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Abstract

The type VI secretion system (T6SS) is a widespread machine used by bacteria to control their environment and kill or
disable bacterial species or eukaryotes through toxin injection. The T6SS comprises a central tube formed of stacked
hexamers of hemolysin co-regulated proteins (Hcp) and terminated by a trimeric valine-glycine repeat protein G (VgrG)
component, the cell puncturing device. A contractile tail sheath, formed by the TssB and TssC proteins, surrounds this tube.
This syringe-like machine has been compared to an inverted phage, as both Hcp and VgrG share structural homology with
tail components of Caudovirales. Here we solved the crystal structure of a tryptophan-substituted double mutant of Hcp1
from enteroaggregative Escherichia coli and compared it to the structures of other Hcps. Interestingly, we observed that the
purified Hcp native protein is unable to form tubes in vitro. To better understand the rationale for observation, we
measured the affinity of Hcp1 hexamers with themselves by surface plasmon resonance. The intra-hexamer interaction is
weak, with a KD value of 7.2 mM. However, by engineering double cysteine mutants at defined positions, tubes of Hcp1
gathering up to 15 stacked hexamers formed in oxidative conditions. These results, together with those available in the
literature regarding TssB and TssC, suggest that assembly of the T6SS tube differs significantly from that of Sipho- or
Myoviridae.
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Introduction

The type VI secretion system (T6SS) is a widespread versatile

machine used by bacteria as a weapon to control their biotope and

fight bacterial species or eukaryotes [1–3]. The T6SS is composed

of a long cytoplasmic tubular structure anchored to the cell

envelope by a membrane complex [4–7]. The long cytoplasmic

structure comprised a number of subunits that share significant

structural and functional similarities with bacteriophage tail

proteins [8]. It is formed by a tube assembled from stacked

hexamers of the hemolysin co-regulated (Hcp) protein [1,9,10].

This tube is terminated by a trimer of the valine-glycine repeat

protein G (VgrG) [11] that has been hypothesized to pierce the

bacterial prey cell wall [6,12] or the membrane of eukaryotes,

allowing toxins delivery into the target cell [13–15]. Based on

structural homologies, it has been proposed that this Hcp/VgrG

assembly resembles the tail and tail tip used by phages to inject

their DNA into host cells [1,11,16]. Four X-ray structures of Hcp

proteins have been determined to date: the Hcp1 and Hcp3

proteins of Pseudomonas aeruginosa (1Y12; 3HE1) [1,17], the EvpC

protein of Edwarsiella tarda (3EAA) [18] and the unpublished

structure of an Hcp protein of Yersinia pestis (3V4H). They all have

been found to assemble hexameric rings of ,80 Å diameter

harboring a central channel of ,40 Å, features comparable to

those of the bacteriophage major tail proteins (MTP) [7,19]. The

channel diameter is of sufficient size to allow the transit of globular

toxin effectors of ,25 kDa [20–23]. A number of anti-bacterial

effectors that have peptidoglycan hydrolase [13] or phospholipase

activities [25] have been identified. The genes encoding these

effectors are genetically associated with genes that encode

immunity proteins that usually bind to and inhibit the activity of

the toxin, hence preventing killing between sibling bacteria

[13,26]. It has been recently shown that Hcps are chaperones

and transporters of the effectors, as specific Hcp/effector

complexes could be observed [24]. It has also been proposed that

the Hcp proteins are able to form a tube in vivo surrounded by a

PLOS ONE | www.plosone.org 1 February 2014 | Volume 9 | Issue 2 | e86918

http://creativecommons.org/licenses/by/4.0/


contractile tail sheath formed by the TssB and TssC components.

Fluorescence microscopy experiments using a TssB protein fused

to the super folder Green Fluorescent Protein (TssB-sfGFP) have

demonstrated that this tail sheath cycles between extended and

contracted conformations, suggesting that effector delivery by the

T6SS involves a contractile mechanism similar to that of

bacteriophages [6,15,27–29]. Tail sheath contraction occurs in a

few tens of second, propelling the internal Hcp tube towards the

prey cells [6,15]. Indeed, recent data have shown that prey cell

killing coincides with T6SS sheath contraction [15]. After

contraction, the ClpV ATPase is recruited to the contracted tail

sheath complex and catalyzes its disassembly, to target the TssB

and TssC proteins to degradation or to allow new run of assembly

[6,30].

We recently embarked in an exhaustive structural and

functional study of the components that assemble the Sci-1

T6SS of enteroaggregative E. coli (EAEC) [31–34]. Here, we

report the crystal structure of an Hcp1 tryptophane derivative and

the characterization of Hcp1 self-interaction and self-assembly.

Results

Structure Determination Strategy
We cloned and produced the Hcp1 protein (accession number:

EC042_4529; gene ID: 387609950) using our standard procedures

[35]. Hcp1 was purified to homogeneity and was further

characterized by biophysical methods. In parallel, the Hcp2

protein, encoded by a second T6SS gene cluster on the EAEC

chromosome (accession number EC042_4564; gene ID

387609980), was also produced and purified. MALLS-UV

experiments on Hcp1 and Hcp2 revealed that they form particles

of 128 kDa and 123 kDa respectively that likely corresponds to

hexamers (114 kDa and 111 kDa theoretical weight for Hcp1 and

Hcp2 hexamers, respectively) (Fig. 1A, C). Electron microscopy

(EM) of negative-stained Hcp1 and Hcp2 further showed that both

proteins have a well-defined donut shape (Fig. 1B, D). Both

proteins were subjected to crystallization trials, and both

crystallized readily. Hcp1 yielded crystals diffracting to 3.5 Å with

space group P2 and cell dimensions a = 147.4, b = 85.1, c = 408.5

and ß = 97.3u. Vm calculations revealed that these crystals may

contain more than .60 molecules in the asymmetric unit.

Structure determination by molecular replacement failed with

this crystal form. Despite tremendous efforts, these crystals could

not be improved, and no other crystal forms were obtained. The

Hcp2 crystals behaved similarly. We hypothesized that these

problems might be due to improper stacking of the hexamers in

the crystal. In a recent work, we showed that in absence of the

T6SS, the Hcp1 hexamers assemble in head-to-tail, head-to-head

and tial-to-tail conformations [10]. Interestingly, substitutions of

residues at the hexamer-hexamer interface (at position N93 and

S158) by bulky tryptophane residues disrupted tube formation

in vivo [10]. We therefore introduced the same substitutions to

cause unfavourable contacts with the goal to change the crystal

packing compared to the native Hcp1 protein. The N93W-S138W

double mutant (Hcp1WW) crystallized readily and exhibited a good

diffraction pattern to 1.69 Å resolution. The structure of EAEC

Hcp1 was solved by molecular replacement using the structure of

Hcp3 (PDB entry 3HE1) from P. aeruginosa as starting model.

Overall Structure of the Hcp1WW Mutant
The structure of Hcp1 was solved and refined as indicated in the

material and methods section (Table 1). The electron density map

of Hcp1WW was well defined between residues Ala-2 to Val-120

and Ala-129 to Trp-158 (Fig. 2A). The overall Hcp1WW structure

revealed a typical Hcp-family fold with two ß-sheets consisting of 4

and 5 ß-strands each and a short a-helix (Fig. 2A). The first b-

Figure 1. SEC/MALS/RI and electron microscopy analysis of the Hcp1 and Hcp2 proteins. (A, B) SEC/MALS/RI chromatograms of Hcp1 (A)
and of Hcp2 (B). The molar mass (left axis, solid line) and the UV280 nm absorbance (right axis, grey line) are plotted as a function of the column elution
volume. (C, D) Transmission electron micrographs of negatively stained Hcp1 (C) and Hcp2 (D). Scale bar, 50 nm.
doi:10.1371/journal.pone.0086918.g001

Structure and Assembly of E. coli Hcp1
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sheet is formed by strands ß1, ß4, ß5, ß8, ß9 and packs against the

second ß-sheet formed by strands ß2, ß3, ß6, ß7 thus forming a ß-

barrel fold (Fig. 2A). The well packed interior of this fold is

maintained by an hydrophobic core constituted of Val-5, Leu-7

Leu-9 in ß1, Val-32 on ß2, Phe-59, Phe-61 in ß3, Leu-82, Ala-85,

Phe-87, Trp-89 in b4, Phe-102, Leu-106 in ß5, Val-111 in the L5–

6 loop, Val-135, Leu-137, Tyr-139 in the L7–8 loop and Trp-144

in ß9 (Fig. 2A). The alpha-helix (Ser-67 to Thr-78) is located on

one side of the b-barrel and is stabilized by hydrophobic

interactions with the ß6 and ß7 strands from the same subunit.

In addition, the a-helix is involved in hexameric association due to

its hydrophobic interaction with the ß8 and ß9 strands of adjacent

subunits (Fig. 2B).

The Hcp1WW crystal asymmetric unit contains 6 subunits

associated in a hexameric ring. The outside diameter of the donut-

shaped hexamer is 80 Å and the inner diameter of its internal

channel is 40 Å. The packing of Hcp1WW crystal reveals that

Hcp1WW hexamers are not associated in the same organization

compared to other Hcp assemblies, which have been described as

head-to-tail [1], head-to-head [18] or tail-to-tail [17]. Each

Hcp1WW hexamer interacts with two other hexamers on each

face, in a frameshift packing of ,K hexamer, and in a head-to-

head fashion (Fig. 2C). However, this unusual packing was

Figure 2. Structure of the Hcp1 N93W/S158W (Hcp1WW) protein. (A) Ribbon representation of the Hcp1WW structure. The N- and C- termini
are indicated (Nt and Ct respectively). The red dots indicate positions 93 and 158 while green dots indicate the 96 and 158 positions. (B) Carbone a
backbone of Hcp1WW. The side chains of the residues forming the hydrophobic core are shown in grey. (C) Section of the Hcp1WW crystal packing. 5
Hcp1WW hexameric rings are shown in different colors to aid visualization. The Trp-93 and Trp-158 side chains are represented in red and green
spheres respectively.
doi:10.1371/journal.pone.0086918.g002
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probably induced by the two Trp substitutions, since the Trp-93 or

Trp-138 residues of one hexamer interact with a Trp residue of a

symmetry related hexamer (Fig. 2C).

Comparison with other Hcp Structures
To date, four structures of Hcp proteins have been made

available (see Table 2). The EAEC Hcp1 protein and the four

other Hcps share limited sequence identities ranging from 14% to

40% (Fig. 3A, Table 2). However, the secondary structures are

well conserved and the overall tertiary structures of the Hcp

proteins are very similar, with rmsd values comprised between

0.7 Å and 1.5 Å, matching the sequence identity order (Table 2).

While the backbones of secondary structures match very closely,

the main differences occur in the loops, especially the overhang

loops L1,2 and L2,3 (Fig. 3B). The P. aeruginosa 3HE1 structure is

the most different within the L1,2 loop, while the EAEC Hcp1

diverges from the other structures within the L2,3 loop (Fig. 3B).

Hcp1 Self-interaction Studies by Surface Plasmon
Resonance

All the Hcp proteins purified so far are hexameric in solution

except for the EpvC protein of E. tarda, which was found in both

dimeric and hexameric states in solution [18]. Furthermore, no

in vitro self-association of the hexamers was reported to date, and

only the presence of optimally-engineered Cys residues allowed to

observe formation of tubular structures by transmission electron

microscopy (TEM) [36]. However, despite the fact that this was

never directly observed in vitro, Hcps should form tubes in vivo to

allow the delivery of toxins into prey cells. Indeed, we recently

evidenced tubular structures of Hcp in vivo using targeted disulfide

bridges [10]. To gain insights into the stacking of Hcp1 hexamers,

we investigated the self-association of Hcp1 using Surface Plasmon

Resonance (SPR). To this end, Hcp1 hexamers were coupled to a

CM5 SPR chip and Hcp1 was passed over the chip as analyte. We

observed fast association and dissociation (Fig. 4A) between the

bound and the circulating hexamers, with saturation occurring

with Hcp1 concentrations above ,50 mM (Fig. 4B). Analysis of

the saturation curve yielded a KD value of 7.261.2 mM. Both the

koff and KD values are consistent with a fast exchange. This rapid

exchange between Hcp hexamers explains why Hcp1 hexamers do

not self-assemble to form tubes in vitro. We then examined by SPR

the self-association of the Hcp1WW hexamer, but we could not

identify any interactions in the conditions used for the native Hcp.

Oligomerization Studies of Hcp1G96C/S158C

Oligomerisation of Hcp1WW in solution was investigated using

MALLS-SEC-UV. The resulting chromatogram clearly indicated

the presence of hexamers in solution (126 kDa), as with native

Hcp1 (data not shown). In these hexamers, the X-ray structure

indicates that each subunit surface exhibits an interface area of

1150 Å2 on each face, for a total monomer surface of 9000 Å2

(Fig. 5A,B). Each interface counts for 13% of the total surface

(26% for both interfaces), explaining the strength of Hcp

monomers association within the hexameric ring.

The crystal structures of the Hcp proteins showed that Hcp

hexamers can be arranged in a head-to-head, head-to-tail or tail-

to-tail packing [1,17,18]. Therefore, we recently developed an

assay to determine how Hcp hexamers are organized in vivo. For

this, we engineered Hcp1 cysteine variants to induce disulfide

bond formation between two hexamers [10]. This approach

demonstrated that Hcp1 hexamers are stacked on each other in a

head-to-tail conformation in the cell cytoplasm. As shown

previously [10], once a cystein-less Hcp1 protein (C38S) bearing

the G96C and S158C substitutions was produced in EAEC, bands

corresponding to disulfide cross-linked oligomers (up to 8

monomers) can be visualized by SDS-PAGE (Fig. 6A). To confirm

these data in vitro, the Hcp1G96C/S158C double mutant protein was

produced and purified by nickel affinity and gel filtration. The

negative-staining electron micrographs revealed the presence of

tubes constituted of up to ,15 stacked hexamers (Fig. 6B).

Cys-96 and Cys-158 being able to form disulfide bonds in the

Hcp1G96C/S158C tubes, we modeled the hexamer/hexamer inter-

action using COOT [37] (Fig. 5C). The two positions of the

substitutions, 96 and 158, are located in a mobile loop (L4,5) and

at the C-terminus, respectively. Trp-158 is the last visible residue

in our electron density map, and loop L4,5 is only visible in the

electron density map of one monomer. Analysis of the model

indicates that interactions occuring between hexamers cover only

a total of 350 Å2 for each monomer. This interface surface area is

only about one third of that found between monomers within the

hexamer, and therefore explains (i) the low affinity measured

between hexamers by SPR and (ii) the inability of Hcp1 to

assemble tubes in vitro.

Discussion

Hcp1 Crystal Structure and Tube Assembly
In this study, we report the crystal structure of an Hcp1 variant

and analyzed the mechanism of assembly of Hcp hexamers, the

building blocks of the T6SS injection tube. First, we showed that

Hcp1 displays a 3D structure comparable to those determined

previously for other members of the Hcp family [1,17,18].

Recently, we showed that the Hcp1 protein from EAEC assembles

tubular structures in vivo in a head-to-tail conformation [10]. By

engineering mutations at strategic positions for tube assembly –

Table 1. Data collection and refinement statistics.

DATA COLLECTION

PDB 4HKH

Source ESRF ID29

Space group, cell dimensions (Å, u) C2, 84.2, 145.9, 89.85, ß = 103.4

Resolution limitsa (Å) 50.021.69 (1.7521.69)

Rmeasa (%) 11.0 (77)

Nr. of observationsa 401232 (40094)

Nr. unique reflectionsa 116804 (11432)

Mean((I)/sd(I))a 8.1 (2.0)

Completenessa (%) 99.4 (99.4)

Multiplicitya 3.8 (3.7)

REFINEMENT

Resolutiona (Å) 25.221.69 (1.7921.75)

Nr of reflectionsa 116804 (8189)

Atoms : protein, SO4, water 7018/55/722

Nr test set reflections 2100

Rwork/Rfree
a (%) 0.181/0.196 (0.23/0.25)

r.m.s.d.bonds (Å)/angles (u) 0.010/1.14

B-wilson/B-average (Å2) 20.5/27.7

Ramachandran:
preferred/allowed/outliers (%)

96.1/3.3/0.6

anumbers in brackets refer to the highest resolution bin.
doi:10.1371/journal.pone.0086918.t001
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Asn-93/Gly-96 and Ser-158– located in the overhang loop L4,5

(Ile91 to Gly96) and at the C-terminus, respectively, we provide a

better understanding of Hcp hexamers stacking. First, insertion of

bulky tryptophan residues at these positions to yield the Hcp1WW

protein abolished the biologically relevant stacking. Not only the

Trp indole side-chains prevent tube elongation by head-to-tail

hexamers stacking along a central axis, but they also promote a 1/

2 head-to-head hexamers interaction by strong aromatic interac-

tions with their symmetry related Trp side chains. The disruption

of the in vitro packing is consistent with the observation that

introduction of tryptophan residues at the same positions prevents

Hcp1 tube formation in vivo [10]. By contrast, introduction of

cysteine residues at the same positions stabilized Hcp1 tube

formation through formation of disulfide bonds between hexamers

Figure 3. Sequence alignment and structural superimposition of Hcp1WW with other crystallized Hcp proteins. (A) Sequence alignment
of the EAEC Hcp1WW protein, Hcp3 from P. aeruginosa (3HE1), Hcp from Y. pestis (3V4H), EvpC from E. tarda (3EAA) and Hcp1 from P. aeruginosa
(1Y12). Residues targeted in this study are indicated by dots (red for N93, S158 and green for G96). (B) Ribbon representation of the superimposition
of Hcp1WW with the indicated Hcp proteins. The color corresponding to each structure is indicated.
doi:10.1371/journal.pone.0086918.g003

Structure and Assembly of E. coli Hcp1
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and allowed to evidence Hcp tubes in vivo and visualize Hcp tubes

by electron microscopy. This nanotubes are reminiscent of those

observed with P. aeruginosa Hcp1 cystein variants [36]. The

Hcp1WW and Hcp1G96C/S158C variant therefore appeared to be

useful tools to study Hcp1 tube assembly both in vivo and in vitro.

Commonalities and Diversities of T6SS and
Bacteriophage Tail Assembly

Hcp1 hexamers, like other Hcp proteins studied to date are not

able to form tubes in the absence of the other components of the

T6SS machine [1,11]. In phages, tail assembly is triggered by the

Initiation Complex (IC), a complex composed of the baseplate and

the tape measure protein (TMP), a long coil-coiled protein that

determines the length of the phage tail. In the IC, the TMP is

covered by chaperones [38,39] which are progressively replaced

by the major tail protein (MTP) that forms stacked hexamers

helically disposed around the TMP. Tube polymerization is

completed once the tail terminator protein recognizes the TMP’s

end and caps the MTP tube. It has been proposed that MTP

hexamer formation, and initiation of the tail tube polymerization

probably occurs via conformational switching catalyzed by the IC

and then by the properly folded MTP hexamers themselves [40].

In Myoviridae, the tail sheath wraps the MTP hexamers after the

tube is completed [40]. Noteworthy, once formed, the tail tube

structure is very robust and resists the ejection of TMP after

infection. In Siphoviridae, while disconnection of baseplate and

capsid from the tail is often observed, the tail is a tough device

surviving most events. The T6SS tube therefore shares similarities

and exhibits differences with the bacteriophage tail tube. First, no

TMP homologue or equivalent has been identified in T6SS

machines. However, it is clear that baseplate components such as

VgrG and TssE, the T6SS counterparts of the gp27/gp5 hub

complex and of the gp25 wedge subunit respectively, are necessary

for proper assembly of the T6SS tail structure [8,10,15]. The

complexity of the bacteriophage baseplate suggests that additional

T6SS baseplate-like components remain to be identified. The

structure of the T6SS and bacteriophage tubes and their

conformational flexibilities probably exhibit significant differences

as Hcp proteins are able to form extremely stable hexamers, a

feature that is not shared by MTPs, that remain monomeric in

solution [9] making conformational switching unlikely. However,

these hexamers are loosely associated in vitro as shown by our SPR

studies, whereas phages tail tubes are extremely stable.

By contrast to the T6SS tail tube Hcp proteins, the tail sheath

composed of the TssB and TssC proteins encoded within the sci1

or sci2 T6SS gene clusters form long tubes as observed by TEM (B.

Douzi and C. Cambillau, unpublished data), a result consistent

with the tail sheaths produced by the V. cholerae [27] and the P.

aeruginosa HSI-1 T6SS [29]. However, the TssBC tubular

structures lack homogeneity since image reconstructions have

demonstrated that they have 12- or 13- fold symmetry [29].

Regarding the T6SS assembly mechanism, the wealth of data

gathered to date, as well as our results described in this

manuscript, suggest a possible scheme. As suggested by fluores-

cence microscopy experiments [10,30], the pre-formed Hcp

hexamers might act as a template for TssBC tubes assembly with

well-defined dimensions, most probably dodecamers. However,

since Hcp is not able to form tubes by itself, Hcp hexamers

stacking might be initiated once attached to the hub or when a

baseplate-like structure, composed at least of TssE and VgrG, is

assembled. These Hcps could be either alone or loaded with their

specific effectors [24]. Recent data have shown that in vivo Hcp

tube formation required the VgrG protein but is independent of

the TssBC sheath proteins [10]. By contrast, polymerizing Hcps

are required for sheath assembly. It is then possible to envisage two

models. First, the first Hcp hexamer associated on the baseplate

might serve as template for the recruitment and the association of

a first TssBC ring of proper size (e.g., a dodecamer) with would in

turn serve as a scaffold for TssBC tube elongation. Then,

polymerizations of the Hcp tube and of the TssBC sheath will

be coupled and concomitant. In the second model, the tail tube

will be first completed before serving as template for sheath

assembly. This second model is consistent with the phage assembly

process, in which the completed tail tube serves as template for the

Table 2. Comparison of the five Hcp of known structures.

4HKH 3V4H 3EAA 3HE1 1Y12

4HKH E.coli 23 22 36 25

3V4H Y.pestis 1.1 30 23 40

3EAA E. tarda 1.3 0.9 17 33

3HE1 P. aeruginosa PA0263 1.2 1.3 1.5 14

1Y12 P. aeruginosa PAO1 1.2 0.7 0.9 1.5

The sequence identities are in bold (%, above diagonal) and the rmsd values are
in italics (in Å, below diagonal).
4HKH: Hcp1 from E.coli pathotype EAEC (this work).
3V4H: Hcp from Yersinia pestis (unpublished).
3EAA: Hcp from Edwarsiella tarda [18].
3HE1: HcpA from Pseudomonas aeruginosa PA0263 [17].
1Y12: Hcp from Pseudomonas aeruginosa PAO1 [1].
doi:10.1371/journal.pone.0086918.t002

Figure 4. Interaction study of Hcp1/Hcp1 hexamers using
surface plasmon resonance. (A) Binding pattern of Hcp1 (3.75 to
120 mM) on Hcp1 covalently immobilized on the CM5 chip. The
variation of plasmon resonance is reported on the y axis (in arbitrary
unit; DRU) and the reaction time on the x axis. (B) Graph representing
the equilibrium response level (DRU; y axis) plotted as a function of the
Hcp1 concentration (mM, x axis), with t curve fit to 1:1 equilibrium
model for determination of the KD at 50% saturation.
doi:10.1371/journal.pone.0086918.g004
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sheath [41]. However, in favor of the first model, the length of the

T6SS Hcp tube does not seem to be controlled, and no signal for

completion should exist hence hampering initiation of sheath

polymerization. Further in vivo and in vitro evidence are required to

discriminate these two models but the approaches and the tools

developed recently will help to gain insights into this mechanism

and to better compare T6SS and bacteriophage tail assembly.

Materials and Methods

Cloning and Site-directed Mutagenesis
The DNA sequences encoding the Hcp1 and Hcp2 proteins

were amplified from chromosomal DNA of enteroaggregative E.

coli 17-2 using specific primer pairs (Table S1), and cloned into the

pDEST14 expression vector using standard Gateway protocols

[42] to yield pDEST14-Hcp1 and pDEST14-Hcp2 respectively.

These constructions led to the production of the full-length Hcp1

and Hcp2 proteins fused to a C-terminal 66His tag.

QuickChange PCR-based targeted mutagenesis of the hcp1 gene

was performed using the pDEST14-Hcp1 and pUC-HcpFLAG [43]

vectors as DNA templates and pairs of specific primers (listed in

Table S1) bearing mismatches in the targeted codon to introduce

the desired mutations. Mutations were confirmed by DNA

sequencing (GATC biotech).

Overproduction and Purification of the EAEC Hcp
Proteins

Hcp1 and Hcp2 wild-type and mutant proteins were purified

using an identical protocol. Briefly, E. coli BL21(DE3) pLys S

(Invitrogen) cells were transformed with the pDEST-14 deriva-

tives. Overnight cultures grown on Terrific Broth (TB; 1.2%

peptone, 2.4% yeast extract, 72 mM K2HPO4, 17 mM KH2PO4,

and 0.4% glycerol) supplemented with ampicillin (100 mg/ml) and

chloramphenicol (35 mg/ml) at 37uC were diluted in TB medium

and grown at 37uC to an OD600 = 0.6. The temperature was then

decreased to 25uC and the expression of the hcp genes was induced

by IPTG (500 mM) for 18 hours. Cells were harvested,

resuspended in buffer A (50 mM Tris pH 8.0, 300 mM NaCl)

supplemented with EDTA (1 mM), lysozyme (0.5 mg/ml), and

Figure 5. Hexamers of Hcp1WW and model of the hexamers stacking in the Hcp1G96C/S158C tube assembly. (A, B) Top- (A) and bottom-
(B) view surface representations of Hcp1WW hexamers. The positions of the two overhang L1,2 and L2,3 loops are indicated. The buried surface at
monomer interface is indicated. (C) Surface representation of a two stacked hexamers model of Hcp1G96C/S158C. The cysteine residues implicated in
disulfide bond formation are indicated, as well as the major determinants at the hexamer-hexamer interface with their surface buried areas.
doi:10.1371/journal.pone.0086918.g005

Figure 6. Hcp1G96C/S158C tube formation as shown by in vivo disulfide bond formation and Electron Microscopy. (A) Cytoplasmic
extracts from EAEC Dhcp1 cells producing the indicated cysteine Hcp1 mutant proteins after in vivo oxidative treatment with copper phenanthroline
were loaded on a 12.5%-acrylamide SDS PAGE and immunodetected with the anti-FLAG monoclonal antibody. Positions of the Hcp1 monomer and
multimers are indicated on the right. Molecular weight markers (in kDa) are indicated on the left. (B) Representative electron micrographs of
negatively-stained Hcp1G96C/S158C particles. Hcp1G96C/S158C tubular structures are indicated by arrows. Scale bar, 100 nm.
doi:10.1371/journal.pone.0086918.g006
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phenylmethylsulfonyl fluoride (PMSF), submitted to three freeze-

thawing cycles and sonicated after the addition of DNase (20 mg/

ml) and MgCl2 (20 mM). Insoluble material was discarded by

centrifugation for 30 min at 160006g. All the subsequent

purification steps were performed using an AKTA FPLC system.

First, the soluble fraction was loaded into a 5-mL HisTrap FF

colomn (GE Health Sciences). After extensive washing, the Hcp

proteins were eluted in one step gradient of Imidazole 250 mM in

Buffer A. The second purification step consisted to a gel filtration

on a Sephadex 200 26/60 column (GE Health Sciences) in Tris

20 mM, NaCl 100 mM at pH 8.

Biophysical Methods
Size exclusion chromatography (SEC) was performed on an

Alliance 2695 HPLC system (Waters) using KW803 and KW804

columns (Shodex) with a Tris-HCl 20 mM (pH 7.5) NaCl

100 mM buffer, and a flow of 0.5 ml/min. Analysis using MALS,

UV spectrophotometry, QUELS and RI were performed with a

MiniDawn Treos (Wyatt Technology), a Photo Diode Array 2996

(Waters), a DynaPro (Wyatt Technology) and an Optilab rEX

(Wyatt Technology), respectively, as previously described [44].

Mass and hydrodynamic radius were calculated with the ASTRA

software (Wyatt Technology) using a dn/dc value of 0.180 mL/g.

Crystallization, Data Collection, Processing and
Refinement

The final concentration of the Hcp1WW protein preparation was

28 mg/ml. Hcp1WW crystallization trials were carried out by the

sitting-drop vapor diffusion method in 96-well Greiner crystalli-

zation plates at 20uC using a nanodrop-dispensing robot

(Cartesian Inc.). Crystals grew in 3 days after mixing 200 nl of

Hcp1WW at 28 mg/ml with 100 nl of PEG3350 (17%), Bis-Tris-

Propane (15 mM), Magnesium Formate (0.1 M), pH 6.75. Crys-

tals were cryoprotected with their mother liquor. A 1.69 Å

resolution data set was collected at the ESRF beamline ID29

(Grenoble, France). The data set was processed using XDS [45],

and scaling was performed using XSCALE [45] (Table 1). The

structure of the 66His Hcp1WW protein was solved by molecular

replacement using the structure of Hcp3 (PDB entry 3HE1) from

P. aeruginosa as a model. Structure refinement was performed with

AutoBUSTER [46] alternated with model rebuilding using

COOT [37] (Table 1). Figures were made using PyMOL [47]

or Chimera [48].

Transmission Electron Microscopy
The protein samples were diluted to a final concentration of

0.02 mg/ml in Tris-HCl 50 mM pH 8, NaCl 100 mM before

immobilization on a glow-discharged carbon grid by incubation

for 1 minute. The particles were negatively stained with uranyl

formate. Grids were air-dried and electron micrographs were

collected using a FEI Tecnai 12G2 Spirit microscope operated at

120 kV with a 60 K magnification.

Interaction Studies using Surface Plasmon Resonance
Steady state of the interaction between Hcp1 hexamers was

performed using a BIAcore T200 at 25uC. A HC200 m (Xantech)

sensor chip was coated with Hcp1, immobilized by amine coupling

(DRU = 4300). A flow-cell was coated with a control ligand

(Thioredoxin) immobilized by amine coupling at the same level of

Hcp1 (DRU = 4100). Solutions of Hcp1 (3.75–120 mM) in HBS-

EP buffer (Hepes 10 mM, NaCl 150 mM, EDTA 3 mM, T20

0.005%) were passed over the Hcp1-coated and control flow-cells.

Binding traces were recorded in duplicate for 6 concentrations of

Hcp1. The signal from the control flow cell and the buffer

response were subtracted from all measurements. The koff and KD

values were obtained using the fitting tool of the BIAevaluation

software (BIAcore).

In vivo disulfide bond formation assay. A total of 361010

exponential growing Dhcp1 cells (OD,0.6) producing the indicat-

ed Hcp cysteine variant were incubated with 0.3 mM di-

chloro(1,10-phenanthro- line) copper(II) (Cu-oP) for 20 min

without agitation. Cells were then harvested by centrifugation

and incubated in 10 mM HEPES (pH 7.4), Sucrose 30%, 1 mM

EDTA and 2.5 mM N-ethyl-maleimide (NEM) for 30 min on ice

to block free thiol groups. Cells were pelleted by centrifugation and

the cytoplasm fraction was recovered by fractionation [43], mixed

with loading buffer prior to analysis by SDS-PAGE and

immunoblotting.

Accession codes. The atomic coordinates and structure

factors have been deposited at the Protein Data Bank under

accession code 4HKH.

Supporting Information

Table S1 Primers used for the EAEC Hcp1/Hcp2
amplification step Oligonucleotides used for site-direct-
ed mutagenesis of EAEC Hcp1.
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