
HAL Id: hal-02091932
https://hal.science/hal-02091932v1

Submitted on 9 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Operational Semantics of UML2.X Sequence
Diagrams for Distributed Systems

Fatma Dhaou, Inès Mouakher, Khaled Bsaïes, Christian Attiogbé

To cite this version:
Fatma Dhaou, Inès Mouakher, Khaled Bsaïes, Christian Attiogbé. An Operational Semantics of
UML2.X Sequence Diagrams for Distributed Systems. Evaluation of Novel Approaches to Software
Engineering. 12th International Conference, ENASE 2017, Porto, Portugal, April 28–29, 2017, Revised
Selected Papers, pp.158-182, 2018, �10.1007/978-3-319-94135-6_8�. �hal-02091932�

https://hal.science/hal-02091932v1
https://hal.archives-ouvertes.fr

An Operational Semantics of UML2.X Sequence
Diagrams for Distributed Systems

Fatma Dhaou ?, Ines Mouakher, J. Christian Attiogbé, and Khaled Bsaies

University Tunis El Manar, LIPAH, Faculty of Sciences of Tunis Tunisia,
University of Nantes,LS2N, Nantes, France

Abstract. UML2.X sequence diagrams (SD) are equipped with high
structures: the combined fragments (CF) that permit to model complex
behaviours of systems. CF can be nested to allow more sophisticated
behaviours, however they complicate the interpretation of the SD and
the computation of precedence relations between the events. In a previ-
ous work, we proposed a causal semantics for UML2.X SD. It is based
partial order theory, its well-defined relations allow the computation of
all precedence relations for the events of UML2.X SD with nested CF.
We considered the most popular CF of control-flow alt, opt, loop, seq
allowing to model respectively alternative, optional, iterative and sequen-
tial behaviours. In this work, we improve that previous work to consider
a par CF allowing to model parallel behaviours, and we propose an
operational semantics that is based on the causal semantics. The pro-
posed operational semantics is a substantial step towards the refinement
checking and the analysis of some properties of SD.

Keywords: UML2.X Sequence Diagrams, Operational Semantics, Causal
Semantics, Nested Combined Fragments

1 Introduction

Context. The speed of design, the intuition and the ease of graphical represen-
tation make UML2.X sequence diagrams (SD) a privileged language often used
by the engineers in the software industries. Although the Object Management
Group (OMG) [1] has defined an official standard semantics for UML2.X SD,
some shortcomings still persist. For instance, we report that the definitions of
the standard semantics are not well suited for an exhaustive computation of all
possible traces of basic SD modelling the behaviours of distributed systems this
is a shortcoming. Moreover, they are not formalized which yields, in some cases,
to the ambiguities of interpretations.

Motivation. The defined rules by the OMG for deriving partial order of a
given basic SD impose to order the events along each lifeline, even if they are
received from independent lifelines, which do not allow the computation of all

? Please note that the LNCS Editorial assumes that all authors have used the west-
ern naming convention, with given names preceding surnames. This determines the
structure of the names in the running heads and the author index.

2 Fatma Dhaou, Ines Mouakher, J. Christian Attiogbé, and Khaled Bsaies

possible valid behaviours. This leads to the emergence of unspecified behaviours
in the implementation. Although we can add coregion operator and additional
messages to establish the required order, however we obtain an overcrowded
graphical representation that can lead to the interpretation ambiguities. With
UML2.X, the combined fragments allow the modelling of several kind of be-
haviours. We focus especially on a subcategory of CF: alt, opt, loop, seq and
par; they permit a compact syntactic representation of behaviours. In contrast,
they cause challenges for the determination of precedence relations between the
events. To compute traces for SD equipped with these CF, the OMG standard
recommends to compute the traces of each components of the SD independently
then the traces are composed by the weak sequencing operator. This process-
ing is equivalent in other approaches [2], [3], [4], [5] to the flattening of the SDs
that are semantically equivalent. However, the benefits of the compact syntactic
representation are lost.
Moreover, the alt and the loop CF have a different meaning than in the struc-
tured programming languages; although, to ease the processing of these CF,
the existing approaches [6], [5], [7], restrict their use by interpreting them in
the same way. However, in the standard they have much more flexible inter-
pretations allowing to model more complex behaviours; for instance the alt
CF is not equivalent to the IF − Then − Else structure, and in the loop CF,
weak sequencing between the iterations is applied, rather than strict sequencing,
permitting the interleaving of the occurrence of the events of different iterations.

In the practical cases, CF can be nested to model more sophisticated behaviours.
All the cited problems are increasing. In the standard semantics, the notion of
nested CF is briefly mentioned. In literature, few works [7], [5], [6] deal with
nested CF. In [6] the authors study the issues resulting of the nesting of some
kinds of CF (different of those considered in this paper), and by limiting the
nesting levels of CF [6], [5], or by proposing a complicated formalization very
close to the target formalism [7].

Although the existing semantics that are proposed for UML2.X SD are vari-
ous [3], [8], [9], [10], but they are usually based on the definitions of the standard
semantics for the computation of traces of the SD, thus they are not suitable
for SD modelling behaviours of distributed systems. These shortcomings have
motivate our proposal for a causal semantics dedicated for UML2.X SD with
nested CF that models behaviours of distributed systems. Most of the existing
semantics of different kinds (denotational, operational, algebraic) are based on
the definitions of the standard semantics for the computation of precedence re-
lations between the events, hence they present the same shortcomings as the
standard semantics. Defining an operational semantics for SD facilitates their
operational analysis and permits a better understanding of the language.

Contribution. This paper extends our previous works [11], [12]; in [11]
we have extended the semantics that is proposed for UML1.X SD [13]; we have
proposed several formal rules, to compute directly the partial order between
the events of SD with the most popular combined fragments (alt, opt, loop)

Title Suppressed Due to Excessive Length 3

that are sequential, by processing the SD as a whole. In [12], we have extended
the formalization to deal with the nesting of (alt, opt and loop) CF, and we
have generalized the precedence relations of the causal semantics that suit for
UML2.X SD modelling the behaviours of distributed systems and equipped with
nested CF.
We now propose additional contributions that consist in covering an other im-
portant CF that is the parallel1 CF, and we propose an operational semantics
permitting a better understanding of the behaviour of the SD by defining the
rules of occurrences of the events.

Organization. The remainder of the article is structured as follows. In Sec-
tion 2 and 3, we provide an overview on our previous work: we explain the for-
malization of UML2.X SD and the precedence relations of the causal semantics.
Section 4 is devoted to the operational semantics. Before concluding in Section
6, we present some related works in Section 5.

2 Causal Semantics

To overcome the shortcomings of the standard semantics, we considered an ex-
isting semantics [13] that is suitable for basic SD modelling behaviours of dis-
tributed systems. Its rules take into account the independence of the components,
(modelled by lifelines), involved in the interactions. Indeed, in contrast with the
standard semantics that totally order the events on each lifeline even for the re-
ceiving events from independent lifelines, the causal semantics imposes slighter
scheduling constraints on the behaviour of lifelines results in more expressive
SDs, since each SD describes a larger number of acceptable behaviours. This
larger expressive power facilitates the task of the designer since a great number
of cases have to be considered, and permits to prevent the issue of the emer-
gence of unspecified behaviours in the implementation. The causal semantics is
founded on a partial order theory. Intuitively, the causal semantics [14] is based
on the idea of ordering events if there is a logical reason to do so. We present the
relations of the causal semantics as defined in [13] in informal way as follows.
Synchronization Relationship <SY NC . Each message m is received only if
it was sent previously.
Reception-Emission Relationship <RE . Receiving a message causes the
sending of the message that is directly consecutive to it.
Emission-Emission Relationship <EE . If two messages are sent by the same
lifeline their sending events are ordered.
Causal order Relation <caus. This relation is defined as follows:

<caus= (<SY NC

⋃
<RE

⋃
<EE)

The transitive closure of the relation <caus that we note <+
caus permits to obtain

all the causal dependencies between the events of the SD. The event occurrence

1 The parallelism is logic, which mean that two events occur in any order.

4 Fatma Dhaou, Ines Mouakher, J. Christian Attiogbé, and Khaled Bsaies

depends on the partial order relationship <caus.

The causal semantics is mainly proposed for basics UML1.X SD modelling
behaviours of distributed systems, and the application of its rules causes some
inconsistencies (aberrant relations, deadlock and inadvertent triggers of some
events [11]). Hence in our previous work [12], we proposed a new formalization
of UML2.X SD with nested CF that is based on set theory and the tree struc-
ture. Then, based on this formalization, we proposed the extension of the causal
semantics whose its relations permit the computation of precedence relations for
each event that belong to an UML2.X SD with nested CF modelling behaviours
of distributed systems.

3 Overview on Previous Extension of the Causal
Semantics

3.1 FORMALIZATION OF UML2.X SD WITH NESTED CF

We consider a sub-set of SD containing combined fragment of control-flow alt,
opt, loop and seq CF. The considered CF are sequential, and can be nested to
model more sophisticated behaviours. We assume that the operands of the CF
do not overlap, but can be nested. For the formalization of sequence diagrams
equipped with nested CF, we choose, on the one hand, the set theory notations 2

that is a privileged way due to its several advantages. For instance, although it is
founded on first order logic, it permits to manipulate objects of high order such
as sets and relations of any depth (that is, sets and relations built themselves on
sets and relations, and so on) [15]. On the other hand, we use the tree structure
that is hierarchic by nature and it is convenient to capture the nested structure
of SD, and allow to represent them in an intuitive way.

Sequence Diagram Definitions

Definition 1 (Sequence Diagram)
A sequence diagram SD is a tuple
SD : 〈L,M,EV T, FCT s, FCT r, FCT l,OP, F,<caus, tree OP 〉 where:

– L is a set of not empty lifelines, and card(L) ≥ 2,
– M is a set of asynchronous messages which is well formed and not empty.

The set M is well formed if every message is identified by a pair of events:
a sent event and a received event,

– EV T = E s∪E r is a set of events such that card(EV T) ≥ 2 3, E s and E r
denotes respectively the set of sent events and the set of received events such
that E s = {!m | m ∈M}4 and E r = {?m | m ∈M}5, and E s ∩ E r = ∅,

2 N.B we use the same set theory notation as those of Event-B method
3 Cardinal of a set E
4 !m denote the sent event of the m message
5 ?m denote the received of the m message

Title Suppressed Due to Excessive Length 5

– for a set of message M we define two bijective functions FCT s and FCT r
that permit to associate to each message respectively one sent event and one
received event: FCT s : M�→E s 6, and FCT r : M�→E r

– FCT l : EV T � L 7 a total surjective function that associates to each event
one lifeline, the transmitter or the receiver,

– F = {F1, F2, ..., Fn} is the set of n CF, where Fi = 〈OPi, operatori, Li〉 is
a CF that is identified by its operands, an operator, and the set of lifelines
that are covered by it,

– <caus⊆ EV T ↔ EV T denotes the partial order relationship,

– OP : the SD is considered as a set of operands,

– tree OP is a partial function that allows to structure the SD in the form of
a tree of operands.

To obtain the local order within each lifeline noted <SD,l, we project the
causal order relation <+

caus
8 on the lifeline l.

Operands of CF An SD is abstracted as a tree of operands. Intuitively, a
combined fragment will be viewed as an operator together with its operands;
this will be detailed in the sequel. We consider the following CF seq, alt, opt
and loop. The SD is represented as a set of operands. We associate a label to
each operand. Two operands with the same index i belong to the same combined
fragment: it’s the case of the operands of an alt and par CF for instance, in
Fig.1, OP21, OP22 and OP23 belong to the same CF alt.

The whole SD is transformed to a root operand that we note OP00; the set
OP is defined as (

⋃
i={1..n}

OPi) ∪ {OP00}; where n is the number of operands

of the considered SD. Each operand in an SD has a weight. For instance, each
operand of seq, alt or opt CF has a weight equal to 1; an operand of a loop CF
has a weight equal to a value max, which is the maximum number of iterations
of the considered loop CF. We assume that each operand of a CF has only one
first event. The first events of the different operands of a same CF do not belong
necessarily to the same lifeline, since some of them came from lower level when
we built the tree.

The general definition of an operand in a combined fragment is given as
follows.

Definition 2 (Operand in combined fragment)
We define a set of operands OPi in a CF Fi as:

OPi = {OPi,j={1..k} | OPij =
〈
guardij , weightij , EV T Dij

〉
}

where: i) k is the number of operands in CF Fi, ii) guardij is the guard of the
operand OPij, iii) weightij is the weight of the operand OPij, iv) EV T Dij are
the events that are directly contained in an operand OPij.

6 �→ denotes a bijective function
7 →→ denotes a total surjection
8 R+: the transitive closure of R

6 Fatma Dhaou, Ines Mouakher, J. Christian Attiogbé, and Khaled Bsaies

We use the following functions to manipulate the operands:

– EV T D returns the events that are directly contained in each operand9:
EV T D : OP → P(EV T)

– EV T G returns all the events that are contained in an operand including
those which are contained in its nested operands:

EV T G : OP → P(EV T)
– weight returns the weight of each operand:

weight : OP → NAT+

– first gets the first event of each operand. first : OP → EV T ; intuitively,
a first event is an event that has not a preceding events in the considered
operand.

first={(X, e)|X ∈ OP ∧ e ∈ EV T G(X) ∧
(∀ e′)[e′ ∈ EV T ∧ e′ <∗caus e⇒ e′ /∈ EV T G(X)]}

The instantiation of the definition 2 for seq, alt, opt and loop CF is
intuitive and it given in detail in our previous paper [12].
We just present the instantiation of the definition for the par CF;

Definition 3 (Operands in the PAR combined fragment)
A parallel combined fragment Fi is composed of a set of k operands:

OPpar
i = {OPi1, ..., OPik}

where OPij =
〈
True, 1, EV T Dij

〉
the guard is true and the weight is equal to 1.

The semantics of interactions is explained with an interleaving semantics [1],
i.e. two events may not occur at exactly the same time.
In the same way, we choose an interleaving semantics to support alternatives
and concurrency behaviours, since it is more appropriate for SD modelling
behaviours of distributed system. Indeed, if the semantics allows the occur-
rence of two events exactly in the same time (like in the true-concurrency
semantics 10), in the case of an alt CF, we’ll have a simultaneous occurrence
of the events of different operands, this is not compliant with the standard
semantics of this CF where at most one operand among several potential
operands must be chosen.

Transformation of SD as a Tree of Operands An SD is encoded as a
tree that is composed by a set of linked operands, such that each operand
has at maximum one direct ancestor. For instance, the figure 2 illustrates the
associated tree for the SD of the Fig.1. A naive way to transform an SD into
a tree is to associate a node to each CF or operand. When building the tree
of an SD, we always have a root node that represents the complete SD; the

9 P(EV T) is the set of subsets E
10 true-concurrency semantics is a non-interleaving semantics, it supports the occur-

rence of two events in the same time

Title Suppressed Due to Excessive Length 7

process is then breadth-first. Note that the operands of an alt or a par CF
are independent, i.e they have disjoint executions. Therefore, to simplify the
tree representation of the SD, we substitute the node which should stand for
these fragments with the nodes representing their operands. They are moved
to the upper level. However, to distinguish them, the operands of the same
fragment have their indexes built with the same prefix (OP21, OP22 and
OP23). From the node of a current SD, the consecutive fragments of the SD
become the nodes of the current node. Each fragment is either represented as
a node or it is represented by the nodes of its operands. A node is associated
to each CF that has only one operand (for instance loop or opt). A CF
with more than one operand (for instance alt or par) is replaced with the
nodes associated to its operands.

L1 L2 L3

loop

alt

[0,3]

[G1]

[G2]

loop [0,2]

m1

m2

m3

m4

m5

m6

m7

OP00

OP11

OP21

OP31

OP32

Fig. 1. Example of SD with nested CF

OP00

OP11 OP21

OP31 OP32

Fig. 2. Tree associated to the SD of the Fig. 1

8 Fatma Dhaou, Ines Mouakher, J. Christian Attiogbé, and Khaled Bsaies

We define the tree structure for SD operands as follows:

Definition 4 (Tree structure for SD operands)
The tree structure tree OP related to an SD is defined as a partial function:
tree OP : OP 7→ OP which is acyclic and non-reflexive. The root is the only
operand that does not have a parent:
(∀X)[X ∈ OP ∧ X /∈ dom(tree OP) ∧ X ∈ ran(tree OP)⇒ X = OP00]

Once an SD is transformed to a tree of operands, we define relations that
permit to get the locations of the operands that are required in the formaliza-
tions of precedence relations. To associate to each operand all the operands
where it is nested (its ancestor operands in the tree OP), we introduce the
relation ancestor. To identify the operands of the same CF alt, par, we
introduce the relation brother. We call brother operands those that belong
to the same CF alt, par. In a given tree: tree OP = {OPi1....OPij}, the
brother operands are the operands that belong to the same level and that
have the same index i. Hence, the operands of the same sibling are not all
necessarily brothers, since some of them came from lower level when built
the tree.
• ancestor: a binary transitive relation 11 that is defined on OP .

ancestor : OP ↔ OP
For an operand X we compute its ancestors12 as follows:

ancestor[{X}] =
⋃

s∈{1,..,d}
{tree OP s(X)}

where d is the depth of the node X in the tree OP .
Illustration. In Fig.2, ancestor[{OP00}] = ∅, and ancestor[{OP31}] = {OP21, OP00}.
• brother: a binary transitive relation that is defined on a set OP .

brother : OP ↔ OP

brother = {(OPij , OPtk)|(OPij , OPtk) ∈ OP 2

∧ (i = t ∧ j 6= k))}

Illustration. In Fig.1, the operands OP31, OP32 belong to the same CF alt,

thus they are brothers. brother[{OP11}] = ∅ and brother[{OP31}] = {OP32}

Weight of an event The function weight was defined on an operand,
We overload the function to associate the weight of the path between two
operands.

weighte : (OP ×OP)→ NAT+

For two operands X and Y , we compute the weight of their paths as follows:{
weighte(X,Y) = 1 if X = Y
weighte(X,Y) =

∏
s∈{0,..,d}

weight(tree OP s(Y))

}
11 ↔ denotes a relation
12 R[{e}]: Relational image; gives the set of images

Title Suppressed Due to Excessive Length 9

with d the length of the path between the operand X and the operand Y .
We overload the function weight that permits to associate to each event its
maximal number of occurrence.

weight : EV T → NAT+

For an event evt of an operand X, such that evt ∈ EV T D(X), we compute
its weight as follows:

weight(evt) =
weight(X) ∗ weight(tree OP (X))∗
weight(tree OP 2(X) ∗ ... ∗ weight(tree OP d(X)︸ ︷︷ ︸

OP00

)

=
∏

s∈{0,d}
weight(tree OP s(X))

= weighte(OP00, X), (with d = depth of X)

The new formalization is used as a basis for the extension of the causal
relationships that permits to compute the partial order between the events
of the SD.

3.2 Extension of the Causal semantics

The relations <Sync, <RE , <EE and <RR permit to compute the precedence
relations for each event of an SD. The structuring of SD with nested CF in
form of tree permits an obvious identification of the preceding events, they
are grouped by operand, for each event that belongs to this kind of SD.
In this section, we generalize these relations. The synchronisation relation-
ship (<Sync) is unchangeable. The formalizations of <RE and <EE relation-
ships permit to order two events that belong to the same lifeline and that
are successive. We define a new relationship <RR to consider some particu-
lar cases of the ordering of receiving of events in the context of distributed
components.
To detail a bit, and to alleviate the presentation of the formalization of <RE

and <EE relationships, we introduce three binary relations not in brother,
succ1 and succ2. In the following, we first give the intuition of each of them
before their formalizations.
Two successive events that belong to distinct operands of an alt or a parCF
must not be ordered. The relation not in brother expresses this intuition: the
successive events of an alt CF to be ordered must neither belong to brother
operands nor to operands where in their respective ancestors exist a brother
operands.

not in brother={(e, e′)|(e, e′) ∈ EV T 2 ∧ (∀X)(∀Y)
[X ∈ (ancestor[{EV T D−1(e)}] ∪ {EV T D−1(e)})
∧Y ∈ (ancestor[{EV T D−1(e′)}] ∪ {EV T D−1(e′)})
⇒ (X,Y) /∈ brother]}

Illustration: in Fig.1, the event !m4 ∈ OP31, the event !m6 ∈ OP32,
however we have OP32 ∈ brother[{OP31}], hence the events !m4 and !m6

10 Fatma Dhaou, Ines Mouakher, J. Christian Attiogbé, and Khaled Bsaies

should not be ordered.
Formally, we define that two events are successive in two manners with two
distinct relations succ1 and succ2. These relations are used respectively in
the formalization of <EE and <RE relationships. The relation succ1 relates
two events that belong to the same lifeline and which are successive. Nev-
ertheless, we admit between them, events that must necessarily belong to
an operand that can be omitted (i.e. the events between successive events
do not belong to any operand ancestor of the operands of the considered
events).

succ1={(e, e′)|(e, e′) ∈ EV T 2∧
(∃l)[l ∈ L ∧ e <∗SD,l e

′

∧ (∀e”)[e” ∈ EV T ∧ (e <∗SD,l e” ∧ e” <∗SD,l e
′)

⇒ EV T D−1(e”) /∈ (ancestor[{EV T D−1(e)}]
∪ ancestor[{EV T D−1(e′)}])]]}

The relation succ2 expresses the same conditions and effects as those defined
in succ1 relationships, moreover it expresses that we admit between the
successive events received events.

succ2= {(e, e′)|(e, e′) ∈ EV T 2∧
(∃l)[l ∈ L ∧ e <∗SD,l e

′ ∧ (∀e”)[e” ∈ EV T ∧
(e <∗SD,l e” ∧ e” <∗SD,l e

′)

⇒ e” ∈ ran(FCT r) ∨
EV T D−1(e”) /∈ (ancestor[{EV T D−1(e)}]
∪ ancestor[{EV T D−1(e′)}])]]}

The relationship <EE permits to order two sent events that satisfy the con-
ditions expressed in not in brother and succ1 relations.

<EE= {(e, e′)|[(e, e′) ∈ (EV T)2 ∧
e ∈ ran(FCT s) ∧ e′ ∈ ran(FCT s) ∧
(e, e′) ∈ not in brother ∧ (e, e′) ∈ succ1]}

The relationship <RE permits to order two events such that the first one is
a received event and the second one is a sent event, and both of them satisfy
the conditions expressed in not in brother and succ2 relations.

<RE={(e, e′)|[(e, e′) ∈ (EV T)2 ∧
e ∈ ran(FCT r) ∧ e′ ∈ ran(FCT s) ∧
(e, e′) ∈ not in brother ∧ (e, e′) ∈ succ2]}

In a distributed system context, the components are independent and the
communication between them is carried out according to protocols, each of
them guarantees properties semantics concerning the reception of messages.
In case the considered protocol ensures a First in First Out (FIFO) delivery
order, the receptions of two messages coming from the same lifeline are
received in the same order of their emission. The <RR relationship permits

Title Suppressed Due to Excessive Length 11

to compute these precedence relations.

<RR={(e, e′) | [(e, e′) ∈ E2
r ∧

(∃e1,∃e2)[(e1, e2) ∈ E2
s ∧

Fct s−1(e1) = Fct r−1(e) ∧
Fct s−1(e2) = Fct r−1(e) ∧
e1 <∗EE e2 ∧ Fct l(e1) = Fct l(e2)]}

In the previous work [12], we showed that in loop CF as well as in nested
CF that contains loop CF the determination of the precedence relations for
each event is not obvious.

3.3 Hidden Precedence Relations in LOOP Combined Fragment

The events inside a loop operand can have as preceding events that can be
located:

• for the first iteration: i) either outside the loop operand and/or, ii)
inside the loop operand of the same iteration.

• from the second iteration: i) either outside the loop operand and/or,
ii) inside the loop operand of the same iteration and/or of the previous
iterations.

We call hidden relations the relations between the events of loop operand of
the current iteration and the events of the previous iterations (Fig.??). These
relations appear when the loop operand is flatten at least one time. Hence, the
necessity of defining a new relation <Hcaus in which we express the constraints
of precedence between the events of the current iteration and the events of the
previous iteration. In order to compute the hidden precedence relations, we pro-
pose the following steps: we flatten the loop operand only once whatever is the
number of iterations; we obtain an intermediate sequence diagram SD’.
In SD’, we rename the operands as well as the events of the second iteration
with the same name as those of the preceding iteration by labelling them with
a single quote (Fig. 3). We define the set EV T ′ to represent the events of the
next iteration. <′RE and <′EE are respectively the reception-emission, and the
emission emission relationships associated to the SD’. In an SD we can have
several loop operand that can be sequenced or nested. In this case, the same
processing is applied by computing for each loop operand its hidden relation-
ships; we note <HcausX , the hidden relations of a given loop operand named
X. The formalization of the hidden relationships for a loop operand X is given
as follows.

<HcausX=
{(e, e′)|e ∈ EV T ∧ e′ ∈ EV T ′∧
(e, e′) ∈<′RE ∨(e, e′) ∈<′EE}

Illustration1. Consider the SD in Fig.??, the SD’ represents the flattening of
the loop operand only once. In the SD’, in the first iteration, the !m2 has as

12 Fatma Dhaou, Ines Mouakher, J. Christian Attiogbé, and Khaled Bsaies

preceding event the event !m1 that is located outside the loop operand; the
event !m3 has as preceding events, the event ?m1 (that is located outside the
loop operand) and the ?m2 (that belongs to the same iteration). In the second
iteration, the event !m2′ has as preceding event the event !m4 which belongs to
the first iteration; the event !m3′ has as preceding events the events ?m4 and
?m2′, which belong respectively to the first and the second iteration.
Illustration2. As aforementioned, for an alt CF, only one operand must be
executed, hence the events that belong to distinct operands must not be ordered,
otherwise we’ll have deadlocks of some events.
However, in some particular cases of nested structure, especially for an alt
that is nested in a loop CF, we can face a problem that the events of distinct
operands of the same alt CF (brother operands) can have precedence relations.
Figure 6 represents a possible execution of the SD (depicted in Fig.4) containing
nested CF. In the first iteration of the loop CF, the first operand of the alt
CF is executed; in the second iteration of the loop CF, the third operand of the
alt CF is executed. According to the <EE relationship, the event !m2 precedes
the event !m7′, although they respectively belong to brother operands OP21
and OP22. Likewise for the events !m3 and !m6′. This is problematic, since the
events of brother operands should not be ordered. This justifies the renaming of
the events and the operands of the next iteration to avoid this issue.

SD'SD

m1

[5]loop

m4

m3

m2

m1

m4

m3

m2

m4

m3'

m2'

'

loop

L1 L2L2L1

Fig. 3. Processing of an SD with loop operand

In an SD we can have several loop operand that can be sequenced or nested.
In this case, the same processing is applied by computing for each loop operand
its hidden relationships; the entire hidden relation is the union of the hidden
relations of each loop operand. Now, the causal relationships is computed as
follows.

<caus=<SY NC ∪ <RE ∪ <EE ∪ <RR ∪ <Hcaus

That means the ordering of events depends on the cumulative rules of the
relationships. The valid traces are those which can be generated satisfying these

Title Suppressed Due to Excessive Length 13

L2

loop

alt

[G1][0,5]

[G2]

[G3]

[G4]

m1

m2
m3

m4 m5

m6m7

OP00

OP11

OP21

OP22

OP23

L1 L3

Fig. 4. SD with nested CF

orders.
The defined rules (<RE , <EE , <RE and <Hcaus) may be applied to the standard
semantics by restoring the constraints that we relaxed. In the same way, these
rules can be adapted for any kind of semantics by strengthening or weakening
some constraints. The causal semantics can be exploited for several purposes, it
can used as basis for the computation of all possible valid traces of SD modelling
behaviours of distributed systems as it can be the basis for the definition of an
operational semantics that facilitates its implementation and then the analysis
of the SD and several properties of systems for instance safety, liveness, fairness
or reachability properties.

4 Operational Semantics

The most of the existing semantics are trace-based semantics, they require a
meticulous work that consists in generating all possible traces of an SD then
in their categorisation depending on the aim of the semantic, and they do not
propose tools to ensure this task [3] [16]. Moreover, most of them ignore inter-
action constraint that guards combined fragments, which are essential to ensure
soundness of refinement relation [16]. In the approach of [16], the authors con-
sider the interaction constraint in a non-intuitive way. Indeed, they propose to
include the guard as an element in the standard definition of trace.

The motivation behind the definition of an operational semantics is the inten-
tion of the use of existing refinement relations that are well defined on transition
systems, since an operational semantics is concretely given as a transition sys-
tem. Moreover, in the operational semantics, we define execution strategies of
the events of an SD with nested CF. They include on the one hand, the order of
the occurrence of the events in a nested structure (CF) as well as the conditions
under which those executions can take place, on the other hand their execution
effects that they produce. These strategies allow for better understanding and
analysis of the behaviour of a sequence diagram.

14 Fatma Dhaou, Ines Mouakher, J. Christian Attiogbé, and Khaled Bsaies

L2

loop

alt

[G1][0,5]

[G2]

[G3]

[G4]

m1

m2
m3

m4 m5

m6m7

OP00

OP11

OP21

OP22

OP23

alt [G2]

[G3]

[G4]

m2'
m3'

m4' m5'

m6'm7'

OP21'

OP22'

OP23'

L1 L3

Fig. 5. Processing of the OP11 loop
operand of Fig.4

L2

m1

m2
m3

m6'm7'

L1 L3

loop

Fig. 6. Possible execution of the SD of
Fig.4

Moreover, the guard is straightforwardly expressed. Formally, it is given as a
guarded transition system:

Sem(SD) = 〈S, S0,4〉
where S is the set of possible states of the SD, S0 is the initial state and 4 is
the transition relation.

4.1 State

Each state of an SD is expressed with two variables (state, current instance):
state expresses the states of all events of SD, current instance expresses the
lifeline of the current event.
The state of an event. An event which belongs to a basic SD can have two
obvious basic states: executed or not yet executed. In our semantics, we sup-
port sequence diagrams with sequential CF that can be nested. The basic states
are not sufficient to express the state of an event in an SD with sophisticated
structures (nested CF). Indeed, each event in such SD can be: not yet occurred,
occurred, consumed one or several times. Then, the variable state is defined as
follows.

state : EV T → NAT

The state of an event is decreased whenever it is occurred or ignored. To describe
the state of an event e, we use the following vocabulary:

Title Suppressed Due to Excessive Length 15

– not yet occurred: when state(e) = weight(e),
– occurred: if the event e is executed or ignored one or several times and 0 <

state(e) < weight(e),
– consumed: when state(e) = 0.

During its execution, an SD can be in one state among the following states:

– an initial state S0, when all its events are not yet occurred,
– an intermediate state of S,
– a final state, when all its events are consumed: state = EV T × {0}.

The notion of state is very important, indeed, it constraints the occurrence
of a given event (for instance we decrement the state of an event whenever it is
occurred, or if we want to prohibit its occurrence); it also serves to indicate the
location of the considered event; this information is useful especially when we
have several nested loop CF.

4.2 Transition Rules

For each event evt in an SD we associate the following transition:

p
[g]evt−→ q

def
≡ ((p, [g] evt, q) ∈ 4 ∧ g)

An event is enabled only when its trigger conditions, (labelled TCi), hold. When
the enabled event occurs, it produces execution effects (labelled EEi) that up-
date the SD from the state p to the state q.

In the following, we define rules for the guarded transition system which
constraint the occurrence of the events (the trigger conditions and the executions
effects). The rules of our operational semantics have the following shape.

evt =
CD1 ∧ CD2 ∧ ...CDi

EE1, EE2, ..., EEi

4.3 Occurrence of the events

For each event the trigger conditions must be checked conjointly and the execu-
tions effects are produced simultaneously.

Trigger conditions Some trigger conditions have a simple shape : they are
atomic formulas where others trigger conditions are composed by the conjunc-
tion of several conditions. Indeed, some conditions must be strengthened in order
to take into account of some particular cases and to prevent some issues that
result of the presence, the disposition of the nesting of some CF (for instance
the nesting CF that contains loop CF that induces hidden relations).

16 Fatma Dhaou, Ines Mouakher, J. Christian Attiogbé, and Khaled Bsaies

• First trigger condition related to satisfaction of precedence constraints

In our causal semantics, we first transform the considered SD in the form of
a tree of operands. This transformation allows us to identify easily the preceding
events of each event that are grouped by operand. Then the defined relations
permit the computation of the precedence relations between the events.
The first trigger condition TC1 necessary to the occurrence of each event consists
in checking that its preceding events were occurred. This is made by comparing
the states of the considered event and those of its preceding events. Remind
that each event has a state which is initialized to its weight corresponding to
its maximal number of occurrence. Depending on the kind of combination of
CF ((alt-loop), (alt -loop), (loop-loop)....) to nest and the location of the
considered events (these informations is given in the states of the events), the
shape of the first trigger condition varies.

Consider an event evt that belongs to an UML2.X SD. To facilitate the
reasoning, we assume that the event evt has only one preceding event e. The
occurrence of the event evt depends on the state of the event e.

If the considered events e and evt have the same weight, then the trigger
condition is simply expressed in the form of an inequality on the respective
states of evt and e, hence it is enough to to check that:

state(e) < state(evt)

However, in an SD, we can have several combinations of different kinds of CF.
The combinations and the nesting of some kinds CF, especially those that contain
loop CF complicate the form of the first trigger condition. Indeed if the events
have distinct weights that are > 1, it is the case where the events belong to
nested CF that contain loop CF. The weight is a term making the product from
the root to the event. The weight of an intermediate operand is a multiplicative
factor of the events contained in the child operands.
Therefore, the comparison of the states of two events is based on their weights
relative to a common node (operand) or the first shared node that encompasses
the events, which is the lowest common ancestor (LCA). Indeed, the terms of
the weight derived from the ancestors are the multiplicative factors common.
For instance in the figure 13, consider the events ?m1 and !m2 that belong
respectively to OP21 and OP11 operands, the LCA is the operand OP11, hence
weight(?m1) = 3 ∗ 5 and weight(!m2) = 5. In the figure 17, consider the events
!m1 and !m2 that belong respectively to OP21 and OP31 operands, the LCA is
the operand OP11, hence weight(!m1) = 5 ∗ 3 and weight(!m2) = 5 ∗ 4.

Consider the operands X et Y of the events e and evt : X = EV T D−1(e),
Y = EV T D−1(evt) and Z is the lowest common ancestor of the operands X
and Y : Z = LCA(X,Y). Depending on the weights of the events of e and evt,
we distinguish the following cases:

1. Case1: each of the event e and evt has a weight that is equal to 1. In this
case None of the operands X Y or Z is a loop operand. Moreover their
respective ancestors are not loop operands.

Title Suppressed Due to Excessive Length 17

2. Case2: each of the events e et evt has a weight that is different of 1. In this
case, we have to argue with regard to the lowest common ancestor (Z) of the
operands X and Y of the events e and evt. Indeed, we distinguish 4 possible
cases:
2.1 Case 2.1: There is no loop operand neither in the path from the

operand Z to the operand X nor in the path from the operand Z to
the operand Y (i.e. weight(Z,X) = 1 and weight(Z, Y) = 1),

2.2 Case 2.2: there is a loop operand only in the path from the operand
Z to the operand X (i.e. weight(Z,X) > 1 and weight(Z, Y) = 1),

2.3 Case2.3: there is a loop operand only in the path from the operand Z
to the operand Y (i.e. weight(Z,X) = 1 et weight(Z, Y) > 1),

2.4 Case2.4: in each path from the operand Z to the operand X and
from the operand Z to the operand Y there is a loop operand (i.e.
weight(Z,X) > 1 et weight(Z, Y) > 1).

In the sequel, we illustrate each case with an example et we give the appro-
priate trigger condition.
• Case1. The weight of event e and evt is equal to 1. We distinguish two possible
cases: i) both events e and evt are located in the same operand:
X = EV T D−1(e) = EV T D−1(evt) (see Fig.7), and ii) the events are located
in distinct operands: EV T D−1(e) 6= EV T D−1(evt) (see Fig.8).
In this case it is enough to check that :

CD11 : state(e) = 0 < state(evt) = 1

Illustration: in both Figure 7 and Figure 8, according to the < EE relation,
the events !m1 and !m2 are ordered, they are respectively located in the same
operand (Fig.7) and in distinct operands 8. Both events have a weight equal to
1. The event !m2 can occur only if the event !m1 was consumed. Hence we must
check the condition

state(!m1) = 0 ∧ state(!m2) = 1

L1 L2

m1

m2

OP00

Fig. 7. SD0: !m1 <!m2

L1 L2

m1
opt

m2

OP00

OP11

Fig. 8. SD1: !m1 <!m2

Fig. 9. Illustration case1

• Case2.1. The weight of the events e and evt are different of 1. We distinguish
two cases: i) the events are located in the same operand:

18 Fatma Dhaou, Ines Mouakher, J. Christian Attiogbé, and Khaled Bsaies

X = EV T D−1(e) = EV T D−1(evt) (see Fig.10), and ii) the events evt and e
are located in distinct operands: EV T D−1(e) 6= EV T D−1(evt) (Fig. 11). We
consider only the case where the paths from the operand Z to the operand X
and from the operand Z to the operand Y did not contain a loop operand (i.e.
weight(Z,X) = 1 and weight(Z, Y) = 1). In this case, either the operand Z or
at least one of its ancestors is a loop operand.
Illustration1: in the figure 10, the weight of each event !m1 and ?m1 is equal
to 4, hence each of them can occur 4 times. For each iteration, the message m1
can be received only if it is sent (the event !m1 was occurred) This conditions
constraints the occurrence of the event ?m1, it is expressed as follows:

state(!m1) < state(?m1)

Illustration2: in the figure 11, the weight of each event !m1 and ?m1 is equal
to 4, hence each of them can occur 4 times. For each iteration, the event ?m2
can occur only if the event !m1 was occurred. This condition constraints the
occurrence of the event ?m1, it is expressed as follows:

state!m1) < state(!m2)

Hence in these cases the trigger condition can be expressed as follows:

CD12 : state(e) < state(evt)

L1 L2

loop

m1

[1,4] OP11

OP00

Fig. 10. SD2: !m1 <?m1

L1 L2

loop

m1

[1,4]

opt

m2

OP00

OP11

Fig. 11. SD3: !m1 <!m2

Fig. 12. Illustration case2.1

• Case2.2. The weights of the events e and evt are different of 1. Moreover,
they are located in distinct operands: EV T D−1(e) 6= EV T D−1(evt). We have
only a loop operand in the path from the operand Z to the operand X (i.e.
weight(Z,X) > 1 and weight(Z, Y) = 1)
Illustration: consider the figure 13, for each iteration of the operand OP11,
the event !m2 can occur only if the event ?m1 was occurred 3 times. The table
represented in Fig. 14 illustrates the 5 states for which the event !m2 can occur.

Title Suppressed Due to Excessive Length 19

L1 L2

loop

m1

[1,5]

m2

OP00

OP11

loop OP21[1,3]

Fig. 13. SD5: ?m1 <!m2

no iteration state(?m1) state(!m2)

1 12 5

2 9 4

3 6 3

4 3 2

5 0 1

Fig. 14. Variation of states values with it-
eration of the SD of Fig.13

L1 L2

OP00

loop

[1,4]]loop OP21

m2

m1
OP11[1,5]

Fig. 15. SD8: ?m1 <!m2

no iteration state(?m1) state(!m2)

1 4 20..17

2 3 16 ..13

3 2 12 ..9

4 1 8..5

5 0 4 ..1

Fig. 16. Variation of states values with it-
eration of the SD of Fig.15

[state(?m1)/3 < state(!m2)] ∧ [(state(?m1)mod 3 = 0)]

In this case, the trigger condition of the event evt is expressed in form of a
conjunction of predicates. Such that the first predicate is an inequality on states
of the event evt and its preceding event e where the state of the preceding event
is weighted with the coefficient 1/weight(Z,X). The second predicate permits
to the event evt iterate once the event e was occurred weight(Z,X) times.

CD13 : [state(e)/weight(Z,X) < state(evt)] ∧[(state(e) mod weight(Z,X) = 0)]

• Case2.3. The weights of the events e and evt are different of 1. Moreover,
they are located in distinct operands: EV T D−1(e) 6= EV T D−1(evt).
We have only a loop operand in the path from the operand Z to the operand
Y (i.e. weight(Z,X) = 1 et weight(Z, Y) > 1).
Illustration: in the figure 15, the event ?m1 precedes the event !m2. For each
iteration of the operand OP11, the event !m2 occurs 4 times. For each occur-
rence of the event ?m1, the event !m2 occurs 4 times. The table represented in
Fig. 16 illustrates the 20 states for which the event !m2 can occur. Hence the
trigger condition of the event !m2 can be expressed as follows.
(state(!m2) mod 4 = 0) =⇒ (state(?m1) < state(!m2)/4)
Hence, in this case, the trigger condition of the event evt is expressed as follows.
CD14 : (state(evt) mod weight(Z, Y) = 0) =⇒ (state(e) < state(evt)/weight(Z, Y))
• Case2.4. The weights of the events e and evt are different of 1. Moreover, they
are located in distinct operands: EV T D−1(e) 6= EV T D−1(evt).

20 Fatma Dhaou, Ines Mouakher, J. Christian Attiogbé, and Khaled Bsaies

In each path (from the operand Z to the operand X and from the operand
Z to the operand Y), it exists a loop operand (i.e. weight(Z,X) > 1 et
weight(Z, Y) > 1).
Illustration: in the figure 17, the event !m1 precedes the event !m2. For each
execution of the operand OP11 the event !m2 occurs 4 times. After each 3 oc-
currences of the event !m1, the event !m2 occurs 4 times. The table represented
in Fig. 18 illustrates the 20 states where the event !m2 can occur.

state(!m2) mod 4 = 0⇒ state(!m1)/3 < state(!m2)/4 ∧(state(!m1) mod 3 = 0)

L1 L2

OP00
[1,5]loop

[1,3]loop
m1

[1,4]loop OP31

m2

OP21

OP11

Fig. 17. SD7: !m1 <!m2

no iteration state(!m1) state(!m2)

1 12 20..17

2 9 16 ..13

3 6 12 ..9

4 3 8..5

5 0 4 ..1

Fig. 18. Variation of states values with it-
eration of the SD of Fig.17

In this case, the trigger condition of the event evt is expressed as follows.

CD15 : (state(evt) mod weight(Z, Y) = 0)⇒
[state(e)/weight(Z,X) < state(evt)/weight(Z, Y)] ∧
[(state(e) mod weight(Z,X) = 0)]

Generalization of the trigger condition TC1. Thenceforth, we can de-
duce the general form of the first trigger condition. We check the occurrence
of the preceding events that are computed receptively from the relation (<caus

\ <Hcaus) and from the relation <Hcaus independently in two distinct trigger
conditions.

– (e, evt) ∈ (<caus \ <Hcaus) (TC1)

– (e, evt) ∈<Hcaus (TC1′)

• Hence, when we have:
∀(e)(∃X)(∃Z)[(e, evt) ∈ (<caus \ <Hcaus) ∧ X = EV TD−1(e)
∧ Y = EV TD−1(evt) ∧ Z = LCA(X,Y)

Then, the first trigger condition is expressed as follows:

Title Suppressed Due to Excessive Length 21

TC1:
(state(evt) mod weight(Z, Y) = 0) =⇒
((state(e)/weight(Z,X) < state(evt)/weight(Z, Y)
∧ (state(e) mod weight(Z,X) = 0)))

• For each event evt of a loop operand or that belong to a nested CF that
contains a loop operand and that has hidden preceding events that appear
from the second iteration.
Hence, when we have:
(∀e)(∃X)(∃Z)[(e, evt) ∈<Hcaus ∧ X = EV TD−1(e)
∧ Y = EV TD−1(evt) ∧ Z = LCA(X,Y)
We define the following trigger condition TC1’.

TC1’:
(state(e) mod (weight(Z, Y) ∗ weight(Z) <> 0)) =⇒
((state(e)/weight(Z,X) = state(evt)/weight(Z, Y)
∧ (e, evt) ∈ not in brother))

• the second trigger condition consists in checking that the event can still be
occurred: it is not yet consumed (TC2). It is formally defined as follows:

TC2 : state(evt) ≥ 1

• for the events that belong to a guarded CF we add a third trigger condition
that permits to check the value of the guard.

Execution effects . The execution effects of an event should simultaneously:

– update the state of the current event by decreasing its state (EE1);
the execution effect EE1 is to update the state with: EE1: state(evt)− 1

– update the lifeline of the current event (EE2); the execution effect EE2 is to
set current instance with: EE2: current instance := FCT l(evt) Remind
the FCT l(evt) gives the lifeline of the event.

Particular cases: for the guarded alt, we assume that the evaluation of
the guard is made on the first event. If the guard is evaluated to true (TC3)
then the first event must synchronize the events of the other operands of the
same CF by decrementing their states (remind that the standard semantics of
the alt CF impose that only one operand must be executed among several po-
tential operands having simultaneously a true guard). Otherwise, if the guard is

22 Fatma Dhaou, Ines Mouakher, J. Christian Attiogbé, and Khaled Bsaies

evaluated to false (TC3’), the first event must decrement the states of the events
of the same operand in order to prohibit their occurrence. Hence, in addition to
the trigger conditions TC1 and/or TC1’, we must add a third trigger condition
TC3 for the first event of each operand of an alt CF.

TC3 : guard := true

TC3’ : guard := false

If the guard is evaluated to true, in addition to the executions effects EE1
and EE2 , we must add a third execution effect EE3 to modify the states of
the events of the brother operands. When we have [evt ∈ EV T D(X) ∧ e ∈
EV T D(Y) ∧ e ∈ EV T G(Z)],
EE3: state(e)− weight(Z, Y), where Z = brother(X) If the guard is evaluated
to false, in addition to the executions effects EE1 and EE2 , we must add a third
execution effect EE3’ to decrement the states of the events of the same operand.
When we have evt ∈ EV T D(X) ∧ e ∈ EV T D(Y) ∧ e ∈ EV T G(X), then
EE3’: state(e)− weight(X,Y)
All the operands of any kind of CF can be guarded, in this case in addition to
the trigger conditions TC1 and/or TC1’, we must add a third trigger condition
TC3 for the first event of the considered operand. If the guard is evaluated to
false, in addition to the executions effects EE1 and EE2 , we must add a third
execution effect EE3’ to decrement the states of the events of the same operand.
N.B In a nested CF, we assume that the guard evaluation of a child operand
should be made after a True guard evaluation of the parent operand. This is
compliant with the hypothesis we made in Subsection 3.1, which states that
each operand has one first event. Moreover, if the guard of the parent operand
is evaluated to False, its events including the events of its child operands are
ignored.

All these rules define the operational semantics of UML2.X SD with nested
combined fragments. They are not linked to any target formalism and they can
be implemented in various ways and by any formalism doted with tools for its
checking.

5 Related works

In the literature, there are several semantics approaches to define a semantics
for UML2.X SD. Among them we cite the most popular: i) denotational se-
mantics [3], [16], ii) transformational semantics [9], and iii) operational seman-
tics [17], [10]. They are mainly proposed to overcome some issues of the standard
semantics, or to adapt the use of the SD to the modelling of different systems,
and for other purposes. For instance, in [3] and [16], the authors defined a trace
semantics based on denotational semantics to distinguish between mandatory
and required behaviours. In [10], the authors proposed a denotational semantics
based on partially ordered multisets or pomsets that deals with language con-
structs for specifying negative traces. In the works of [9], the authors proposed a

Title Suppressed Due to Excessive Length 23

transformational semantics based on the translation of SD into Büchi automata
in order to verify liveness and safety properties of reactive systems. In [17], the
authors proposed an operational semantics for SD that supports negative be-
haviours and that distinguishes between possible and required behaviours. In
[10], the authors proposed an operational semantics for SD, which is compliant
with the semantics proposed in [18], for capturing the composition operators
from High Message Sequence Charts (HMSC) and neg assert CF.

We underlined that a few of the existing semantics, [16], [3], [9], [18], can be
used to formalize the refinement relation while the others do not allow it [19],
[4], [20], [17], [2].

For this purpose, the trace-based semantics, [16], [3], [9], are not very con-
venient, indeed they permit to verify only some kinds of refinement relations
(trace inclusion, trace equivalence...), this require a meticulous preprocessing on
all traces of the considered SD, knowing that most of them did not propose
tools that ease this arduous task; moreover they ignore the guards of CF which
are essential to ensure soundness of refinement relation. Although, in the work
of [16], the proposed trace-based semantic refinement considers guard, but in a
non-intuitive way, by modifying the standard definition of the trace.

In contrast to trace-based semantics, with an operational semantics several
kinds of well-defined refinement relations can be expressed (simulation trace,
inclusion trace, equivalence trace...). Moreover the operational facilitates the
analysis of the behaviours of the modelled systems.
Most of the existing semantics [16], [3], [9], [18], [4], [17] are usually based on
the definitions of the standard for the computation of traces, thus they are not
suitable for SD modelling behaviours of distributed systems. Moreover most of
the work, [5], [6], [21], [22] did not deal properly with some CF and the nested
CF. Indeed they impose strict hypothesis to avoid inconsistencies due to the
use of these CF. In our last work we have well explained these restrictions that
limit the expressive power of these CF. To overcome these insufficiencies, we pro-
posed an operational semantics that is, on the one hand, based on an extended
causal semantics, suitable for UML2.X SD equipped with the most popular CF
modelling distributed systems, on the other hand, it supports guards straightfor-
wardly since it is given as a guarded transition system. The operational semantics
can be easily implemented and can be used as a basis for refinement checking
purpose for our ongoing work.

6 Conclusion

To help in preliminaries design steps of distributed systems, we have equipped
UML2.X sequence diagrams with a causal semantics that is based on partial
order theory and tree structure. Its relations permit the determination of the
precedence relations straightforwardly for SD with nested CF that model be-
haviours of a distributed system, by avoiding its flattening, hence the compact
syntactic representation is preserved. The causal semantics can serves for several

24 Fatma Dhaou, Ines Mouakher, J. Christian Attiogbé, and Khaled Bsaies

purposes, in this paper we have proposed an operational semantics in which we
define execution strategies of the events of an SD with nested CF. The proposed
operational semantics is not linked to a specific target formalism. We currently
implement the operational semantics with the Event-B method [11], [23]. Trans-
forming SD into corresponding B specifications enables rigorous model analy-
sis using the formal techniques of Event B and its various tools Rodin: (with
a theorem-prover, and with ProB model-checker). Meanwhile, the operational
semantics serves as the basis of our ongoing work on the verification of the refine-
ment relation between sequence diagrams. Indeed the operational semantics is
concretely given as a transition system since refinement relations are well defined
on the transition system as a simulation relation. This is used for investigating
whether or not a sequence diagram specification is a correct refinement of an-
other sequence diagram specification. In addition, we currently study theoretical
properties that are derived from the proposed semantics.

References

1. Object Management Group. OMG Unified Modeling Language (OMG UML),
Superstructure Version 2.2, 2015.

2. Alexander Knapp and Jochen Wuttke. Model Checking of UML 2.0 Interactions.
In Thomas Khne, editor, Models in Software Engineering, pages 42–51. Springer,
2006.

3. Ragnhild Kobro Runde øystein Haugen, Knut Eilif Husa and STAIRS. Towards
Formal Design with Sequence Diagrams. In Software and System Modeling, vol-
ume 4, pages 355–357. John Wiley & Sons, Inc., 2005.

4. Harald Störrle. Semantics of Interactions in UML 2.0. In HCC, pages 129–136,
2003.

5. Youcef Hammal. Branching Time Semantics for UML 2.0 Sequence Diagrams. Lec-
ture Notes in Computer Science: Formal Techniques for Networked and Distributed
Systems - FORTE 2006, pages 259–274, 2006.

6. Zoltàn Égel Andràs Kvi Zoltàn Micskei Gàbor Huszerl, Hélène Waeselynck (ed.).
Refined design and testing framework, methodology and application results. 2008.

7. Hui Shen. A Formal Framework for Analyzing Sequence Diagram. PhD thesis,
2013.

8. David Harel and Shahar Maoz. Assert and Negate Revisited: Modal Semantics for
UML Sequence Diagrams. Software and System Modeling, 7(2):237–252, 2008.

9. R. Grosu and SA Smolka. Safety-Liveness Semantics for UML 2.0 Sequence Dia-
grams. In 5th Int. Conf. on Application of Concurrency to System Design, page
614, 2005.

10. Mara Victoria Cengarle, Peter Graubmann, Stefan Wagner, and Technische Uni-
versität München. Semantics of UML 2.0 Interactions with Variabilities, 2005.

11. Fatma Dhaou, Inès Mouakher, Christian Attiogbé, and Khaled Bsaies. Extending
Causal Semantics of UML2.0 Sequence Diagram for Distributed Systems. ICSOFT-
EA 2015 - Proceedings of the 10th International Conference on Software Engineer-
ing and Applications, Colmar, Alsace, France, pages 339–347, 2015.

12. Fatma Dhaou, Inès Mouakher, Christian Attiogbé, and Khaled Bsäıes. A Causal
Semantics for UML2.0 Sequence Diagrams with Nested Combined Fragments. In
ENASE 2017 - Proceedings of the 12th International Conference on Evaluation

Title Suppressed Due to Excessive Length 25

of Novel Approaches to Software Engineering, Porto, Portugal April 28-29, 2017.,
pages 47–56, 2017.

13. C.Sibertin-Blanc O.Tahir and J.Cardoso. A Causality-Based Semantics for UML
Sequence Diagrams. In 23rd IASTED International Conference on Software Engi-
neering, pages 106–111. Acta Press, 2005.

14. Tahir O. Sibertin-Blanc, C. and Cardoso J. Interpretation of UML Sequence Di-
agrams as Causality Flows. In Advanced Distributed Systems, 5th Int. School and
Symposium (ISSAD), number 3563, pages 126–140. Acta Press, 2005.

15. J.-R. Abrial. The B Book. Cambridge University Press, 1996.
16. Dae-Kyoo Kim. Lunjin Lu. Required Behavior of Sequence Diagrams: Semantics

and Refinement. 16th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS), pages 127–136, 2011.

17. M. S. Lund and K. Stlen. A Fully General Operational Semantics for UML 2.0
Sequence Diagrams with Potential and Mandatory Choice. Lecture Notes in Com-
puter Science, (4085):380395, 2006.

18. Maria Victoria Cengarle and Knapp Alexander. UML 2.0 Interactions: Semantics
and Refinement. Technische Universitat Munchen, pages 85–99, 2004.

19. Demissie B. Aredo. A Framework for Semantics of UML Sequence Diagrams. in
PVS Journal of Universal Computer Science (JUCS), pages 674–697, July 2002.

20. Seung Mo Cho, Hyung Ho Kim, Sung Deok Cha, and Doo Hwan Bae. A semantics
of sequence diagrams. Information Processing Letters, 84(3):125 – 130, 2002.

21. Alessandra Cavarra and Juliana Küster Filipe. Formalizing Liveness-Enriched Se-
quence Diagrams Using ASMs. In Abstract State Machines 2004. Advances in
Theory and Practice, 11th International Workshop, Lutherstadt Wittenberg, Ger-
many, Proceedings, pages 62–77, 2004.

22. Shahar Maoz, David Harel, and Asaf Kleinbort. A Compiler for Multimodal Sce-
narios: Transforming LSCs into AspectJ. ACM Trans. Softw. Eng. Methodol.,
2011.

23. Fatma Dhaou, Inès Mouakher, Christian Attiogbé, and Khaled Bsäıes. Refinement
of UML2.0 Sequence Diagrams for Distributed Systems. In Proceedings of the 11th
International Joint Conference on Software Technologies (ICSOFT 2016) - Volume
1: ICSOFT-EA, Lisbon, Portugal, July 24 - 26, 2016., pages 310–318, 2016.

