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Abstract

DNA  ligases  are  essential  enzymes  for  DNA  replication,  repair,  and

recombination  processes  by catalyzing  a  nick-joining  reaction in  double-stranded

DNA. The genome of the hyperthermophilic euryarchaeon Thermococcus barophilus

Ch5  encodes  a  putative  ATP-dependent  DNA  ligase  (Tba  ligase).  Herein,  we

characterized the biochemical properties of the recombinant Tba ligase. The enzyme

displays an optimal  nick-joining activity  at  65~70oC, and retains its  DNA ligation

activity  even  after  heated  at  100oC  for  2  hours,  suggesting  the  enzyme  is  a

thermostable DNA ligase. The enzyme joins DNA over a wide pH spectrum ranging

from 5.0–10.0, and its optimal pH is 6.0–9.0.  Tba ligase activity is dependent on a

divalent metal ion: Mn2+, Mg2+ or Ca2+ is an optimal ion for the enzyme activity.  The

enzyme  activity  is  inhibited  by  NaCl  with  high  concentrations.  Remarkably,  Tba

ligase activity is independent on an additional nucleotide cofactor. However,  ATP is

required  for  Tba  ligase  activity  when  lowering  the  enzyme  concentration.  Mass

spectrometric  result  shows  that  the  residue  K250  of  Tba  ligase  is  AMPylation,

suggesting that the enzyme is bound to AMP. The substitution of K250 of Tba ligase

with Ala abolishes the enzyme activity. These observations suggest that the enzyme is

an ATP-dependent DNA ligase. In addition, the mismatches at the first position 3′ to

the nick suppress Tba ligase activity more than those at the first position 5′ to the

nick. The enzyme also discriminates more effectively mismatches at 3′ to the nick

than those at 5′ to the nick in ligation cycling reaction, suggesting that the enzyme

might have potential application in single nucleotide polymorphism.

Keywords: DNA ligase; Thermococcus barophilus; Thermostability; nucleotide

cofactor; ligation cycling reaction 



Introduction

DNA ligases catalyze a sealing reaction of 5′-phosphate and 3′-hydroxyl termini

at a single-stranded break in double-stranded DNA or at two fragments containing

either complementary single-stranded or blunt ends  (Lehman  1974). These enzymes

play crucial roles in DNA replication, recombination and repair systems, and are thus

indispensable in all organisms (Lindahl and Barnes 1992). In vitro, DNA ligases have

also been widely utilized in many aspects of molecular biology and biotechnology

(Chambers and Patrick 2015; Tanabe et al. 2015), thus allowing them to become a

critical tool for modern biotechnology.

All DNA ligases catalyze the formation of a phosphodiester bond between DNA

strands and are divided into two groups depending on their cofactors, ATP-dependent

and  NAD+-dependent  (Tomkinson  et  al.  2006).  ATP-dependent  DNA ligases  are

ubiquitous in bacteria, bacteriophages, archaea, eukarya as well as eukaryotic viruses

(Shuman  2009; Wilkinson et al.  2001; Ellenberger and Tomkinson 2008), whereas

NAD+-dependent ligases are found only in bacteria (Doherty and Suh 2000). In the

first step, the DNA ligase attacks the α-phosphorus of ATP to release pyrophosphate

(Doherty and Suh 2000). In the second step, it forms a covalent intermediate (ligase-

adenylate), in which AMP is linked by a phosphoamide bond to the ε-amino group of

a lysine (Doherty and Suh 2000). Thereafter, AMP is transferred to the 5′-end of the

5′-phosphate-terminated DNA strand to form DNA adenylate. In the final step, the

DNA ligase catalyzes the attack of the nick on the DNA-adenylate by the 3′-OH to

join the two polynucleotides and releases AMP (Doherty and Suh 2000).

As the third domain of the tree of life, archaea are similar to eukarya in many

aspects of DNA metabolism while they are similar to bacteria in cellular morphology

and structure  (Edgell  and Doolittle  1997;  Olsen and Woese  CR 1997).  Currently,

almost 2000 archaeal genomes are sequenced, and most can encode putative ATP-

dependent DNA ligases. Since the first biochemical description of the ATP-dependent

DNA  ligase  from  the  thermophilic  euryarchaeon  Methanobacterium

thermoautotrophicum (Sriskanda et al. 2000), dozens of archaeal DNA ligases have



been reported (Tanabe et al. 2015). Most of the thermostable archaeal DNA ligases

from thermophiles are capable of sealing nicks in an ATP-dependent manner at the

high-temperature i which the host organisms thrive in. Biochemical data suggest that

several archaeal DNA ligases exhibit distinct requirements for nucleotide cofactors,

capable of utilizing NAD+, dATP, GTP or ADP as a cofactor (Jeon  and  Ishikawa

2003; Nakatani et al. 2000; Kim et al. 2006; Rolland et al. 2004; Seo et al. 2007).

Compared with their mesothermic counterparts, thermostable DNA ligases from

hyperthermophiles  are  key  components  in  the  ligase  chain  reaction  (LCR)  for

amplification and detection of single-base genetic diseases (Barany 1991; Qi et al.

2001). In addition, thermostable DNA ligases have important application potential in

single nucleotide polymorphism (SNP) genotyping (Qi et al. 2001), since preferential

ligation  of  matched  base  pairs  by  DNA ligases  provides  molecular  basis  of  SNP

determination (Wang  et al.  2013; Li et al. 2005; Li et al. 2006; Pack et al.  2010).

Thus, thermostable DNA ligases are powerful tools in molecular biology.

Since  hyperthermophilic  archaea  inhabit  high-temperature  environments,  their

genomes are facing severe challenges due to increased deamination and depurination

of DNA (van Wolferen et al. 2013; Lindahl and Nyberg 1974). However, with regards

to their spontaneous mutation frequencies they resemble mesophiles (Grogan et al.

2001; Jacobs and Grogan 1997). Thus,  they are supposed to express more efficient

DNA  repair  capabilities  than  mesophilic  organisms  to  counteract  the  increased

mutation rates induced by high temperature. As a vital component in the DNA repair

system,  thermostable  DNA ligases  from hyperthermophilic  archaea  play  essential

roles in sealing nicks at high temperature.

Thermococcales  represent one of the largest and best known class of Archaea

thriving in hyperthermophilic environments, such as deep-sea hydrothermal vents and

hot  springs.  Thermococcales are  ubiquitous,  and  distributed  worldly.  Increasing

numbers  of  Thermococcus species  have  been  isolated  and  studied.  Among  them,

strain Ch5 is a new member of the piezophilic and hyperthermophilic Thermococcus

barophilus, isolated from a deep-sea hydrothermal field of the Mid-Atlantic Ridge



(Logachev field chimney, 3,020 m depth)  (Kim et al. 2010).  As all members of this

species, T. barophilus Ch5 is piezophilic, with optimal growth conditions of 85°C and

40 MPa pressure (Marteinsson et al. 1999),  and is capable of growing up to 100oC.

The sequence of the T. barophilus Ch5 genome shows that it encodes a putative DNA

ligase. In this study, we cloned this gene, overexpressed the gene in E. coli, purified

the  recombinant  protein  and  characterized  its  enzymatic  properties.  Our  data

demonstrate that the Tba ligase exhibits an optimal DNA ligation activity at 65-70oC.

Due to strong thermo-tolerance and mismatch discrimination, the Tba ligase  might be

used to perform LCR, with potential application in SNP genotyping. Surprisingly, the

Tba ligase differs from almost all known ligases since it does not require additional

nucleotide cofactor (NTPs or NAD+) to ligate nicked DNA.

 Materials and methods

Cloning, expression and purification of Tba ligase

Strain Ch5   is available from the UBO Culture Collection (accession number:

UBOCC-M-3206). The genome of T. barophilus Ch5 encodes a putative DNA ligase

(TBCH5v1_RS10985). The genomic DNA of  strain Ch5 was prepared as described

by Oger  et  al.  (2016).  Using genomic  DNA of  strain Ch5 as  a  template,  a  PCR

reaction was performed by Pfu DNA polymerase (Thermo Scientific, Waltham, MA,

USA) to amplify the gene encoding Tba ligase in the presence of two primers (Table

1)  and  dNTPs.  The  amplified  PCR product  was  cloned  into  vector  pET-30a  (+)

(Novagen, Merck, Darmstadt, Germany). The recombinant plasmid carrying the Tba

ligase gene was sequenced to verify the absence of mutation, and then transformed

into Escherichia coli BL21 (DE3) RIL cells (Transgene, Beijing, China) for protein

overexpression.

The expression strain was inoculated into LB medium containing 100 µg/mL

kanamycin  and  34  µg/mL chloramphenicol,  and  shaken  at  37oC  until  the  OD600

reached 0.6. And then, isopropyl thiogalactoside (IPTG) was added into to the culture

at  a  final  concentration  of  1  mM. The  culture  was  continuously  shaken  at  room

temperature  for  another  10  hours  until  the  OD600 exceeded  1.2.  The  culture  was



harvested by centrifugation (5,000 × g, 10 min) and resuspended in Ni column buffer

A containing 20 mM Tris-HCl (pH 8.0), 1 mM dithiothreitol (DTT), 500 mM NaCl,

50 mM imidazole, and 10 % glycerol. The lysate was disrupted by ultrasonication in

an ice-bath. The soluble proteins were separated from the cell debris by centrifugation

(16,000 × g, 20 min, 4oC). The supernatant was heated at 70oC for 20 min to remove

non-thermostable proteins in E.coli. Following further centrifugation (16,000 × g, 20

min,  4oC),  the  supernantant  was  filtered  through  a  0.22  µm membrane  and  then

applied to a HisTrap FF column (GE Healthcare, Uppsala, Sweden) and eluted with

the NCGTM Chromatography System (Bio-Rad,  Hercules, CA, USA) using a linear

gradient of 50–500 mM imidazole. Fractions were analyzed by running a 10% sodium

dodecyl  sulfate  polyacrylamide  gel  electrophoresis  and  staining  with  coomassie

brilliant blue to determine the purity of the Tba ligase protein. The purified Tba ligase

fractions were collected and dialyzed in a storage buffer containing 50 mM Tris-HCl

(pH  8.0),  1  mM  DTT  and  50%  glycerol,  and  stored  at  -80oC.  The  protein

concentration  was  measured by  using a  Bradford  Protein  Assay  Kit (Bio-Rad,

Hercules, CA, USA).

Construction, overexpression and purification of the Tba ligase K250A mutant

A mutant  plasmid  with  a  K250A substitution  was  engineered  using  a  Site-

directed Mutagenesis  Kit  (Transgene,  China)  and using the  plasmid  harboring the

wild-type Tba ligase gene as a template according to manufacturer instructions. The

targeted conserved acidic aminoacid residue, e.g. K250, is located in the conserved

motif I of the Tba ligase (Fig. 1A). The sequences of the mutagenic primers are listed

in Table 1. The desired mutation was confirmed by sequencing. The K250A mutant

protein were overexpressed, purified and quantified, following the same protocols as

described above for the wild-type enzyme.

Preparation of two types of nicked DNA substrates

Plasmid pET-30a (+) DNA can be nicked by GVE2 HNH endonuclease (Zhang

et al. 2016). Thus, the nicked plasmid pET-30a (+) DNA was prepared in the DNA

nicking reaction containing 200 ng plasmid pET-30a (+) DNA, 20 mM Tris-HCl (pH



8.0), 5.0 mM DTT, 200 nM GVE2 HNH endonuclease, 1.0 mM MgCl2 and 10 %

glycerol. The reactions were kept at 60oC for 3 min to ensure maximum yield of the

nicked  DNA.  The  nicked  DNA product  was  purified  by  using  a  Cycle  Pure  Kit

(Omega Bio-Tek, Norcross, GA, USA). 

As shown in Table 1, the Cy3-labeled nucleotide duplex (*p22-37/t59) with a

single nick  was prepared by annealing  the Cy3-labeled  nucleotide  (*p22)  and  the

phosphorylated nucleotide (p37) with the complementary nucleotide (t59) in a buffer

containing 20 mM Tris-Cl (pH 8.0) and 100 mM NaCl. The mixture was heated at

100oC for 5 min and cooled slowly at least 4 hours to room temperature.

DNA ligation assays

DNA ligation assays were conducted by incubating the enzyme with the nicked

pET-30a (+) (200 ng) in the reactions (10 µL) containing 20 mM Tris-HCl (pH 8.0),

5.0 mM DTT, 1.0 mM MgCl2, 0.1 mg/ml BSA, 8% glycerol, wild-type or K250A

mutant Tba ligase with varied concentrations at 65°C for 10 min, unless otherwise

specified. The reactions were stopped by the addition of 10 µL of 20 mM EDTA. The

samples were analyzed by electrophoresis in a 0.7% agarose gel. The efficiency of the

Tba ligase was estimated  by the difference  between the cccDNA (ccc:  covalently

closed circle) percentage of product and the cccDNA percentage of substrate.

Considering  the  stability  of  the  nicked  nucleotide  duplex,  all  the  ligation

reactions using it (500 nM) as the substrate were performed with the same buffer as

described above at 60oC for 10 min. The reactions were stopped by the addition of 10

µL of stop solution containing 98% formamide and 20 mM EDTA. The samples were

heated at 100°C for 5 min and chilled rapidly on ice for 5 min, and then loaded onto a

denaturing 15% polyacrylamide gel containing 8M urea. After electrophoresis, the

gels  were scanned and Cy3-labeled  DNA was visualized  with a  Molecular  Image

analyzer (PharosFx System, BioRad). ImageQuant software was used for quantitative

analysis. All DNA ligation assays were performed in triplicates.

Effect of reaction temperature on Tba ligase activity

To determine the effect of reaction temperature on Tba ligase activity, the DNA



ligation assays were performed at various temperatures (35, 40, 45, 50, 55, 60, 65, 70,

75 and 80oC) for 10 min using the nicked plasmid as a substrate. Samples were treated

as described above. 

Thermo-tolerance assays

To evaluate the enzyme’s thermo-tolerance, Tba ligase was heated at 90, 95 and

100oC for 30 min. In addition, the enzyme was heated at 100oC for 1, 2, 3 and 4 hours.

Then the heated Tba ligase was employed to perform DNA ligation assays at 65oC for

2, 5, 10, or 15 min using the nicked plasmid as substrate.  Samples were treated as

described above. 

Effect of various divalent metal ions on Tba ligase activity 

To examine the effect of various divalent metal ions on Tba ligase activity, DNA

ligation assays were performed in the presence of Ca2+, Mg2+, Zn2+, Mn2+, Ni2+, Co2+,

Fe2+ or Cu2+ with varied concentrations (0.1-2.0 mM) using the nicked plasmid as

substrate.  Alternatively,  the nicked duplex was used as substrate  to  perform DNA

ligation  of  the  enzyme in  the  presence  of  2.0  mM of  above  divalent  metal  ions.

Samples were treated as described above.

Effects of pH and salinity on Tba ligase activity

To investigate the effect of pH on Tba ligase activity, the DNA ligation reactions

were performed under varied pH levels ranging from 4.0 to 10.0. The reaction pHs

were prepared using various buffers: acetate-sodium acetate for pHs= 4.0 and 5.0;

sodium phosphate-NaOH for pHs= 6.0 and 7.0; Tris-HCl for pH= 8.0; Gly-NaOH for

pHs= 9.0 and 10.0. Samples were treated as described above. To determine the effect

of salinity on Tba ligase activity, NaCl was added at various final concentrations (5-

400 mM) to the DNA ligation reactions. Samples were treated as described above.

Effects of various nucleotide cofactors on Tba ligase activity

To probe the effects of nucleotide cofactors on Tba ligase activity, we added 1.0

mM ATP, CTP, UTP, GTP, dATP, dCTP, dGTP, dTTP or NAD+ in DNA ligation

reactions. Samples were treated as described above.    

NanoLC-MS/MS analysis

The  purified  Tba  ligase  was  separated  by  electrophoresis  in  a  10%  native



polyacrylamide gel. The gel was stained with coomassie brilliant blue, and destained

with methanol and ethanol. The gel containing the protein samples was cut into small

pieces.  The  gel  pieces  were  swollen  in  a  digestion  buffer  containing  50  mM

NH4HCO3, 12.5 ng/uL of trypsin in an ice-cold bath. After 1 hour in an ice-cold bath,

the supernatant was removed and replaced with 50 mM NH4HCO3, without trypsin, to

keep the  gel  pieces  wet  during  enzymic  cleavage  (37oC,  16  hours).  The  digested

products were lyophilized to dryness.

The dried peptides were dissolved in 0.1% formic acid (v/v) and subjected to an

EASY-nLC 1000  interfaced  via  a  Nanospray  Flex  ion  source  to  Orbitrap  Fusion

Tribrid mass spectrometer (Thermo Fisher Scientific). The peptides were loaded onto

a trap column (C18, 5 µm particles, 100 µm ID, 2 mm length, Dr. Maisch GmbH) and

separated using an analytical column (C18, 3 µm particles, 75 µm ID, 15 mm length,

Dr. Maisch GmbH) at a flow rate of 400 nL/min with a 30 min LC gradient composed

of Solvent A (0.1% formic acid (v/v)) and Solvent B (acetonitrile,0.1% formic acid

(v/v)). The gradient was 3-8% B for 2 min, 8-25% B for 20 min, 25-60% B for 5 min,

60-80% B for 1 min, and finally 80% B for 2 min. A data-dependent method was used

with precursor MS1 scan (m/z 350–1550) acquired in the Orbitrap at  a resolution

setting of 120,000, followed by Orbitrap HCD-MS/MS, EThcD-MS/MS and CID-

MS/MS of the 15 most abundant multiply charged precursors in the MS1 spectrum.

MS2 spectra were acquired at a resolution of 30,000.

Effect of mismatches on DNA ligation by Tba ligase

To uncover the effect of mismatches adjacent to the nick on DNA ligation, we

used the nicked nucleotide duplexes with mismatches as substrates to examine Tba

ligase activity. The mismatches (A/C, C/C or T/C) were located in both 3′ and 5′ of

the nick. The annealed nucleotide duplexes were incubated with 800 nM Tba ligase at

60oC for 10 min in an optimal buffer. Samples were treated as described above.

Ligation chain reaction by Tba ligase

Ligation  chain  reaction  (LCR) was  performed in  a  reaction  mixture  (20  µL)



containing 20 mM Tris-HCl (pH 8.0), 1.0 mM MgCl2, 5.0 mM DTT, 0.1 mg/mL

BSA,  and  800  nM  Tba  ligase  in  the  presence  of  a  double  stranded,  nicked

oligonucleotide  composed  of  a  Cy3-labeled  nucleotides  (*p22),  a  phosphorylated

nucleotide (p37), and the complementary nucleotide (t59) as described above.  The

LCR thermal cycling was initialized by preheating at 95oC for 3 min, followed by 10

cycles containing denaturation at 95oC for 30 s, ligation at 60oC for 1 min, with a final

5 min ligation step at 60oC. Samples were treated as described above.

Results

The genome of T. barophilus Ch5 encodes a putative DNA ligase

The putative  Tba ligase possesses all six conserved sequence motifs typical of

ATP-dependent  DNA  ligases  (Fig.  1A)  which  exist  in  euryarchaea,  crenarchaea,

eukarya and phages. The conserved lysine residue in Motif I of ATP-dependent DNA

ligases plays an important role in binding AMP for DNA ligation (Doherty and Suh

2000). Thus, we hypothesized that Tba ligase might be ATP-dependent.

To probe the  biochemical  characteristics  of  the  putative DNA ligase from  T.

barophilus strain Ch5, the Tba ligase gene was cloned into the pET-30a (+) expression

vector,  and expressed in the  E. coli BL21 (DE3) cells. The recombinant Tba ligase

protein was successfully expressed in the E.coli cells after the addition of IPTG (Fig.

1B). The enzyme was further purified  near homogeneity after sonic disruption, heat

treatment  and  Ni-column  affinity  purification (around  63  kDa)  (Fig.  1B).  Using

nicked plasmid as a substrate, we probed the effect of enzyme concentration on Tba

ligase activity.  We found that the ligation efficiency  increased with increasing Tba

ligase concentration, exhibiting a maximum at 400 nM or more (Fig. 1C). Thus, Tba

ligase is capable of joining the nicked DNA at 65oC. Using nicked nucleotide duplex

as substrate, Tba ligase was able to join 94% of the product (Fig. 1D), and displayed

maximal activity at concentrations over 800 nM.

Although the heat treatment at 70°C for 30 min should have inactivated the E.

coli DNA ligase, there was still a possibility of contamination by this ligase during the

purification of the Tba ligase, which would affect our observations. To exclude this



possibility,  we used the  E.coli lysate expressing the empty plasmid to perform the

same DNA ligation  reactions.  No ligated  DNA product was formed by the E.coli

lysate (Fig. S1). In addition, we constructed the K250A mutant of Tba ligase in which

we introduced a mutation in the active domain, and expressed and purified the mutant

protein as described for the wild-type protein (Fig. S2). Again, no ligated DNA was

produced by the K250A mutant (Fig. S3) confirming quite clearly that  E. coli DNA

ligase contamination could be ruled out,  and that Tba ligase is  capable of sealing

nicks.

Tba ligase can ligate nicks at high temperature

Since  strain  Ch5  is  a  hyperthermophilic  archaeon,  we  first  determined  the

temperature range of for the activity of the enzyme using the nicked plasmid as a

substrate.  As  shown in  Fig.  2A,  no  significant  change  in  ligation  efficiency  was

observed  when the  ligation  reactions  were  performed from 35oC to  45oC.  As  the

reaction temperature increased from 50oC to 80oC, Tba ligase displays varied ligation

efficiencies.  Ligation efficiencies  reached a  maximum when reaction temperatures

were  65oC ~ 70oC, (Fig. 2A). Thus, the optimal reaction temperature of Tba ligase

activity is 65oC ~ 70oC.

Furthermore, we found that the heated Tba ligase at 90, 95, and 100οC for 30 min

had  similar  ligation  efficiencies  to  the  unheated  control enzyme (Fig.  2B).  These

results show that the enzyme can withstand 100oC for 30 min without any loss of

ligation activity. To further investigate its thermo-tolerance, we heated the enzyme at

100oC for various time ranging from 1 hour to 4 hours. Compared with the unheated

enzyme, the heated Tba ligase displayed clearly reduced ligation efficiency at 100oC

for 3  hour or  more (Fig.  2C). However,  the enzyme retained  pronounced ligation

efficiency when heated at 100oC for 2 hours (Fig. 2C). Taken together, these results

suggest that Tba ligase is a highly thermostable enzyme.

Effect of divalent metal ions on Tba ligase activity

Here, we investigated the dependence of Tba ligase activity for various divalent

metal ions (Mg2+, Mn2+, Fe2+, Cu2+, Ca2+, Zn2+, Ni2+ or Co2+). In the presence of 10 mM



EDTA that might chelate completely any divalent metal ion co-purified during protein

purification, no ligation product was formed by the enzyme (Figs. 3A, 3B and 3C),

suggesting that the enzyme is effectively dependent on a divalent metal ion. As shown

in  Fig.  3A,  Tba ligase  was active  in  presence  of  2  mM Mg2+,  Mn2+ or  Ca2+,  but

inactive in presence of Mg2+, Mn2+ or Ca2+ at lower concentrations (0.1 and 0.5 mM).

Furthermore, the enzyme had no detectable activity in the presence of Fe2+, Cu2+, Ni2+,

Co2+ or Zn2+ (Figs. 3A and 3B), regardless of the concentrations used. 

When using nicked nucleotide duplex as substrate, the enzyme displayed about

36% ligation efficiency in absence of added divalent metal ion, suggesting that the

enzyme contains potential divalent metal ions that can stimulate enzyme activity. In

presence of 1.0 mM Mg2+, Mn2+ or Ca2+  yields higher than 95% were observed (Fig.

3C), confirming the preferred ions for Tba ligase activity. We also observed a weak

activity  with  Cu2+,  but  no  activity  with  Fe2+,  Ni2+,  Co2+ or  Zn2+  (Fig.  3C).  This

demonstrates that the enzyme can utilize Mg2+, Mn2+ or Ca2+ as efficient cofactors.

Optimal pH and NaCl of Tba ligase activity

Using  the  nicked  nucleotide  duplex  as  substrate,  no  ligation  product  was

observed only at pH=4.0 (Fig. 4A), while the enzyme showed 49% and 45% ligation

activity at pH=5 and pH=10 (Fig. 4A), respectively. For pHs ranging from 6 to 9, the

ligation efficiencies of the enzyme were maximal (>95%) (Fig. 4A). The Tba ligase

displays  a  similar  pH adaptation  using the  nicked plasmid as  substrate  (Fig.  4B).

Thus, the pH range of Tba ligase is wide (5~10), and the optimal pH of the enzyme is

between pH 6–9. 

In the absence of NaCl, the ligation efficiencies of  Tba ligase  was >95% (Fig.

4C), suggesting that the ligation activity of the enzyme is independent of NaCl. The

activity was not affected  at low NaCl concentrations (5-50 mM), but started to be

reduced  to  89%  and  58%  activity  at  100  mM  and  200  mM  NaCl  (Fig.  4C),

respectively. 400 mM NaCl completely abolished the ligation activity (Fig. 4C). Tba

ligase exhibited a similar NaCl adaptation using the nicked plasmid as substrate (Fig.

4D), Thus, Tba ligase activity is suppressed by NaCl with high concentrations.



Dependence of Tba ligase on nucleotide cofactors

As  described  above,  most  reported  archaeal  DNA ligases  are  dependent  on

nucleotide  cofactors  to  drive  DNA ligation.  Here,  we  investigated  the  effect  of

nucleotide  cofactors  including  NTPs,  dNTPs or  NAD+ on Tba ligase activity.  We

showed that ATP is the cofactor required for optimal activity of the Tba ligase. Indeed,

nicked DNA was completely ligated in presence of 1mM ATP (Figs.  S3 and S4).

NAD+ had no effect  on Tba ligase activity  (Fig.  S3),  suggesting that  the  enzyme

cannot use NAD+ as a cofactor. To the exception of UTP, none of the of dNTPs and

NTPs could be used by the enzyme as a cofactor (Fig. S5). UTP weakly stimulated the

activity of Tba ligase (Fig. S5). Surprisingly, in the control reaction performed with

high concentrations of the Tba ligase but without addition of any nucleotide cofactor,

we found that the enzyme was active nonetheless (Fig. 5A and 5B), suggesting that

the enzyme could fonction without additional nucleotide cofactor.  Thus, as expected

from the sequence data, the Tba ligase is an ATP-dependent DNA ligase, which can

also  accept  UTP  as  a  weak  cofactor.  Confirming  this  hypothesis,  our  mass

spectrometric result shows that the K250 residue is AMPlyated (Fig. 6), showing that

the purified enzyme is bound to AMP.

Kinetics of Tba ligase activity

We determined the kinetics of DNA joining by Tba ligase under the optimal

reaction condition containing 200 ng nicked plasmid, 500 nM enzyme, 2.0 mM Mg2+,

and pH 8.0. The ligation yield of the enzyme increased as the reaction time extended.

Maximum efficiency  was observed  for  reaction  time was  over  60  min  (Fig.  7A).

Much  shorter  times  were  necessary  when  using  a  singly  nicked  DNA as  DNA

substrate,  since maximum ligation efficiency was reached after  20 min  (Fig.  7B).

Thus,  Tba  ligase  showed  better  ligation  efficiency  with  singly  nicked  duplex

compared to nicked plasmid as substrate. 

Effect of mismatches on Tba ligase activity
To  test  the  impact  of  mismatches  in  the  sequence  adjacent  to  the  nick,  we

synthesized various nucleotides (Fig. 8A). Mismatches adjacent to 3′ terminal of the

nick had the greatest impact on ligation efficiency by the Tba ligase, exhibiting only



10%, 11% and 28% of efficiency respectively for the A/C, C/C and T/C in comparison

to the matched G/C (Fig. 8B). However, ligation efficiencies were estimated to be

80%, 39% and 86% when the A/C, C/C and T/C mismatches were adjacent to  5′

terminal of the nick (Fig. 8B), respectively. These results suggest that the Tba ligase is

more tolerant to mismatches adjacent to 5′ terminal of the nick than to mismatches

adjacent  to  3′ terminal  of  the  nick.  Furthermore,  since  Tba ligase  can  effectively

discriminate mismatches, the enzyme could be potentially used in SNP assays.

LCR by Tba ligase

Since the Tba ligase is more sensitive to mismatches adjacent to the 3′-terminal

of the nick than to the 5′-terminal of the nick (Fig. 8B), we proposed that the enzyme

can be useful to perform LCR due to its high thermostability. We set up LCR reactions

using various nucleotides harboring matched and mismatched DNA substrates and a

nick. As shown in Fig. 9, the Tba ligase displayed almost 100% of LCR efficiencies

when using matched, nicked DNA. As expected, the ligase displayed the same LCR

efficiency with 5' mismatched, nicked DNA templates as with matched templates. In

contrast, the LCR efficiency of the enzyme was estimated to be 18%, 14%, and 53%

in the  presence  of  C:A,  C:C and C:T mismatches  at  the  3′  terminal  of  the  nick,

respectively. These observations confirms that the Tba ligase can only discriminate

mismatches at the 3′ side of the nick, which is consistent with the observation that the

enzyme is more sensitive to mismatches adjacent to the 3′-terminal of the nick than

the 5′-terminal of the nick.    

Discussion

In  this  work,  we  cloned  the  gene  encoding  a  putative  DNA ligase from the

hyperthermophilic archaeon T. barophilus Ch5, purified the recombinant protein, and

biochemically  characterized  the  enzyme using  two substrates:  nicked plasmid  and

nicked nucleotide duplex. Since DNA ligases from thermophiles are thermostable, we

first revealed the optimal temperature and thermo-tolerance of Tba ligase by using a

nicked plasmid. The nicked plasmid is a better DNA substrate for determining DNA

ligation at high temperature than the nicked nucleotide duplexes since the former is



more stable.  Our data  suggest  that  Tba ligase has an optimal  activity  at  65-70oC,

similar  to  the  reported  DNA  ligases  from  hyperthermophilic  crenarchaea  and

euryarchaea:  Methanobacterium  thermoautotrophicum  (Sriskanda et  al. 2000),

Aeropyrum pernix (Jeon and  Ishikawa  2003),  Thermococcus  kodakaraensis KOD1

(Nakatani  et  al.  2000),  Thermococcus sp.  (Kim  et  al.  2006), Thermococcus

fumicolans  (Rolland  et  al.  2004), Staphylothermus  marinus  (Seo  et  al.  2007),

Hyperthermus butylicus (Kim et al. 2013), Sulfophobococcus zilligii (Sun et al. 2008),

Sulfolobus shibatae (Lai  et  al.  2002) and  Pyrococcus  horikoshii  (Keppetipola and

Shuman 2005). Only one DNA ligase from a hyperthermophile Methanocaldococcus

jannaschii displays its optimal activity at a lower temperature (52.5–55oC) (Wang et

al.  2013). Overall,  DNA ligases from thermophiles are capable of joining DNA at

high temperature.

Tba ligase is one of the most thermostable DNA ligase described so far. Indeed,

hyperthermophilic archaeal DNA ligases display much variation in thermo-tolerance.

30 min at 90oC essentially abolishes M. jannaschii DNA ligase activity (Wang et al.

2013), while those of S. shibatae and A. pernix can withstand heat treatment up to 1

hour at 95oC (Lai et al. 2002) or 100oC (Jeon and Ishikawa 2003). In this work, we

found that the Tba ligase still retains activity even after more than 2 hours at 100oC,

similar to the observations of the half-life of  S. marinus  ligase (2.8 hours at 100oC)

(Seo et al. 2007).

Archaeal DNA ligases exhibit very diverse nucleotide cofactor requirements. S.

marinus and M. thermoautotrophicum DNA ligases utilize ATP as nucleotide cofactor,

and dATP as a weak effector (Sriskanda et al. 2000;  Kim et al. 2013).  DNA ligases

from  T. fumicolans (Rolland et al.  2004),  T. kodakaraensis KOD1 (Nakatani  et al.

2000),  and  P.  abyssi  (Zakabunin  et  al.  2011), which  are  phylogenetically  closely

related to T. Barophilus, and Haloferax volcanii (Zhao et al. 2006) can utilize NAD+

as a nucleotide cofactor, as well as ATP. Moreover, DNA ligases from S. shibatae and

S. marinus are dependent on ATP/ADP to seal nicks (Lai et al. 2002; Seo et al. 2007).

ADP, GTP and ATP can be used as a nucleotide cofactor to drive H. butylicus and S.



zilligii DNA ligases to seal DNA nicks (Kim et al. 2013;  Sun et al. 2008). The  A.

pernix DNA ligase can utilize NAD+, ATP or ADP to ligate DNA. The Tba ligase is

also an ATP-dependent ligase which can use UTP for its activity. Our results also

showed  that  the  Tba  ligase  could  also  be  active  in  absence  of  externally  added

nucleotide cofactors, as  was shown for the  P. furiosus  DNA ligase (Nishida et  al.

2006). This is consistent with the use of the AMP molecule bound to the protein to

perform the activity. In absence of ATP, the protein is subsequently not restored to its

functional  for,  explaining  why  this  phenomenom  is  observed  only  when  high

concentrations of Tba ligase are used.

A previous study has shown that the two basic residues (R531 and K534) in the

RDDK motif in the P. furiosus DNA ligase played a key role in the binding of AMP

(Nishida et al. 2006). Our results show that in the Tba ligase AMP is linked to residue

K250 which is part of the conserved motif I, suggesting that the enzyme is bound to

AMP.  As  mentioned  above,  ATP  is  required  for  Tba  ligase  activity  at  low

concentration. Thus, Tba ligase is another example of an ATP-dependent ligase, for

which activity requires no additional ATP at high concentrations.

Most Archaeal DNA ligases display activity in a similar range of pH. In this

work, we found that the Tba ligase is active over a wide pH spectrum (5-10) with an

optimum between pH 6 and 9, similar to what is reported for most archaeal DNA

ligases. Indeed, the optimal pHs of DNA ligases of M. jannaschii (Wang et al. 2013),

Ferroplasma acidarmanus (Jackson et al. 2007), H. butylicus (Kim et al. 2006), T. sp

(Jeon and Ishikawa 2003), A. pernix (Jeon and Ishikawa 2003) and S. marinus (Seo et

al. 2007) are 8.5, 6-7, 8.0, 7.5, 7.5 and 6.5.

Most of DNA ligases are dependent on a divalent metal ion to seal nicks, among

which Mg2+ is a common divalent metal ion. However, some DNA ligases are capable

of utilizing alternative metal  cofactors to catalyze DNA ligation.  We found that  a

divalent metal ion is needed for Tba ligase, and both Mn2+ and Ca2+ can enable the

enzyme to ligate DNA with maximum efficiencies, as well as Mg2+. However, Ca2+

inhibits the activities of S. marinus and F. acidarmanus DNA ligases (Seo et al. 2007;



Jackson et al. 2007). Similar to Tba ligase,  A. pernix,  S. shibatae and M. jannaschii

DNA ligases are active in the presence of Ca2+  (Jeon and  Ishikawa  2003;  Jeon and

Ishikawa 2003; Wang et al. 2013). 

The Tba ligase is inactive with Ni2+,  Co2+,  Zn2+ or Fe2+.  Other archaeal  DNA

ligases exhibit much variation in the utilization of Ni2+, Co2+, Zn2+ or Fe2+. T. sp DNA

ligase  is  active  with  Ni2+ whereas  A.  pernix,  F.  acidarmanus,  S.  shibatae and  S.

marinus DNA ligases are inhibited by Ni2+ (Jeon and Ishikawa 2003; Seo et al. 2007;

Lai et  al.  2002; Jackson et al.  2007). In addition,  Cu2+ slightly stimulates the Tba

ligase activity, but suppresses DNA ligases from M. thermoautotrophicum, A. pernix,

F. acidarmanus,  S.  shibatae and  M. jannaschii (Sriskanda et  al. 2000 ; Jeon and

Ishikawa 2003; Wang et al. 2013; Lai et al. 2002; Jackson et al. 2007). As observed in

Tba ligase, Zn2+ is also an inhibitor for DNA ligases from M. thermoautotrophicum,

A. pernix, F. acidarmanus, S. shibatae, S. marinus and M. jannaschii (Sriskanda et al.

2000; Jeon and Ishikawa 2003; Seo et al. 2007), while it can stimulate the activity of

the  T. sp DNA ligase (Kim et al. 2006). Similar to Tba ligase, the activities of  F.

acidarmanus,  S. shibatae,  and  M. jannaschii DNA ligases  are suppressed by Co2+

(Wang et al. 2013; Lai et al. 2002; Jackson et al. 2007), but this ion is an activator for

M. thermoautotrophicum and A. pernix DNA ligases (Sriskanda et al. 2000; Jeon and

Ishikawa  2003). Overall,  our results extend on the fact  that  archaeal  DNA ligases

have very distinct divalent metal ion requirements.

Archaeal DNA ligases show great variation in NaCl adaptation.  M. jannaschii

DNA  ligase  is  inactive  at  200  mM  NaCl  (Wang  et  al.  2013),  whereas  M.

thermoautotrophicum and T. fumicolans DNA ligases have no ligation activity in the

presence of 100 mM NaCl (Sriskanda et al. 2000; Rolland et al. 2004). We found that

the Tba ligase can retain its activity in the presence of 200 mM NaCl, but 400 mM

NaCl completely inhibits the enzyme activity. Thus, Tba ligase is more salt-tolerant

than  the  M. jannaschii,  M. thermoautotrophicum and  T.  fumicolans DNA ligases

(Sriskanda et al. 2000; Rolland et al. 2004; Wang et al. 2013), but, no so surprisingly,

is less salt-tolerant than the DNA ligase from the halophilic euryarchaeon H. volcanii



(Poidevin and MacNeill 2006).

In this work, we present that Tba ligase is more sensitive to the mismatches on

the 3′-side than to those on the 5′-side, which is similar to DNA ligases I, II, and III

from  mammalian  cells,  S.  shibatae and  vaccinia  DNA  ligases  (Lai  et  al.  2002;

Shuman 1995; Chen et al. 1995). By contrast, the mismatch on the 5′-sides of the nick

inhibits  M. jannaschii DNA ligase activity (Wang  et al.  2013). Remarkably,  some

viral ATP-dependent DNA ligases show tolerance of mismatches on both 3′- and 5′-

sides of the nick  (Shuman 1995).  Thus,  DNA ligases from eukarya,  bacteria,  and

viruses exhibit great variations in mismatch discrimination at the nick. 

In  addition  to  sealing  DNA  in  recombinant  technology,  thermostable  DNA

ligases  have been employed in  single nucleotide  polymorphism (SNP) genotyping

because of their high base specificity in ligation (Barany 1991; Qi et al. 2001). Due to

their  high  thermostability,  thermostable  DNA  ligases  from  thermophiles  display

potential application in biotechnology. In this work, we present that Tba ligase can

display various LCR efficiencies in the presence of C:A, C:C and C:T mismatches at

the 3′ terminal, thus implicating its potential application in SNP genotyping.  

In summary, we characterized biochemically the recombinant DNA ligase from

T. barophilus Ch5. Tba ligase is a highly thermostable and thermotolerant ligase, able

to join DNA nicks at high temperature. The enzyme is bound to AMP, is independent

of  extragenous  nucleotide  cofactor,  but  ATP  stimulates  activity.  The  enzyme  is

sensitive to mismatches adjacent on the 3′ side of the nick, and almost insensitive to

mismatches  on  the  5′-side.  Furthermore,  the  enzyme  can  effectively  discriminate

mismatches  in  LCR, suggesting  that  it  has  a  great  potential  for  single  nucleotide

polymorphism assays. 
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Figure legends

Fig. 1 T. barophilus Tba Ch5 encodes a DNA ligase that can join the nicked DNA. A.

Partial  amino  acid  alignment  in  the  conserved  of  DNA ligases  from crenarchaea,

euryarchaea, eukaryotes and virus. Tba:  Thermococcus barophilus (NCBI reference

sequence:  WP_013468226.1);  Tsp:  Thermococcus sp. 1519  (PDB:  3RR5);  Tsi:

Thermococcus sibiricus (PDB: 4EQ5); Pfu: Pyrococcus furiosus (PDB (Protein Data

Bank: 2CFM); Afu: Archaeoglobus fulgidus (PDB: 3GDE); Sso: (PDB: 2HIX); Hu1:

human  ligase  I  (NP_000225);  Sce: Saccharomyces  cerevisiae (P04819);  T7:

bacteriophage  T7  DNA ligase  (P00969).  The  conserved  amino  acid  residues  are

bolded. B. Expression and purification of Tba ligase.  Tba ligase was over expressed

with  IPTG and  purified  by  sonication,  heat  treatment  (70°C for  20  min)  and  Ni

column affinity  purification.  C  and D. Tba  ligase  joined  the  nicked  DNA.  DNA

ligation  assays  of  the  enzyme  were  performed  by  adding  various  enzyme

concentrations  to  the  reaction  mixtures  containing  nicked  plasmid  (C)  or  nicked

nucleotide duplex (D) as substrates. CK: reaction without the enzyme. 

Fig. 2 Tba ligase is a thermostable enzyme.  A. The optimal reaction temperature of

the enzyme activity. DNA ligation reactions of Tba ligase were performed at various

temperatures for 10 min. B. To evaluate its thermo-tolerance, Tba ligase was heated at

90, 95 and 100°C for 30 min. DNA ligation reactions of the heated Tba ligase were

monitored for 2, 5 and 10 min.  C. Tba ligase was heated at 100oC for 1, 2, 3 and 4

hours. The heated enzyme was used to perform DNA ligation for 5 and 15 min. CK:

reaction without the enzyme.

Fig. 3 Effects of various divalent metal ions on Tba ligase activity. Various divalent



metal ions with various concentrations (0.1, 0.5 and 2 mM) were added to the DNA

ligation reactions catalyzed by the Tba ligase using 200 ng nicked pET-30a (+) DNA

as substrate. A. Ca2+, Mg2+, Fe2+or Mn2+; B. Zn2+, Cu2+, Ni2+ or Co2+. C. DNA ligation

reactions were performed by the Tba ligase with 2.0 mM above divalent metal ions,

using a nicked nucleotide  duplex as substrate.  CK1: reaction without  the enzyme.

CK2: reaction without ion in the presence of the enzyme.

Fig. 4 Effects of pH and salinity on Tba ligase activity. A and B. Optimal pH of Tba

ligase activity.  Using the nicked nucleotide duplex (A) and nicked plasmid (B) as

substrates, DNA ligation reactions were carried out by  Tba ligase using buffers at

various pHs (pH 4-10). C and D. Impact of salinity on Tba ligase activity. Using the

nicked nucleotide  duplex (C) and nicked plasmid (D) as substrates,  DNA ligation

reactions were carried out at various NaCl concentrations. CK: reaction without the

enzyme.

Fig. 5 Effect of various nucleotide cofactors on Tba ligase activity. A. Using nicked

pET-30a  (+)  as  substrate,  DNA ligation  reactions  were  carried  out  with  1.0  mM

NTPs, dNTPs or NAD+.  B. DNA ligation reactions were carried out with 1.0 mM

NTPs, dNTPs or NAD+  using the nicked nucleotide duplex as the substrate.  CK1:

reaction without the enzyme. CK2: reaction with enzyme in absence of any nucleotide

cofactor.

Fig. 6 NanoLC-MS/MS spectrum for the identification of AMPlyation of Tba ligase.

Fig.  7  Kinetics  of  DNA ligation  by  Tba  ligase.  A.  DNA ligation  reactions  were

performed in presence of nicked plasmid in the optimal reaction buffer for various

reaction times (5-120 min). B. DNA ligation reactions were performed in presence of

nicked nucleotide in the optimal  reaction buffer for various reaction times (0.5-20

min). CK: reaction without the enzyme.

Fig. 8  Effect of mismatches on DNA ligation activity of  Tba ligase.  A. The Cy3-

labeled  nucleotide  DNA  (*p22),  the  phosphorylated nucleotides  (p37),  and  the

complementary  nucleotides  (p59)  were  annealed  to  prepare  the  nicked  DNA

substrates with various match and mismatches at the first position 5′ or 3′ adjacent to



the nick.  B. DNA ligation reactions were performed under the optimal  conditions.

CK: reaction without the enzyme.

Fig.  9 LCR  by  Tba  ligase.  The  Cy3-labeled  nucleotide  DNA  (*p22),  the

phosphorylated nucleotides (p37), and the complementary nucleotides (t59) were used

as substrates to perform LCR reactions. CK: reaction without the enzyme.



Table 1 Oligonucleotides used in this study. 

Name Sequence (5′-3′)
Tba  Lig F GGG AATTCCATA TGCTGTACAAAGAGTTGGCCG
Tba  Lig R CCGCTCGAGTTTAGTAATATTTAAGCTTTTCC-3′
K250A F GAAGCAGAGTTCGAAATTGCATACGACGGTGCAAGA
K250A R TGCAATTTCGAACTCTGCTTCGCCCCCCATTTCGAC
p22 CAGTGA ATTCGAGCTCGGTACC
p37 *CGGGGATCCTCTAGAGTCGACCTGCAGGCATGCAAGC
t59 GCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCN1N2GT

ACCGAGCTCGAATTCACTG
The underlined nucleotides represent restriction sites. 

The mutagenic nucleotides are italic. 

*: phosphorylated; N1: A, T, C and G; N2: A, T, C and G.


