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Abstract 
The emergence of mutual knowledge is a major cognitive mechanism for the 
robustness of complex socio technical systems. It has been extensively studied from 
an ethnomethodological point of view and empirically reproduced by multi agent 
simulations. Whilst such simulations have been used to design real work settings the 
underlying theoretical grounding for the process is vague. The aim of this paper is to 
investigate whether the emergence of mutual knowledge (MK) in a group of co-
located individuals can be explained as a percolation phenomenon. The followed 
methodology consists in coupling agent-based simulation with dynamic networks 
analysis to study information propagation phenomena: after using an agent-based 
simulation we generated and then analysed its traces as networks where agents met 
and exchanged knowledge. Deep analysis of the resulting networks clearly shows that 
the emergence of MK is comparable to a percolation process. We specifically focus 
on how changes at the microscopic level in our agent based simulator affect 
percolation and robustness. These results therefore provides theoretical basis for the 
analysis of social organizations. 
Keywords:  
agent-based simulation, complex network dynamics, Percolation, social networks, 
mutual knowledge, emergence 
 
 
 
 

1.  Background 
The aim of this paper is to propose a theoretical model for emergent organisations 

such as those often encountered in complex or degraded real-world cooperative 
systems. 
Usually, organisations such as those in emergency control rooms, space control 
centres, and nuclear power plants are composed of a group of people interacting in a 
proximal space (real or virtual). In addition to verbal interactions, people also interact 
in an informal way through gestures and unobtrusive observations of the actions of 
others. 
Such informal organisations are highly paradoxical; whilst there are many rules and 
procedures that constrain how the group should handle critical situations, the way that 
the activities unfold in dealing with an event is mainly non deterministic and 
unstructured. What is interesting is that this paradox is only apparent if we analyse 
the situation from a systemic point of view. There are many examples of this apparent 
paradox, for example in early field studies of Air Traffic Control (ATC) settings, 
Mell observed that even if verbal exchanges between air traffic controllers are fully 
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constrained lexically and syntactically, in the real situation only 20% of exchanges 
follow the rules [18]. In a study concerning incident management in ATC, non-verbal 
communication and the use of informal artefacts were found to strongly structure 
coordination processes within the team [14]. 
The intuition behind these mechanisms is that mutual knowledge emerges more 
'easily' with informal organisations than with normalised exchanges. This is largely 
due to the unobtrusive nature of an informal organisation where actors are gathering 
information as they need it and when their interlocutor seems available. Likewise, 
seemingly adhoc and informal broadcasting of information may also be selective and 
modulated by the context of the situation [5]. 
We are particularly interested in social cooperation and understanding collective 
behaviour where agents in a complex social system may rapidly share information. 
We have seen that mutual knowledge emerges when people are spatially close 
together and are willing to communicate. In such situations, information can 
propagate very rapidly with a minimal perturbation to on-going cognitive processes. 
Mutual knowledge has also been shown to contribute to the exceptional robustness of 
socio-technical systems [17] [19]. However there are many factors that can adversely 
affect emergent behaviours and are detrimental to cooperation. For example, if 
interactions between agents are impaired by noise, or if there are too many 
interlocutors, etc. the emergence of mutual knowledge may be drastically and rapidly 
reduced without actors being aware of the situation. Likewise, if people working in a 
group setting are too involved in their own individual activity, they are no longer able 
to overhear broadcasted communications and, as a consequence, group efficiency is 
drastically reduced (e.g. [17] [19]). 

Despite some analytical studies that have examined information flows in 
organisational settings, there is no particular theory that can explain the advantages of 
such an informal organisation. Our own previous works in the design of such 
organisations, e.g. Air Traffic Control, emergency medical control room, and space 
control centres, used a multi agent simulation approach in order to empirically study 
the advantages and disadvantages of complex emergent organisations [24]. From 
these studies we were able to use these multi-agent models to design complex control 
rooms [23]. Whilst these works employed the general properties of complex systems 
theory, such as emergence and self-organisation, the underlying processes that led to 
advantageous proximal cooperation remained unclear. In this paper we suggest the 
percolation model as a good candidate for increasing our understanding of emergent 
processes in complex organisations. 

Therefore the aim of this paper is: 
• To confirm that the percolation mechanism is a relevant model for explaining 

the emergence of mutual knowledge in a group of people interacting locally in 
a non coordinated way, 

• To understand what are the most important factors that affect the percolation of 
mutual knowledge (e.g. effect of population density, overhearing), 
 

In section 2, we briefly introduce percolation as well as the two types of 
percolation processes (site and link percolation). A more in-depth discussion on 
mutual knowledge, as being generated as part of a complex socio-technical system, is 
given in section 3. Section 4 describes the methodological approach that couples both 
agent-based simulation and network analysis. The experiments performed and their 
results are given in section 5. Here we specifically focus on how changes at the 
microscopic level in our agent based simulator affect percolation and robustness. 
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Finally, section 6 draws some conclusions and discusses the implications of the work. 
 

2. Percolation and its modelling process 
2.1. Percolation and its types 
 

The percolation mechanism was introduced by Broadbent and Hammersley and is 
a long studied phenomenon in the domains of physics and mathematics [3]. A classic 
example in physics is the study of porous material. Here the porosity of the material is 
modelled in terms of a probability that an open space exists between two sites of 
material. Above a certain probability threshold the material will be porous; 
conversely, below the threshold, it will be impermeable. Percolation is a non-linear 
process that can thus explain the emergence of connected clusters; clusters of empty 
space in the case of porous material. What is interesting in this concept is its non 
linear characteristic with singularities which explains how a process, above certain 
threshold, can drastically change its characteristics following universal rules. 
Furthermore these rules are independent of the domain of the process. Outside of 
mathematics, physics and materials science, the percolation mechanism has been 
observed in domains such as economics, ecology, biology, computer networks, 
epidemiology, and social science [6]. In social science and economics this concept 
has been used to better understand the interplay between local and global actors [30]. 
In the marketing domain, a social percolation model has been developed [28] where 
agents represent consumers situated in a social network with the aim of understanding 
potential markets for products. 

The percolation problem considers a network in which each node is occupied with 
probability p and links are present only between occupied nodes. As the probability p 
increases, connected components, called clusters, emerge. Thus the percolation 
problem studies the properties of the clusters, and in particular their sizes, as a 
function of the occupation probability p. It is indeed intuitively clear that if p is small, 
only small clusters can be formed, while a large p will eventually engulf the structure 
of the original network. As a practical example to see the difference between site and 
link percolation, consider a network of people (agents) that communicate in the 
mountains through optical devices (such as a torch or laser). Here the agents will be 
represented as nodes and the links will be the optical signals. If the weather is 
perfectly clear and all agents are efficient, we will have a probability p of 100% of 
communication and the network will be very efficient in propagating the information. 
However, if the agents are totally efficient but with a low level of communication due 
to bad weather, the information will not propagate very far (we have link 
percolation). Alternatively, if the weather is perfectly fine, but the agents are 
inefficient (e.g. not very attentive) then the lack of efficiency in the network is related 
to the site's behaviour (not the links); we are then in a situation of site percolation. 
Finally, if both the agents and the weather are not efficient, we will have a situation of 
mixed percolation. From this simple example, we can better understand the difference 
between site and link percolation [27]. 

 
2.2. Modelling site and link percolation processes 

Let us first consider what happens in site percolation for a two-dimensional lattice 
such as the one depicted in Figure 1. In Fig 1.a, the probability that a site is active is 
0.4. We can see that some sites or nodes are isolated, whilst others are contiguous, 
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forming clusters1 yet there is no cluster that fills the entire network. In Fig 1b, we 
reach the critical probability (p=0.6) when the network is almost filled by connected 
sites (if a porous material were being modelled, we would say that we have reached 
the probability threshold that makes the material porous). In Fig 1.c, the entire 
network is connected. 

Figure 1: An example of site percolation for a square network. Each site is occupied, 
shown as black squares, with a probability p. Fig 1.a: when p is small (p=0.4), only 
little clusters of occupied sites are formed. Fig 1.b: At percolation probability (p= 
0.6), a large cluster starts to emerge. Fig 1.c: Above the percolation threshold, the 
cluster invades the entire space. Note that if the dimension of the network is infinite, 
the cluster will also be infinite above the threshold [22] 
Figure 2 shows the same phenomena but for a link network. In this type of network, 
only the links between sites are considered. 

Figure 2: The same percolation phenomena in a link network [22] 
To study percolation theoretically, we usually consider infinite networks that exhibit 
interesting properties such as: 

● There is a critical p (denoted by pc) below which the probability of having an 
infinite cluster is always 0 and above which the probability is always 1  

● In networks of more than two dimensions, only simulation can approximate 
the percolation threshold pc, it is not possible to calculate it 

● The model has a singularity at the critical point p = pc believed to be of power-
law type 

 
If P(p) is the probability of percolation, we could say that: 

                                            
1The concept of clustering refers to the tendency observed in many natural networks to form cliques in the 

neighborhood of any given link. 
2 We adopt the usual network terminology where an ‘edge’ refers to a link in a non-directed network (i.e. the 
meeting network) and where an ‘arc’ refers to a link in a directed network (i.e. the knowledge network). We will 
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P(p) =0 if p< pc (all clusters have a finite size) 
P(p) >0 if p> pc (a giant cluster appears) 
P(p) is a usually an increasing function with an exception point at the 

percolation threshold 

 
Figure 3: Probability P(p) for a node to belong to the infinite percolating cluster as a 
function of the occupation probability p. We can see a singularity at the percolation 
threshold Pc [15]. 
 
 Above the percolation point, the system exhibits invariant behaviour. The exact 
value of the critical exponents does not depend on the fine details of the percolation 
model. In general, they just depend on the system’s dimensionality and symmetries of 
the order parameter. Thus, while the exact value of Pc depends on the lattice 
geometry, the critical exponents do not. This universality also means that for the same 
dimension independent of the type of the lattice or type of percolation (e.g., link or 
site) the fractal dimension of the clusters at Pc is the same. If we call PG, the 
probability for a node to belong to the infinite percolating cluster, we have [2, p. 125]: 
 

 
This means that PG follows a power law scaling from close to Pc. The scaling 

law expresses the insensibility of the characteristic quantities in a percolation process 
to the local and microscopic details around the critical value Pc. 
The study of the percolation transition as a function of the connectivity properties of 
generalised random graphs finds a convenient formulation in the generating functions 
technique [7], [20]. 
Barrat & al. [2] report conditions for a giant cluster to arise in graphs that have a local 
tree structure with no cycles. They consider an uncorrelated network with degree 
distribution P(k) and compute the probability q that a randomly chosen edge leads to a 
vertex of degree k. This probability is written as the average over all possible degrees 
k of the products of two probabilities: (i) the probability that the randomly picked 
edge leads to a vertex of degree k and  (ii) the probability that none of the remaining 
edges lead to a vertex connected to a giant cluster. This leads to the condition for the 
heterogeneity parameter (K) of the network [2] : 
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For a directed graph, the percolation phenomenon is also shown by the emergence of 
a large cluster in a network. Such a network is a giant cluster if: 

 
 

These are the criteria used to assess percolation in our generated dynamic 
networks. 
 
3. Mutual knowledge and complex socio-technical systems 
 
Mutual knowledge (MK) is knowledge that communicating parties share in common 
and that they know they share [16]. Mutual knowledge is also broadly referred to as 
‘common ground’ and is an integral part in coordinating actions and collaborative 
decision-making [8, 9, 10].  
Whilst MK is a very important concept it is also an ambiguous notion because it 
depends on the observer’s capability and the richness of the media that people use to 
communicate. If we consider people interacting through email messages, the MK will 
depend, not only on the explicit messages exchanged, but also on the inferences that 
each agent may make when they receive the message. 
In more interactive situations like face to face communications, MK will not only 
depend on verbal exchanges but also on non verbal ones such as gesture and posture. 
Physical constraints (such as the distance between agents) and the artefacts that 
mediate the communication can also affect MK. 
It is important to understand that MK, like all emergent processes, needs an observer 
to identify it [1]. Thus the emergence of social structures in animal societies needs a 
human-being in order for it to be described. The actors themselves cannot see the 
global picture. In addition, agents are usually not conscious of the richness of their 
communication processes and an external observer is needed to assess the propagation 
of information as well as the structure of the information itself.  
MK is therefore an abstract concept that may be far removed from real agents real 
representation. Nevertheless, in some ways it represents the knowledge that is 
accessible at a certain time (analogous to potential energy in physical systems). 
Extensive analysis of work situations may lead to an acceptable understanding of the 
parameters that determine MK. If we consider a group of people interacting verbally 
in a room, we may first imagine that communication content, distance, noise, 
background knowledge or the goals of each agent are good candidates for MK 
parameters. In real situations the efficiency of proximal cooperation may depend on 
very subtle parameters such as how to direct information to a specific group of people 
without bothering others, or how to broadcast information dynamically to different 
groups of people without interfering with their on-going cognitive processes.  
In real situations we can also observe that group efficiency behaves in some situations 
like a percolation process. Below a certain threshold of activity (or noise, workload, 
etc.), the group ‘efficiency’ is ‘boosted’ by its proximal local interaction. Above this 
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threshold the group may experience a drastic loss of performance, usually without 
understanding the reason for it. In our previous works this situation was often 
observed in emergency control rooms. If the workload is acceptable, the room is not 
too noisy and overhearing process is efficient. We can then observe the ‘percolation’ 
phenomena: everybody is aware of everything and the network is efficient. However, 
when the workload increases, the noise increases and the overhearing capabilities are 
low. The same group of people may no longer be aware of other activities in the 
group and the efficiency of the group is low [4].  
In order to understand better this process we previously developed empirically based 
simulators using a multi agent approach. The approaches varied from using a very 
detailed cognitive model of interaction [11] to more analytic approaches taking into 
account a limited number of parameters (such as the distance between actors, the 
radius of communication, the type of knowledge, and the rate of information 
exchange).  
In one of these models, agents where moving randomly in their environment and each 
time they met they exchanged all their knowledge about the group to which they had 
initially belonged. MK was defined as the total amount of knowledge that was shared 
by each agent at each instant. We observed that the emergence of MK varied in a non-
linear way with the size of overhearing capabilities (Fig. 4). However we were not 
able to formally identify this process as a percolation phenomenon. The aim of the 
next section is to explain our methodology in order to identify this process as a 
percolation process.  

 
Figure 4: Evolution of MK  (Time to reach 50% of Knowledge) in relation to the 
overhearing capability. M= Mobility of agents, N = number of agents 
 
4. Methodological approach 
 

4.1. Overview 
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The approach to the study of percolation was conducted in 4 phases, as shown in 
figure 5. 

Figure 5: Workflow of our percolation study approach. 
 

The agent-based model characterises the behaviour of the agents in their 
environment. The model was implemented in the Repast toolkit [26] and data from 
each time step was generated and stored in a database. Then, the data is used to 
construct a series of networks using Pajek [21], which is then analysed and visualized 
in R, which is a software package for statistical computation and graphics (R software 
[25]). 

We generate a set of networks where each network represents one iteration of 
the simulation. The number of nodes in each network is equal to the number of agents 
in the simulation run, which is kept constant for each experiment.  

The changes from iteration to iteration of the simulation are thus reflected in 
set of generated networks. Hence, we can see the dynamics of the network over time 
and specifically how the links between the nodes change. Graphs showing the 
evolution of the networks are generated using R [25].  

4.2. Agent-based model and simulator 
 
In this section we describe how the percolation mechanism has been modelled using 
an agent-based approach. Agent-based simulation is based on the idea that it is 
possible to represent computationally the behaviour of entities interacting in a world 
and that emergent phenomena can emerge as a result of these interactions. This 
approach therefore offers us a powerful tool in investigating macroscopic behaviours 
that result from interactions at the microscopic level.  The model simulates the case 
where populations of agents, belonging to different groups, interact within an 
environment. When an agent meets another agent within its perception radius, they 
exchange information concerning their groups.  
 
We are interested in measuring the level of MK over time. Intuitively this social 
phenomenon arises through the propagation of information within a population. The 
evolution of two artificial social networks (a Meeting network and an Exchanged 
Knowledge network) was studied to see if these networks exhibit percolation. As 
mentioned in section 1, the percolation phenomenon is characterised by the 
emergence of a large cluster in a network with the following property: 
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K = (<k2>/2<k>)   > 1    
where k is the number of mean links between the nodes.  
 
If a network exhibits this condition at time t, then it is in a percolation phase.  
We also test how local factors impact this phenomenon at the macroscopic level. The 
factors taken into account are: the size of population; the individual properties of the 
agents (such as their ability to overhear, their propensity to forget information, and 
their mobility); environmental properties such as its dimension, and the nature of the 
exchanged information, such as the frequency of group changes are also considered.  
The model consists of N agents (minimum 103) moving randomly in an environment 
represented as a grid. Each cell of the grid is the same size and may contain one or 
several agents. Agents are initially randomly assigned membership of a specific 
group, which may change over time. Each time an agent meets another agent within 
its neighbourhood, it provides information concerning its own group as well as the 
group names of agents that it knows. An agent A can therefore know the agents that 
agent B knows without having met them. If there is conflicting information, e.g. agent 
A believes that agent C belongs to group 1, whereas agent B believes that it belongs 
to group 2, then the most recent information is used for updating.  Each agent is 
characterized by the following information: 
● ID: Each agent is assigned a number which uniquely identifies that agent 
● Group membership: Each agent is randomly assigned to a group at the start of 

the simulation. An agent may change group randomly over time; a simulator 
parameter is considered for this and is set to false by default. 

● List of agents met: each agent keeps a list of all of the agents that it has met. 
Each element of the list is composed of three fields: the ID of the agent that 
has been met, the group membership of the agent that has been met, the 
number of times that the two agents have met. Initially the list contains only 
one item (the ID and the group membership of the agent itself and the number 
1 -  signifying that the agent has met itself once). If we assume that we have 2 
agents: A and B, each time A meets B there are two possible cases: A is 
meeting B for the first time, in this case A adds a new element to its list 
containing the ID and group of B, and the number 1. If A has already met B, it 
will simply increment the frequency.   

● List of known agents: each agent keeps a list of all the agents that it knows 
either directly or indirectly. Again each element of the list is composed of 
three fields: the ID and group of the agent, and a timestamp indicting when 
this information was obtained. As with the list of agents met, this list initially 
contains information only about the agent itself. When the agent meets another 
agent, say agent B, it adds details of the agents that B knows to its own list and 
updates any incorrect information, such the change of group of an agent. Thus 
if there is an element in B’s list that is not in A’s list, it will be added to A’s 
list (without changing the time). Otherwise, if the element is already in A’s 
list, A checks to see if the group membership is the same in both lists and if it 
is, A uses the most recent time. If the group is different, A checks the time in 
both lists and uses the group corresponding to the most recent time.  

 In addition each agent has the following abilities: 
● Move: agents move randomly in the grid according to a certain speed that was 

specified at the start of the simulation.  
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● Meet: Agent A meets Agent B if they are within each other’s perception 
radius. This radius is the same for all agents and is specified at the start of the 
simulation. The radius represents the ‘overhearing range’ of an agent.  

● Talk (to agents they meet): Agent A talks to Agent B means that A gives a list 
of all the agents and their groups that it knows to B. An agent can talk to 
several agents that it meets at the same time.   

● Listen (to agents they meet): Agent A listens to Agent B means that A 
receives the list of all the agents and their groups from B. 

● Forget: A forgets B means that A forgets what group B is a part of. Practically 
this corresponds to B being deleted from A’s list of agents that it knows. The 
probability of forgetting is a variable set at the beginning of the simulation. 

● Update incorrect information: since agents can change groups over time it is 
likely that an agent will, at some stage, have incorrect information about 
another agent’s group. Therefore each time two agents meet, they compare 
lists and update incorrect information.  
 

Table 1 summarizes the parameters and values that were used during the experiments 
 Name Abbreviation Values 

 
 
 
 

Variables 

Dimension/density 
 
 

d 
 
 

10002, 50002, 
100002 

 
Number of Groups  
 

ng 
 

2 
 

Number of Agents  
 

N 103, 104, 105 

Mobility 
 

m 
 

100, 300, 600, 1000 
 

Overhearing oh 0, 1, 2, 3, 4 
Probability of 
forgetting 

pforg 0.001, 0.1, 0.5, 0.7 

Change 
group/changing 
information 

chgr True, False 

 
Evolution functions 

Speed of diffusion 
(knowledge network) 

  

 
Meeting frequency 
(meeting network) 

  

 
Table 1: Parameters and values of the agent-based percolation simulator  
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Figure 6 below shows the simulator interface. 

Figure 6: Agent based simulator interface at time t. The tab ‘Parameters’ in the 
bottom-left of the figure allows the user to enter the values for the parameters. The 
icons at the top of the figure allow the user to drive the simulation (e.g. initialize the 
model, start or stop the simulator or see a step-by-step iteration of the simulation, 
etc.). Once the simulation is complete, other buttons allow the user to send the results 
to external software packages, such as Pajek, R or even Excel to analyse the structural 
properties of the two networks generated by the simulation.  
 
4.3 Networks 
 
The interaction between agents in the environment is represented by two networks: a 
meeting network and an exchanged knowledge network. The meeting network is a 
weighted non-oriented graph where the nodes represent the agents. An edge between 
two agents with a weight x indicates that one agent has met the other x times since the 
start of the simulation.  Conversely, the knowledge network is a directed graph where 
nodes represent the agents and where the arc2 from agent Ai to Aj indicates that Ai 
knows Aj in the sense that Ai has received, through previously meeting Aj at time t, 
the group membership information about Aj. Note that because it is a directed graph, 
whilst Ai may know Aj, Aj does not necessarily know Ai. 

                                            
2 We adopt the usual network terminology where an ‘edge’ refers to a link in a non-directed network (i.e. the 
meeting network) and where an ‘arc’ refers to a link in a directed network (i.e. the knowledge network). We will 
use the term ‘link’ when we are referring to both networks.  
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We are interested in studying the impact of local factors and the structure of the 
network on the percolation phenomenon. At the beginning of the simulation we set 
the parameter values, e.g. the size of the population, the overhearing range of the 
agents, etc. At the end of each simulation we obtain two sets of networks: a set 
showing how the meeting network has evolved over time, and another one, showing 
how the knowledge network has evolved. 
 
5. Experiments and Results 
 
5.1 Knowledge network: analysing the percolation   
 
The first objective is to look for a percolation process in knowledge network where 
the arcs between the sites indicate that agent Ai knows agent Aj (directed graph). The 
percolation phenomenon is shown by the emergence of a large cluster in a network.  
 
Such a network is a giant cluster if: 
 

 
 

If Ki = input arcs (number of agents that know Ai) and Ko = output arcs (number of 
agents that Aj knows) 
 
with the percolation condition : 
 

 
 
 
PsG (p) = the probability that a site belongs to the infinite cluster of the network. 
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Figure 7: Evolution of the K parameter over time for a knowledge network of size 103 
 
If the network verifies this condition at time t, we will say that it is in a percolation 
phase. Figure 7 shows the evolution of K over time with a knowledge network of size 
103. The figure shows that K > 1 from t =700. 
 
We will now use condition 2 to compute if our site network shows percolation 
characteristics. The expectation is that above a certain value of Ps (probability that one 
node is connected i.e. it is linked to at least one other node) most of the sites will be 
connected and a giant cluster will emerge; the network will percolate. 
 
In order to visualize site percolation, we draw PsG, which is the probability that a site 
belongs to the infinite cluster of the network, in relation to Ps. Our aim is to find the 
point t that shows the percolation threshold (Fig. 8, A).  
In figure 8, the values of PsG  are largely greater than zero below the percolation 
threshold (shown by the red line) and the meeting network does not exhibit site 
percolation phenomenon. Concerning the knowledge network, the values of PbG are 
close to zero below the percolation threshold, showing that arc percolation exists. 
As we can see, in knowledge networks, the percolation condition is not reached for 
site percolation (K>1 but Ps >0). Conversely we can observe arc percolation (K=1, 
PbG ≈ 0).  Figure 8, B shows that PbG begins to be positive at Pb=0.0006 (critical 
point). Thus, in the knowledge network if arc percolation is considered, PbG (i.e. the 
probability that an arc between agents belongs to a giant arc network) meets both the 
first and second conditions (Fig. 8).  
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Figure 8 (A): Probability that a site belongs to the infinite cluster of a network (PsG) 
in relation to Ps (probability that a site is active all over the network). The red line 
shows Ps when K=1 (the condition for the existence of a cluster that percolates). (B): 
Probability that an arc belongs to the infinite cluster of a network (PbG) in relation to 
Pb(probability that an arc is active all over the network). The insert in figure 8, B, 
shows a magnified view at the percolation threshold. The size of the network = 103. 
 
Thus knowledge networks exhibit a arc percolation but no site percolation. In the next 
section we perform the same analysis with meeting networks. 
 
 
5.2 Meeting networks: Analysing the percolation phenomenon  
 
The same reasoning can be applied to meeting networks and the calculation of 
percolation condition becomes:  

    
Figure 9 shows the graph Pbs = f(Ps) for a meeting network of 103 nodes. Following 
the same steps, we can see that the meeting network exhibits a mixed percolation 
phenomenon (node and edge percolation). This result holds for all of the studied 
meeting networks (independent of initial variables). 
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Figure 9 (A): Probability that a site belongs to the infinite cluster of the meeting 
network (PsG) in relation to Ps (probability that a site is active). (B): Probability that 
an edge belongs to the infinite cluster of meeting network (PbG) in relationship to Pb 
(probability that an edge is active). The red line shows Ps for where K=1 which is the 
condition for the existence of a cluster that percolates. Size of the network = 103. 
 
 
5.3 Comparison between the knowledge network and the meeting network 
In order to see the similarities and differences between the knowledge network and 
the meeting network we can compare the respective graphs shown in figure 10. 
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Figure 10: Evolution of Mutual Knowledge (red curve) and meeting rate (black curve) 
over time (logarithmic scale). The vertical red line shows the time of percolation (Tc). 
Percentage on the y-axis is the percentage of MK relation to the maximal MK where 
every agent knows everything about all of the other agents. 
As we can see, below the percolation point Tc, the knowledge is not shared; agents 
may exchange some information but we do not have any propagation of this 
information. Above the threshold (Tc), the percentage of shared knowledge grows 
much more rapidly than the agents that meet. This means that even before all agents 
have met, every agent knows everything and this process has the properties of a 
percolation. This can be explained by the fact that when two agents meet, at 
maximum one edge is added to the meeting network (if the two agents have not met 
before). Conversely, up to 2(n-1) arcs can be added to the knowledge network since 
the two agents exchange their information. 
The common points of the two networks are: 
 

● The two curves have the same appearance (the knowledge level and the 
meeting proportion are close to zero at the start); only a few agents have met 
and information has not been propagated. From Tc (the percolation threshold) 
the curves rapidly increase and become stable and equal to 1 signifying that all 
the agents have met and all the information has been diffused throughout the 
population.  

 
● This observation confirms our previous results: the propagation of information 

and the frequency of meeting are governed by a percolation process; the link 
percolation threshold is the same in the two networks, i.e. 0.001 for 103 
agents. 

 
The differences are: 

● The speed of information propagation is quicker than the meetings. The time 
necessary to reach full mutual knowledge is a lot shorter than the time for all 
the agents to meet. As mentioned previously, when two agents meet, a 
maximum of one edge is added to the meeting network (if the two agents have 
not met before). Conversely, up to 2(n-1) arcs can be added to the knowledge 
network since the two agents exchange their information.  

● The time necessary to reach the percolation threshold is shorter in the meeting 
network, but we cannot currently explain this difference, however the time 
taken for the two networks to be totally connected is negligible.  

● The link percolation threshold is the same in the two networks (knowledge 
and meeting networks), i.e. 0.001 for 1000 agents. 

 
In the following section we analyse how percolation is sensitive to network 
parameters. 
 
5.4 Communities structure 
 
In order to detect the structure of communities in both studied series of networks (the 
meeting and the knowledge network) (size 103) we used Pajek visualization. Figure 
11 shows the result before, during and after the percolation threshold. 
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Figure 11: The knowledge network (up) / meeting network (down) (A) at the 
beginning of the simulation, (B) at the percolation time Tc and (C) after the 
percolation time. (N = 103). 
 
For each of the networks, at the beginning of the simulation, the network is composed 
of small clusters (of which the majority are isolated nodes). When we reach the 
percolation threshold a large cluster appears, and in advancing the simulation all small 
clusters disappear and the large cluster envelops the entire network. These results 
show the presence of a percolation phenomenon. 
 
5.5  Effect of the number of agents 
In order to study the effect of the number of agents (N), we performed simulations 
with N= 103, 104 and 105, d = 5000, m = 1, overhearing = 0 and forgetting = 0. 
Following table 2, we note that for the knowledge, results show that the value for the 
percolation threshold pc vary with 1/N. Indeed it is exactly the probability at which 
the phase transition leads to the emergence of a large cluster appearing in random 
graphs, as shown by Erdos and Renyi (1959). 
 
The percolation threshold (link or node) is reached more rapidly when N increases.  

 
Table 2 : Percolation threshold values (Nb) and the proportion of active arcs (Pbc) 
and time (Tc) in knowledge networks of sizes 103, 104 and 105.  
 
The emergence time of a large cluster (tc) is shorter when N is larger and we reach the 
percolation threshold more quickly when N increases.  
 
5.6 Effect of density 
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We note that the denser the population, the higher the meeting frequency (figure 12 
B) and thus information propagation is more rapid (figure 12 A). 

 
Figure 12: Information propagation (A) and meeting frequency (B) for d = 
10002,50002 and 100002. Percentage = percentage of MK in relation to the maximal 
MK. 
We can see that density does not influence the percolation threshold value in the 
meeting network (node and edge percolation) or in the knowledge network (node and 
arc percolation). However it does influence the time needed to reach the threshold; 
this being shorter for a higher density environment (Table 3).    

 
Table 3: Percolation threshold values of the proportion of links (Pbc) and active nodes 
(Psc) and time (Tc) in knowledge networks (RC) and in meeting networks (RR) for 
different values of d (d=10002, d=50002 and d=100002) 
 
5.7 Effect of overhearing 
In order to observe this effect we ran a series of simulations, each time changing the 
extent of the overhearing (overhearing = 0, 1, 2, 3, 4) whilst keeping the other 
variables stable (N = 103, d = 50002, m = 1, forgetting = 0). 
Figure 13 shows the effect of agents overhearing on the emergence of mutual 
knowledge. We note that when overhearing is higher, the propagation of information 
is faster and the agents produce mutual knowledge more quickly. 
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Figure 13: Evolution of mutual knowledge as a function of overhearing. Percentage of 
MK = percentage of MK in relation to the maximal MK (ef = overhearing 
distance).

 
Table 4: Percolation threshold values of the proportion of links (Pbc), active nodes 
(Psc) and time (Tc) in knowledge networks (RC) and meeting networks (RR) for 
different values of overhearing (overhearing = 0, 1, 2, 3 and 4). 
 
In both networks the percolation threshold is reached more rapidly when overhearing 
is higher, but the threshold value is always the same.  
Concerning the structural properties of the networks, overhearing has no influence on 
the shape of the representative curves. However, there is a difference in the number of 
iterations that it takes to produce the curve, this shows that mutual knowledge 
emerges more quickly when overhearing is higher.  
In the two following sections, we try to assess the robustness properties of mutual 
knowledge processes. We have already seen that MK follows a percolation process 
with universal percolation singularities, as characterized by very fast information 
propagation and threshold values, etc. but we found worthwhile to investigate how 
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such process is robust to destructive processes such as probability to forget, or 
unexpected information modifications. 

 
Figure 14: Meeting frequency as a function of overhearing distance (ef) and time. 

 
5.8 Effect of the probability to forget on information propagation 
 
Studying the effect of forgetting allows us to analyse network robustness against the 
random destruction of some of its links (which is a way to topologically simulate the 
probability to forget). The study is restricted to the knowledge network since 
forgetting concerns knowledge and not meeting. Figure 15 shows that as the 
probability to forget rises, the level of knowledge is weaker and the agents no longer 
produce mutual knowledge.  
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Figure 15: Evolution of mutual knowledge as a function of the forgetting probability 

(oub). Overhearing= 3, Density= 5000x5000, Size of population= 1000. 
 
To better assess this result we calculated the knowledge level obtained in the same 
time interval according to the probability of forgetting (figure 16). The graph shows a 
rapid decrease as the probability of forgetting increases.  
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Figure 16 - Incidence of forgetting (Probability to forget) on the emergence of mutual 
knowledge (MK).  Overhearing= 3, Density= 5000x5000, Size of population= 1000. 
These results allow us to conclude that the network is weakly resistant to the removal 
of some arcs (low forgetting probability). It does not support a frequent removal of 
arcs and becomes disconnected; the information remains local and does not 
propagate.  The robustness of the network is therefore not very strong. 
 
5.9 Effect of changing information  
 
Agents’ group memberships are updated during the simulation. We have measured 
the gap between the knowledge of agents and that of the ‘real-world’ (‘real-world’ in 
this case is the list of true information at each instant. The agents’ knowledge is the 
information held by agents that may disagree with the real world).  
We first studied the effect of the frequency of changing information. As intuitively 
expected, the gap closes when the frequency of changing information is lower (figure 
17). 

 
Figure 17:  Influence of the frequency of changing information (cght) on the 
perception of the environment. Delta  MK = the gap between agent MK and real MK.  
Overhearing= 3, Density= 5000x5000, Size of population= 1000.  
We can see that even a very weak probability of changing information induces a 
permanent gap between the real knowledge held by agents and the mutual knowledge. 
The process is therefore very fragile to loss of agent memory. 
We then investigate if this process of loosing memory depends on the size of the 
population. From figure 18, we can see that increasing the size of the population 
increases the gap between agents’ knowledge and that of the ‘real-world’. Thus, the 
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higher number of individuals that an agent knows, the harder it is to update incorrect 
information.  

 
Figure 18 - Influence of population size (N) on on the gap between the knowledge of 
agents and that of the ‘real-world’ (Delta MK). Overhearing= 3, Density= 5000x5000, 
Size of population= 1000. 
With a low population size (N=1000), the loss of individual memory has almost no 
effect on the quality of mutual knowledge; agents update their knowledge more 
rapidly than they forget their knowledge. 
Finally we analyse how the population density affects mutual knowledge. Figure 19 
demonstrates the importance of the environment where knowledge evolves over time. 
In situations where information must be regularly updated, the simulation shows that 
one of the most influential variables is population density; the denser the population, 
the faster the propagation of false information.  
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Figure 19: Gap between agent’s mutual knowledge and the real-world mutual 
knowledge (Delta MK) for different environmental dimensions. Overhearing= 3, Size 
of population= 1000) 
Contrary to what was expected, overhearing increases the gap between agents’ 
knowledge and the real-world (figure 20). However, this gap starts to decrease when 
the network becomes fully connected, i.e. when all agents are known. So instead of 
improving the capacity of agents to update and correct false information, overhearing 
favours the spread of false information, but after a certain time interval, which is 
shorter when overhearing is higher. This effect will be reversed by playing an 
important role in updating false knowledge. 
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Figure 20: Gap between mutual knowledge and that of the real world (Delta MK). A 
small overhearing abilities (ef= 1) affects the mutual knowledge process more than an 
larger overhearing ability (ef=4). 
The study of robustness properties of social networks is very important because, as 
we frequently see in real systems, security issues of complex socio-technical networks 
are often related to the emergence of mutual knowledge. 
 
These results show that the robustness of the social network depends on several 
factors, such as the size of the population, radius of overhearing, and the density of 
the population.  
We investigate this process through two mechanisms: the probability of forgetting 
agent knowledge and modifying agents’ internal knowledge. 
We have seen that: 

● The network is robust to forgetting as soon as the probability of forgetting 
does not exceed 0.1 

● Randomly changing agents’ internal information, if the probability of change 
is low (<0.01) and the population density is small, does not impact mutual 
knowledge 

● Contrarily to expectations, a low overhearing ability (ef= 1) has a more 
important effect than a high overhearing ability (ef-4), on mutual knowledge. 
This result was interpreted by assuming that a higher overhearing ability more 
greatly affects the propagation of false information than repairing it through 
agent’s meeting. 

Following these results, it appears that social networks that rely on MK to share their 
knowledge are robust but only if false information is marginal. We intend  by deleter 
information, the processes of forgetting or random agent information transformation. 



 

26 

If not, the process of sharing information through meeting is more favourable to the 
propagation of false information than to the stabilisation of a true MK. 

5.10 Summary of results 

 
The meeting networks show a mixed (nodes and link) percolation phenomenon, 
whereas the knowledge network only shows the arc percolation phenomenon.  
At the start of their evolution, networks are composed of small isolated clusters and at 
the percolation threshold a large cluster appears that eventually envelops the entire 
network. 
The value for the link percolation threshold is the same in the two networks and does 
not depend on the size of the network.  
The probability at the percolation threshold for link percolation is inversely 
proportional to the size of the network; this result has also been demonstrated by 
Erdos and Renyi for random graphs. 
In both networks, the degree distribution follows a power law; this is one of the 
principal characteristics of scale-free networks. 
 
 
6 Conclusions  
 
The aim of this paper was to question the theoretical nature of the emergence of MK. 
Emergent behaviour usually refers to spontaneous outcome due to the interaction 
between many actors in critical situations. Such emergent behaviours allow people to 
efficiently cooperate in complex socio technical systems such as Air Traffic Control 
and regulation centres, etc. Multi-agent simulations have been extensively used both 
to reproduce such emergent behaviours and as tools to design robust social networks. 
 
Nevertheless, identifying MK as a percolation process has never been strictly proved. 
Percolation can be seen as a specific and interesting type of emergence because it 
exhibits very specific properties that are independent of the network’s characteristics. 
As examples, we have seen that at the percolation threshold, the size of the connected 
network (also called giant network) grows as a power law; that giant connected 
networks show fractal dimensions, and that the robustness of percolated networks can 
be assessed. 
From a social theory point of view, considering percolation as a specific cooperative 
property in social networks is very interesting since it provides a structural framework 
of the emergence of global properties that go beyond individual representations. Thus, 
it gives us a theoretical framework to understand emergence in real social networks. 
We therefore investigate how percolation can also be seen as a mark of optimization. 
Optimization is often considered as a driving force for the evolution of biological and 
social structures. We can therefore consider that the emergence of MK through 
communication processes is an evolution towards very efficient collective structures. 
 
Our comparison was based on the work of Barratt and his colleagues [2] where they 
propose criteria for the appearance of a giant cluster in graphs that have a local tree 
structure with no cycles. Results clearly show that the dynamics of the emergence of 
MK conform to the critical percolation condition. Conditions on heterogeneity 
parameters are respected and non-linear behaviour is characteristic of emergent 
systems.  
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Concerning the robustness, a network’s robustness was tested with the random 
destruction of some of its arcs (simulating the process of forgetting) as well as with 
changing node information (simulating the process of cheating). Results confirm what 
has often been observed in real situations; that the emergence of robust MK is more 
easily obtained with networks of small population with no deterrent phenomena such 
as forgetting or false information propagation. The emergence of MK appears to be 
very sensitive to deterrent processes. If we view this in light of communication 
theory, we could say that the emergence of MK (or efficient cooperation) may occur 
very rapidly in a cooperative network, but this MK can drop quickly if actors do not 
follow the Grice’s maxims of good cooperation (specifically the sincerity condition) 
[13]. These results are coherent with our empirical field observations that showed that 
the efficiency of team cooperation drastically falls as soon as overhearing is reduced 
(e.g. due to a noisy working environment) or as soon as actors hide information [23]. 
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