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ABSTRACT
Statistical methods have been developed for the analy-

sis of longitudinal data in neurodegenerative diseases. To
cope with the lack of temporal markers - i.e. to account for
subject-specific disease progression in regard to age - a com-
mon strategy consists in realigning the individual sequence
data in time. Patient’s specific trajectories can indeed be seen
as spatiotemporal perturbations of the same normative disease
trajectory. However, these models do not easily allow one to
account for multimodal data, which more than often include
missing values. Indeed, it is rare that imaging and clinical ex-
aminations for instance are performed at the same frequency
in clinical protocols. Multimodal models also need to allow
a different profile of progression for data with different struc-
ture and representation.

We propose to use a generative mixed effect model that
considers the progression trajectories as curves on a Rieman-
nian Manifold. We use the concept of product manifold to
handle multimodal data, and leverage the generative aspect of
our model to handle missing values. We assess the robuste-
ness of our methods toward missing values frequency on both
synthetic and real data. Finally we apply our model on a real-
world dataset to model Parkinson’s disease progression from
data derived from clinical examination and imaging.

Index Terms— Longitudinal, Missing values, Non-
Linear Mixed Effect Model, Riemmanian Geometry, Mul-
timodal, Disease modeling

1. INTRODUCTION

Linear mixed effect model estimated via EM have been in-
troduced for the analysis of longitudinal data [1], and later
were extended for more flexibility to the non-linear [2] case.
Well adapted with an objective time (e.g. relative to an event),
they are less adapted to data that do not include such consis-
tent time event, such as neurodegenerative disease progres-
sion. In [3, 4] the concept of Time Warps is introduced to ac-
count for age variability at onset, and in [5] a morphological

age-shift. However these Time Shifts are not estimated in the
context of a statistical model. Generalization of LME to Rie-
mannian manifolds were proposed [6, 7], that allows to con-
sider features defined by smooth constraints, such as images
or mesh [8]. In [9], a generic spatio-temporal model is in-
troduced in the Bayesian framework, modeling the course of
biomarker’s progression as a geodesic, as well as individual
variations via parallel transport, travelled at subject-specific
onset and speed with an affine time reparametrization.

Although this approach allows mutivariate data, it as-
sumes the same profile of progression (e.g. linear, logistic,
exponential, etc..) for all coordinates, and does not account
for missing values, leading to the removal of all visits with
at least one missing values from the analysis, or to the use of
ad-hoc data imputation procedure. This can be problematic
for multimodal data where missing values (denoted NAs)
occur by design of the experiment. We propose to build on
this model to extend its application range, assuming missing-
ness is unrelated to the data (Missing Completely at Random)
[10]. We allow the modeling of the joint progression of fea-
tures that are assumed to offer different evolution profile,
and handle the missing values in the context of a generative
model.

2. METHODS

2.1. The general model

In [9] each data point is seen as a point in a Riemmannian
manifold, denoted yi,j , observation of the i-th subject at its
j-th visit. These points are then considered as noisy samples
along an individual trajectory, namely a curve on the mani-
fold, which in turn is seen as a random spatiotemporal trans-
formation of a reference geodesic on the manifold. The model
yi,j projected on the kth modality can be written as:

(yi,j)k = (ηwi (γ0) (ψi(ti,j)))k + (εi,j)k (1)

where
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Fig. 1. Representation of the model on a schematic mani-
fold. Each point ηwi(γ0, t) is obtained via the continuous
transportation of the tangent vector wi along the reference
geodesic γ0 (in red). ηwi(γ0, .) (in purple) is a ”parallel”
of γ0. The model for patient i consists then in the trajectory
ηwi(γ0, .) travelled at the subject-specific time ψi(t).

• γ0 : t → Expt0,tp0
(v0) is the population average trajec-

tory in the form a the geodesic passing at point p0 with
velocity v0 at time t0 (Exp denotes the Riemannian ex-
ponential as a concise way to write geodesics),

• ηwi (γ0) : t → ExpPt0,tγ0
(wi) = ExpPγ0

(
P t0,tγ0

(wi)
)

is the exp-parallelisation of the geodesic γ0 in the
subject-specific direction wi, called space-shift, as
depicted in Fig 1. (P t0,tγ0

(wi) denotes the parallel trans-
port of the vector wi along the curve γ0 from γ0(t0) to
γ0(t)),

• ψi : t→ αi(t− t0−τi)+ t0 is a time-reparameterizing
function, where αi is a subject-specific acceleration
factor and τi a subject-specific time-shift.

ηwi and ψi define a spatiotemporal transformation of the
average trajectory. To assure a unique decomposition through
both the spatial and temporal transformation, the wi are cho-
sen orthogonal to v0 in the tangent space at p0. A spatiotem-
poral transformation of the reference trajectory to the ith pa-
tient trajectory is then parametrized by the individual param-
eters τi, αi and wi. A time-shift τi represents the delay at
onset relative to t0 for the individual i, to distinguish between
individuals with early or late onset. The αi models the speed
at which the trajectory of individual i is travelled. Then the
space-shifts wi accounts for variations in position of the indi-
vidual trajectory, and model difference in patters of disease
progression between individuals. Normal distributions are
chosen as priors for τi, wi and ξi with αi = exp(ξi). These
parameters are the random effects of the model, whereas γ0
is the fixed effect, parametrized by p0, v0 and t0.

2.2. Manifold Product for multivariate Data

Dealing with a longitudinal and multimodal dataset, we wish
to analyze at once the temporal progression of a family of
N features, with possibly different evolution profile. Thus at
the difference of [9] we consider manifold product that are
not necessarily the product of the same univariate manifold
M . Each feature k is described by repeated univariate ob-
servations yi,j,k on Mk that are considered as random pertur-
bations along each trajectory. For each feature we choose a
that defines a user-defined profile of progression (e.g. straight
line, exponential decay, logistic). Ignoring missing values
at the moment, each individual observations can be repre-
sented as a N-dimensional vector (yi,j)1≤i≤p, that is consid-
ered as random perturbation of quantities lying on the prod-
uct manifold M = M1 × M2 × ... × MN equipped with
the product metric. The product manifold gives geodesics
of the form {γ : t ∈ R → (γ1(t), γ2(t), ..., γN (t))} on
M = M1 ×M2 × ... ×MN equipped with the product met-
ric. γk is the (univariate) geodesic which goes through point
pk ∈Mk at time t0 and velocity vk.

2.3. Missing Data

When missing values occur at time ti,j , only a subset of yi,j
if visible, we note mi,j these modalities. We decide to han-
dle missing data in the context of our generative model, and
compute the likelihood with visible data. The goodness of
fit at a given visit vi,j , at time ti,j for the kth modality writes
‖yi,j,k−(ηwi (γ0) (ψi(ti,j)))k‖2, and for the entire goodness
of fit :

Lfit =
p∑
i=0

li∑
j=0

∑
k∈mi,j

‖yi,j,k−(ηwi (γ0) (ψi(ti,j)))k‖2 (2)

with li the number of visits of the ith patient. We see in
Eq 2 that the likelihood is informed only by available data
while taking into account all the information available and
without imputing missing values with ad-hoc procedures.

2.4. Estimation

Estimation of model parameters is done via the use of a
stochastic version of the Expectation-Maximization Algo-
rithm, namely the MCMC-SAEM algorithm [11], that seeks
to maximize the likelihood L = Lfit + Lprior. MCMC-
SAEM iterates in 3 steps : simulation, approximation and
maximization. It simulates first candidate individual vari-
ables, that are then accepted or rejected according to a proba-
bility function of the likelihood ratio. Then sufficient statistics
are extracted from the current variables. Finally the current
estimates of the parameters are maximized.



Fig. 2. Bootstrap distribution (b=100) of errors of estimation for population parameters (p0,v0,t0) and individual parameters τi
and ξi according to subsampling frequency on an artificial dataset. Parameter values are taken close to estimation on real-world
data. The second modality is assigned to NAs at various frequency to compare performance worsening between the naive
method (boxplots on the left), and the generative modeling method (boxplots on the right).

3. RESULTS

3.1. Experiment methodology

We propose to evaluate the method by pruning existing
datasets and comparing the performance in the estimation
between removing all visits with at least one missing value
(naive method) or taking into account these missing val-
ues via our generative model (generative modeling method).
From our experience that NAs occur mainly by design in
neurodegenerative diseases datasets, we decide to prune the
datasets by assigning chosen modalities to missing values at
various (visit) frequencies.

In the 2 following experiments we use normalized scores
on M =]0, 1[ with a metric ensuring that geodesics take the
form of a logistic curve for each coordinate, so with pk =
(p0)k and vk = (v0)k the multivariate model writes :

(yi,j)k = (1+(
1

pk
−1) exp(−

vkαi(ti,j−t0−τi)+(wi)k
pk(1−pk) )−1+(εi,j)k

(3)

3.2. Synthetic Data

We produce synthetic data by simulating random-effects from
their prior distribution and generating sample with the model.
We generate a synthetic cohort of p=300 patients with 12 vis-
its of 2 modalities each, occurring regularly on 4 years. Pa-
tient’s age at beginning of the study are chosen arbitrarily as
samples from a N (78, 5). We choose as initial parameters
p∗0 = [0.4, 0.3], t∗0 = 78, v∗0 = [0.03, 0.04], σ = 0.1, σξ = 1,
στ = 5.

For each period in [2, 3, 4, 6] we prune the dataset by as-
signing the second modality to a missing value every period
of time, yielding datasets with patients that have respectively
6, 4, 3 and 2 visits with NAs. For each one of the obtained
dataset, we bootstrap at the patient level the estimation pro-
cedure (6000 iterations) to obtain bootstrap distribution of

relative estimation errors for both methods. The relative er-
ror is computed for each step of the bootstrap as followed :
‖v0−v∗

0‖
‖v∗

0‖
, ‖p0−p∗

0‖
‖p0∗‖ , ‖t0−t

∗
0‖

‖t0∗‖ for the main population parame-

ters, and ‖ξ−ξ
∗‖

‖ξ‖ and ‖τ−τ
∗‖

‖τ‖ for individual parameters.

Results are reported in Fig 2. We observe that popula-
tion parameter’s estimation is quite robust to pruning, with a
significant difference in performance only visible from period
= 6 (2 visits per subjects). On the individual parameters the
difference is more striking, the generative modeling approach
showing more robustness toward pruning already with only 1
over 2 visits removed.

3.3. Real Data

Data used in the preparation of this article were obtained from
the Alzheimers Disease Neuroimaging Initiative (ADNI)
database. For up-to-date information, see www.adni-info.org.

We perform a similar experiment to a real dataset from
ADNI1 cohort, consisting in 4 normalized neuropsycholog-
ical test scores extracted from the ADAS-Cog, respectively
associated with memory, language, praxis and concentration.
Criteria for patient selection in ADNI1 was mild cognitive im-
pairment at baseline and conversion to AD during the course
of the study (MCI-converter), which led to 248 individuals.
Patients are followed for an average of 6 visits and the dataset
does not include any missing values. True parameters are not
known, so we use as a proxy parameters estimated from a
run of the estimation procedure on the entire dataset. Simi-
larly to the previous experiment (6000 iterations, same esti-
mation parameters), we subsample patients with NAs at vari-
ous frequencies, discarding patients that are left with less than
2 visits without NAs and observe the bootstrap distribution
of the resulting estimation error in Fig 3. Results show the
same trend as with synthetic data, although estimation error
is higher.



Fig. 3. Bootstrap distribution (b=100) of errors of estimation for population parameters (p0,v0,t0) and individual parameters τi
and ξi according to subsampling frequency on a real (ADNI) dataset. The 4 modalities used are subscores of the ADAS-COG
accounting respectively for memory, praxis, language and concentration. 2nd, 3rd and 4th modalities are assigned to NAs at
various frequency to compare performance worsening between the naive method and the generative modeling method.

3.4. Application to PPMI

Data used in the preparation of this article were obtained
from the Parkinsons Progression Markers Initiative (PPMI)
database. (www.ppmi-info.org/data). For up-to-date informa-
tion on the study, visit www.ppmi-info.org. From the PPMI
cohort we extract 362 parkinsonian patients followed in av-
erage for 12 visits spread out on 4.6 years, yielding a total
of 4441 visits. We model the joint progression of Parkin-
son’s disease for 2 biomarkers, a motor score, namely the
MDS-UPDRS part 3 (MDS) and an imaging score, the Right
Caudate Striatal Binding Ratio (SBR). We normalize the data
between 0 and the theoretical max for the motor score MDS-
UPDRS part 3, and the empirical max for the Striatal Binding
Ratio. We choose to prescribe a logistic profile for the motor
score, as such assessments are designed to be sensitive to the
transition from normal to disease state. By contrast, there
is no such assumption for imaging data, that we assume to
decay in a linear fashion. MDS contains 151 NAs, while
SBR includes 3202 NAs. We run our multivariate sigmoid
model to model the progression of these modalities at once
(6000 iterations), which we represent in Fig 4, and obtain
a resulting noise variance σMDS,SBR is 0.00341, the same
magnitude than the noise variance on univariate features only,
with σMDS = 0.00318 and σSBR = 0.00502. We observe
a positive correlation between the acceleration factor ξi and
age at diagnostic (p = 3.010−2), meaning subjects with later
onset will progress faster. Furthermore, studying correlations
with biological covariables we find the alpha-synuclein mean
level to correlate with subject’s onset (p = 4.710−4).

4. CONCLUSION

We extended on a Bayesian non-linear mixed-effect model to
allow the joint estimation of disease progression model on
data with heterogeneous evolution profile. In practice such
multimodal data include missing values by design. Instead

Fig. 4. In wide plain lines the mean geodesic estimated for
PPMI PD patients on 2 modalities : MDS-UPDRS Score and
Right Caudate SBR obtained from DatScan, and described by
population parameters p0 = [p00, p

1
0], v0 = [v00 , v

1
0 ] and t0.

The observations (in dotted lines) and individual models (in
narrow lines) of 3 patients are also plotted.

of using ad-hoc method for data imputation, the generative
statistical modeling allows to estimate model parameters by
comparing generated data with observations only when they
are available. Robustness analysis of the method is performed
via the increasing pruning of existing dataset, while the vari-
ance of the performance is represented as a bootstrap distribu-
tion. The proposed method shows lower performance error in
both synthetic and real-world data. This advocates for an ex-
tended use of the model, applicable to multimodal data with
sparse design. We use thus our model to analyse the main
PPMI modalities (motor, non-motor, imaging), and find that
individidual parameters correlates with age of diagnosis and
alpha-synuclein levels.
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