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Abstract—When one wants to train a neural network to
perform semantic segmentation, creating pixel-level annotations
for each of the images in the database is a tedious task. If he
works with aerial or satellite images, which are usually very
large, it is even worse. With that in mind, we investigate how
to use image-level annotations in order to perform semantic
segmentation. Image-level annotations are much less expensive
to acquire than pixel-level annotations, but we lose a lot of
information for the training of the model. From the annotations
of the images, the model must find by itself how to classify the
different regions of the image. In this work, we use the method
proposed by Anh and Kwak [1] to produce pixel-level annotation
from image level annotation.

We compare the overall quality of our generated dataset with
the original dataset.

In addition, we propose an adaptation of the AffinityNet that
allows us to directly perform a semantic segmentation.

Our results show that the generated labels lead to the same
performances for the training of several segmentation networks.
Also, the quality of semantic segmentation performed directly by
the AffinityNet and the Random Walk is close to the one of the
best fully-supervised approaches.

Index Terms—Computer vision, Weak learning, Semantic seg-
mentation, Land cover classification

I. INTRODUCTION

Semantic segmentation of satellite and aerial images could
be incredibly helpful for fields like urban planning, disaster
recovery, autonomous agriculture, environmental monitoring
and many others. We now have access to large databases
filled with more images than any manual method could handle
(such as the USGS Earth Explorer1, ESAs Sentinel Mission 2

or NASA’s Earthdata Search3). The need for an automatized
study of those images is obvious, and there is an urgent de-
mand for tools and methods that allow automatic interpretation
of this huge amount of data. In the last few years, deep
learning has become the essential tool for solving this kind
of problem [8], [10]. For the task of semantic segmentation,
several successful methods appeared recently like SegNet [3],
FCN [18], U-NET [17] or PSPNet [22] with great results in
satellite and aerial imagery [2], [13], [19]

One of the biggest difficulties faced by those methods is
the lack of pixel-level labels for those images. Indeed, the

1https://earthexplorer.usgs.gov/
2https://sentinel.esa.int/web/sentinel/home
3https://search.earthdata.nasa.gov/

process of manually annotating each image is tedious. This is
also an issue when trying to perform a semantic segmentation
of a regular image, like those of the Pascal VOC [7] or the
Common Object in COntext (COCO) datasets [12]. To face it,
methods relying on weaker types of labels started to appear,
called Weakly Supervised Learning (WSL). Those methods
can use simple bounding-box annotations [9], [15], scribbles
[11], [20], points [5], or a simple image-level class label [14],
[16].

The method we use is divided into 4 steps (c.f. fig. 1), and
based on the work of Ahn and Kwak [1]. First, a classification
network is trained using image level annotations. Then, a
second network is trained to learn the relationships between a
pixel and its neighbourhood, called an affinity network. After
this, a random walk is performed combining Class Activation
Map (CAM) and affinity labels to produce the segmentation
labels. Finally, we can use the segmentation labels produced
by the method to train a segmentation model.

Contributions: We use a new backbone better adapted
to satellite imagery. We conduct several experiments on the
loss function proposed by [1] to adapt its hyperparameters for
satellite and aerial imagery. We train several state-of-the-art
segmentation models (SegNet [3], PSPNet [22]and UNet [17])
to validate the quality of the generated labels for the training
of segmentation models. We modify the method in order to
perform semantic segmentation using only the classification
and the affinity networks. (c.f. fig. 1) Finally, we compare
our semantic segmentation results with fully supervised ap-
proaches on the validation set of the DEEPGLOBE dataset
[6] and study the trade-off between information and quality of
segmentation..

II. METHOD

In this section, we present the approach we follow for
weakly based semantic segmentation. The method can be
split into 4 different parts as shown in fig. 1 : Classification
Network, Affinity Network, Random Walk and Segmentation
Network.

A. Classification Network

The first step of the method is the training of a classification
network that will be used to identify the different categories
present in the images. The main idea is to use the capacity
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Fig. 1: Inference pipeline of the original Affinity-Net, that requires both an image and a label as inputs. We propose to remove
the dotted parts to transform the Affinity-Net into an independent segmentation network.

of the CAM that can be extracted from the Convolutional
Neural Network (CNN) to localize in the image the areas that
influence the most the classification result [4], [16], [23]. For
each image, the classification network will produce a set of
CAMs M = {Mc | c ∈ C}, each CAM Mc corresponding to
the activation map of the class c. Additionally, another CAM
Mbg is defined to localize background in the image (1).

Mbg(x, y) = {1−max
c∈C

Mc(x, y)}α (1)

Usually, there is no background in aerial images, but this
CAM prevents the network to predict unsure result. Even if
this means that a smaller portion of the original dataset will be
usable to train the segmentation network, we favour precision
over quantity. With that in mind, we conducted all of our
experiments both with and without the background, in order
to compare the results and assess which approach fits our case
best.

B. Affinity Network

The second part of the method consists in training an
Affinity Network which models relationships between pairs
of pixels (i, j) in the image. The AffinityNet is designed to
extract a convolutional feature map f aff where each element
can be seen as an affinity feature. The affinity between two
pixels (i, j) denoted by Wij is defined as the similarity
between the affinity features:

Wij = exp{−‖f aff(xi, yi)− f aff(xj , yj)‖1} (2)

Nevertheless, the affinity labels needed to train the Affini-
tyNet are not directly available. A way to generate these affin-
ity labels is to use the CAM as partial sources of supervision
for their generation. The values of the CAM are used as a
confidence score to determine whether a pixel belongs to a

category c or not. A high alpha is used to assess confident
regions of classes c ∈ C, and a lower one is used to assess
areas the network is the most unsure about . The pixels that
are left are considered as neutral. Using the CAM with high
confidence, a binary label is given to the pair of pixels. If theirs
classes are the same, their affinity label W ∗ij is 1, 0 otherwise.
The pairs containing neutral pixel are considered neutral and
ignored during the training (c.f. fig. 2).

Fig. 2: Generating Affinity labels. The areas correspond to
confident prediction of Agriculture in yellow and Forest in
green. The black area is the background and the white is
neutral.

From there, we compute for each coordinate of the image
its affinities with the other coordinates within a circle of fixed
radius γ. The set of pairs of coordinates that have an affinity
is defined by :

P = {(i, j) | d((xi, yi), (xj , yj)) < γ, ∀i 6= j} (3)

The set P is then divided into two subset P+ and P− where
W ∗ij = 1 and W ∗ij = 0 respectively. The subset P+ is again
divided into two subsets P+

fg for foreground and P+
bgfor the

background regions.



The model is trained using the following loss function :
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L+
fg
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This loss is quite similar to the one used by the authors of
[1], but they suggest that a should be equal to b. We want to be
able to penalize the background further, so we slackened the
constraints. [1] used eq. 4 with a = b = 4, c = 2. In order to
penalize the background further, we used a = 6, b = 2, c = 3.

Those labels can then be used to perform a random walk on
the original CAMs in order to get proper segmentation labels.

From there, the original method uses those labels to train a
regular segmentation network. We compared the results of 3
different networks, U-Net [17], PSPNet [22] and SegNet [3]
using our generated labels.

We also tried a new approach that allows us to directly
performs semantic segmentation with the trained classification
and affinity networks. Indeed, [1] proposes to set to 0 the
CAMs of the class we know are not present in the image.
While this increases the quality of the segmentation labels, it
prevents us from using the AffinityNet on images we do not
have any labels on. To assess which CAM need to be kept, we
use the confidence scores output by the classification network.

As a backbone network, we used an extension of the
ResNet38 [21], composed of 74 convolutional layers (as op-
posed to 38 in the ResNet38). We found that a deeper network
greatly improved our performances, supposedly because aerial
images have a lower variance than regular ones, thus making
it more difficult for the network to differentiate the different
classes.

III. EXPERIMENTS AND RESULTS

A. Dataset

We used the DeepGlobe dataset [6] composed of 803 aerial
images with pixel-level labels. We kept 562 for training and
the remaining 241 for validation. Each image has a size of
2448x2448 pixels, and contains at least one of those cate-
gories : Barren, Water, Urban, Forest, Agriculture, Rangeland
and Unknown. We split each image into 64 patches of size
306x306 each. Even if the dataset comes with pixel-wise
annotations of the images, we reduced those labels to image-
level (which categories are present in the labels). This means
that no information about localization and/or distribution of

the categories are present in the final dataset. The DeepGlobe
dataset also offers 171 aerial images without any labels that
we used for testing. Indeed, we can upload our results to their
CodaLab competition4 and compare our score to others, all of
them using fully-supervised techniques.

B. Quality of Segmentation Labels

We used the training dataset to teach both the classification
Network and the Affinity Network. Then, we generated the
Segmentation Label from the validation dataset. Because we
have the pixel-level labels of those images (even if they were
not used during the training), we can compare the quality
of our segmentation labels to the ground truth provided by
DeepGlobe as shown in fig. 3. [1] showed that their method
was fairly insensitive to hyperparameters, but our dataset
of aerial images is different from regular images, mostly
because they have no background class. With that in mind,
we tried modifying the loss of the Affinity-Net, decreasing the
background CAMs, and removing the background completely.
We measured the precision and the recall of the predictions.
The results showed that removing the background altogether
gives almost the best precision, but with a far better recall (cf
Table. I).

TABLE I: Quality of Segmentation Labels produced by the
AffinityNet. Parameters of eq. 5 are a = 6, b = 2, c = 3.
α =∞ means background has not be taken into account.

α Precision Recall

4 85.22 60.40
16 86.52 66.47
32 86.85 67.28
∞ 88.38 87.31

Furthermore, we use the best generated labels to train 3
different segmentation networks, and compare the results with
a fully-supervised training on the same networks (cf Table. II).

TABLE II: Results of semantic segmentation on the DEEP-
GLOBE land classification challenge. Full labels are labels
provided for the challenge . Weak labels are labels produced
using weakly supervised model.

Method Score (mIoU) %

PSPNet Full labels 43.99
- Weak labels 42.97

U-Net Full labels 42.44
- Weak labels 39.25

SegNet Full labels 37.10
- Weak labels 37.76

C. Semantic Segmentation

If we follow the method described in [1], we cannot create
the Segmentation Labels without providing the image-level
labels, even after training. We modified the method of [1]
to directly perform the segmentation, without having to train

4https://competitions.codalab.org/competitions/18468
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Fig. 3: Example of segmentation labels. From left to right:
Original Image, Ground Truth Label, Our Image-Level label,
Predicted Label. Note that in order to generate the predicted
label, we used only the image-level annotations and original
images.

a separate segmentation network. We were able to evaluate
our results and compare them to to the best, fully-supervised
approaches of the deepglobe competition (cf Table. III).

TABLE III: Ranking of our Weakly-Supervised method among
Fully-Supervised ones

Method Score (mIoU) Rank

Deep Aggregation Net 53.58 1
Dense Fusion Classmate Network 52.64 2

Ours - Weakly Supervised w/o background 45.90 14
Ours - Weakly Supervised w/ background 32.32 33

IV. CONCLUSION

We adapted the method proposed in [1] to our dataset
composed of aerial images. The quality of the pixel-level
labels generated from image-level labels are quite good. Both
offer similar performances when used for training several
segmentation network. This means that less information in a
dataset does not necessarily implies inferior results.

Furthermore, the semantic segmentation performed by our
modification of the AffinityNet gives remarkable results, close
to best fully supervised ones.

Further work will be done to improve our results, both on
the quality of the generated segmentation labels and the direct
semantic segmentation.

Weakly supervised semantic segmentation of satellite im-
ages is a cornerstone to the transition from geolocalized text
information to complete semantic segmentation.
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