described in
[45, 44], with the Runge approximation. Conditions of the form (5) are related
to the embeddings of manifolds; using Withney’s argument to reduce the ambient
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dimension iteratively, we reduce the number of solutions needed. Not only do we
provide an explicit bound on the number of boundary conditions to be considered,
but we also obtain that these constitute an open and dense set. For instance,
the set of 2d boundary conditions such that (5) is satisfied is open and dense in
H1/2(∂Ω;R)2d. Our result applies to more general constraints than (5), so that
it is in particular applicable to a variety of imaging problems (see section 2 for
details). Our result confirms what has been observed in numerical simulations in
the setting of scalar (isotropic) diffusion coefficients, where good reconstructions
are obtained for a relatively small set of boundary conditions [59, 60, 25, 34]. After
the first version of this manuscript was published, we were made aware of the recent
preprint [40], where similar techniques are used for the fractional Calderón problem.

This paper is structured as follows. In section 2, we state our main results and
discuss some open problems. Section 3 is devoted to the Runge approximation
property. Finally, in section 4 we provide the proof of the main result.

2. Main results

Let K ⊆ Ω be a smooth compact set and

ζ : C`,α(K)→ C0,α(K)n

be a continuous linear map, with n ≥ 1. Let H(K) denote the set of solutions to
(1) that are smooth in K, namely

(6) H(K) =
{
u ∈ C`,α(K) ∩H1(Ω) : Lu = 0 in Ω

}
,

equipped with the norm ‖u‖H(K) = ‖u‖C`,α(K) + ‖u‖H1(Ω). We are interested in
solutions ui ∈ H(K) satisfying the constraint

(7) det

ζ (u1)
...

ζ (un)

 (x) 6= 0,

in K, locally or globally.

Example 1. Constraints of the form (7) appear in various problems.

• When n = 1, ` = 0 and ζ (u) = u, the constraint corresponds to avoiding
nodal points, namely u1(x) 6= 0. This is useful whenever a division by u1

is required.
• When n = d, ` = 1, and ζ (u) = ∇u (taken as row vector), the constraint

imposes a non-vanishing Jacobian. In that case, (u1, . . . , ud) defines a local
C2 diffeomorphism. This is the case discussed in the introduction.

• When n = d + 1, ` = 1, and ζ (u) =
[
u ∇u

]
(taken as a row vector) the

constraint imposes a non-vanishing “augmented” Jacobian. The additional
potential u may represent a scaled time derivative, in a time harmonic
model. This constraint may also correspond to the non-vanishing Jacobian
for vi = ui+1

u1
, i = 1, . . . , d.

Such constraints appear in quantitative photoacoustic tomography [22, 34, 32, 29],
in quantitative thermoacoustic tomography [30, 20, 3], in acousto-electric tomog-
raphy (also known as electrical impedance tomography by elastic deformation or
ultrasound modulated electrical impedance tomography) [17, 38, 58, 24, 50, 60, 52],
in microwave imaging by elastic deformation [18, 2, 11, 65], in current density imag-
ing [47, 56, 62, 27], in dynamic elastography [22, 33, 34] and in other hybrid imaging
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modalities. We refer to [9] for additional methods and further explanations on some
of the models we have mentioned.

We introduce the following notation.

Definition 2. Let K ⊆ Ω be a smooth compact set in Rd and ζ : C`,α(K) →
C0,α(K)n be a continuous linear map, with l ≥ 0, n ≥ 1 and α ∈ (0, 1). The
candidate set C(K) is the set of all x ∈ K for which there exist u1, . . . , un ∈ H(K)
so that

det

ζ (u1)
...

ζ (un)

 (x) 6= 0.

The admissible set E(K) is the set of all u = (u1, . . . , u[ d+nα ]) ∈ H(K)[
d+n
α ] such

that

[ d+nα ]∑
i1,...,in=1

|det

ζ (ui1)
...

ζ (uin)

 (x)| > 0, for all x ∈ K.

Here,
[
d+n
α

]
= max

{
N ∈ N : N ≤ d+n

α

}
denotes the integer part of d+n

α .

Remark 1. In other words, u ∈ H(K)[
d+n
α ] belongs to E(K) if and only if for every

x ∈ K there exist i1, . . . , in ∈ {1, . . . ,
[
d+n
α

]
} such that

(8) det

ζ (ui1)
...

ζ (uin)

 (x) 6= 0,

namely, if and only if the desired constraint is satisfied everywhere in K for a
suitable subset of the solutions u1, . . . , u[ d+nα ]. The candidate set is the subset of

K where satisfying the constraint pointwise is possible at all. If C(K) 6= K, then
E (K) is empty.

Remark 2. If the coefficients of the PDE are smooth enough, so that α > d+n
d+n+1 ,

then the number of solutions is d+n =
[
d+n
α

]
. Furthermore, the number of solutions

increases as the coefficients become rougher, which reflects the irregular structure
of the zero level-sets of (7).

In this general setting, we have the following result.

thm 3. Take a smooth compact set K ⊆ Ω. The admissible set E (K) is open in

H (K) [ d+nα ]. If the candidate set satisfies

(9) C (K) = K,

then E (K) is dense in H (K) [ d+nα ].

Remark 3. Similar admissibility sets were previously proved to be open in [58].
Since a finite intersection of open and dense sets is open and dense, Theorem 3
immediately extends to the case when finitely many constraints are imposed simul-
taneously.
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Remark 4. As observed in Remark 1, the solutions in the admissible set E(K)
satisfy the constraint (8) in K. It would be interesting to consider a quantitative
version of this condition, namely an estimate of the form

|det

ζ (ui1)
...

ζ (uin)

 (x)| ≥ C

for some constant C > 0 given a priori. However, in this case the corresponding
admissible set would be neither open nor dense. The study of this scenario would
need to make the argument presented below more quantitative.

In section 3 we observe, using the Runge Approximation Property, that assump-
tion (9) is satisfied for a large class of examples, since C(Ω) = Ω.

Our initial focus was on boundary value problems, since such problems are rel-
evant for non-invasive imaging methods, as explained in the introduction. The
following corollary is a rewording of our result for boundary value problems.

cor 4. Take a compact set K ⊆ Ω. Suppose that for every g ∈ H1/2(∂Ω) the
problem

(10)

{
Lu = 0 in Ω,
u = g on ∂Ω,

admits a unique solution ug ∈ H1(Ω). If (9) holds true, then the set{(
g1, . . . , g[ d+nα ]

)
∈ H1/2(∂Ω)[

d+n
α ] :

(
ug1 , . . . , u

g
[ d+nα ]

)
∈ E(K)

}
is open and dense in H1/2(∂Ω)[

d+n
α ].

Proof. Consider the map

ψ : H1/2(∂Ω)[
d+n
α ] → H1(Ω)[

d+n
α ],

(
g1, . . . , g[ d+nα ]

)
7→
(
ug1 , . . . , u

g
[ d+nα ]

)
,

where ugi is defined by (10). Because problem (10) is well-posed, we have ‖ug‖H1(Ω) ≤
C(L)‖g‖H1/2(∂Ω) for every g ∈ H1/2(∂Ω). Further, because of our outstand-

ing regularity assumptions on the coefficients (3) we also have ‖ug‖C`,α(K) ≤
C(L)‖g‖H1/2(∂Ω). This shows that the map ψ : H1/2(∂Ω)[

d+n
α ] → H (K)[

d+n
α ] is

continuous. Its inverse is given by the trace operator acting component-wise, and
is also continuous. In other words, ψ is an isomorphism, and the result immediately
follows from Theorem 3, since the set under consideration is ψ−1(E(K)). �

Remark 5. Corollary 4 was stated for simplicity only if K is a proper subset of Ω.
When K touches ∂Ω, for instance if K = Ω, the same result holds, provided that
H1/2(∂Ω) is replaced with a suitable trace space consisting of smoother functions,

e.g., H`+α+ 1
2 (d−1)(∂Ω) or C`,α(∂Ω).

Future perspectives. The regularity assumptions we made are important in all
generality, because we use a Unique Continuation Principle argument. For a specific
problem, with a given geometry and/or coefficient structure, appropriate extension
can often be envisioned (see e.g. [36] for a strategy on how to handle a large class of
piecewise regular coefficients). We have limited ourselves to elliptic PDE with real
coefficients. Considering the case of complex valued coefficients (which appear in
thermo-acoustic tomography [30, 20]) is a natural extension of this work. Maxwell’s
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equation [63, 46, 35, 4, 3] and linear elasticity [37, 57, 53, 23, 28] are not considered
here and are natural frameworks where this method could be applied. With the
current argument, based on Lemma 7, the number of solutions

[
d+n
α

]
depends

monotonically on the regularity of the solutions. It would be interesting to establish
whether that is necessary, and if the number of solutions

[
d+n
α

]
is optimal. Finally,

note that while a rough description of our result could be that a “random” choice
of
[
d+n
α

]
boundary condition suffices, we have not established such a claim. It

would be interesting to move from an open and dense set of admissible boundary
conditions to a random choice of boundary conditions with high probability (or
indeed probability 1). This may allow handling the setup discussed in Remark 4.

3. The Runge approximation property and assumption (9)

For simplicity of exposition, in this section we restrict ourselves to considering
only the constraints associated to the maps ζ given in Example 1, namely:

• n = 1, ` = 0, ζ (u) = u;
• n = d, ` = 1, ζ (u) = ∇u;
• or n = d+ 1, ` = 1, ζ (u) =

[
u ∇u

]
.

However, with minor modifications to the argument, many other constraints can be
considered, since this approach is very general. The main tool to satisfy (9), namely
to show that there always exist global solutions satisfying the desired constraints
locally, is the following result: it is sufficient to build suitable solutions of the PDE
with constant coefficients, and without lower order terms.

prop 5. Let L be the elliptic operator defined in (1). In addition to (2), (3) if ` = 1
and (4) if ` = 0, assume that a(x) is a symmetric matrix for every x ∈ Ω and, if
d ≥ 3, a ∈ C0,1

(
Ω;Rd×d

)
. Take x0 ∈ Ω. Let r > 0 and u1, . . . , un ∈ C`,α(Ω;R) be

solutions to the constant coefficient problem

−div (a (x0)∇ui) = 0 in B(x0, r), i = 1, . . . , n.

If

(11) det

ζ (u1)
...

ζ (un)

 (x0) 6= 0,

then x0 ∈ C(Ω).

Remark 6. This result can in some cases be extended to operators L with piecewise
Lipschitz coefficients with possibly countably many pieces, following the strategy
given in [36].

Proof. This result, even though not in this exact form, was first derived in [34], and
later discussed in [9, Section 7.3] (only in the case x0 ∈ Ω). Here we provide only
a sketch of the proof in order to highlight the main features; the reader is referred
to the references mentioned for the details of the argument.

The proof is split into three steps.
Step 1: approximation of ui with local solutions vi to Lvi = 0. Using standard

elliptic regularity estimates, it is possible to find r̃ ∈ (0, r] and vi ∈ H1(B(x0, r̃)∩Ω)
such that Lvi = 0 in B(x0, r̃) ∩ Ω and ‖ui − vi‖C1(B(x0,r̃)∩Ω) is arbitrarily small
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(provided that r̃ is chosen small enough). It is worth observing that, even if in [34]
the lower order terms are kept in the PDE with constant coefficients, that is not
needed [9, Proposition 7.10].

Step 2: approximation of vi with global solutions wi to Lwi = 0. Thanks to the
regularity assumptions on the coefficients, the elliptic operator L enjoys the unique
continuation property [15]. This is equivalent to the Runge approximation property
[55], by which it is possible to approximate local solutions with global solutions.
Thus, in our setting, there exist wi ∈ H1(Ω) solutions to Lwi = 0 in Ω such that
‖wi−vi‖H1(B(x0,r̃)∩Ω) is arbitrarily small. By elliptic regularity, we can ensure that
‖wi − vi‖C1(B(x0,r̃/2)∩Ω) is arbitrarily small too.

Step 3: (w1, . . . , wn) satisfy the constraint in x0. Combining the previous steps,
we have that ‖ui−wi‖C1(B(x0,r̃/2)∩Ω) is arbitrarily small. For the maps ζ considered

above, this immediately implies that |ζ(ui)− ζ(wi)|(x0) is arbitrarily small. Thus,
by (11), r̃ and wi may be chosen in such a way that

det

ζ (w1)
...

ζ (wn)

 (x0) 6= 0,

which shows that x0 ∈ C(Ω). �

Let us now verify that for the maps ζ mentioned above, we always have C(Ω) = Ω;
in other words, the assumptions of Theorem 3 are satisfied with K = Ω.

cor 6. Let L be the elliptic operator defined in (1). In addition to (2), (3) if ` = 1
and (4) if ` = 0, assume that a(x) is a symmetric matrix for every x ∈ Ω and, if
d ≥ 3, a ∈ C0,1

(
Ω;Rd×d

)
. If ζ is one of the maps considered in Example 1, then

C(K) = K for any K ⊆ Ω.

Proof. We consider the three constraints separately:

• n = 1, ` = 0, ζ (u) = u: set u1 = 1.
• n = d, ` = 1, ζ (u) = ∇u: set u1 = x1, . . . , un = xn.
• n = d+ 1, ` = 1, ζ (u) =

[
u ∇u

]
: set u1 = 1, u2 = x1, . . . , un+1 = xn.

Given x0 ∈ Ω, for any a(x0), there holds

−div(a(x0)∇ui) = 0 in Rd, i = 1, . . . , n,

and

det

ζ (u1)
...

ζ (un)

 (x0) 6= 0.

The conclusion follows from Proposition 5. �

4. Proof of Theorem 3

We need two lemmata. For k ≥ 2 and a ∈ Rk−1 let Pa : Rk → Rk−1 denote the
linear map given by

Pa(y) = (y1 − a1yk, . . . , yk−1 − ak−1yk) .
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In the following, we shall identify the matrices in Rk×n with k rows and n columns
with the linear maps from Rn into Rk. We shall denote the Lebesgue measure in
Rm by | · |m.

lem 7. Take a smooth and compact set K ⊆ Rd and a positive integer k > d+n
α .

Let F : K → Rk×n be of class C0,α and such that Fx : Rn → Rk is injective for all
x ∈ K. Let G ⊆ Rk−1 be the set of those a ∈ Rk−1 for which Pa ◦ Fx : Rn → Rk−1

is injective for all x ∈ K, namely

G =
⋂
x∈K

{
a ∈ Rk−1 : Pa ◦ Fx : Rn → Rk−1 is injective

}
.

Then |Rk−1 \G|k−1 = 0.

Proof. Note that kerPa = span{(a1, . . . , ak−1, 1)}. Thus, since Fx is injective, we
have for x ∈ K

Pa ◦ Fx is injective ⇐⇒ ranFx ∩ kerPa = {0} ⇐⇒ (a1, . . . , ak−1, 1) /∈ ranFx.

Then, a ∈ Rk−1 \G if and only if there exists x ∈ K such that (a1, . . . , ak−1, 1) ∈
ranFx, namely (a1, . . . , ak−1, 1) ∈ ∪x∈K ranFx. Therefore, using the projection
π : Rk → Rk−1, (b1, . . . , bk) 7→ (b1, . . . , bk−1), we can express Rk−1 \G as

Rk−1 \G = π (B) , B =

( ⋃
x∈K

ranFx

)
∩
{
b ∈ Rk : bk = 1

}
.

Hence, it remains to prove that

Hk−1 (B) = 0,

where Hk−1 denotes the Hausdorff measure of dimension k − 1.
Consider the map

f : K × Rn → Rk, (x, v) 7→ Fxv.

By construction, ran f =
⋃
x∈K ranFx. Note that dim(K × Rn) = d + n < αk, so

that Hαk(K × Rn) = 0. Thus, since f is of class C0,α, by Proposition 10 applied
to fN = f |K×B(0,N) for N ∈ N, we obtain

Hk
( ⋃
x∈K

ranFx

)
= Hk(ran f) = Hk

( ⋃
N∈N

ran fN

)
≤
∑
N∈N
Hk(ran fN ) = 0.

By linearity of v 7→ Fxv, the set
⋃
x∈K ranFx is closed under scalar multiplication,

and so
⋃
x∈K ranFx ⊇ R+ ·B, which implies

Hk(R+ ·B) = 0.

Using the change of variables formula and Tonelli theorem, we deduceHk−1(B) = 0,
as desired. �

The following result is in the spirit of Whitney’s projection argument, and states
that, given k solutions satisfying the necessary constraints, it is possible to reduce
the number to k − 1 by taking suitable linear combinations, provided that k is big
enough.
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lem 8. Take a smooth and compact set K ⊆ Ω and a positive integer k > d+n
α . Let

u1, . . . , uk ∈ H(K) be such that

rank

ζ (u1)
...

ζ (uk)

 (x) = n, x ∈ K.

Let G ⊆ Rk−1 be the set of those a ∈ Rk−1 such that

rank


ζ (u1 − a1uk)
ζ (u2 − a2uk)

...
ζ (uk−1 − ak−1uk)

 (x) = n, x ∈ K.

Then |Rk−1 \G|k−1 = 0.

Proof. Let F : K → Rk×n be the map of class C0,α defined by

Fx =

ζ (u1)
...

ζ (uk)

 (x) : Rn → Rk.

By assumption, we have that Fx is injective for all x ∈ K. Observe that, by linearity
of ζ, we have

Pa ◦ Fx =

 ζ (u1) (x)− a1ζ (uk) (x)
...

ζ (uk−1) (x)− ak−1ζ (uk) (x)

 =

 ζ (u1 − a1uk)
...

ζ (uk−1 − ak−1uk)

 (x)

and so the conclusion immediately follows by Lemma 7. �

We are now ready to prove Theorem 3.

Proof of Theorem 3.

Step 1: E(K) is open in H(K)[
d+n
α ].

Take u ∈ E(K). By definition, we have

[ d+nα ]∑
i1,...,in=1

|det

ζ (ui1)
...

ζ (uin)

 (x)| > 0, x ∈ K.

Since ζ(uij ) are C0,α maps in K, and in particular continuous, and K is compact,
we have that

[ d+nα ]∑
i1,...,in=1

|det

ζ (ui1)
...

ζ (uin)

 (x)| ≥ C, x ∈ K,

for some constant C > 0. Finally, since the map ζ is continuous itself, if v ∈
H(K)[

d+n
α ] is chosen close enough to u we have

[ d+nα ]∑
i1,...,in=1

|det

ζ (vi1)
...

ζ (vin)

 (x)| ≥ C

2
, x ∈ K,
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which implies v ∈ E(K). This concludes the first step.

Step 2: E(K) is dense in H(K)[
d+n
α ].

Take H = (h1, . . . , h[ d+nα ]) ∈ H(K)[
d+n
α ]. By assumption, for all x ∈ K there

exist u1,x, . . . , un,x ∈ H(K) such that

|det

ζ (u1,x)
...

ζ (un,x)

 (x)| > 0.

By continuity of ζ (ui,x), there exist neighbourhoods Ux 3 x such that

|det

ζ (u1,x)
...

ζ (un,x)

 (y)| > 0, y ∈ Ux ∩K.

Since K ⊆ ∪x∈KUx, by compactness there exist x1, . . . , xN ∈ K such that K ⊆
∪Nj=1U

xj . Thus, for all x ∈ K there exists j ∈ {1, . . . , N} such that

|det

ζ
(
u1,xj

)
...

ζ
(
un,xj

)
 (x)| > 0.

Consider all the M = nN corresponding solutions

(u1, . . . , uM ) = (u1,x1 , . . . , un,x1 , u1,x2 , . . . , un,x2 , . . . , u1,xN , . . . , un,xN ) ,

so that

rank

 ζ(u1)
...

ζ(uM )

 (x) = n, x ∈ K.

In particular, we have

rank



ζ(h1)
...

ζ(h[ d+nα ])

ζ(u1)
...

ζ(uM )


(x) = n, x ∈ K.

By Lemma 8, since k =
[
d+n
α

]
+M >

[
d+n
α

]
, we have k > d+n

α , and so for almost

every a ∈ Rk−1 we have

rank



ζ(h1 − a1uM )
...

ζ(h[ d+nα ] − a[ d+nα ]uM )

ζ(u1 − a[ d+nα ]+1uM )

...
ζ(uM−1 − ak−1uM )


(x) = n, x ∈ K.
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Repeating this argument M times (as long as k >
[
d+n
α

]
) with very small weights

a, we obtain that there exist ξi,j ∈ R (i = 1, . . . ,
[
d+n
α

]
, j = 1, . . . ,M) which can

be chosen arbitrarily small such that

rank

 ζ(h1 − ξ1,juj)
...

ζ(h[ d+nα ] − ξ[ d+nα ],juj)

 (x) = n, x ∈ K,

where we used Einstein summation convention of repeated indices. This implies
that

(h1 − ξ1,juj , . . . , h[ d+nα ] − ξ[ d+nα ],juj) ∈ E(K),

which, since the weights ξi,j are chosen arbitrarily small, concludes the proof. �
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Appendix A. Hausdorff measure and Hölder functions

We recall an elementary property of Hausdorff measures that is used in the proof
of Lemma 7. For further details, the reader is referred to [1, section 4.1] or [41,
section 2.4.1].

Definition 9. Let A ⊆ Rm, 0 ≤ s <∞, 0 < δ ≤ ∞. We write

Hsδ(A) := inf


∞∑
j=1

γ(s)

(
diamCj

2

)s
: A ⊆

∞⋃
j=1

Cj ,diamCj ≤ δ

 ,

where γ(s) := π
s
2

Γ( s2 +1)
and Γ is the gamma function. The quantity

Hs(A) := lim
δ→0
Hsδ(A) = sup

δ>0
Hsδ(A)

is the s-dimensional Hausdorff measure of A.

prop 10. Take B ⊆ Rm, s ∈ [0,+∞), c > 0 and α ∈ (0, 1]. Let f : B → Rk be
such that

|f(x1)− f(x2)| ≤ c|x1 − x2|α, x1, x2 ∈ B.
Then

Hs(f(A)) ≤ cs 2αsγ(s)

2sγ(αs)
Hαs(A), A ⊆ B.

In particular, if Hαs(A) = 0, then Hs(f(A)) = 0.

Proof. Fix δ > 0 and let {Ci}∞i=1 ⊆ Rm be such that diamCi ≤ δ, A ⊆ ∪∞i=1Ci.
Then diam f (Ci ∩B) ≤ c (diamCi)

α ≤ c δα and f(A) ⊆ ∪∞i=1f (Ci ∩B) . Thus

Hscδα(f(A)) ≤
∞∑
i=1

γ(s)

(
diam f (Ci ∩B)

2

)s
≤ cs 2αsγ(s)

2sγ(αs)

∞∑
i=1

γ(αs)

(
diamCi

2

)αs
.
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Taking infima over all such sets {Ci}∞i=1 , we find

Hscδα(f(A)) ≤ cs 2αsγ(s)

2sγ(αs)
Hαsδ (A).

Taking the limit as δ → 0 the result follows. �
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