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Stacked Sparse Blind Source Separation for Non-Linear Mixtures

Kervazo C. 1 Bobin J. 1

Abstract

Linear Blind Source Separation (BSS) has known
a tremendous success in fields ranging from
biomedical imaging to astrophysics. In this work,
we however propose to depart from the usual
linear setting and tackle the case in which the
sources are mixed by an unknown non-linear
function. We propose a stacked sparse BSS
method enabling a sequential decomposition of
the data through a linear-by-part approximation.
Beyond separating the sources, the introduced
StackedAMCA can under discussed conditions
further learn the inverse of the unknown non-
linear mixing, enabling to reconstruct the sources
despite a severely ill-posed problem. The qual-
ity of the method is demonstrated on two experi-
ments, and a comparison is performed with state-
of-the art non-linear BSS algorithms.

1. Linear and Non-Linear BSS
1.1. Context

Since its formulation in the 1980s, Blind Source Separation
(BSS) has become one of the major tools to learn meaningful
decompositions of multivalued data. It is used in many
fields, such as audio processing (Vincent et al., 2011; 2003;
Ozerov & Févotte, 2010; Duong et al., 2010; Févotte et al.,
2009), biomedical imaging (Jung et al., 2000; Negro et al.,
2016; Poh et al., 2010) or astrophysics (Bobin et al., 2014).

Most of this work has however been dedicated to linear
BSS, in which m observations are assumed to be the linear
combinations of n sources, each of them having t samples.
In matrix form, it is supposed that the data can be written as
X = AS+N, with X (size m× t) the observation matrix
corrupted with some unknown noise N. The sources S
(n× t) are therefore supposed to be mixed linearly through
the A matrix (m × n) and the goal of linear BSS is to
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recover both A and S from the sole knowledge of X up to
a permutation and scaling indeterminacy. While linear BSS
is ill-posed, several types of priors have been introduced
to reduce the space of possible solutions. Among them,
sparsity (Zibulevsky & Pearlmutter, 2001) – which assumes
that the sources have a large number of zero coefficients –
has been shown to lead to enhanced separation quality on
various problems of linear BSS (Bobin et al., 2008; 2015;
Kervazo et al., 2018).

While convenient for many problems, the linear mixing
model is only an approximation which might not hold in
various experimental settings. For instance, it is not any-
more valid when using sensors with saturations or non-
linearities (for instance gas (Madrolle et al., 2018) or chem-
ical (Jimenez, 2006) sensors), or in some specific applica-
tions (show-through removal (Merrikh-Bayat et al., 2011),
hyperspectral imaging (Dobigeon et al., 2014)). In all these
applications, it is therefore relevant to change the BSS model
to a non-linear one:

X = f(S) +N (1)

Where f is an unknown non-linear function from Rn×t to
Rm×t. In this work, we will consider general functions
f , by mostly (cf. Sec. 4) assuming that f is invertible and
symmetrical around the origin, as well as regular enough.
Regular means that f is L-Lipschitz with L small enough
and that f does not deviate from a linear mixing too fast
as a function of the input amplitude. Furthermore, we will
focus on the overdetermined case, in which n 6 m. At
this point, it is important to mention that non-linear BSS is
much more difficult than its linear counterpart and that it
might not be possible to find both f and S up to a simple
permutation and scaling indeterminacy. In the case of sparse
sources, (Ehsandoust et al., 2016) has shown the possibility
to recover the sources up to a nonlinear function if only one
source is active for each sample. Therefore, the problem is
too ill-posed to ensure a good reconstruction of the sources
in the general case, and the goal of sparse non-linear BSS
is only to separate the sources by estimating the underlying
non-linearities.

1.2. Contribution

We propose to tackle the general problem of non-linear
BSS presented in Eq. (1) by using a sparsity prior on the
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sources. To the best of our knowledge, our method is the
first attempting to find a linear-by-part approximation of
the underlying non-linearities using a stacked sparse BSS
approach. Beyond separating them, the algorithm proposes
a possible reconstruction of the sources by inverting the es-
timated linear-by-part model. Despite the usual non-linear
BSS indeterminacies, the proposed reconstruction is empir-
ically shown to estimate well the true sources under some
discussed hypotheses. In Sec. 2, the method is further de-
scribed. In Sec. 3, some experiments are conducted on two
different mixings, and our method is compared to other ones
to show its relevance. In Sec. 4, the required hypotheses for
the proposed approach are studied.

1.3. Previous Works

Among the different works dealing with sparse sources,
many focus on specific mixing models: (Theis & Amari,
2004; Van Vaerenbergh & Santamarı́a, 2006; Duarte et al.,
2015) attempted the problem of Post Non-Linear (PNL)
mixtures, and (Duarte et al., 2012) the problem of Linear-
Quadratic (LQ) mixtures. General settings similar to the
framework of the current article have mainly been studied in
(Ehsandoust et al., 2016; Puigt et al., 2012). In these works,
the approaches are however fully different since they are
based on clustering algorithms.

It is also worth mentioning that the most comon approach
is to use as prior the statistical independance of the sources
instead of sparsity: this family of methods is known as Inde-
pendant Component Analysis (ICA). Contrary to the linear
case, this prior is nevertheless not anymore sufficient to sep-
arate the sources in the general non-linear setting (Comon
& Jutten, 2010). Therefore, several kind of methods have
emerged to bypass the separability issue. A first possibility
is to explicitly focus on a special kind of mixing f (e.g. PNL
and LQ mixtures – see (Deville & Duarte, 2015)). Another
possibility is to use an explicit or implicit regularization
making the problem better posed. For explicit regularization,
one can cite additional priors on the sources such as tempo-
ral dependancies (Hyvarinen & Morioka, 2017; Ehsandoust
et al., 2017). Implicit regularization with specific separating
algorithms can also be used, such as in (Almeida, 2003;
Brakel & Bengio, 2017; Honkela et al., 2007).

1.4. Notations

In this work, scalars are denoted as lower case letters (e.g.
τ ), matrices in bold upper case letters (e.g. X), and their
estimation by an algorithm as X̂. The notation Xr is the
line vector corresponding to the rth line of the matrix X
(X1..r being the set of lines from index 1 to r), while Xi is
the specific sample vector of Rm indexed by i. Functions
with matrix outputs are written as f . In iterative algorithms,
the estimate of a variable a at the lth iteration is denoted

S1

S
2
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Figure 1. Left: Original sources; Right: A non-linear mixing of the
left sources. The dashed arrows correspond to the mixing direc-
tions found by a linear model.
Red color correspond to samples where S1 is active and yellow to
samples where S2 is active. These colors are displayed for explan-
ing the distortion introduced by the mixing f but are unknown in a
blind setting.

as a(l). The set of all the variables estimated between the
iterations 1 to l is denoted as a(1..l).

2. Proposed Approach
2.1. A Geometrical Perspective on Sparse Non-Linear

BSS

The proposed method is first discribed by adopting a geo-
metrical point of view in the case n = 2; the generalization
to higher values is in principle straightforward.

Due to the morphological diversity assumption (Bobin et al.,
2007), it is very rare that sparse sources both have non-zeros
values at the same time. Therefore, when plotting the scatter
plot of S1 as a function of S2 (cf. Fig. 1(a)), most of the
source coefficients lie on the axes (in this work we even
assume that all coefficients lie on the axes – this hypothesis
is discussed in Sec. 4). Once mixed with the non-linear f ,
the source coefficients lying on the axes are transformed into
n non-linear one dimensional (1D) manifolds (Ehsandoust
et al., 2016; Puigt et al., 2012), each manifold corresponding
to one source (see Fig 1(b)). To separate the sources, the idea
is then to back-project each manifold on one of the axes. We
propose to perform this back-projection by approximating
the 1D-manifolds by a linear-by-part function, that we will
invert. As evoked above, we then get separated sources
which are only distorted through non-linear functions that
do not remix them, called h in the following.

2.2. Overview of The Proposed Approach

As can be seen in Fig. 1(b), the lowest amplitude data co-
efficients can be well approximated by a classical linear
model because of the regularity assumption on f , stating
that the data must not deviate from linearity to fast as a func-
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Figure 2. Main steps of StackedAMCA and corresponding nota-
tions

tion of the amplitude. Finding such an approximation can
in practice be done using a sparse linear BSS algorithm,
provided that this one is robust to the higher amplitude non-
linearities. A rough estimate of the sources can then be
computed by inverting the found linear model. As expected,
the corresponding separation is however very poor for the
higher amplitude highly non-linear samples, as seen in 3(a),
where such samples (outside of the red square) do not lie
at all on the axes as we would like. The question is then:
how to better separate these samples? This is done by intro-
ducing a non-linear selection step enabling to remove the
contribution of the previously found linear model, creating
a new dataset R comprehending only the highest non-linear
samples, which amplitudes are further shrinked. Since the
amplitudes are then smaller, working on R (cf. Fig. 3(b))
makes possible the estimation of a new linear model that
separates better the originally higher amplitude coefficients.
It is then possible to repeat the procedure to improve the
separation of still higher non-linear samples.

2.3. Detailled Description

2.3.1. DETAILS ABOUT THE ALGORITHM STRUCTURE

As evoked in the previous subsection, computing a whole
linear-by-part approximation of the 1D-manifolds is done
iteratively. Each iteration l of the algorithm repeats the al-
ternance explained above between the linear BSS step and
the non-linear selection (thresholding) step. The first step
computes a linear model Â(l) on the current residual R.
The second one paves the way for the next iterations by
computing a new residual R. This is done by finding for
each source r a maximum amplitude value τ (l)r above which
the non-linearities are too high to be considered by currently
well estimated, and then shrinking the current data using
the τ (l)1..n (cf. Fig. 3 for one iteration). This shrinkage en-
ables to sequentially reduce the amplitudes of the originally
higher non-linearities, and therefore to compute linear mod-
els describing them. The whole procedure, as well as some
notations that will be developped in the following detailed

explanation of the two main steps, are summarized in Fig. 2.

2.3.2. LINEAR SPARSE BSS STEP: AMCA

The main requirement for the linear sparse BSS algorithm is
its ablility to find a linear model representing well the lowest
amplitude samples of the residual R, while being insensi-
tive to the higher amplitude samples that are more affected
by the non-linearities. Therefore, we use the Adaptative
Morphological Component Analysis (AMCA - (Bobin et al.,
2015)) algorithm, which enables to separate sources hav-
ing coefficients with both partial correlations (i.e. multiple
sources are simultaneously active) and large amplitudes. In
brief, AMCA introduces a way to discard the corresponding
partially-correlated samples in the estimation process.

Indeed, the problem of partial correlations and non-linear
models both have in common that some samples with high
amplitudes deviate from linearity. With a regular non-linear
model, this is the case by definition. With a linear model,
this is true in the sense that the activation of a second (or
more) source causes a sample of the mixing to be outside
the line drawn by the “pure”observations (i.e. steming from
an unique source).

Therefore, in the case of non-linear models AMCA enables
to discard the samples with high amplitudes that are the most
affeted by the non-linearities, because these are considered
as partial correlations. The algorithm is thus able to find
a good linear model Â(l) of the lowest amplitude samples
of R, which is then inverted to align the lowest amplitude
samples of each 1D-manifold with the axes. The result is
denoted as: Ŝ(l) , Â

(l)†
r R (cf. Fig. 3(a)).

2.3.3. SELECTION FUNCTION: COMPUTING R

The goal of the selection function is to extract within the
sources Ŝ(l) the contributions that are not explained by the
linear model found with the BSS step. For finding such con-
tributions, there are two issues: i) determine which samples
are well separated by the current linear model Â(l); ii) actu-
ally compute R by shrinking Ŝ(l) to remove the contribution
explained by the current linear model.

Solution to problem i) StackedAMCA uses for each sample
of Ŝ(l) the distance (or more specifically the angle) to the
axes. If such a distance is small enough, it is assumed that
the sample is well separated by the current linear model.
We write L(l) the set of all such well separated samples.
Then, for each source k, the threshold τ (l)k required for the
amplitude shrinkage (see below) is roughly chosen as the
maximum amplitude of the samples close enough to the
axis of k (e.g. the ones in L(l) and generated by k – see
Fig. 3(a)).

Solution to problem ii) Once we have found the thresholds
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Figure 3. Illustration of the main steps of the algorithm on the
non-linear mixing of Fig. 1. Upper left: in blue, output of linear
BSS step: S(1) is displayed. Compared to Fig. 1(b), inverting
the lineart model corresponds to align the found dashed arrows of
Fig. 1(b) with the axes. In addition, the red square delimits the
low amplitude sample areas of of S(1) where the linear model is a
good approximation – the corresponding maximum amplitudes are
denoted by τ (1)1..n – which means the areas where the points almost
lie on the axes; Down right: Residual R after the selection step.
In brief, removing the contribution of the found linear model is
done by shrinking the amplitudes of the samples in X by τ (1)1..n.

τ
(l)
1..n, Ŝ(l) must be shrinked correspondingly, which is not

trivial. To understand how such a shrinking works, we will
focus on one specific sample Ŝi(l) ∈ Rn (i ∈ [1, t]) of Ŝ(l)

that was generated with only the source r active (which we
do not know in advance in the blind unmixing). We can
differentiate two cases:

• Ŝi(l) ∈ L(1..l), which means that Ŝi(l) is a point inside
the red square in Fig. 3(a). Therefore, Ŝi(l) has been
separated by the linear-by-part model in the current
or previous iterations. The separation is already per-
formed and there is nothing left to do: Ri is set to a
vector with only zero coefficients.

• Ŝi(l) /∈ L(1..l), which means that Ŝi(l) is a point out-
side the red square in Fig. 3(a). The sample Ri should
correspond to Ŝi(l) with the rth coefficient having its
amplitude shrinked by τr (in Fig. 3(a), we have to make
the samples outside the red square closer to the origin
by removing the red square contribution). Choosing
which threshold among the τ1..n to apply is however
not a trivial issue, because Ŝi(l) has not been fully un-
mixed by the linear-by-part model yet and we thus do
not know by which source it was generated. There-
fore, we will resort to a first guess to attribute Ŝi(l) to
a source r̂, hoping that r̂ = r. The idea is that even
if Ŝi(l) has not been fully unmixed yet, we can still
use the linear models computed during the previous
iterations to improve the guess about r̂. To do that,
we start from the raw data X and iteratively unroll the
manifold by sequentially applying the inverse of the
previously computed linear models Â(1..l) and τ (1..l)

Ŝ
(1)
1

Ŝ
(1

)
2

(a)
Ŝ
(1)
u1

Ŝ
(1

)
u
2

(b)

Figure 4. Illustration of the interest of unfolding the manifold to
enhance the first guess about the unmixing of samples. A given
sample is plotted in red. Left: data aligned with the axes corre-
sponding to the sources; Right: Unrolled manifolds at the iteration
l = 3. The sample in red is much closer to the good source,
enabling to use simply an angular distance to the different axes.

(cf. Fig 4). There are two advantages of this procedure:
a) using the raw data X enables to get rid of the error
propagation due to bad first guesses in the previous
iterations; b) it is likely to make the sample indexed
by i closer to the axes and thus a simple distance to
the axes will hopefully enable to find a decent guess r̂
(cf. Fig 4, where the position of one specific sample is
shown, both in the scatter plot of X and in the unrolled
manifold). The shrinkage of sample i is then done by
thresholding the r̂th coefficient accordingly to τr̂.

Computing the whole residual will sum up to apply the
process to all the samples in Ŝ(l). The result of the shrinkage
is then used as residual R in the following iterations.

2.4. Neural Network Interpretation

StackedAMCA can be interpreted as the multilayer neural
network of Fig. 5. The different network layers then exactly
correspond to the iterations l. Such an interpretation is use-
ful for understanding StackedAMCA: each layer computes
a linear approximation of some part of the data.

Slightly altering the notations and writing W(l) = Â(l)†,
with the † sign corresponding to the pseudo-inverse, each
neuron layer corresponds to the estimate Â(l) yielded by the
linear BSS step. In Fig. 5, the non-linear step corresponds
to the residual computation. Here, we again extended our
notations, introducing the matrix Su corresponding to the
unfolded manifold. Due to the thresholding, this step is very
similar to classical non-linearities in neural networks such
as the Rectified Linear Unit (ReLU - (Maas et al., 2013)).
The network thus possesses the classical alternance between
neuron layers and non-linearities. We further need skip
connections to complete the transcription of the algorithm.
In particular, these enable to re-use X directly, reducing the
error propagations and improving the results similarly as
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Figure 5. StackedAMCA as neural network

usual skip connections (Huang et al., 2017)).

However, contrary to many learning processes the layers
are trained one-by-one, each of them minimizing the cost
function of AMCA (Bobin et al., 2015), which would corre-
spond to a greedy training. A global refinement step could
however be added. One of the main differences is also that
the thresholds τ (1..l)1..n are not learnt by minimizing a global
cost function through backpropagation but roughly speaking
directly from the data itself.

3. Experiments
We propose to demonstrate the relevance of the method with
two experiments, after first presenting the metrics used to
measure the result quality and introducing a new one for the
case of sparse sources.

3.1. Metric

Due to the indeterminacy by the non-linear function h in
non-linear BSS, it is important to differentiate measures
about the reconstruction of the sources and their separation.

3.1.1. METRIC FOR THE SEPARATION QUALITY

A classical approach to determine the separation quality
is to draw the scatter plot of each estimated source Ŝr as
a function of the true one Sr (cf. Fig.9). If the sources
are perfectly separated, the plot should be a non-linear 1D
function corresponding to h (Ehsandoust et al., 2017). Some
possible metrics are therefore computed by fitting a non-
linear curve P to the 1D-manifold of the scatter plot (by
hoping that it will represent h) and looking at the thickness
of the manifold around this non-linear curve. Here, the
thickness will be measured in two different ways (once the
permutations between Ŝ and S are corrected):

• Looking at the median distance with the curve P:
Cmed =

∑n
r=1 mediani(Ŝ

i
r − P(Sir))

• Looking at the squared distance with the curve P:

Csq =
∑n
r=1

1
t

√∑t
i=1(Ŝ

i
r − P(Sir))2

However, the results of these metrics are sensitive to the
choice of P (and more specifically its smoothness). We thus
propose to introduce a new metric based on the angular
distance to the axes: if the sources are perfectly separated,

their scatter plot should resemble the one from Fig. 1(a), the
samples lying on the axes. We can therefore estimate the
separation quality of each source Ŝr by looking at its scatter
plots as a function of the true other sources Sr′ , r′ 6= r, and
looking at the average angles of the samples with the axes.
More specifically, the metric we use is:

Cang =
1

n(n− 1)

n∑
r=1

 n∑
r′=1
r′ 6=r

1− 1

#Z

∑
t∈Z

Str′√
Ŝt2r + St

2

r′


(2)

where Z = {t|Str′ 6= 0} and #Z denotes the cardinal of Z.

3.1.2. METRICS FOR SOURCE RECONSTRUCTION

To determine whether the source reconstruction is good
or not, it is possible to use classical metrics between the
estimated and true sources, such as the Mean Squared Error
(MSE), the Mean Error (ME), the SDR (Vincent et al., 2006).
Lastly, in the first experiment where f is linear-by-part, it is
straightforward to use linear BSS metrics on each part, such
as the mixing criterion CA (Bobin et al., 2008).

3.2. Linear-By-Part Mixing

In this first experiment, the mixing is created as linear-
by-part, thus perfectly matching the unmixing process of
StackedAMCA. Therefore, the algorithm should by con-
struction work well and be able to reconstruct well the
sources. This experiment should further enable to study
its main mechanisms. More specifically, the sources have
t = 10000 samples, with disjoints support and a sparsity
level of p = 10%. There is m = n = 2 observations,
which are created with a linear-by-part f , for which each
part corresponds to an orthogonal A(l) matrix. The data X
is shown in Fig. 6 (while the linear-by-part mixing might
seem simplistic, the current mixing however deviates much
from the linearity). In this experiment, both the mixing
matrices A(1..l) and the optimal thresholds are knwown,
which enables to assess the quality of their estimation by
StackedAMCA.

3.2.1. NOISELESS MIXING

In this part we deal with the noiseless setting, in which the
algorithm should be able to work well. The first evaluation
is qualitative. An easy verification is to check that the learnt
model can reconstruct the data. Figure 7 displays the recon-
structed data superimposed on the true one and show that
except for 2 outliers (likely to come from a thresholding
in the wrong direction), the reconstruction is almost per-
fect. This however does not guarantee the separation of the
sources. Fig.7 therefore displays the scatter plot of the data
X with colors corresponding to the different sources: each
manifold is labeled with only one source.
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Figure 6. Two datasets X corresponding to two different non-
linearities f . Left: linear-by-part mixing; Right: Star mixing.

Table 1. Different metrics on the whole sources in the noiseless
and noisy experiment. The last line corresponds to an Euclidian
distance between the optimal thresholds and the estimated ones.

SETTING NOISELESS NOISY

CA 22.5 23.6
SDR 23.4 6.83
ERROR ON τ

(1..l)
1..n 4.86× 10−3 9.20× 10−2

To quantitatively assess the results of StackedAMCA, Ta-
ble 1 presents a few metrics about the whole sources. The
quite high CA confirms that the separation is good, while
the decent SDR shows that despite the non-linear setting, the
source reconstruction is decent. Moreover, Fig. 7 displays
the evolution of these metrics as a function of the iterations.
The good results for the first iteration indicates as expected
that AMCA is robust enough to discard the highly non-linear
high amplitude coefficients. There is then a general decrease
of both CA and the SDR with the iteration number, which
is however not strictly monotonic as expected, probably due
to the fact that some errors done at a given layer l can be
compensated at the following layer (e.g. by still finding the
good thresholds τ (l+1)

1..n ).

3.2.2. NOISY MIXING

Compared to the previous experiment, a noise N correspond-
ing to a Signal-to-Noise Ratio of SNR = 30dB is added to
the mixing. While we do not aim at re-doing the whole
study of the previous subsection, two interesting plots are
displayed in Fig. 8. In left, it is shown that more outliers
appear in the data reconstruction. This is explained by the
right plot where a part of source 1 has been mixed with
source 2 (red samples in the yellow part of the manifold).

Furthermore, Table 1 shows that while the separation is
globally (except the few outliers) good as testified by CA,
the SDR expresses a quite bad reconstruction whereas the
structure of the mixing f should enable StackedAMCA to
reconstruct well the sources. The bad source reconstruction

X1

X
2

(a)
X1

(b)

l

C
A

(c)
l

SD
R

(d)

Figure 7. Upper left: Reconstruction of the data from the model
estimated by StackedAMCA, superimposed on the true data X;
Upper right: True data, with the colors coming from the demixing:
red corresponds to source one and yellow to source two. Points in
violet correspond to the samples used to compute the thresholds
τ
(1..l)
1..n ; Down left: CA as a function of the iteration l; Down right:

SDR as a function of l.

is rather explained by bad thresholds τ (1..l)1..n , as shown by
the violet points of the right plot of Fig. 8, to be compared
with its counterpart in the noisless setting in Fig. 7. This is
confirmed by the last line of Table 1. Wrong τ (1..l)1..n create
wrong offsets between the linear parts, creating a shift in
some samples of Ŝ and therefore explaining a deteriorated
source reconstruction. Still robustifying the threshold choice
is left for future works.

3.3. Star Mixing: Comparison to Other Methods

The goal of this part is to compare the results of our al-
gorithm to other existing ones. Only a few algorithms for
non-linear BSS are open source, and we mostly found three
of them: MISEP (Almeida, 2003), NFA (Honkela et al.,
2007) and ANICA (Brakel & Bengio, 2017). The exper-
iment itself comes from (Ehsandoust et al., 2016). The
sources follow a Bernouilli-Gaussian ditribution, p = 10%
of the t = 9500 samples being non-zeros. The supports
of the n = 2 sources are disjoint. There is m = n = 2
observations, which are computed for each element indexed
by i ∈ [1, t] as Xi

1 = cos(α(i))Si1 − sin(α(i))Si2 + Ni
1

and Xi
2 = sin(α(i))Si1 + cos(α(i))Si2 +Ni

2 with α(i) =
π
2 (1−

√
Si

2

1 + Si
2

2 ) and N chosen such that the SNR is 30
dB. The corresponding mixing is shown in Fig. 6.
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Figure 8. Left: Reconstruction of the data from the model esti-
mated by StackedAMCA, superimposed on the true data X; Right:
True data, with colors coming from the demixing. Points in violet
correspond to the samples used to compute the thresholds τ (1..l)1..n .

Different separation metrics are displayed in Table 2 and
the reconstruction quality is assessed in Table 3. The cor-
responding results are shown in Fig. 9, where the scatter
plot of one estimated source is drawn as a function of the
true one. First, it seems that neither ANICA nor NFA truly
separate the sources (concerning ANICA, the results seem
however to improve when no noise is added). Although it
could come from our lack of familiarity with the parameter
tuning of these methods, it is possible that the regularization
introduced by the network structure for ANICA and the
Bayesian setting for NFA is not sufficient to enable the sepa-
ration of the sources (since the independance is not either, cf.
Sec 1). On the contrary, MISEP separates the sources well.
Its results are even better than the ones of StackedAMCA
when measured with a squared distance Csq, which is due
to the presence of a small number a very badly separated
samples with StackedAMCA. These outliers probably come
from residual error propagation due to the temporary un-
mixing of the manifold (cf. Sec. 2). Using metrics that are
less sensitive to outliers shows that the other samples are
hower much better separated by StackedAMCA: Cmed is
reduced by 10 compared to MISEP. The good separation of
StackedAMCA is confirmed by the best Cang .

Second, MISEP does not reconstruct well the sources as
StackedAMCA does and Fig. 9(b) clearly indicates that it
did not invert the non-linearity h. On the contrary, the good
ME (and even MSE, depite some outliers) of StackedAMCA
indicates that the algorithm structure was sufficient to regu-
larize well the reconstruction problem. Some non-linearities
f for which StackedAMCA is able to perform such a good
reconstruction are characterized in Sec. 4.

4. Required Hypotheses for StackedAMCA
4.1. Symmetry of f Around the Origin

The symmetry assumption could in principle be leveraged.
First, the data can be symmetrical around a different point as

Table 2. Separation quality of 4 methods: StackedAMCA, MISEP,
NFA and ANICA. The curve P fitted to the scatter plots displayed
in Fig. 9 is chosen as a polynomial function of degree 20.

METHOD Cmed Csq Cang

STACKEDAMCA 1.42× 10−4 3.17× 10−4 3.69× 10−3

MISEP 4.25× 10−3 6.58× 10−5 1.49× 10−2

NFA 4.60× 10−2 1.12× 10−3 0.273
ANICA 2.00× 10−2 5.67× 10−4 0.699

Table 3. Reconstruction quality of 4 methods: StackedAMCA,
MISEP, NFA and ANICA.

METHOD MSE ME

STACKEDAMCA 2.45× 10−4 6.70× 10−4

MISEP 7.35× 10−4 1.72× 10−2

NFA 1.56× 10−3 6.67× 10−2

ANICA 2.25× 10−2 2.10

long as a preprocessing step is introduced to center it. Then,
tackling non-symmetrical data could probably be dealt with
by introducing non symmetrical non-linear steps and adding
a non-negativity constraint in the linear BSS step.

4.2. Disjoint Supports

We have assumed the supports of the sources to be dis-
joint. While this is not very realistic in practical cases, it
seems difficult to bypass this condition as we only explore
the span of f that the 1D-manifolds created by the sparse
sources uncover. By the morphological diversity assump-
tion, the points outside these manifolds are too rare to enable
a proper estimation of f without any further conditions (e.g.
the separability over the different sources). We however
emphasize that we did some tests without disjoint supports.
In this case, the samples with multiple active sources were
badly separated but the estimation of the 1D-manifolds by
StackedAMCA was not much perturbated, which is mainly
due to the robustness of AMCA to multiple active sources.

4.3. Regularity of the Mixing f

We have assumed that f does not deviate too fast from lin-
earity as a function of the amplitude. For differentiable
curves, it mathematically means that at every point of the
1D-manifolds described by the mixing X, the local cur-
vature radius must be large enough. This condition is of
primary importance to enable StackAMCA to separate the
sources. This can be understood with the counterexample of
a linear-by-part f (similarly as in Fig. 6) with two parts. If
A(1) is the identity matrix and A(2) a rotation matrix with
an angle higher than π/4, the shrinkage after the first itera-
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Figure 9. Scatter plot of one estimated source as a function of the
true source. Upper left: StackedAMCA; Upper right: MISEP;
Down left: NFA; Down right: ANICA.

tion will introduce a permutation between the sources of the
first and second layer, thus yielding an imperfect separation.

For a similar permutation reason between the iterations, f
must also be L-Lipschitz with L small enough. In brief, this
is due to the fact that AMCA is initialized at each iteration l+
1 with the mixing matrix estimated at the previous iteration
l. Consequently, AMCA looks for a similar matrix, which
corresponds to looking for a slowly varying mixing f .

4.4. What Sources can StackedAMCA Reconstruct
Well?

In Sec. 3, StackedAMCA was able to reconstruct the sources
well. Due to the indeterminacy by h, it is however not
always be the case, as demonstrated in Fig. 10 where a
slight modification of the mixing f of Sec. 3 makes that
StackedAMCA is not anymore able to fully invert the non-
linearity (while still decently separating the sources).

While other methods (such as MISEP or ANICA) are also
able to perform the reconstruction of the sources for some
specific mixings, a very interesting point is that it is further
possible to characterize at least one type of mixings for
which StackedAMCA is able to approximately reconstruct
the true sources up to a simple scaling and permutation
indeterminacy. Indeed, a sufficient condition is that for each
sample of the mixing indexed by i, the mixing f can be
written as a product of an unitary matrix and the sources:

G = {f : Rn×t → Rm×t‖∀i ∈ [1, t],Xi = A(Si)Si,A(Si) ∈ O}
(3)

X1

X
2

(a)
Ŝ1

Ŝ
2

(b)

Figure 10. Example in which StackedAMCA is not anymore able
to reconstruct the sources. The mixing is chosen so that for all
i ∈ [1, t], Xi

1 = cos(α(i))r(i)Si1 − sin(α(i))Si2 and Xi
2 =

sin(α(i))r(i)Si1+cos(α(i))Si2 with α(i) = π
2
(1−

√
Si

2

1 + Si
2

2 )

and r(i) =
√

Si
2

1 + Si
2

2 . Left: Mixing; Right: Results of
StackedAMCA for source 1.

where O is the oblique set (that is, the set of matrices with
unitary columns). The function A(.) : Rn → Rm×n is
potentially non-linearly depending on S. Then, if f ∈ G
and also follows the other assumptions of this article,
the mixed sources can be approximately reconstructed by
StackedAMCA. Indeed, since in AMCA the scale of the
matrices A(l) is fixed to 1, if f ∈ G there is no ambiguity
left for the scale of each layer. Due to the regularity assump-
tion, it will then be possible to backproject linearly for each
layer the manifold on the axes with small errors and get an
approximate reconstruction.

5. Conclusion
We introduce in this work StackedAMCA, a new algorithm
tackling the sparse non-linear BSS problem. Based on a
new stacked sparse BSS approach, this method enables to
sequentially compute a linear-by-part approximation of the
underlying non-linearities. Each linear part is estimated by
a robust linear BSS algorithm step, which is followed by a
non-linear step . The non-linear step enables to work on in-
cresingly higher non-linearities and is itself composed of an
unrolling of the source 1D-manifolds and then a threshold-
ing. We show the relevance of StackedAMCA compared to
other state-of-art methods. Beyond separating the sources,
in some experiments the algorithm is also able to reconstruct
them well despite a severly ill-posed problem. A discus-
sion of the required hypotheses for StackedAMCA to work
is furthermore proposed, as well as a characterization of
some datasets for which it should be able to reconstruct the
sources well. An improvement left for future work, that
should in principle be straightforward, is the extension of
the algorithm to more than two sources.
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