

Exploring the source of short-term variations in respiratory data

Susanne Fuchs, Laura Koenig, Caterina Petrone

▶ To cite this version:

Susanne Fuchs, Laura Koenig, Caterina Petrone. Exploring the source of short-term variations in respiratory data. Journal of the Acoustical Society of America, 2019, 145 (1), pp.EL66-EL71. 10.1121/1.5087272 . hal-02091229

HAL Id: hal-02091229 https://hal.science/hal-02091229v1

Submitted on 5 Apr 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

AUTHOR QUERY FORM

	Journal: J. Acoust. Soc. Am.	Please provide your responses
AIP Publishing	Article Number: 506901JAS	and any corrections by annotating this PDF and up-
		loading it according to the instructions provided in the
		proof notification email.

Dear Author,

Below are the queries associated with your article; please answer all of these queries before sending the proof back to AIP. Please indicate the following:

Figures that are to appear as color online only (i.e., Figs. 1, 2, 3) (this is a free service). Figures that are to appear as color online and color in print(a fee of \$325 per figure will apply).

Article checklist: In order to ensure greater accuracy, please check the following and make all necessary corrections before returning your proof.

1. Is the title of your article accurate and spelled correctly?

2. Please check affiliations including spelling, completeness, and correct linking to authors.

3. Did you remember to include acknowledgment of funding, if required, and is it accurate?

Location in article	Query / Remark: click on the Q link to navigate to the appropriate spot in the proof. There, insert your comments as a PDF annotation		
AQ1	Please check that the author names are in the proper order and spelled correctly. Also, please ensure that each author's given and surnames have been correctly identified (given names are highlighted in red and surnames appear in blue).		
AQ2	Please note journal style only permits one additional affiliation and it must be set as a footnote. Please check changes made.		
AQ3	Please check change from "in the next section" to "in Sec. 1.1" to comply with journal style.		
AQ4	The name of the manufacturer and their location must be provided for all equipment used in this paper.		
AQ5	Please verify the definition of "SE."		
AQ6	Ladefoged and McKinney (1963) is not cited in text. Please cite where appropriate or delete from the reference list.		
AQ7	Please provide the date this site was last viewed.		
AQ8	Please provide a digital object identifier (doi) for Ladefoged and Loeb (2002), Ladefoged <i>et al.</i> (1958). For additional information on doi's please select this link: http://www.doi.org/. If a doi is not available, no other information is needed from you.		

1

Thank you for your assistance.

PROOF COPY [JASA-EL-00925] 506901JAS

Fuchs et al.: JASA Express Letters

https://doi.org/10.1121/1.5087272

Stage:

3

8

9

10

11

12

13

14

15

16

17

30

Exploring the source of short-term variations in respiratory data

AQ1AQ2

Susanne Fuchs^{a)} and Laura L. Koenig^{b)}

Leibniz-Centre General Linguistics (ZAS), Berlin, 10117, Germany fuchs@leibniz-zas.de, koenig@haskins.yale.edu

Caterina Petrone

Aix-Marseille Université, CNRS, Laboratoire Parole et Langage, Aix-en-Provence, France caterina.petrone@lpl-aix.fr

Abstract: This study explores short-term respiratory volume changes in German oral and nasal stops and discusses to what extent these changes may be explained by laryngeal-oral coordination. It is expected that respiratory volumes decrease more rapidly when the glottis and the vocal tract are open after the release of voiceless aspirated stops. Two experiments were performed using Inductance Plethysmography and acoustics, varying consonantal properties, loudness, and prosodic focus. Results show consistent differences in respiratory slopes between voiceless vs voiced and nasal stops, which are more extreme in a loud or focused position. Thus, respiratory changes can even occur at a local level.

© 2019 Acoustical Society of America [DDO'S]

Date Received: August 4, 2018Date Accepted: December 29, 2018

1. Introduction

AQ3

During speech production, chest wall displacements and subglottal pressures mainly 18 show slow, long-term variations (e.g., Leanderson et al., 1987), but short-term changes 19 in respiratory signals, i.e., brief excursions from the long-term baselines, have also 20 been observed. As elaborated in Sec. 1.1, these short-term changes have most typically 21 been associated with word or sentence stress (Ladefoged, 1968; Ohala, 1990), but a 22 few authors have noted the possibility of segmental effects on respiratory measures, 23 particularly in cases where both the glottis and upper vocal tract are open, leading to 24 rapid venting of air. Data reporting on such segmental effects have been sparse and 25 anecdotal, however, and it is not clear whether such results can consistently be 26 observed across multiple speakers. This paper systematically assesses respiratory dis-27 placement variation as a function of consonantal characteristics, loudness, and pro-28 sodic focus in several speakers. 29

1.1 Syllables, stress, and segments

Early reports of short-term excursions (or "pulses") in respiratory system data came from Stetson (1951, originally published in 1928), who carried out a range of studies exploring respiratory control for speech. He collected various signal types, including electromyography (EMG), torso wall movements, and subglottal and esophageal pressures. Stetson proposed that individual syllables were associated with a "chest pulse" generated by the internal intercostal muscles. 31

Subsequent studies (e.g., Ladefoged *et al.*, 1958) challenged this chest pulse 37 theory. To a greater extent than Stetson, Ladefoged and colleagues employed EMG 38 methods along with measures of chest wall movements and esophageal pressures. 39 These authors argued that the internal intercostals did not show ballistic activity for 40 individual syllables. They did, however, report increases in subglottal pressure for 41 stressed syllables (Ladefoged, 1968), and presented one figure quantifying the frequency 42 of single motor unit firing in the internal intercostals to argue that such activity 43 increased before stressed syllables (Ladefoged *et al.*, 1958).¹ Ohala (1990) subsequently 44 summarized counterevidence to the claim that stressed syllables are associated with 45 greater respiratory system activity, and suggested that lung volume changes correlate 46 with syllables that have emphatic rather than lexical stress. 47

Ladefoged (1968) made an additional observation that has received considerably less attention, namely, subglottal pressure could show short-term decreases during 49

^{a)}Author to whom correspondence should be addressed.

^{b)}Also at: Haskins Laboratories, New Haven, Connecticut 06511, USA.

J_ID: JASMAN DOI: 10.1121/1.5087272 Date: 9-January-19

Page: 2 Total Pages: 7

Published Online xx xx xxxx

PROOF COPY [JASA-EL-00925] 506901JAS

Fuchs et al.: JASA Express Letters

https://doi.org/10.1121/1.5087272

voiceless consonants. Ohala (1990) also acknowledged an interaction between the respiratory and oral systems and reported having observed rapid changes in lung volume for during regions of high airflow for consonants.

Stage:

Despite these suggestions in the literature, there has been little subsequent consideration of the interaction between specific segmental and prosodic properties and their effect on respiratory kinematics. To the extent that previous authors have explored this possibility, the data presentation has been anecdotal and qualitative, in that the authors did not consistently quantify respiratory changes as a function of consonant type. Moreover, the number of speakers investigated in this work, although not consistently documented, was likely quite limited.

In a recent study (Petrone et al., 2017) we observed a regular rapid drop in 60 respiratory volume after oral release (burst) in voiceless alveolar stops produced by 61 women. However, that study did not compare voiceless stops to segments with a closed 62 glottis in similar contextual and prosodic environments. From a purely logical perspec-63 tive, it would make sense for segmentally-induced loss of air to affect respiratory sys-64 tem volumes. On the other hand, respiratory system volumes are quite large in com-65 parison to whatever quantity of air might be released during an individual consonant 66 such as an aspirated stop, particularly when one considers speakers with smaller glottal 67 apertures (viz., women and children, who have smaller laryngeal structures than the men who were mainly represented in the early work). Thus, this study represents a sys-69 tematic exploration of whether multiple speakers, mostly adult females, consistently 70 show segmental effects on respiratory system displacements. In particular, we evaluate 71 respiratory volume during consonants varying in glottal and velar opening (nasal stops, 72 voiced oral stops, voiceless aspirated oral stops). Along with consonant type, we also 73 consider possible interactions with prosodic changes at sentence and word levels via 74 loudness (first experiment) and focus (second experiment) manipulations. Prosodic vari-75 ation is of interest given that prosody can be manifested in articulatory changes at a 76 segmental level. For German speakers, a larger glottal opening for voiceless stops has 77 been observed in the production of loud in comparison to normal speech (Fuchs *et al.*, 78 2004) and for focused in comparison to an unfocused position (Hoole and Bombien, 79 2017). It is not known, however, whether such prosodic effects on consonantal charac-80 teristics are reflected in respiratory patterns. 81

1.2 Hypotheses

We hypothesize that respiratory volume changes reflect laryngeal-oral coordination. Specifically, we expect that the slope of the respiratory volume declines more steeply at the release of voiceless aspirated stops than at the release of voiced and nasal stops. The steeper decline in voiceless stops should result from an open vocal tract after oral release which is coordinated with maximal glottal aperture. In voiced stops, phonetically realized as voiceless unaspirated or voiced word-initially in German, the glottis should be (almost) closed and less air can escape than with an open glottis, so that the slope of respiratory volume should not change to the same extent. Similarly, phonation in nasal stops should limit air loss and have only a marginal effect on respiratory volume changes.

We also expect effects to be larger in loud speech (experiment 1) and focused 92 position (experiment 2) than in normal speech and unfocused position, because the 93 degree of glottal opening for voiceless aspirated stops is larger in loud speech and 94 under focus. Finally, we suppose that thoracic volume changes may be affected by 95 loudness and focus, because the thorax is close to the larynx and the upper vocal tract 96 and it has been discussed with respect to local respiratory changes (Ladefoged and 97 Loeb, 2002). We do not expect consistent abdominal volume changes, since the abdo-98 men is anatomically more distant from the larynx and upper vocal tract, and we gener-99 ally associate it with slower motions (Thomasson and Sundberg, 2001). 100

2. Experiment 1

2.1 Methodology

Participants were 11 native speakers of German (all female) with an age between 20 103 and 37 yr and a body mass index between 18 and 23. All were recorded in a seated 104 position. Thoracic and abdominal displacements (obtained using Inductive 105 Plethysmography) were recorded simultaneously with speech acoustics (Sennheiser 106 microphone HKH50 P48) using a multi-channel system that prevented the need for 107 post-synchronization. The data were recorded with Edwin, software provided by the 108 manufacturer. The data were then converted to MATLAB (version 2017b) for analysis.

The speech material consisted of bisyllabic target words containing initial /m b p/, 110 a medial alveolar obstruent, and various vowels. Word with initial /m/ were: "Mieten" 111

EL2 J. Acoust. Soc. Am. 145 (1), January 2019

101

102

82

Stage: Page: 3 Total Pages: 7

PROOF COPY [JASA-EL-00925] 506901JAS

Fuchs et al.: JASA Express Letters

https://doi.org/10.1121/1.5087272

Published Online xx xx xxxx

139

(*rents*), "Mitte" (*section of Berlin*), "Mate" (*a tea*), "Mützen" (*caps*), "München" 112 (*Munich*). Words with /b/ were "Butter" (*butter*), "Büsten" (*busts*), "Büsum" (*an island*) 113 and, with /p/, "Paddeln" (*to canoe*), "Pudel" (*poodle*), "Pita" (*pita*), "Pizza" (*pizza*), 114 "Paten" (*god-parents*), "Pasta" (*pasta*), "Pute" (*turkey*), "Pudding" (*pudding*). Thus, pho- 115 netically, the vowels following /m/, /b/, and /p/ were, respectively, /i I Y a:/, / υ y/, and /i I 116 $u \ \sigma$ a: a/, where /a:/ represents the tense vowel and /a/ is the lax counterpart, but both dif- 117 fer frequently only in vowel quantity.

The respective target words occurred sentence-initially. A question-answer 119 paradigm was employed. For example, the experimenter asked the question: "Magst 120 du X?" *Do you like X*? and the participant answered: "X mag ich, aber nicht Y." X I 121 *like, but not Y*. The participants supplied Y. The inclusion of Y made the experiment *122* more engaging for participants, because they could partially create their own 123 responses. Speakers produced utterances in normal and loud conditions. Louder speech 124 was elicited by increasing speaker-experimenter distance.

Segments were labeled acoustically. For /m/ the onset was defined as the 126 beginning of vocal fold oscillation. The offset was determined as the beginning of 127 prominent formant structure corresponding to the beginning of the following vowel. 128 For the oral stops the onset was defined as the first visible burst and the offset as the 129 beginning of vocal fold oscillations for the following vowel. The slopes of thoracic and 130 abdominal volume changes were calculated from the acoustically annotated onset (x1) 131 to the offset (x2) of the segment (see Fig. 1 lower plots). Figure 1 shows the experimen-132 tal setup and the annotation of the acoustic signals.

Thoracic and abdominal slopes were calculated using formula (1) where x ¹³⁴ denotes the on- and offset of the segment (see Fig. 1) and y1 and y2 are the respiratory ¹³⁵ signals obtained at times x1 and x2 from either the rib cage or the abdomen. ¹³⁶

Slope =
$$(y^2 - y^1)/(x^2 - x^1)$$
. (1)

The units for the respiratory data are arbitrary, but are consistent within each 137 speaker.²

2.2 Results

Linear mixed effect models [version R 3.4.3, R Core Team, 2018), *lme4* (Bates *et al.*, 140 2015), *lmerTest* (Kuznetsova *et al.*, 2017) were run with thoracic slope or abdominal 141 slope as the dependent variable, loudness, phoneme, and their interaction as indepen- 142 dent factors and speaker-specific slopes for loudness and phoneme. The reference level 143 was set to /p/ and normal speech. For pairwise comparisons involving other levels than 144 /p/ (/b/ vs /m/), the reference level was changed and only *p*-values smaller than 0.025 145 [p = 0.05 divided by the number of models (2) run] were treated as significant. 146 Thoracic slope for /p/ was significantly steeper than in /m/ [$\beta = -0.316$, standard error 147

Fig. 1. (Color online) The upper plots show the experimental setup (participant sitting on a chair wearing the two respiratory belts) and the corresponding signals [acoustics (black line), thoracic volume changes (gray line), and abdominal volume changes (dark gray line below the ribcage signal) in arbitrary units]. The graphs below show the acoustic annotation which served as the input for obtaining the respiratory data during these regions.

PROOF COPY [JASA-EL-00925] 506901JAS

Fuchs et al.: JASA Express Letters

https://doi.org/10.1121/1.5087272

Published Online xx xx xxxx

Fig. 2. Slope of the thoracic volume between the acoustically annotated on- and offsets (*y*-axis) split by phoneme (*x* axis) and loudness (upper panels: normal, lower panels: loud). Individual speakers' results (spl-spl1) are displayed in the subplots. The horizontal line depicts a threshold. All values below this line refer to a decrease in thoracic volume (negative slope) while values above correspond to an increase in thoracic volume (positive slope).³ The number of all samples (*n*) is 1705.

AQ5

(SE) = 0.051, t = -6.16, p < 0.001] and also steeper in /p/ than /b/ ($\beta = -0.24$, 148 SE = 0.055, t = -4.4, p < 0.001) (see Fig. 2). No significant differences were found 149 between /b/ and /m/.

Loudness also revealed an effect with steeper slopes for loud speech than nor- 151 mal in /p/ ($\beta = -0.49$, SE = 0.195, t = -2.49, p = 0.021), but no significant differences 152 in loudness were found for /b/ and /m/. 153

The abdominal slope revealed a difference between /p/ and /b/ with a shal- 154 lower (less negative) slope for $/b/(\beta = 0.359)$, SE = 0.122, t = 2.95, p = 0.005), and a 155 shallower slope in /b/ than $/m/(\beta = 0.391)$, SE = 0.128, t = 3.05, p = 0.003). No differ- 156 ences between /p/ and /m/ were found and there was no effect of loudness. 157

3. Experiment 2

3.1 Methodology

Seven women and three men, all native speakers of German, were recorded. Respiratory 160 equipment and data annotation were the same as in experiment 1. Speakers had an age 161 between 22 and 36 yr and body mass index between 19 and 25 (see Petrone et al., 162 2017). The speech material consisted of sentences with contrastive focus, i.e., a word in 163 a target utterance was contrasted with another word in the preceding context. The target 164 sentences were elicited using a question-answer paradigm. The experimenter asked a 165 question and the participant read the answer from a sheet of paper. Focused words 166 were written in capital letters. For example, the question "Wäscht er Tiegel"? (Does he 167 wash cups?) was used to prompt contrastive focus in the target utterance "Er NIMMT 168 Tiegel, aber wäscht sie nicht" (He TAKES cups, but does not wash them). Prompts that 169 put the final noun (e.g., "Tiegel") in focus yielded the no-focus condition for the verbs. 170 For analysis, we selected three verbs starting with a nasal or oral stop, i.e. /n/ in 171 "nimmt" (takes), /m/ in "malt" (paints), and /k/ in "kennt" (knows); the vowels in the 172 three words were I_{I} a: $\varepsilon/$, respectively. Note that the current analysis differs from the 173 original study because here we assess the initial consonant of the verb whereas Petrone 174 et al. (2017) investigated the /t/ at the end of the verb. 175

3.2 Results

176

158

159

Two linear mixed-effects models (using the packages *lme4*, *lmerTest*) were run with 177 thoracic slope or abdominal slope as the dependent variable and focus, phoneme, and 178 their interaction as independent factors. The random structure included speaker specific 179 slopes for focus and phoneme. The voiceless stop /k/ in the focus condition served as 180 the reference level and it was changed when comparing other phoneme pairs.

Statistical results showed that the thoracic slope was significantly shallower in 182 /n/ than /k/ ($\beta = 0.36$, SE = 0.043, t = 8.35, p < 0.001), shallower for /m/ than /k/ 183 ($\beta = 0.34$, SE = 0.043, t = 8.02, p < 0.001), and did not differ between /n/ and /m/ (see 184 Fig. 3). Thoracic slope was affected by focus in /k/, with a shallower slope for the no 185 focus than for the focus condition ($\beta = 0.14$, SE = 0.041, t = 3.36, p = 0.0016). Focus 186 did not affect thoracic slope in /m/ and /n/, and individual variation is evident (Fig. 3).

Results revealed no effect of focus on abdominal slope, but an effect of phoneme with a shallower slope for /n/ than /k/ ($\beta = 0.176$, SE = 0.062, t = 2.85, 189 p = 0.0078), but not for /k/ versus /m/. There were no differences between /n/ and /m/. 190

PROOF COPY [JASA-EL-00925] 506901JAS

Fuchs et al.: JASA Express Letters

https://doi.org/10.1121/1.5087272

Fig. 3. Slope of the thoracic volume between the acoustically annotated on- and offsets (y-axis) split by consonant (x axis) and focus (upper track: no focus, lower track: focus). Individual speakers' results are displayed in the subplots (seven females, three males). All values below the black horizontal line at zero indicate a decrease in thoracic volume (negative slope) while values above correspond to an increase in thoracic volume (positive slope). The number of all samples (n) is 221.

4. Discussion and conclusion

Results for two experiments with different participants revealed consistent local effects 192 on thoracic volume in voiceless aspirated consonants, which differ from voiced stops 193 and nasals in their laryngeal-oral coordination. Specifically, a larger amount of air can 194 escape when the vocal tract and the glottis are open in comparison to configurations 195 where the glottis is closed or the vocal folds vibrate. Patterns for voiceless stops were 196 rather consistent across speakers, with only a few speakers differing from the overall 197 pattern (Fig. 2: sp7, loud condition; Fig. 3, M2 and F6). A review of the acoustic data 198 for these few unusual speakers did not immediately show a reason for their atypical 199 behaviour.

We also obtained evidence for prosodic effects (loudness, focus) in the slope of 201 the thorax, but not the abdomen, in the vicinity of voiceless aspirated stops. The thorax is closer to the larynx and thoracic muscles may also be more flexible and adaptable to short temporal changes in comparison to the global abdominal motions (e.g., 204 Ladefoged *et al.*, 1958). It may also be that abdominal movements reflect greater inertia than those of the thorax (cf. Thomasson and Sundberg, 2001). However, we note 206 that kinematic data do not necessarily allow firm conclusions about underlying physiological processes. In our study the results could reflect an active involvement of the 208 thorax muscles, mechanical properties of the thorax and abdomen, or simply a larger glottal aperture. A study adding measures of vocal-fold abduction or subglottal pressure could help disentangle the possibilities here.

Our results also demonstrate that prosody affects the degree to which differ- ²¹² ences in consonantal aerodynamics are reflected in respiratory data. The effects are not ²¹³ restricted to specific conditions, but are more extreme in loud speech and in words ²¹⁴ under focus. This is in line with literature on prosodic strengthening and in particular ²¹⁵ on laryngeal kinematics, where a larger glottal opening has been reported for strong ²¹⁶ prosodic conditions than in weak ones (Fuchs *et al.*, 2004; Hoole and Bombien, 2017). ²¹⁷

Finally, we suggest that the short term negative excursions seen here may provide an alternative explanation for Stetson's chest pulses. That is, when one observes 219 an undulating signal, one might focus on the local increases (pulses) rather than the 220 local decreases ("valleys") as a phenomenon calling for explanation. Stetson's speech 221 material consisted to a large extent of CV syllables with C being voiceless stops; hence 222 it may not be surprising to find excursions on every syllable. Further, Stetson's experimental design may have led to rather careful or staccato speech, i.e., the syllables 224 could also have received accentuation. 225

Acknowledgments

This work was supported by Grant No. 01UG1411 from the Ministry for Education and 227 Research (BMBF) and the Leibniz Society to S.F. at ZAS and by financial aid (Bonus 228 Qualité Recherche) from the Laboratoire Parole et Langage. We thank Jörg Dreyer for 229 technical support and our speakers for their participation. 230

References and links

¹As pointed out by Ladefoged and Loeb (2002), the technology available at the time did not allow calculating 233 averaged EMG data; the only cases where EMG data could be quantified was when a single motor unit was 234 recorded. 235

Published Online xx xx xxxx

191

226

231

232

J_ID: JASMAN DOI: 10.1121/1.5087272 Date: 9-January-19

PROOF COPY [JASA-EL-00925] 506901JAS

Fuchs et al.: JAS	A Express Letters	https://doi.org/10.1121/1.5087272	Published Onli	ne xx xx xxxx
	² Since we did not merge thorax and the slope values in percent vital capa	abdomen kinematics to obtain overall lung volume, we city.	e cannot provide	236 237
	³ It is possible that some cases of pos 1988). However, we also obtained a were not in utterance-initial position	sitive slopes reflect preparatory chest wall positioning (few cases of positive slopes in experiment 2, where the	cf. Hixon <i>et al.</i> , analyzed words	238 239 240
	Bates, D., Maechler, M., Bolker, I lme4," J. Stat. Software 67(1), 1–4	B., and Walker, S. (2015). "Fitting linear mixed-effec	ts models using	241 243
	Fuchs, S., Hoole, P., Pelorson, X., "Laryngeal adjustment in voiceles in loud versus normal speech," <i>Biomechanics</i> , Marseille, France, p	van Hirtum, A., Perrier, P., Dahlmeier, K., and Creutz ss consonant production: I. An experimental study of g in <i>Proceedings of the Conference on Vocal Fold</i> pp. 1–5.	zburg, J. (2004). lottal abduction <i>Physiology and</i>	244 245 246 247
	Hixon, T. J., Watson, P. J., Harris, and abdomen during prephonator	F. P., and Pearl, N. B. (1988). "Relative volume change y chest wall posturing," J. Voice 2 (1), 13–19.	es of the rib cage	248 249
	Hoole, P., and Bombien, L. (2017). prosodic and syllable-structure con	"A cross-language study of laryngeal-oral coordination nditions," J. Speech Lang. Hear. Res. 60(3), 525–539.	n across varying	250 251
	Kuznetsova, A., Brockhoff, P. B., mixed effects models," J. Stat. Sof	and Christensen, R. H. B. (2017). "ImerTest Package 82 (13), 1–26.	: Tests in linear	252 253
	Ladefoged, P. (1968). "Linguistic as by A. Bouhuys (New York Acades	spects of respiratory phenomena," in <i>Sound Production</i> my of Sciences, New York), pp. 141–151.	n in Man, edited	254 255
AQ8	Ladefoged, P., and Loeb, G. (2002) Pap. Phon. 101, 50–60.	. "Preliminary studies on respiratory activity in speech,	" UCLA Work.	256 257
AQ6	Ladefoged, P., and McKinney, N. (J. Acoust. Soc. Am. 35, 454–460.	(1963). "Loudness, sound pressure, and subglottal pres	sure in speech,"	258 259
	Ladefoged, P., Draper, M. H., and 36 , 1–14.	Whitteridge, D. (1958). "Syllables and stress," Le Ma	uître Phonétique	260 261
	Leanderson, R., von Euler, C., and dynamics in singing and speech,"	Sundberg, J. (1987). "Breathing muscle activity and sul J. Voice 1 , 258–262.	oglottal pressure	262 263
	Ohala, J. J. (1990). "Respiratory act W. J. Hardcastle and A. Marchal	tivity in speech," in <i>Speech Production and Speech Moa</i> (Kluwer, Dortrecht, The Netherlands), pp. 23–53.	lelling, edited by	264 265
	Petrone, C., Fuchs, S., and Koenig acoustic parameters of sentence lev	g, L. L. (2017). "Relations among subglottal pressure, vel prominence in German," J. Acoust. Soc. Am. 141 , 1	breathing, and 715–1725.	266 267
AQ7	R Core Team (2018). "R: A lang Statistical Computing, Vienna, Au	uage and environment for statistical computing," R istria, URL http://www.R-project.org/.	Foundation for	268 269
-	Stetson, R. H. (1951). Motor Ph Amsterdam, the Netherlands). 212	onetics: A Study of Speech Movements in Action (2 pp.	North-Holland,	270 271
	Thomasson, M., and Sundberg, J. operatic singers," J. Voice 15, 373-	(2001). "Consistency of inhalatory breathing patterns –383.	in professional	272 273

Stage:

Page: 6

Total Pages: 7