
HAL Id: hal-02091586
https://hal.science/hal-02091586

Submitted on 5 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-time Emergency Response through Performant IoT
Architectures

Claudio Arbib, Davide Arcelli, Julie Dugdale, Mahyar T Moghaddam, Henry
Muccini

To cite this version:
Claudio Arbib, Davide Arcelli, Julie Dugdale, Mahyar T Moghaddam, Henry Muccini. Real-time
Emergency Response through Performant IoT Architectures. International Conference on Information
Systems for Crisis Response and Management (ISCRAM), May 2019, Valencia, Spain. �hal-02091586�

https://hal.science/hal-02091586
https://hal.archives-ouvertes.fr

Claudio Arbib et al. Real-time Emergency Response through Performant IoT Architectures

Real-time Emergency Response
through Performant IoT Architectures

Claudio Arbib
University of L’Aquila
claudio.arbib@univaq.it

Davide Arcelli
University of L’Aquila
davide.arcelli@univaq.it

Julie Dugdale
University of Grenoble Alps

julie.dugdale@imag.fr

Mahyar T. Moghaddam
University of L’Aquila
mahtou@univaq.it ∗

Henry Muccini
University of L’Aquila

henry.muccini@univaq.it †

ABSTRACT

This paper describes the design of an Internet of Things (IoT) system for building evacuation. There are two main
design decisions for such systems: i) specifying the platform on which the IoT intelligent components should be
located; and ii) establishing the level of collaboration among the components. For safety-critical systems, such as
evacuation, real-time performance and evacuation time are critical. The approach aims to minimize computational
and evacuation delays and uses Queuing Network (QN) models. The approach was tested, by computer simulation,
on a real exhibition venue in Alan Turing Building, Italy, that has 34 sets of IoT sensors and actuators. Experiments
were performed that tested the effect of segmenting the physical space into different sized virtual cubes. Experiments
were also conducted concerning the distribution of the software architecture. The results show that using centralized
architectural pattern with a segmentation of the space into large cubes is the only practical solution.

Keywords

Emergency Evacuation, IoT, Software Architecture, Network Optimization, Queuing Network.

INTRODUCTION

Building evacuation plans are generally designed as static maps in which pre-defined routes are designed for people
to follow when an emergency happens. However, such maps lack real-time awareness, e.g. emerging dangerous
areas, congestion and obstacles. To overcome this the building may be equipped with IoT components. IoT is
defined as the internal/external communication of intelligent components via the internet in order to improve the
environment through providing smarter services (Muccini and Moghaddam 2018). An IoT infrastructure is generally
composed of sensing, computation and actuation components that are distributed over the area. The way these
components are related and combined together is specified by software architectures. IoT architectures can include
logic rules for quicker and safer evacuation by tracking people in a building, detecting possible congestion, and
updating safety paths. Consequently, the evacuation time under changing emergency conditions can be minimized.

Important questions are: what kind of reasoning algorithm should an IoT-based emergency evacuation system use?
How should it be embedded into an IoT software architecture?. Regarding the logic rules, previous research (Arbib,
Muccini, et al. 2018) (Arbib, Moghaddam, et al. 2019) showed how an IoT system could provide security staff
with information to continuously monitor the shortest time required to evacuate people in a building, whilst also

∗corresponding author.
†All authors contributed equally to this work.

WiPe Paper – Intelligent and Semantic Web Systems Track
Proceedings of the 16th ISCRAM Conference – València, Spain May 2019

Zeno Franco, José J. González and José H. Canós, eds.

Claudio Arbib et al. Real-time Emergency Response through Performant IoT Architectures

showing the occupants the best evacuation path. Other research (Muccini, Arbib, et al. 2019) developed a network
flow algorithm that can be used in a computer simulation for designing buildings, and also in real-time building
evacuation. The authors (Muccini, Spalazzese, et al. 2018) (Muccini and Moghaddam 2018) further argued that
the flow algorithm can be embedded into the core of an IoT architecture. The algorithm decomposes both the
space (building plan) and the time dimension into finite elements: unit cells and time slots. The space element is
monitored by IoT sensors, whose data are constantly feed into the algorithm. The algorithm can be run on one
centralized component or on distributed collaborating controllers.

This paper extends previous works by assessing: i) how the the operational delay (evacuation time) and computational
delay (CPU time), which are calculated by the algorithm, can be practically used used in an IoT system; ii) the
feasibility of running the algorithm in distributed processing and storage (P&S) components; iii) the impact of
changing the granularity of the space cells in the IoT system.

This paper makes the following contributions:

• We introduce a novel set of queuing network models that can be exploited for estimating the performance of
IoT systems in order to support architectural decisions.

• We present the algorithm and assess its reaction to time- and space-decomposition.
• We present an optimization model for deciding on a good cell size.
• We evaluate our work by using the real case study of an exhibition venue, in the Alan Turing building, in Italy,
with real data. Using various techniques and simulations we design the best internal building layout to handle
emergency evacuations.

To the best of our knowledge, this is the first attempt to fill the gap between IoT software architectures, optimization
algorithms for minimizing delays and performance modelling and analysis practices, in the context of emergency
evacuation.

OVERVIEW

There is a large body of previous work in the three topics that shape our research: IoT software architecture, queuing
networks, and optimization algorithms. However, their application to the emergency management has been rarely
explored.

Related Work

QNs have been widely and successfully applied to the hw/sw performance assessment domain (Cortellessa et al.
2011; Petriu et al. 2012) and several implementations have been developed by providing editors and analysis
environments with QN models. Many existing approaches use QNs as first-class entities for performance analysis
(Arcelli and Cortellessa 2013; Trubiani et al. 2014; Altamimi et al. 2016; Arcelli, Cortellessa, and Leva 2016).
Despite the wide adoption in the performance domain, QNs have started to be exploited for non-functional
assessment in the context of IoT systems only in recent years.

El Kafhali et al (El Kafhali and Salah 2018) proposed an analytic model for a fog/cloud-based Medical IoT system
showing how to reduce the cost of computing resources while guaranteeing performance constraints. They used the
QN concept to predict the system response time and estimate the minimum required number of P&S resources to
meet the service level agreement. However, they do not provide any kind of high or low level architectural model.
Huang et al (Huang et al. 2018) propose a theoretical approach of performance evaluation for IoT services, which
provides a mathematical prediction on performance metrics during design before system implementation. The
authors formulate an atomic service by a queuing system in order to model IoT systems by a queuing network
and obtain performance metrics. Whilst using QN, this paper does not address any modeling based on software
architecture to be assessed by performance indices. Whilst few related works have been found on IoT systems
modeling with QNs, we did not find any previous work on modeling emergency evacuation systems by QNs.

IoT software architectures

IoT architectures are generally composed of three main layers (Muccini and Moghaddam 2018) namely Perception,
Processing and Storage (P&S), and Application:

• The Perception layer represents the IoT physical sensors that collect information. For emergency management,
this layer hosts a large number of different types of sensors, e.g. temperature, smoke and movement detectors.

WiPe Paper – Intelligent and Semantic Web Systems Track
Proceedings of the 16th ISCRAM Conference – València, Spain May 2019

Zeno Franco, José J. González and José H. Canós, eds.

Claudio Arbib et al. Real-time Emergency Response through Performant IoT Architectures

• TheApplication layer determines the class of services provided by the IoT system. For emergencymanagement,
this layer hosts a large number of different types of actuators, e.g. dashboards, evacuation signs and alarms.

• The P&S layer is the central entity of an IoT system that stores and analyses data gathered by the perception
components to be accessed by other entities for their applications. Based on the P&S design philosophy, this
layer can be divided into various sub-layers to set up the IoT patterns as follows:

Centralized. In a centralized pattern, data coming from the perception layer are processed by a central component
that makes decisions on actuation. This central component can either be a local controller or, for massive P&S
requirements, the cloud. Based on this pattern, if a device wishes to use an IoT service, it must connect to the
central P&S component. A centralized architecture simplifies things through a central implementation of analysis
and planning algorithms.

Collaborative. In this pattern, data are processed and stored separately (locally and/or remotely) but with the
potential collaboration of other local/remote P&S components of the IoT system. In this pattern, a network of local
intelligent components can communicate in order to form and empower IoT services. The advantage is that, should
a local P&S component fail, a service would still be provided.

Given the above, we designed a set of QNs for IoT architectures that are described in following sections.

Queuing networks

In order to estimate performance indicators and avoid the performance degradation issues associated with IoT
architectural patterns, we rely on Queuing Network (QN) models. QNs have emerged as powerful instruments to
model and estimate the performance of hardware and software systems. They ground on theoretical foundations
based on an algebraic approach to computer system modelling proposed by Lazowska in 1984 (Lazowska et al.
1984), where the computer system is represented as a network of delay and/or queuing stations (i.e. topology of the
QN). Different classes of jobs may flow through the QN, each representing different types of user requests (i.e.
dynamics within the QN). While flowing through the QN, each task requires a certain amount of service, namely
service demand (mentioned as CPU time in this paper) to each visited station, depending on the job class the task
belongs to. It is worth mentioning that, service demands represent input parameters that must be specified during
QN design. Beside service demands, workload intensities must be specified, that is the rate at which tasks of each
job class enter the QN. For example, a request (of a certain job class) every 2.5 seconds.

Once a QN has been designed, it can be solved analytically or by simulation, carrying out performance indices of
interest such as system/stations response time and throughput for both the overall system and single classes of jobs.

Algorithm

The building to be evacuated is represented as a graph G = (V, A) with nodes corresponding to the unit cells i
obtained by embedding the building into isometric square grids. Cell 0 conventionally represents the outside of the
building, or in general a safe place. The arcs of G correspond to passages between adjacent cells: the passage has
full capacity if cells share a boundary uninterrupted by walls, and a reduced capacity otherwise. With no loss of
generality, arcs are supposed directed. Let us denote:

T = {0, 1, . . . , τ}, set of unit time slots;

yti = state of cell i ∈ V at time t ∈ T , that is, the number of persons that occupy i at t: this number is a known
model parameter for t = 0 (in particular, y0

0 = 0) and a decision variable for t > 0;

ni = capacity of cell i: this is the maximum nominal number of people that i can host at any time (in particular,
n0 ≥

∑
i y

0
i); this amount depends on cell shape and size; if cells are assumed to be uniform one can set

ni = n for all i ∈ V, i , 0.

xti j = how many persons move from cell i to an adjacent cell j in (t, t + 1]: this gives the average speed at which
the flow proceeds from i to j;

ci j = cji = capacity of the passage between cell i and cell j: this is the maximum number of people that,
independently of how many persons are in cell j, can traverse the passage in the time unit (independence of
cell occupancy means that congestion is not taken into account: this will be considered later).

WiPe Paper – Intelligent and Semantic Web Systems Track
Proceedings of the 16th ISCRAM Conference – València, Spain May 2019

Zeno Franco, José J. González and José H. Canós, eds.

Claudio Arbib et al. Real-time Emergency Response through Performant IoT Architectures

The flow model uses an acyclic digraph D with node set V × T and arc set

E = {(i, t) → (j, t + 1) : i j ∈ A, t ∈ T}

In other words, D models all the feasible transitions (moves between adjacent cells) that can occur in the building in
the time horizon T . Transitions are associated with the x-variables defined above, whereas y-variables define the
occupancy of each room (and of the building) over time. In real-time, these values can be periodically obtained
by the previously described IoT infrastructure. The x- and y-variables are integers and subject to the following
constraints:

ytj − yt−1
j −

∑
i:i j∈A

xt−1
i j +

∑
i:ji∈A

xt−1
ji = 0 j ∈ V, t ∈ T, t > 0 (1)

0 ≤ xti j + xtji ≤ ci j t ∈ T, i j ∈ A (2)
0 ≤ yti ≤ ni t ∈ T, i ∈ V (3)

Equation (1) is just a flow conservation law: it expresses the occupancy of cell j at time t as the number yt−1
j of

persons present at time t − 1, augmented by those during interval (t − 1, t] that move to j from another cell i , j,
minus those that in the same interval leave cell j for another cell i , j. Box constraints (2), (3) reflect the limited
hosting capability of the elements of G.

Maximizing outflow at a given time. To model the relation between time and people outflow, one can try to
maximize the number of persons evacuated from the building within τ:

max yτ0 (4)

To find the minimum total evacuation time, one can solve an Max Flow Problem for different τ, looking for the least
value that yields a zero-valued optimal solution. To reduce computation time, this optimal τ can be computed by
logarithmic search. The method can thus provide the decision maker with the Pareto-frontier of the conflicting
objectives min{τ},max{yτ0 }. Linearizing arc capacities that is quite standard in applications can be find in our
previous work (Muccini, Arbib, et al. 2019).

DESIGNING PERFORMANT ARCHITECTURES FOR EMERGENCY HANDLING

Software Architecture for Emergency

Figure 1 shows an example of an IoT-based environment for emergency response: CCTV cameras detect peoples
position and movement that is used to feed the algorithm running in a P&S component. The algorithm decides on
the actuation set based on the situation. In normal situations, the system shows, on a tablet, a 2D-representation of
the monitored space and shows where crowds are located and how they move at any time. In this mode, the optimal
flow algorithm is periodically run to estimate the minimum evacuation time required under current conditions. This
value can be used to regulate visitor access to a venue in order to comply with safety conditions. If an emergency
happens, in addition to the tablet map, alarm actuators are activated and evacuation signs in each area show the best
evacuation routes based on the network model described above.

Figure 2 shows the corresponding software architecture. As depicted, additional sets of sensors can be embedded for
emergency detection to further enable controllers to decide about normal or critical mode and activate a special set
of actuators. As shown in the upper part of Figure 1, in addition to the computational delay of the P&S component,
the sensors take some time to detect peoples position, transmit these data, and display the best evacuation routes.
Reducing these delays to a minimum improves the system’s functionality: since people can follow the given
instructions more quickly and more individuals will be in a better evacuation position at the next monitoring
time-spot. It is worth mentioning that reducing the aforementioned delays is a function of software architectural
patterns, to be improved by properly relating the IoT components to one another. The following section presents a
Queuing Network (QN) method that is designed on top of the software architecture, so as to facilitate assessing the
performance of our IoT-based emergency handling system.

Queuing Networks for Emergency

Fig. 3 shows a QN representing the performance model that we will exploit later in the paper for our case study.
The QN conforms to the architectural patterns of Fig. 2, in fact, from a topological perspective:

WiPe Paper – Intelligent and Semantic Web Systems Track
Proceedings of the 16th ISCRAM Conference – València, Spain May 2019

Zeno Franco, José J. González and José H. Canós, eds.

Claudio Arbib et al. Real-time Emergency Response through Performant IoT Architectures

Figure 1. IoT Infrastructure for Emergency Handling.

Figure 2. Architectural Patterns. Only Controller 1 Active: Centralized - Both Controllers Active: Collaborative.

WiPe Paper – Intelligent and Semantic Web Systems Track
Proceedings of the 16th ISCRAM Conference – València, Spain May 2019

Zeno Franco, José J. González and José H. Canós, eds.

Claudio Arbib et al. Real-time Emergency Response through Performant IoT Architectures

Figure 3. SMAPEA Queuing Network for the Alan Turing building case study.

• CCTVs corresponds to a specific kind of sensors, i.e. cameras.
• Dashboard, Alarm and EvacuationSigns, correspond to the three kinds of actuators.
• CentralController and PeerController correspond to the two P&S components.
• PL2IL and IL2AL represent networks between sensors and controllers and between controllers and actuators,
respectively.

• The two QN constructs on the left and right of the figure, namely Sampling and Done represent the entry and
exit points of the QN, respectively. In particular, Sampling indicates the point where data sampled by sensors
is generated and Done represents the point where actuation ends.

Concerning dynamics, we devise the following control flow within IoT architectures: i) Data are sampled by sensors
and forwarded through a network to controller(s); ii) A control layer aims at achieving the goal of evacuating people
during emergency, through an actuation plan that is forwarded to actuators; iii) The actuation plan is implemented
by actuators, thus possibly achieving the common goal.

The above control flow can be translated into QN language, by identifying a minimal set of 6 different kinds of
tasks within a QN for IoT system performance (namely SMAPEA loop), sequentially executed as follows: 1.) Sense:
Raw data retrieval. 2.)Monitor: Raw data aggregation and refinement for analysis at controller level. 3.)Analyze:
Interpretation of monitored data. 4.)Plan: Building an actuation strategy. 5.)Execute: Pre-processing the actuation
strategy towards actuation. 6.)Actuate: Practically undertaking the actuation by implementing the planned execution.

In order to implement the SMAPEA loop, a class-switch that transforms each SMAPEA task to a subsequent
task is introduced (see the S→M→A→P→E→A element of Fig. 3). Moreover, routing probabilities for the
switch must be properly defined. In particular, right after the switch, any SMAPEA task type is routed back to
controllers through the ChooseController router (except Actuate tasks that are routed to IL2AL for actuation). By
exploiting a probability-based routing strategy for ChooseController both Centralized and Collaborative patterns
can be implemented, in fact the former may route any task to CentralController, whilst the latter may route tasks to
CentralController or PeerController with 50% probability.

Notice that, in the QN of Fig. 3, fork/join nodes have been introduced, namely SpecificSampling (fork),
SamplingPacket (join), SpecificActuation (fork), AfterActuation (join), aimed at modelling the fact that Sense and
Actuate tasks involve the specific sensor and actuator sets, respectively. For example, each CriticalActuate task is
split into three new tasks, namely DashboardActuate, AlarmActuate and EvacuationSignsActuate, because in case
of emergency i) the best evacuation paths must be displayed on dashboard, ii) an acoustic alarm must be triggered
and iii) evacuation signs must be properly turned on.

Algorithm Settings for Emergency

Cell Size Setting and its Impact on Architecture.

The cell size has an obvious effect on the resulting spatial patterns, and consequently on both the computational
efficiency and model accuracy: the larger the cell, the fewer vertices in G and the lower the refresh frequency
at which people’s positions are updated. Given the speed at which people move and the data that are acquired,
relatively low refresh frequencies are not an issue. Instead, partitioning each room into identical cells may result in
a huge network with consequently high CPU time. This issue has a direct impact on software architectural patterns
since an operation which requires a huge amount of processing time on a low capacity machine is not suitable for
real-time applications. Therefore it should be processed on a more powerful (potentially remote) P&S component.

WiPe Paper – Intelligent and Semantic Web Systems Track
Proceedings of the 16th ISCRAM Conference – València, Spain May 2019

Zeno Franco, José J. González and José H. Canós, eds.

Claudio Arbib et al. Real-time Emergency Response through Performant IoT Architectures

Figure 4. Alan Turing Building IoT Infrastructure.

In general, one can approximate the diverse room shapes by a × b rectangles as large as possible, while still
minimizing any consequent error. Various ways can be adopted to measure approximation error: the most natural is
the difference between real and approximated room area, in which case, for room k of size pk × qk , the error is
given by

ek(a, b) = qk[pkmod(a)] + pk[qkmod(b)] − [pkmod(a)][(qkmod(b)]

Aswe need isometric cells and look for a uniform approximation, we set a = b and find a minimizing maxk{ek(a, a)},
meanwhile limiting the total number of approximating cells to some predefined m: hence we choose among the
values of a that fulfill

∑
k bpk/ac bqk/ac ≤ m. A brief description of the method implementation is presented in the

Application section.

Time and Space Decomposition Setting and its Impact on Architecture. In order to run the algorithm in
distributed P&S components (collaborative pattern), we assessed the space- and time- decomposition feasibility. In
the former case, we can give, for instance, two controllers the responsibility of two distinct areas, and let them share
border information. Since the global objective cannot generally be satisfied by summing up two local objectives (that
is running the algorithm in two local controllers instead of a central one), this method mostly leads to a non-optimal
solution obtained by “gluing” together the two distinct areas. In the latter case, we conjectured that the optimal flow
obtained at time t can be extended to t + 1 and stay optimal. This means that, for instance, one P&S element is
in charge of solving the algorithm for teven, and for todd (Figure 6) whilst sharing a level of data. Assessing this
decomposition and taking into account our main requirement of optimally is described in the Application section.
Here we can observe the ability of the algorithm to be run in a distributed way or centralized.

APPLICATION

Our proposed model has been applied to the evacuation of the Alan Turing building, in Italy, which is sometimes
used for exhibitions. The considered building consists of 29 rooms, 4 main corridors and 34 sets of IoT sensors
and actuators (Figure 4). In order to investigate our approach we address four research questions. The first two
questions are centered around the algorithm and its levels of granularity and distribution:

• RQ1: what are the best cells sizes to divide the building surface, and how does the size affect the evacuation
times and computational delays?

• RQ2: does running the algorithm in a time-decomposed way increase or decrease the computational and
operational delays? What are the designed software architectures corresponding to these results?

The next two research questions focus on software system delays (using Queuing Networks):

• RQ3: what level of delay is associated with each QN model?

• RQ4: which software architectural design decisions facilitate real-time applications?

WiPe Paper – Intelligent and Semantic Web Systems Track
Proceedings of the 16th ISCRAM Conference – València, Spain May 2019

Zeno Franco, José J. González and José H. Canós, eds.

Claudio Arbib et al. Real-time Emergency Response through Performant IoT Architectures

Figure 5. Optimal cell size: maximum error (right) and network size as a function of cell size (left).

Answers to RQ1: cellular approximation of physical space

We split each room in unit cells, each behaving as a (virtual) square room that can be traversed in a unit time slot. In
practice, we embedded the building plan into a square grid as shown in Figures 6 and 8. To decide the cell size, we
look at both the error introduced by room approximation and the number of nodes in the resulting graph G. The
latter is in an inverse proportion of cell size (left diagram in Figure 5); the former varies irregularly with cell size
(right diagram of Figure 5). We considered square cells up to 3 × 3 meters (the short edge of the smallest room) and
allowed no more than 2000 nodes of G; then we selected the size that minimizes the largest error for all rooms. The
reason of considering such a big maximum network size is to assess the impact of increasing the number of nodes
on CPU time and consequently, on the software architectural pattern. As shown in Figure 5, 1.5 × 1.5 cells (Figure
8) give the best approximation (no error) and involve 687 graph nodes (Figure 9). With 3 × 3 cells (Figure 6) the
error rises to 13.5 but G contains only 144 nodes (Figure 7). Summarizing, 3 × 3 leads to larger error but less CPU
time; conversely, 1.5 × 1.5 causes larger CPU time but no error. We tested scenarios with both cell sizes in order to
find the best efficiency/accuracy compromise.

Simulation. Simulations were first run for both cell sizes. The simulation code was written in the OPL language
and problems were solved by CPLEX version 12.8.0. All experiments were run on a Core i7 2.7GHz computer
with 16Gb of RAM memory under Windows 10 pro 64-bits. In all tests, we computed the minimum time required
for 264 persons, randomly distributed in the building rooms, to reach a safe place. This datum comes from an
experiment performed in the Alan Turing during the the Researchers Night event, when the IoT system recorded the
simultaneous presence of 264 people in the building as a peak value. We solved problem (1-4) for τ = 1, 2, . . . until
a solution of value 264 was found.

To get a reliable model, some more parameters such as walking velocity under various conditions, door entrance
capacities and room capacities must be set to numbers that reflect reality. We set these model parameters based on a
literature review (Table 1).

Table 1. Evacuation Model Parameters

Table 2 reports the number of evacuees at each τ and the computation time of each solution step. Computation is
done for both low- and high-resolution networks (respectively, 3 × 3 and 1.5 × 1.5 cells). With the low-resolution
network, we get the evacuation and CPU times shown in Table 2 left: in terms of evacuation, everyone has reached
a safe place in 55 seconds; on the other hand, computation requires 2.33 seconds in the worst case, and is therefore
totally compliant with real-time applications. Evacuation and CPU times for the high-resolution network are
reported in Table 2 right. We see that everyone has reached a safe place in 98’75”. CPU time is now much
larger (382.24 seconds in the worst case) and the model appears inappropriate for real-time use, unless additional
computational resources are deployed. Hence we can conclude that sufficient accuracy is obtained using the low
resolution network.

WiPe Paper – Intelligent and Semantic Web Systems Track
Proceedings of the 16th ISCRAM Conference – València, Spain May 2019

Zeno Franco, José J. González and José H. Canós, eds.

Claudio Arbib et al. Real-time Emergency Response through Performant IoT Architectures

Figure 6. Plan embedding the Alan Turing building into square grids with a low resolution: 3 × 3 cells. The area
that is not covered by cells (error) is shown in gray.

Figure 7. Network associated with the plan of Figure 6.

WiPe Paper – Intelligent and Semantic Web Systems Track
Proceedings of the 16th ISCRAM Conference – València, Spain May 2019

Zeno Franco, José J. González and José H. Canós, eds.

Claudio Arbib et al. Real-time Emergency Response through Performant IoT Architectures

Figure 8. Plan embedding the Alan Turing building into square grids with a high resolution: 1.5 × 1.5 cells.

Figure 9. Network associated with the plan of Figure 8.

WiPe Paper – Intelligent and Semantic Web Systems Track
Proceedings of the 16th ISCRAM Conference – València, Spain May 2019

Zeno Franco, José J. González and José H. Canós, eds.

Claudio Arbib et al. Real-time Emergency Response through Performant IoT Architectures

Table 2. Evacuation and computation time: a) 3 × 3 cells (time slots of 2.5 seconds); b) 1.5 × 1.5 cells (time slots of
1.25 seconds).

Answers to RQ2: Time Decomposition

Table 3 gives the number of evacuees at each τ and the computation time of each solution step corresponding to
time-decomposed networks (collaborative P&S). With a time-decomposed simulation of 3 × 3 cells, we obtain
the evacuation and CPU times in Table 3 left: in terms of evacuation, everyone has reached a safe place in 75
seconds, however computation requires 0.58 seconds in the worst case, and is therefore compliant with real-time
applications. Compared with continuous simulation (central P&S) of the same case that is presented in Table 2 left,
whilst CPU time is now significantly reduced, the optimal evacuation time is increased by 36 percent. Looking at
the time-decomposed simulation results for 1.5 × 1.5 cell (Table 3 right), CPU time is decreased by at least 123
percent (being 3.11 seconds in the worst case) and the evacuation time remained constant.

Hence, for a high resolution time-decomposed network: whilst the operational delay remains constant, the
computational delay improves significantly. However total response time should be observed since the quicker
sampling rate tied up with high resolution may cause a negative impact. For a low resolution time-decomposed
network: whilst the computational delay decreases, the evacuation delay (that has a priority over all other
delays) increases: so that running the algorithm in a collaborative architecture is not recommended, regardless of
melioration/deterioration of total response time.

Taking into account the result of this subsection and keeping evacuation time and CPU time as inputs, the following
subsection practically assesses, in terms of total response time (delay), the quality of proposed architectural patterns
with respect to four different scenarios, resulting from the different combinations of architectural patterns designed
to handle emergency situations:

1. Centralized with High Resolution (Centralized-HR): the critical situation is handled by a continuous simulation
of the algorithm, (on a single controller) and physical space is divided into 1.5 × 1.5 cells.

2. Centralized with Low Resolution (Centralized-LR): the critical situation is handled by a continuous simulation
of the algorithm, (on a single controller) and physical space is divided into 3 × 3 cells. Therefore, again all
tasks are routed to a central controller.

WiPe Paper – Intelligent and Semantic Web Systems Track
Proceedings of the 16th ISCRAM Conference – València, Spain May 2019

Zeno Franco, José J. González and José H. Canós, eds.

Claudio Arbib et al. Real-time Emergency Response through Performant IoT Architectures

Table 3. Evacuation and computation time for time-decomposed scenarios: a) 3× 3 cells (time slots of 2.5 seconds);
b) 1.5 × 1.5 cells (time slots of 1.25 seconds).

3. Collaborative with High Resolution (Collaborative-HR): the situation is handled by a time-decomposed
simulation of the algorithm, (on collaborative controllers) and physical space is divided into 1.5 × 1.5 cells.
This means that the two available controllers are intermittently chosen as the destination of routed tasks.

4. Collaborative with Low Resolution (Collaborative-LR): the emergency situation is handled by a time-
decomposed simulation of the algorithm, (in a collaborative way) and physical space is divided into 3 × 3
cells. Thus, one of the controllers handles the situation for odd and the other for even time slots.

Answers to RQ3: Total Delay Assessment using Queuing Networks Parameterization

In order to realize the software architectures resulting from algorithm simulations, we exploit the QN of Fig. 3
that we have previously introduced, with the four different sets of input parameters needed to model the software
architectures resulting from algorithm simulations.

Sense tasks (by CCTVs) are generated at a certain rate (i.e. every 2.5 seconds for high resolution and 1.25 seconds
for low resolution networks). These rates are the monitoring frequencies, and is the time taken for an individual to
cross a single cell in our crowd monitoring algorithm. Such time intervals represent a key-value, due to their impact
on the overall evacuation delay.

Exponential distributions are used to define CPU times. Table 4 reports the means of such distributions for our
case study, which have been estimated in several ways. Our focus is on evacuation, i.e. CriticalPlan-HR and
CriticalPlan-LR, which have been estimated by formulating the evacuation handling problem within CPLEX. Other
parameters are set as follows:

• Service time distribution means for sensors, networks and actuators, have been obtained by modelling the IoT
system for the Alan Turing building with CAPS, our simulation framework (Muccini and Sharaf 2017). CPU
times for sensors, actuators and networks, have been calculated in terms of transmission and propagation
delays (td and pd, respectively).

WiPe Paper – Intelligent and Semantic Web Systems Track
Proceedings of the 16th ISCRAM Conference – València, Spain May 2019

Zeno Franco, José J. González and José H. Canós, eds.

Claudio Arbib et al. Real-time Emergency Response through Performant IoT Architectures

• Service time distribution means for controllers refer to SMAPEA task types. Sense tasks have zero CPU time
since they do not introduce additional computation for controllers, hence they just need to be transformed
into Monitor tasks.

• As shown in Table 4, Monitor and Execute tasks are equal and have the same order of magnitude of Analyze.
To avoid further complexity, we ignore formulating optimization models for such task types, by setting
arbitrary values as follows: we assume that aggregating raw data (i.e. Monitor) and building a list of atomic
actions to execute (i.e. Execute) are less demanding than interpreting monitored data (i.e. Analyze).

Table 4. SMAPEA Task Types and CPU Times for case Study

Simulation. We assess the total delay corresponding to each IoT architectural pattern design based on the flow
algorithm. The response time (delay) that is analyzed is the mean time spent from starting the sampling to the time
that actuation ends.

Table 5 reports, for each scenario, the overall system response time (in seconds) in the second column and the
architectural design decision in the third column.

Table 5. Experimental results.

Pattern System response time (s) Architectural design decision
Centralized with HR System saturation Violates real-time requirement
Centralized with LR 1.5085 Practical
Collaborative with HR 26.5597 Violates real-time requirement
Collaborative with LR 0.5864 Violates optimally requirement

Answers to RQ4: Architectural Design Decision. Experimental results show that, in LR, the collaborative pattern
minimizes system response time. However, this pattern does not satisfy the precondition of optimal evacuation of
people from the building. Thus, the centralized pattern may be more appropriate in a critical mode. The drawback
is that, managing critical cases with the centralized architecture increases system response time by more than 200%
with respect to the collaborative one. The solution could use the HR network. However, HR does not allow the
system to fulfill the real-time requirement, due to two factors: i) working in HR requires much more CPU time; ii)
the sampling rate doubles when the system performs in HR. Both factors contribute to a significant worsening of
performance that might lead to system saturation (as for the Centralized-HR).

As a result of the considerations above, only one pattern could be adopted, i.e. the Centralized-LR.

It is worth noticing that, in order to address the sampling rate for HR (i.e. 1.25), while satisfying the precondition
that minimizes operational delay, the CPU time of the controller in the Centralized pattern should have the same
order of magnitude of the controllers in the Collaborative-LR. For example, with a CPU time of 0.5016667 (i.e.
the same as the Collaborative-LR), the Centralized-HR would show a system response time of 0.6535 seconds

WiPe Paper – Intelligent and Semantic Web Systems Track
Proceedings of the 16th ISCRAM Conference – València, Spain May 2019

Zeno Franco, José J. González and José H. Canós, eds.

Claudio Arbib et al. Real-time Emergency Response through Performant IoT Architectures

(i.e. 11.5% more than Collaborative-LR). As a second example, with a CPU time of 2.0164557 (i.e. the same
as Collaborative-HR), the Centralized-HR would experience continuous saturation that might lead to a system
response time in the order of hours.

CONCLUSION

This work uses the Queuing Network concept in order to model the IoT architectural patterns for emergency
evacuation, and assess the patterns’ corresponding delays. The architecture has a core computational component in
the form of network flow, which supports the design decision by providing the model with expected operational and
computational delays. Preliminary evaluations using data from a real case, and an ad-hoc IoT infrastructure showed
the suitability of a centralized software architecture based on a low resolution division of the building surface.

REFERENCES

Altamimi, T., Zargari, M. H., and Petriu, D. C. (2016). “Performance analysis roundtrip: automatic generation of
performance models and results feedback using cross-model trace links”. In: Proceedings of the 26th Annual
International Conference on Computer Science and Software Engineering, CASCON 2016, Toronto, Ontario,
Canada, October 31 - November 2, 2016. IBM, pp. 208–217.

Arbib, C., Moghaddam, M. T., and Muccini, H. (2019). “IoT Flows: A Network Flow Model Application to Building
Evacuation”. In: M. Gaudioso, M. Dell’Amico and G. Stecca (Eds.) A view of operations research applications in
Italy. Springer.

Arbib, C., Muccini, H., and Moghaddam, M. T. (2018). “Applying a network flowmodel to quick and safe evacuation
of people from a building: a real case”. In: Proceedings of the GEOSAFE Workshop on Robust Solutions for Fire
Fighting, RSFF 2018, L’Aquila, Italy, July 19-20, 2018. Pp. 50–61.

Arcelli, D. and Cortellessa, V. (2013). “Software model refactoring based on performance analysis: better working
on software or performance side?” In: Proceedings of the 10th International Workshop on Formal Engineering
Approaches to Software Components and Architectures, FESCA. Vol. 108. EPTCS, pp. 33–47.

Arcelli, D., Cortellessa, V., and Leva, A. (2016). “A Library of Modeling Components for Adaptive Queuing
Networks”. In: Computer Performance Engineering - 13th European Workshop, EPEW 2016, Chios, Greece,
October 5-7, 2016, Proceedings. Vol. 9951. Lecture Notes in Computer Science. Springer, pp. 204–219.

Cortellessa, V., Di Marco, A., and Inverardi, P. (2011). Model-Based Software Performance Analysis. Springer
Berlin Heidelberg.

El Kafhali, S. and Salah, K. (2018). “Performance Modeling and Analysis of IoT-enabled Healthcare Monitoring
Systems”. In: IET Networks.

Huang, J., Li, S., Chen, Y., and Chen, J. (2018). “Performance modelling and analysis for IoT services”. In:
International Journal of Web and Grid Services 14, p. 146.

Lazowska, E. D., Zahorjan, J., Graham, G. S., and Sevcik, K. C. (1984).Quantitative system performance - computer
system analysis using queueing network models. Prentice Hall.

Muccini, H., Arbib, C., Davidsson, P., and Tourchi Moghaddam, M. (2019). “An IoT Software Architecture for
an Evacuable Building Architecture”. In: Proceedings of the 52nd Hawaii International Conference on System
Sciences, pp. 678–687.

Muccini, H. and Moghaddam, M. T. (2018). “IoT Architectural Styles”. In: European Conference on Software
Architecture. Springer, pp. 68–85.

Muccini, H. and Sharaf, M. (2017). “Caps: Architecture description of situational aware cyber physical systems”.
In: Software Architecture (ICSA), 2017 IEEE International Conference on. IEEE, pp. 211–220.

Muccini, H., Spalazzese, R., Moghaddam, M. T., and Sharaf, M. (2018). “Self-adaptive IoT architectures: an
emergency handling case study”. In: Proceedings of the 12th European Conference on Software Architecture:
Companion Proceedings. ACM, p. 19.

Petriu, D. C., Alhaj, M., and Tawhid, R. (2012). “Software Performance Modeling”. In: Formal Methods for Model-
Driven Engineering - 12th International School on Formal Methods for the Design of Computer, Communication,
and Software Systems, SFM. Vol. 7320. Lecture Notes in Computer Science. Springer, pp. 219–262.

Trubiani, C., Marco, A. D., Cortellessa, V., Mani, N., and Petriu, D. C. (2014). “Exploring synergies between
bottleneck analysis and performance antipatterns”. In: ACM/SPEC International Conference on Performance
Engineering, ICPE’14. ACM, pp. 75–86.

WiPe Paper – Intelligent and Semantic Web Systems Track
Proceedings of the 16th ISCRAM Conference – València, Spain May 2019

Zeno Franco, José J. González and José H. Canós, eds.

	Abstract
	Keywords

	Introduction
	Overview
	Related Work
	IoT software architectures
	Queuing networks
	Algorithm

	Designing Performant Architectures for Emergency Handling
	Software Architecture for Emergency
	Queuing Networks for Emergency
	Algorithm Settings for Emergency

	Application
	Answers to RQ1: cellular approximation of physical space
	Answers to RQ2: Time Decomposition
	Answers to RQ3: Total Delay Assessment using Queuing Networks Parameterization

	Conclusion
	References

