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BOUNDARY NULL-CONTROLLABILITY OF COUPLED PARABOLIC SYSTEM WITH1

ROBIN CONDITIONS2

KUNTAL BHANDARI∗ AND FRANCK BOYER∗†3

Abstract. The main goal of this paper is to investigate the boundary controllability of a coupled parabolic system in the cascade4
form in the case where the boundary conditions are of Robin type. In particular, we prove that the associated controls satisfy suitable5
uniform bounds with respect to the Robin parameters, that let us show that they converge towards a Dirichlet control when the Robin6
parameters go to infinity. This is a justification of the popular penalisation method for dealing with Dirichlet boundary data in the7
framework of the controllability of coupled parabolic systems.8
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1. Introduction.11

1.1. The problem under study. This paper is concerned with the boundary null-controllability problem for12

linear coupled parabolic systems with less controls than equations. It is by now well-known that it can be a difficult13

problem in various situations and that there is still no complete theory in the literature. We will concentrate here14

on a particular case which is in the so-called cascade form and that can be written as follows15

(1.1)


∂ty1 − div(γ(x)∇y1) = 0 in (0, T )× Ω,

∂ty2 − div(γ(x)∇y2) + y1 = 0 in (0, T )× Ω,

y1(0, ·) = y0,1 in Ω,

y2(0, ·) = y0,2 in Ω,

16

where the control v will be acting only on the component y1 on some part Γ0 of the boundary Γ of the domain Ω.17

Since we want to control both components of the system and v has no direct influence in the equation for y2, the18

role of the coupling term y1 in the second equation is fundamental: it acts as an indirect control term. We refer for19

instance to the review paper [5] for a general presentation of different results on that topic.20

The usually studied case is the one of a Dirichlet control, which means that the above system is supplemented21

with the following boundary conditions22

(1.2)

{
y1 = 1Γ0v on (0, T )× Γ,

y2 = 0 on (0, T )× Γ.
23

In the present work we would like to analyse the controllability properties of the same system when one considers,24

instead of the Dirichlet boundary conditions, a set of Robin boundary conditions with two non negative parameters25

β1, β226

(1.3)


∂y1

∂νγ
+ β1y1 = 1Γ0

v on (0, T )× Γ,

∂y2

∂νγ
+ β2y2 = 0 on (0, T )× Γ,

27

where the conormal derivative operator associated to the diffusion tensor γ is defined by

∂

∂νγ
= ν · (γ∇·).

1.2. Motivations and overview of the paper. Our motivation for studying the above problem is two-fold.28

The first one comes from the fact that it is an instance of the very popular penalisation approach to deal29

with boundary condition that have never been studied, as far as we know, in the framework of the controllability of30

coupled parabolic systems. From a numerical point of view, for instance when considering a Galerkin approximation31

of an elliptic or parabolic equation, this approach consists in replacing a Dirichlet boundary condition y = g by32
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2 K. BHANDARI, F. BOYER

a Robin boundary condition 1
β∂νγy + y = g, with a large penalisation parameter β. It generally induces more33

flexibility and robustness in the computational code. This approach is indeed proposed in many finite element34

libraries and softwares. Moreover, it is also a suitable way to deal with data g that have a regularity lower than the35

one expected to solve the problem in the usual energy spaces (typically if g 6∈ H1/2(Γ) when solving the Laplace36

equation). This approach was initially studied in [7] for elliptic problems or in [9] for parabolic problems. In the37

framework of control theory, this penalisation approach was for instance analyzed in [8, 13] for solving optimal38

control of elliptic equations. In each case, it is proven that the solution of the penalised problem actually converges39

to the one of the original problem, with some estimate of the rate of convergence.40

Our motivation is thus to investigate the same kind of issues for the coupled parabolic system (1.1) with a41

single boundary control and in particular to show that, not only the problem (1.1)-(1.3) is null-controllable, but42

more importantly, that it is possible to prove estimates on the controls that are (in some sense that will be precised43

later) uniform with respect to the Robin (penalisation) parameter. It will follow that the corresponding controlled44

solution converges towards a controlled solution of the Dirichlet problem when those parameters go to infinity.45

Another motivation for this analysis, related to the discussion above, is that Robin boundary conditions have a46

regularizing effect on the boundary data. Indeed, as it will be recalled at the beginning of Section 2, the functional47

analysis adapted to boundary controls in L2 for parabolic systems is a little intricate since, with such a low regularity48

of the data, we cannot expect solutions to exist in the usual energy space C0([0, T ], L2(Ω))∩L2(0, T,H1(Ω)) and to49

satisfy a standard weak formulation. Instead the solutions are known to live in a larger space C0([0, T ], H−1(Ω))∩50

L2(0, T, L2(Ω)), the boundary condition being understood in a weak sense. When changing the Dirichlet boundary51

condition into Robin (or Neumann) boundary conditions, the functional setting is more comfortable and we recover52

the expected regularity for weak solutions even if the boundary data is only in L2.53

Finally, we want to recall here that we lack of general mathematical techniques to deal with the controllability54

issue for those systems; applicability of the few available methods is very dependent on the structure of the underlying55

operators. Therefore, the analysis of each significantly new system needs to develop more elements (of spectral56

nature in our case) that are interesting by themselves and possibly useful in other situations. More precisely,57

there are not that many works regarding the controllability of coupled parabolic systems with less controls than58

equations, especially for boundary controls. This is mainly due to the fact that the very powerful Carleman estimates59

approach is essentially inefficient in that context. In particular, we recall that the boundary controllability for such60

systems is no longer equivalent with distributed controllability as it has been observed for instance in [18], see61

also [5]. In particular, most of the available controllability results concern the 1D setting since they are based on62

the moments method (that we will discuss below) which is not straightforward to implement in higher dimension.63

Among the few results available, we mention [4] where the authors proved the controllability to trajectories of64

a 1D system of n parabolic equations when m < n number of controls are exerted on a part of the boundary65

through Dirichlet conditions. They actually proved that a general Kalman condition is a necessary and sufficient66

controllability condition for this problem. In the multi-dimensional case, we quote [10, 2], where controllability67

results are obtained in particular cylindrical geometries by exploiting on the one hand a sharp estimate of the68

control for the associated 1D problem and on the other hand spectral Lebeau-Robbiano inequalities, see also the69

discussion in Section 2.4.2. We also mention [1] where symmetric parabolic coupled systems are analysed in any70

dimension, provided that the control region satisfies the Geometric Control Condition.71

Paper organisation. In Section 2, we first recall the different notions of solutions for (1.1) with boundary72

conditions (1.2) or (1.3), that we will need in the paper and we give the associated wellposedness and regularity73

results. In Section 2.4, we give the precise statements of our main results. As mentioned above, those results74

essentially say that the coupled parabolic system with Robin boundary condition is null-controllable at any time75

T > 0 and that we can find uniform bounds on the control that allow to justify the convergence towards a control76

for the Dirichlet problem when the Robin parameters are large. The proofs are given in Sections 3,4 and 5. They77

are based on the moments method [17] and on its recent extension called block moments method [11]; they require78

in particular a careful analysis of spectral properties of the underlying operators, with estimates uniform with79

respect to the parameters. Some of those spectral estimates are particularly difficult to obtain when the two Robin80

parameters are different, that is why in that case we restrict our analysis to a constant diffusion coefficient γ.81

Notations. Throughout this paper C or C ′ denotes a generic positive constant (that may vary from line to82

line) which does not depend on T , y0 nor the parameters β1, β2 but may depend on the diffusion coefficient γ C ′.83

Sometimes, we will make emphasis on the dependence of a constant on some quantities α1, α2, · · · , αn (n ≥ 1) by84

Cα1,α2,··· ,αn .85
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BOUNDARY CONTROLLABILITY OF COUPLED SYSTEMS: ROBIN CASE 3

Moreover, we shall use the following notation

((a, b)) := (min{a, b},max{a, b}), for any a, b ∈ R,

which is an open interval in R.86

The euclidean inner product in Rd, d ≥ 1, will be denoted by ξ1 · ξ2 for any ξ1, ξ2 ∈ Rd.87

2. General setting and main results. In this section, we will first discuss about the well-posedness for our88

parabolic system with Dirichlet and Robin boundary condition with L2 data. We will be particularly interested in89

estimates on the solutions that are uniform with respect to the Robin parameters. Then, we will give our main90

results concerning the associated control problems.91

Let Ω ⊂ Rd be a smooth bounded domain and γ : Ω→Md(R) be a smooth bounded field of symmetric matrices
which are uniformly coercive: there is a γmin > 0 such that

(γ(x)ξ) · ξ ≥ γmin|ξ|2, ∀ξ ∈ Rd,∀x ∈ Ω.

We will first study the scalar problem before discussing the coupled cascade system.92

2.1. The scalar problem.93

2.1.1. Dirichlet boundary data. We first recall the usual setting adapted to the analysis of the Dirichlet94

problem95

(2.1)


∂ty − div(γ∇y) = f in (0, T )× Ω,

y = g on (0, T )× Γ,

y(0, ·) = y0 in Ω,

96

with non smooth data. In the case where g = 0, we can easily solve the above problem in a weak sense in97

C0([0, T ], L2(Ω)) ∩ L2(0, T,H1(Ω)) for given y0 ∈ L2(Ω). This can be done by using the continuous semigroup in98

L2(Ω) associated with the operator −AD = div(γ∇·) with the domain D(AD) = H2(Ω) ∩H1
0 (Ω). However, if one99

considers the case where g is any data in L2((0, T )× Γ) which is the usual framework in control theory, we cannot100

define as easily a good notion of weak solution because of a lack of regularity of the data. Instead, we have the101

following well-posedness result in a dual sense, see for instance [14, 25].102

Proposition 2.1. For any y0 ∈ L2(Ω), f ∈ L2((0, T ) × Ω), g ∈ L2((0, T ) × Γ), there exists a unique y ∈103

C0([0, T ], H−1(Ω)) ∩ L2((0, T )× Ω) solution of (2.1) in the following sense: for any t ∈ [0, T ] and ζ ∈ H1
0 (Ω), we104

have105

〈y(t), ζ〉H−1,H1
0

=
(
y0, e

−tA∗Dζ
)
L2 +

∫ t

0

∫
Ω

f
(
e−(t−·)A∗Dζ

)
−
∫ t

0

∫
Γ

g
∂

∂νγ

(
e−(t−·)A∗Dζ

)
.106

Remark 2.2. The operator AD being self-adjoint, we could have replaced A∗D by AD in the previous statement107

but we prefer to keep it in order to be consistent with the non-scalar case that we will consider in Section 2.3.108

2.1.2. Homogeneous Robin boundary data. For any β ∈ [0,+∞), we consider now the following parabolic109

problem110

(2.2)


∂ty − div(γ∇y) = f in (0, T )× Ω,

∂y

∂νγ
+ βy = 0 on (0, T )× Γ,

y(0, ·) = y0 in Ω,

111

where the regularity of y0 and f will be precised below.112

If the data are regular enough, the semigroup theory also gives a solution for this problem. Indeed, if one
introduces the (self-adjoint) unbounded operator Aβ = −div(γ∇·) in L2(Ω) associated with the domain

D(Aβ) =

{
u ∈ H2(Ω)

∣∣ ∂y

∂νγ
+ βy = 0 on Γ

}
,

then we can prove that −Aβ generates a continuous semigroup in L2(Ω). Hence, the following result holds.113
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4 K. BHANDARI, F. BOYER

Proposition 2.3. Let β ∈ [0,+∞) be given. For any y0 ∈ D(Aβ) and f ∈ C1([0, T ], L2(Ω)), there exists a
unique strong solution y to (2.2) in C1([0, T ], L2(Ω)) ∩ C0([0, T ], D(Aβ)), which is given by

y(t) = e−tAβy0 +

∫ t

0

e−(t−s)Aβf(s) ds.

Moreover, this solution satisfies the energy estimates114

(2.3) ‖y‖L∞(0,T,L2(Ω)) + ‖y‖L2(0,T,H1(Ω)) +
√
β‖y‖L2((0,T )×Γ) ≤ CT (‖y0‖L2(Ω) + ‖f‖L2((0,T )×Ω)),115

and116

117

(2.4) ‖y‖L∞(0,T,H1(Ω)) + ‖∂ty‖L2((0,T )×Ω) + ‖y‖L2(0,T,H2(Ω)) +
√
β‖y‖L∞(0,T,L2(Γ))118

≤ CT (‖∇y0‖L2(Ω) +
√
β‖y0‖L2(Γ) + ‖f‖L2((0,T )×Ω)),119120

where CT > 0 does not depend on β.121

In particular, if y0 ∈ D(Aβ) ∩H1
0 (Ω), we have an estimate whose right-hand side does not depend on β122

123

(2.5) ‖y‖L∞(0,T,H1(Ω)) + ‖∂ty‖L2((0,T )×Ω) + ‖y‖L2(0,T,H2(Ω)) +
√
β|y‖L∞(0,T,L2(Γ))124

≤ CT (‖∇y0‖L2(Ω) + ‖f‖L2((0,T )×Ω)).125126

Proof. The existence of a unique strong solution is a standard result from semigroup theory, see for instance127

[15, Corollary 7.6]. We only sketch the proof of the estimates. The weak estimate (2.3) simply comes by multiplying128

the equation by y and using that129

(2.6) (Aβζ, ζ)L2 =

∫
Ω

(γ∇ζ) · ∇ζ + β

∫
Γ

|ζ|2, ∀ζ ∈ D(Aβ).130

To prove the stronger estimate, we first assume that y0 ∈ D(A2
β) and that f ∈ C1([0, T ], D(Aβ)), the final result

being deduced by a density argument. With this regularity of the data we can justify that

1

2

d

dt
(Aβy, y)L2 = (Aβy, ∂ty)L2 = −‖∂ty‖2L2 + (f, ∂ty)L2 .

Using the Cauchy-Schwarz inequality, and integrating in time, we get

(Aβy(t), y(t))L2 +

∫ t

0

‖∂ty‖2L2 ≤ (Aβy0, y0)L2 +

∫ t

0

‖f‖2L2 .

By (2.6), it follows that131

132

(2.7) ‖y‖L∞(0,T,H1(Ω)) + ‖∂ty‖L2((0,T )×Ω) +
√
β‖y‖L∞(0,T,L2(Γ))133

≤ CT (‖∇y0‖L2(Ω) +
√
β‖y0‖L2(Γ) + ‖f‖L2((0,T )×Ω)).134135

It remains to prove the L2(0, T,H2(Ω)) estimate. To this end, we observe that

‖Aβy‖L2((0,T )×Ω) ≤ ‖f‖L2((0,T )×Ω) + ‖∂ty‖L2((0,T )×Ω),

and thus the claim is just a consequence of (2.7) and of the following elliptic regularity property: there exists a
C > 0, independent of β ∈ [0,+∞), such that

‖ζ‖H2(Ω) ≤ C(‖ζ‖L2(Ω) + ‖Aβζ‖L2(Ω)), ∀ζ ∈ D(Aβ).

This can be proved, for instance, as in [12, Theorems III.4.2 and III.4.3] and using the fact that β ≥ 0 to obtain a136

constant which is independent of β.137
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2.1.3. Non-homogeneous Robin boundary data. Let us now consider the same problem but with a non-138

homogeneous boundary data139

(2.8)


∂ty − div(γ∇y) = f in (0, T )× Ω,

∂y

∂νγ
+ βy = g on (0, T )× Γ,

y(0, ·) = y0 in Ω.

140

The theory developed in [23] for this problem gives the following result concerning existence and uniqueness of a141

solution in the natural energy spaces.142

Proposition 2.4. Let β ∈ [0,+∞) be given. For any y0 ∈ L2(Ω), f ∈ L2((0, T )×Ω), g ∈ L2((0, T )×Γ), there143

exists a unique weak solution y ∈ C0([0, T ], L2(Ω)) ∩ L2(0, T,H1(Ω)) to (2.8) in the following sense:144

• y(0) = y0.145

• For any test function ψ ∈ H1(0, T, L2(Ω)) ∩ L2(0, T,H1(Ω)), and any t1, t2 ∈ [0, T ] we have146

147

(2.9) −
∫ t2

t1

∫
Ω

yψt +

∫ t2

t1

∫
Ω

(γ∇y) · ∇ψ + β

∫ t2

t1

∫
Γ

yψ148

=

∫
Ω

y(t1)ψ(t1)−
∫

Ω

y(t2)ψ(t2) +

∫ t2

t1

∫
Ω

fψ +

∫ t2

t1

∫
Γ

gψ.149

150

Moreover, it satisfies the estimate151

152

(2.10) ‖y‖C0([0,T ],L2(Ω)) + ‖y‖L2(0,T,H1(Ω)) + ‖∂ty‖L2(0,T,H−1(Ω))153

≤ CT (‖y0‖L2(Ω) + ‖f‖L2((0,T )×Ω) + ‖g‖L2((0,T )×Γ)),154155

for some CT > 0 independent of β.156

Remark 2.5 (Strong estimates do not pass to the limit). Note that if the boundary data for the Robin problem
(2.8) is chosen in the form g = βgD, with gD ∈ L2((0, T )× Γ) then the boundary condition reads

1

β

∂y

∂νγ
+ y = gD, for β ∈ (0,+∞),

and we can formally expect the solution to converge, when β → ∞, towards the one associated with the Dirichlet157

boundary condition y = gD, that is to a solution of (2.1).158

However, the estimate in the proposition above reads159

‖y‖C0([0,T ],L2(Ω)) + ‖y‖L2(0,T,H1(Ω)) + ‖∂ty‖L2(0,T,H−1(Ω)) ≤ CT (‖y0‖L2(Ω) + ‖f‖L2((0,T )×Ω) + β‖gD‖L2((0,T )×Γ)),160

which is not uniform with respect to β and therefore we cannot a priori prove that the associated solution y is161

bounded when β →∞. This is due to the fact that, considering only L2 boundary data, we cannot expect a uniform162

bound in L2(0, T,H1(Ω)) of the solution that would necessitate at least gD to be in L2(0, T,H1/2(Γ)).163

For the reasons above, we need to introduce a weaker formulation of the Robin problem that will allow to164

analyse the limit towards the Dirichlet problem with L2 data in a convenient way.165

Proposition 2.6. We consider the same assumption as in Proposition 2.4.166

1. The weak solution y to the problem (2.8) is the unique function belonging to C0([0, T ], L2(Ω)) and satisfying,
for any ζ ∈ L2(Ω) and any t ∈ [0, T ],

(y(t), ζ)L2 − (y0, e
−tA∗βζ)L2 =

∫ t

0

∫
Ω

f
(
e−(t−·)A∗βζ

)
+

∫ t

0

∫
Γ

ge−(t−·)A∗βζ

in addition with the estimate (2.10).167

2. The weak solution y to the problem (2.8) with β ∈ (0,+∞), is also the unique function belonging to168

C0([0, T ], H−1(Ω)) and satisfying, for any ζ ∈ D(A∗β) ∩H1
0 (Ω) and any t ∈ [0, T ],169

〈y(t), ζ〉H−1,H1
0
− (y0, e

−tA∗βζ)L2 =

∫ t

0

∫
Ω

f
(
e−(t−·)A∗βζ

)
−
∫ t

0

∫
Γ

g

β

∂

∂νγ

(
e−(t−·)A∗βζ

)
.170
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Moreover, this weak solution satisfies the estimate171

172

(2.11) ‖y‖C0([0,T ],H−1(Ω)) + ‖y‖L2((0,T )×Ω) + ‖∂ty‖L2(0,T,H−2(Ω))173

≤ CT

(
‖y0‖L2(Ω) + ‖f‖L2((0,T )×Ω) +

∥∥∥∥ gβ
∥∥∥∥
L2((0,T )×Γ)

)
,174

175

where CT > 0 does not depend on β.176

Remark 2.7. As explained in Remark 2.2, we decided to keep the adjoint notation A∗β instead of Aβ in the177

previous statement, even though it is unnecessary.178

Proof. 1. Let us first consider any ζ ∈ D(A∗β) = D(Aβ) and let us choose as a test function in (2.9) the179

strong solution of the homogeneous backward problem t 7→ ψ(t) = e−(T−t)A∗βζ. The integration by parts180

are well justified and naturally lead to the expected formula. By density of D(Aβ) in L2(Ω) and by the181

estimate (2.3), we can extend the equality to any ζ ∈ L2(Ω).182

2. In the case where ζ ∈ D(Aβ)∩H1
0 (Ω), we know that ψ(t) ∈ D(Aβ) for any t, and in particular we have the183

equality ∂ψ
∂νγ

+ βψ = 0 on (0, T ) × Γ, which gives the claimed equality. Now, applying the estimates (2.3)184

and (2.5) to ψ, we obtain for any t ∈ [0, T ] and β ∈ (0,+∞),185

|〈y(t), ζ〉H−1,H1
0
| ≤ CT (‖y0‖L2(Ω) + ‖f‖L2((0,T )×Ω))‖ζ‖L2(Ω) + CT

∥∥∥∥ gβ
∥∥∥∥
L2((0,T )×Γ)

‖∇ζ‖L2(Ω).186

Since D(Aβ) ∩H1
0 (Ω) is dense in H1

0 (Ω), we get the expected bound on ‖y‖C0([0,T ],H−1(Ω)).187

Let us show now the bound in L2((0, T )× Ω). Consider any h ∈ C∞c ((0, T )× Ω) and let ψ be the unique188

strong solution (as given by Proposition 2.3) to the backward problem189

(2.12)


−∂tψ − div(γ∇ψ) = h in (0, T )× Ω,

∂ψ

∂νγ
+ βψ = 0 on (0, T )× Γ,

ψ(T, ·) = 0 in Ω.

190

By (2.5), we have the following estimate, uniformly with respect to the parameter β191

(2.13) ‖ψ‖L∞(0,T,H1(Ω)) + ‖ψ‖L2(0,T,H2(Ω)) + ‖∂tψ‖L2(0,T,L2(Ω)) ≤ CT ‖h‖L2((0,T )×Ω).192

Putting this test function in (2.9) and integrating by parts lead to∫ T

0

∫
Ω

yh =

∫
Ω

y0ψ(0) +

∫ T

0

∫
Ω

fψ −
∫ T

0

∫
Γ

g

β

∂ψ

∂νγ
, for β ∈ (0,+∞),

where we have used the boundary condition satisfied by ψ at each time t in the boundary term. Using the193

Cauchy-Schwarz inequality and (2.13), we finally get194 ∣∣∣∣∣
∫ T

0

∫
Ω

yh

∣∣∣∣∣ ≤C(‖y0‖L2(Ω) + ‖f‖L2((0,T )×Ω))‖ψ‖L∞(0,T,L2(Ω)) + C

∥∥∥∥ gβ
∥∥∥∥
L2((0,T )×Γ)

‖ψ‖L2(0,T,H2(Ω))195

≤CT
(
‖y0‖L2(Ω) + ‖f‖L2((0,T )×Ω) +

∥∥∥∥ gβ
∥∥∥∥
L2((0,T )×Γ)

)
‖h‖L2((0,T )×Ω).196

197

Since C∞c ((0, T )× Ω) is dense in L2((0, T )× Ω), we obtain the expected estimate by duality.198

Finally, we can easily see that the weak solution y satisfies, in the distribution sense, the equation ∂ty −199

div(γ∇y) = f , and the bound of ∂ty in L2(0, T,H−2(Ω)) immediately follows.200

Remark 2.8 (Weak estimates pass to the limit). Going back to the situation described in Remark 2.5, that is201

if g = βgD, gD ∈ L2((0, T )×Γ), we deduce now a bound of the associated solution which is uniform when β → +∞,202

yet in weaker norms than above. We shall see in the next section that those estimates allow us to pass to the limit203

towards the Dirichlet problem.204
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2.2. Passing to the limit to the Dirichlet problem. With the above existence results and estimates, we205

can now state and prove a convergence result of the solutions of a suitable Robin problem to the one of a Dirichlet206

problem.207

Theorem 2.9 (Convergence towards the Dirichlet problem). Let y0 ∈ L2(Ω) be a given initial data. For any208

β > 0 we consider a source term fβ ∈ L2((0, T ) × Ω) and a boundary data gβ ∈ L2((0, T ) × Γ), and we denote by209

yβ the associated weak solution to (2.8).210

We assume that, for some fD ∈ L2((0, T )× Ω), gD ∈ L2((0, T )× Γ) we have the L2-weak convergences211

(2.14) fβ −−−−−⇀
β→+∞

fD,
gβ
β
−−−−−⇀
β→+∞

gD,212

Then yβ converges, when β → +∞, weakly in L2((0, T ) × Ω) and strongly in L2(0, T,H−1(Ω)) towards the213

unique solution yD ∈ C0([0, T ], H−1(Ω)) ∩ L2((0, T ) × Ω) to the Dirichlet problem (2.1) associated to the data fD214

and gD.215

Moreover, for any t ∈ [0, T ], yβ(t) −−−−−⇀
β→+∞

yD(t) weakly in H−1(Ω).216

Proof. From the hypothesis, we have a bound on the quantities ‖gβ/β‖L2((0,T )×Γ) and ‖fβ‖L2((0,T )×Ω) uniform217

with respect to β ≥ 1. Hence, from (2.11), we deduce that, for some CT,y0 > 0, uniform in β, we have218

‖yβ‖C0([0,T ],H−1(Ω)) + ‖yβ‖L2((0,T )×Ω) + ‖∂tyβ‖L2(0,T,H−2(Ω)) ≤ CT,y0 .(2.15)219220

We can then find some yD ∈ C0([0, T ], H−1(Ω)) ∩ L2((0, T ) × Ω) and a subsequence, still denoted by (yβ)β such221

that222 

yβ −−−−−⇀
β→+∞

yD weakly in L2((0, T )× Ω),

∂tyβ −−−−−⇀
β→+∞

∂tyD weakly in L2(0, T,H−2(Ω)),

yβ
∗−−−−−⇀

β→+∞
yD weakly-∗ in C0([0, T ], H−1(Ω)),

yβ −−−−−→
β→+∞

yD strongly in L2(0, T,H−1(Ω)).

(2.16)223

224

The last strong convergence comes from the compactness of the embeddings L2(Ω) ↪→ H−1(Ω) and H−1(Ω) ↪→225

H−2(Ω) and the Aubin-Lions lemma.226

All we need to show is that this limit yD is indeed the solution to the corresponding Dirichlet problem. By227

uniqueness of the solution of Dirichlet problem (2.1) with the data fD, gD, the convergence of the whole family228

(yβ)β will be established.229

Let us consider a final data ζ ∈ C∞c (Ω) ⊂ D(A∗β) ∩H1
0 (Ω) for the adjoint homogeneous problem. The corre-230

sponding strong solution is given by ψβ(t) = e−(T−t)A∗βζ and, thanks to (2.5), we have231

‖ψβ‖C0([0,T ],H1(Ω)) + ‖ψβ‖L2(0,T,H2(Ω)) + ‖∂tψβ‖L2((0,T )×Ω) ≤ CT ‖ζ‖H1
0 (Ω),(2.17)232

233

where CT is uniform in β.234

We can then extract a subsequence, still denoted by (ψβ)β , such that235 

ψβ −−−−−⇀
β→+∞

ψD weakly in L2(0, T,H2(Ω)),

∂tψβ −−−−−⇀
β→+∞

∂tψD weakly in L2((0, T )× Ω),

ψβ
∗−−−−−⇀

β→+∞
ψD weakly-∗ in C0([0, T ], H1(Ω)),

ψβ −−−−−→
β→+∞

ψD strongly in L2(0, T,H1(Ω)),

(2.18)236

237

for some ψD ∈ L2(0, T,H2(Ω)) ∩ C0([0, T ], H1(Ω)). Here also we have used the Aubin-Lions lemma to obtain the238

last strong convergence.239

Moreover, from the boundary condition satisfied by ψβ , we have ψβ = − 1
β
∂ψβ
∂νγ

on the boundary where the

quantity
∥∥∥∂ψβ∂νγ

∥∥∥
L2((0,T )×Γ

is bounded for any large β (using (2.17)). Hence, it follows that

ψβ −−−−→
β→∞

0 in L2((0, T )× Γ),
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which actually implies that ψD = 0 on the boundary (0, T )× Γ. Moreover, by passing to the limit in the equation240

in the distribution sense, we finally find that ψD is the unique solution to the backward homogeneous Dirichlet241

problem, that is ψD(t) = e−(T−t)A∗Dζ.242

Now, using the trace theorem, we observe that243

∫ T

0

∫
Γ

∣∣∣∣∂ψβ∂νγ
− ∂ψD
∂νγ

∣∣∣∣2 ≤ C ∫ T

0

‖ψβ − ψD‖H1(Ω)‖ψβ − ψD‖H2(Ω)244

≤ C‖ψβ − ψD‖L2(0,T,H1(Ω))‖ψβ − ψD‖L2(0,T,H2(Ω)).245246

By (2.18) we see that the first factor of the very right hand side of the above inequality converges to 0 as β → +∞,247

whereas the second factor is bounded. Thus, we have248

∂ψβ
∂νγ

−−−−−→
β→+∞

∂ψD
∂νγ

in L2((0, T )× Γ).(2.19)249
250

In particular, from the third point of (2.18) we have251

ψβ(0, ·) −−−−−⇀
β→+∞

ψD(0, ·) weakly in H1(Ω).(2.20)252
253

With the convergence results (2.19) and (2.20) above together with (2.14) we get254

(
y0, ψβ(0)

)
L2 +

∫ t

0

∫
Ω

fβψβ −
∫ t

0

∫
Γ

gβ
β

∂ψβ
∂νγ

−−−−−→
β→+∞

(
y0, ψD(0)

)
L2 +

∫ t

0

∫
Ω

fDψD −
∫ t

0

∫
Γ

gD
∂ψD
∂νγ

.255

Using the weak formulation (2.9) satisfied by yβ with ψβ as a test function we see that have actually proved that256

(
yβ(t), ζ

)
L2 −−−−−→

β→+∞

(
y0, ψD(0)

)
L2 +

∫ t

0

∫
Ω

fDψD −
∫ t

0

∫
Γ

gD
∂ψD
∂νγ

,257

and in the same time, by (2.16), we have(
yβ(t), ζ

)
L2 = 〈yβ(t), ζ〉H−1,H1

0
−−−−−→
β→+∞

〈yD(t), ζ〉H−1,H1
0
.

As a conclusion, we have proved that yD satisfies258

〈yD(t), ζ〉H−1,H1
0

=
(
y0, e

−tA∗Dζ
)
L2 +

∫ t

0

∫
Ω

fD

(
e−(t−·)A∗Dζ

)
−
∫ t

0

∫
Γ

gD
∂

∂νγ

(
e−(t−·)A∗Dζ

)
,259

which is exactly the definition of the solution of (2.1) with the data fD, gD, see Proposition 2.1.260

Remark 2.10 (Convergence towards the Neumann problem). By similar, and in fact simpler, arguments one261

can prove that if (fβ)β and (gβ)β both weakly converge, when β → 0, towards some fN and gN in L2((0, T ) × Ω)262

and L2((0, T ) × Γ) respectively, then the corresponding solution yβ converges, when β → 0, to the solution yN of263

the corresponding non-homogeneous Neumann problem.264

2.3. The coupled system. We can now move to the cascade coupled parabolic systems we are interested in,265

namely the one with Dirichlet boundary condition266

(2.21)



∂ty1 − div(γ∇y1) = f1 in (0, T )× Ω,

∂ty2 − div(γ∇y2) + y1 = f2 in (0, T )× Ω,

y1 = g1 on (0, T )× Γ,

y2 = g2 on (0, T )× Γ,

y1(0, ·) = y0,1 in Ω,

y2(0, ·) = y0,2 in Ω,

267
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and the one with Robin boundary conditions268

(2.22)



∂ty1 − div(γ∇y1) = f1 in (0, T )× Ω,

∂ty2 − div(γ∇y2) + y1 = f2 in (0, T )× Ω,

∂y1

∂νγ
+ β1y1 = g1 on (0, T )× Γ,

∂y2

∂νγ
+ β2y2 = g2 on (0, T )× Γ,

y1(0, ·) = y0,1 in Ω,

y2(0, ·) = y0,2 in Ω.

269

We can obviously solve those two systems by simply using the results on the scalar case: we first solve the equation270

for y1 then we solve the scalar equation for y2 by considering the coupling term y1 as an additional L2 source term.271

Theorem 2.11. We suppose given y0 := (y0,1, y0,2) ∈ (L2(Ω))2, f := (f1, f2) ∈ (L2((0, T ) × Ω))2 and g :=272

(g1, g2) ∈ (L2((0, T )× Γ))2.273

1. There exists a unique solution y = (y1, y2) ∈ (C0([0, T ], H−1(Ω)) ∩ L2((0, T ) × Ω))2 of (2.21), that is, for274

any i = 1, 2, yi satisfies the corresponding scalar problem in the sense of Proposition 2.1.275

2. For any β1, β2 ∈ [0,+∞), there exists a unique solution y = (y1, y2) ∈ (C0([0, T ], L2(Ω))∩L2(0, T,H1(Ω)))2276

of (2.22), that is, for any i = 1, 2, yi satisfies the corresponding scalar problem in the sense of Proposi-277

tion 2.4.278

3. For any β = (β1, β2) ∈ (0,+∞)2, we suppose given fi,β ∈ L2((0, T ) × Ω) and gi,β ∈ L2((0, T ) × Γ), for279

i = 1, 2 such that280

gi,β
βi
−−−−−⇀
β→+∞

gi, fi,β −−−−−⇀
β→+∞

fi.281

Then, the solution yβ of (2.22) corresponding to the data fβ, gβ converges weakly in (L2((0, T )×Ω))2 and282

strongly in (L2(0, T,H−1(Ω)))2 towards the unique solution of the corresponding Dirichlet problem.283

For the analysis of the control problem, it is not convenient to make appear the component y1 of the solution284

as a source term in the equation for y2 since it breaks down the cascade structure of the system which is essential285

to prove its controllability with only one control. That is the reason why it is necessary to introduce the following286

unbounded operators in (L2(Ω))2: let Aβ1,β2
and AD be defined by the same formal expression287 (
−div(γ∇·) 0

1 −div(γ∇·)

)
,(2.23)288

289

but with the different domains

D(Aβ1,β2
) :=

{
y ∈ (H2(Ω))2

∣∣∣∣ ∂y1

∂νγ
+ β1y1 = 0,

∂y2

∂νγ
+ β2y2 = 0 on Γ

}
,

and
D(AD) := (H2(Ω) ∩H1

0 (Ω))2,

respectively. Those operators are no more self-adjoint and we define their adjoints by D(A∗β1,β2
) = D(Aβ1,β2) and290

D(A∗D) = D(AD) and the same formal expression291 (
−div(γ∇·) 1

0 −div(γ∇·)

)
.(2.24)292

293

Standard elliptic theory shows that −Aβ1,β2 , and −A∗β1,β2
as well as −AD and −A∗D generate continuous294

semigroups in (L2(Ω))2. A similar analysis as in Section 2.1.3 for the scalar case, leads to the following result.295

Proposition 2.12. We suppose given any y0 ∈ (L2(Ω))2, f ∈ (L2((0, T )× Ω))2 and g ∈ (L2((0, T )× Γ))2.296

1. The solution to (2.21) is the unique element y ∈ (C0([0, T ], H−1(Ω)))2 satisfying, for any ζ ∈ (H1
0 (Ω))2297

and any t ∈ [0, T ]298

〈y(t), ζ〉H−1,H1
0

=
(
y0, e

−tA∗Dζ
)
L2 +

∫ t

0

∫
Ω

f ·
(
e−(t−·)A∗Dζ

)
−
∫ t

0

∫
Γ

g · ∂

∂νγ

(
e−(t−·)A∗Dζ

)
.299
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2. For any β1, β2 ∈ [0,+∞), the solution to (2.22) is the unique element y ∈ (C0([0, T ], L2(Ω)))2 satisfying,300

for any ζ ∈ (L2(Ω))2 and any t ∈ [0, T ]301

(y(t), ζ)L2 =
(
y0, e

−tA∗β1,β2 ζ
)
L2 +

∫ t

0

∫
Ω

f ·
(
e−(t−·)A∗β1,β2 ζ

)
−
∫ t

0

∫
Γ

g ·
(
e−(t−·)A∗β1,β2 ζ

)
.302

2.4. Main results. Let now Γ0 be a part of Γ. Using the analysis presented in the previous sections we can303

now formulate the null-control problems we are interested in as follows.304

Proposition 2.13. Let y0 ∈ (L2(Ω))2 be given.305

1. A function v ∈ L2((0, T )× Γ) is a null-control at time T for the Dirichlet problem (1.1)-(1.2), if and only306

if it satisfies: for any ζ ∈ (H1
0 (Ω))2307

(2.25)
(
y0, e

−TA∗Dζ
)
L2 =

∫ T

0

∫
Γ

1Γ0v

(
1
0

)
· ∂

∂νγ

(
e−(T−·)A∗Dζ

)
.308

2. A function v ∈ L2((0, T ) × Γ) is a null-control at time T for the Robin problem (1.1)-(1.3), if and only if309

it satisfies: for any ζ ∈ (L2(Ω))2310

(2.26) −
(
y0, e

−TA∗β1,β2 ζ
)
L2 =

∫ T

0

∫
Γ

1Γ0
v

(
1
0

)
·
(
e−(T−·)A∗β1,β2 ζ

)
.311

2.4.1. The 1D case. We start with a discussion of the 1D setting since, as we will see in the next section, we312

can deduce some multi-D results from the 1D analysis.313

Hence, we particularize the above control problem to the 1D situation where Ω = (0, 1), Γ0 = {0} and the314

diffusion coefficient is simply a scalar function γ ∈ C1([0, 1]) with γmin = inf [0,1] γ > 0 and γmax = sup[0,1] γ < +∞.315

In that case the control we are looking for is just a scalar function v ∈ L2(0, T ) and the formulations (2.25), (2.26)316

just reads317

(2.27) −
(
y0, e

−TA∗Dζ
)
L2 = γ(0)

∫ T

0

v(t)

(
1
0

)
· ∂
∂x
∣∣x=0

(
e−(T−t)A∗Dζ

)
dt,318

for the Dirichlet problem and319

(2.28) −
(
y0, e

−TA∗β1,β2 ζ
)
L2 =

∫ T

0

v(t)

(
1
0

)
·
(
e−(T−t)A∗β1,β2 ζ

)∣∣x=0
dt,320

for the Robin problem with the same notations for the adjoint of the diffusion operators as in multi-D. It is convenient321

to introduce the observation operator B∗ (that does not depend on the Robin parameters β1, β2) defined as follows322

(2.29) B∗ :

(
ζ1
ζ2

)
∈ (H1(0, 1))2 7→ ζ1(0),323

in such a way that (2.28) becomes324

(2.30) −
(
y0, e

−TA∗β1,β2 ζ
)
L2 =

∫ T

0

v(t)B∗
(
e−(T−t)A∗β1,β2 ζ

)
dt.325

Most of the work in Sections 4 and 5 will consist in solving this problem with suitable estimates of the control with326

respect to the parameters β1 and β2. Our main result in that direction is the following.327

Theorem 2.14. Let y0 ∈ (L2(0, 1))2 and T > 0 be given.328

1. Let β ∈ (0,+∞) and set β1 = β2 = β. Then, there exists a null-control vβ ∈ L2(0, T ) for the 1D problem
(2.30) that satisfies in addition the estimate

‖vβ‖L2(0,T ) ≤ CeC/T (1 + β)‖y0‖L2(0,1),

where C > 0 does not depend on β and T .329

2. Assume that γ is a positive constant and let β∗ > 0 be given. Let β = (β1, β2) ∈ (0,+∞)2 be any couple of
Robin parameters. Then, there exists a null-control vβ ∈ L2(0, T ) for the 1D problem (2.30) that satisfies
in addition the estimate

‖vβ‖L2(0,T ) ≤ CT,β∗(1 + β1)‖y0‖L2(0,1),

as soon as either β1, β2 ∈ (0, β∗], or β1, β2 ∈ [β∗,+∞), where CT,β∗ > 0 does not depend on β.330
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Corollary 2.15 (Convergence towards Dirichlet control). Let βn = (β1,n, β2,n) ∈ (0,+∞)2 be any sequence331

of Robin parameters such that βi,n → +∞ when n→∞, for i = 1, 2. If the diffusion coefficient γ is not a constant,332

we assume in addition that β1,n = β2,n for any n. For each n, let vn (resp. yn) be the unique null-control of minimal333

L2(0, T ) norm (resp. the associated trajectory) for the problem (2.30) with Robin parameters β1,n and β2,n.334

Then, there exists a subsequence (nk)k such that

vnk
β1,nk

−−−−⇀
k→∞

vD, in L2(0, T ),

335

ynk −−−−→
k→∞

yD, strongly in (L2(0, T,H−1(0, 1)))2 and weakly in (L2((0, T )× (0, 1)))2,336
337

where vD (resp. yD) is a null-control (resp. the associated trajectory) for the Dirichlet control problem (2.27).338

Remark 2.16 (Convergence towards Neumann control). With the same notation as in the previous corollary,339

if we assume that βi,n → 0 when n→∞, for i = 1, 2, then we obtain the convergence, up to a subsequence, of the340

null-control vn (resp. of the trajectory yn) towards a null-control vN (resp. the trajectory yN ) corresponding to the341

Neumann boundary conditions on both components.342

Remark 2.17 (The Dirichlet/Neumann case). In point 2 of Theorem 2.14, we needed to assume that either343

the two Robin parameters are both smaller than some β∗ or that they are both higher than some β∗. It is worth344

noticing that we cannot expect to prove a similar result without those assumptions.345

Indeed, if we were able to prove the estimate ‖vβ‖ ≤ CT (1 + β1)‖y0‖L2(0,1), for any couple of parameters346

β1 and β2, then by following the same lines as in Corollary 2.15, we would be able to prove the convergence,347

up to a subsequence, of vn/β1,n when β1,n → +∞ and β2,n → 0 to some vDN that would be a null-control for the348

Dirichlet/Neumann problem (that is system (1.1) in 1D, with a Dirichlet boundary condition for the first component349

y1 and a Neumann boundary condition for the second component y2). However, we know that this last problem is350

not even approximately controllable since the underlying operator A∗∞,0 has eigenspaces of dimension higher than351

1, which prevents the Fattorini-Hautus criterion (see [16, 24]) from being satisfied.352

The same remark holds for the Neumann/Dirichlet problem, that is when β1,n → 0 and β2,n → +∞.353

2.4.2. A multi-D result. By using the methodology described in [2, 10] it is possible, starting from a suitable354

null-controllability result for the 1D problem, at least when both Robin parameters are the same, to deduce the355

corresponding result in any cylinder of Rd for d ≥ 2, see Figure 1.356

ω2

Ω1 = (0, 1)

Ω2

Figure 1. The cylindrical geometry

More precisely, we consider a domain Ω = (0, 1)× Ω2 in Rd where Ω2 is a bounded smooth connected domain
in Rd−1. The variable in Ω will be denoted by (x, x̄), with x ∈ Ω1 and x̄ ∈ Ω2 and we assume that the diffusion
tensor has the following form

γ(x, x̄) =


γ(x) 0 · · · 0
0
...
0

 γ̄(x̄)


 ,

with γ : Ω1 → R and γ̄ : Ω2 → Md−1(R). Let ω2 ⊂ Ω2 be a non empty open subset of Ω2. The control region we357

will consider is Γ0 = {0} × ω2 so that the control problem is the following358

(2.31)


∂ty1 − ∂x(γ(x)∂xy1)− divx̄(γ̄(x̄)∇x̄y1) = 0 in (0, T )× Ω,

∂ty2 − ∂x(γ(x)∂xy2)− divx̄(γ̄(x̄)∇x̄y2) + y1 = 0 in (0, T )× Ω,

y1(0, ·) = y0,1 in Ω,

y2(0, ·) = y0,2 in Ω,

359
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associated with either Dirichlet boundary conditions360

(2.32)

{
y1 = 1{0}×ω2

v on (0, T )× Γ,

y2 = 0 on (0, T )× Γ,
361

or Robin boundary conditions with the same parameter362

(2.33)


∂y1

∂νγ
+ βy1 = 1{0}×ω2

v on (0, T )× Γ,

∂y2

∂νγ
+ βy2 = 0 on (0, T )× Γ.

363

Note that the result below is restricted to the case β1 = β2 for two reasons. The main one is that when the two364

parameters are different, the problem has no more a suitable tensor product structure that is crucial in the analysis365

(see [2]). The second one is that the constant CT,β∗ in point 2 of Theorem 2.14 is not explicit enough with respect366

to T ; we would need an exponential dependence of the constant for the analysis to apply directly.367

Theorem 2.18. Let y0 ∈ (L2(Ω))2 be given. For any T > 0 and any β ∈ (0,+∞), there exists a null-control
vβ ∈ L2((0, T )× Γ) for the multi-D problem (2.31)-(2.33) that satisfies in addition the estimate

‖vβ‖L2((0,T )×Γ) ≤ CeC/T (1 + β)‖y0‖L2(Ω),

where C > 0 neither depends on β nor on T .368

Proof. The proof is mainly based on the strategy developed in [2, 10] which needs the sharp estimate with respect369

to T of the 1D control cost given by point 1 of Theorem 2.14 and a Lebeau-Robbiano spectral inequality, uniform370

in β ∈ (0,+∞), relative to our control region ω2, for the eigenfunctions of the diffusion operator −divx̄(γ̄(x̄)∇x̄·)371

with homogeneous Robin boundary condition in Ω2.372

The required Lebeau-Robbiano inequality has been proved in [22, Theorem 1.2] for the eigenfunctions of Laplace-373

Beltrami operator in a multi-dimensional connected compact C1-smooth Riemannian manifoldM with the boundary374

condition l̃ ∂u∂x + lu = 0 (u ∈ H2(M)) for l̃ ≡ 1 and any l ∈ L∞(Γ) with l ≥ 0. Although they did not mention it in375

the paper, a careful look at their computations ensures us that the Lebeau-Robbiano inequality in this reference is376

in fact uniform with respect to l ≥ 0. Thus, the required inequality holds true for our operator −divx̄(γ̄(x̄)∇x̄·) in377

Ω2 with homogeneous Robin boundary condition with any parameter β ∈ (0,+∞).378

Corollary 2.19 (Convergence towards Dirichlet control). Let (βn)n be any sequence of positive Robin pa-379

rameters such that βn → +∞ when n→ +∞. For each n we define vn (resp. yn) to be the null-control of minimal380

L2 norm (resp. the associated trajectory) for the problem (2.31)-(2.33) with Robin parameter βn.381

There exists a subsequence (nk)k such that

vnk
βnk
−−−−⇀
k→∞

vD, in L2((0, T )× Γ),

382

ynk −−−−→
k→∞

yD, strongly in (L2(0, T,H−1(Ω)))2
383

and weakly in (L2((0, T )× Ω))2,384385

where vD (resp. yD) is a null-control (resp. the associated trajectory) for the Dirichlet control problem (2.31)-(2.32)386

for the same initial data.387

Remark 2.20 (Convergence towards Neumann control). When (βn)n goes to 0, we obtain the convergence388

towards a null-control for the Neumann problem as in Remark 2.16.389

2.5. Outline. The rest of the paper is dedicated to the proof of our main theorem for the 1D case, namely390

Theorem 2.14. First of all, we establish useful spectral properties for the 1D Robin eigenvalue problem in Section391

3. Then, we prove in Section 4 the controllability result in the case of an arbitrary diffusion coefficient but for the392

same Robin parameter for both components (point 1 of Theorem 2.14). Finally, in Section 5, we investigate the393

case of a constant diffusion coefficient with two different Robin parameters (point 2 of Theorem 2.14).394

3. Some spectral properties of the 1D Robin eigenvalue problem. In this section, we develop some395

properties of the eigenvalue-eigenfunctions of the 1D scalar operator Aβ as introduced in Section 2.1.2. Note that396

we use same notation as for the general higher dimension case. Those results will be used to draw some spectral397

properties of our main operator A∗β1,β2
.398

This manuscript is for review purposes only.



BOUNDARY CONTROLLABILITY OF COUPLED SYSTEMS: ROBIN CASE 13

3.1. The case of a non-constant diffusion coefficient. We begin with the following scalar eigenvalue399

problem400

(3.1)


−∂x(γ(x)∂xϕ) = λϕ in (0, 1),

−γ(0)∂xϕ(0) + βϕ(0) = 0,

γ(1)∂xϕ(1) + βϕ(1) = 0,

401

where β is any non-negative parameter and γ is chosen as in Section 2.4.1. Let us denote the eigenvalue-eigenfunction402

pairs of the Sturm-Liouville problem (3.1) as (λβk,γ , ϕ
β
k,γ)k≥0. We recall that the eigenvalues are simple and real403

and can be numbered in such a way that404

0 ≤ λβ0,γ < λβ1,γ < · · · < λβk,γ < λβk+1,γ ↗ +∞,(3.2)405
406

see for instance [6, Theorem 8.4.5]. Also it is well-known that the family (ϕβk,γ)k≥0 is a Hilbert basis of L2(0, 1),407

as soon as they are normalized, and indeed each of ϕβk,γ belongs to the domain of the corresponding differential408

operator in (3.1).409

Remark 3.1. Observe that for β = 0, the problem (3.1) reduces to a Neumann eigenvalue problem where we410

denote the Neumann eigenvalues by λNk,γ := λ0
k,γ for k ≥ 0.411

On the other hand, for β = +∞, (3.1) degenerates into a Dirichlet eigenvalue problem and we denote by412

λDk,γ := λ∞k,γ for k ≥ 0, the Dirichlet eigenvalues.413

For any β ∈ [0,+∞) and any ϕ ∈ H1(0, 1), ϕ 6= 0, we define the Rayleigh quotient associated with (3.1),

Rβ(ϕ) :=

∫ 1

0
γ|∂xϕ|2 + β(|ϕ(0)|2 + |ϕ(1)|2)∫ 1

0
|ϕ|2

.

For β = +∞, we set

R∞(ϕ) :=


∫ 1

0
γ|∂xϕ|2∫ 1

0
|ϕ|2

, if ϕ ∈ H1
0 (0, 1), ϕ 6= 0,

+∞, if ϕ 6∈ H1
0 (0, 1).

Conventionally we set Rβ(0) = 0 for any β ∈ [0,+∞].414

We recall that, for any β ∈ [0,+∞] the eigenvalues of our problem can be characterised by the min-max formula415

(3.3) λβk,γ = inf
Xk+1⊂H1(0,1)
dimXk+1=k+1

sup
ϕ∈Xk+1

Rβ(ϕ).416

Remark 3.2. A first consequence of the above formula is that, for any 0 < β < β∗, we can bound from below417

the smallest eigenvalue λβ0,γ as follows418

λβ0,γ = inf
ϕ∈H1(0,1)

ϕ6=0

Rβ(ϕ) ≥ β

β∗
inf

ϕ∈H1(0,1)
ϕ 6=0

Rβ∗(ϕ) =
β

β∗
λβ
∗

0,γ .419

Lemma 3.3. For any two parameters 0 ≤ α < β ≤ +∞, we have the following strict inequality420

λαk,γ < λβk,γ , ∀k ≥ 0421
422

In particular, for any parameter 0 < β < +∞, we have423

λNk,γ < λβk,γ < λDk,γ , ∀k ≥ 0.424
425

Proof. From (3.3), we write426

(3.4)

λαk,γ = inf
Xk+1⊂H1(0,1)
dimXk+1=k+1

sup
ϕ∈Xk+1

Rα(ϕ)

≤ sup
ϕ∈span{ϕβ0,γ ,··· ,ϕβk,γ}

Rα(ϕ)

≤ sup
ϕ∈span{ϕβ0,γ ,··· ,ϕβk,γ}

Rβ(ϕ)

= Rβ(ϕβk,γ) = λβk,γ .

427
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Let us show that the inequality is in fact strict.428

Assume first that β < +∞ and that there exists some k ≥ 0 such that λαk,γ = λβk,γ . This implies that all the

inequalities above are, in fact, equalities. Thus, there is some ϕ̃ =
∑k
j=0 ajϕ

β
j,γ with

∑k
j=0 |aj |2 = 1, such that

λαk,γ = sup
ϕ∈span{ϕβ0,γ ,··· ,ϕβk,γ}

Rα(ϕ) = Rα(ϕ̃),

which yields that429 ∫ 1

0

γ|∂xϕ̃|2 + α(|ϕ̃(0)|2 + |ϕ̃(1)|2) = λαk,γ = λβk,γ .(3.5)430
431

On the other hand, since each ϕβj,γ is a L2-normalized eigenfunction of the operator −∂x(γ(x)∂x) with the Robin432

boundary condition with parameter β, corresponding to eigenvalue λβj,γ for 0 ≤ j ≤ k, we see that ϕ̃ enjoys the433

following434

(3.6)

∫ 1

0

γ|∂xϕ̃|2 + β(|ϕ̃(0)|2 + |ϕ̃(1)|2) =

k∑
j=0

λβj,γ |aj |
2 ≤ λβk,γ

k∑
j=0

|aj |2 = λβk,γ .435

Since β < +∞, and α < β, we can compare (3.5) and (3.6) to deduce that ϕ̃(0) = ϕ̃(1) = 0 and moreover

k∑
j=0

λβj,γ |aj |
2 = λβk,γ

k∑
j=0

|aj |2.

By (3.2), this equality implies that aj = 0 for any 0 ≤ j ≤ k − 1 and then that ϕ̃ is proportional to ϕβk,γ . However,436

such an eigenfunction cannot vanish at x = 0 (see for instance Theorem 3.5 below) which is a contradiction.437

In the case where β = +∞, we use the previous results to simply write

λαk,γ < λα+1
k,γ ≤ λ

∞
k,γ ,

and the proof of the lemma is complete.438

Remark 3.4. Let 0 ≤ β ≤ +∞. We denote by λβk,γmin
and λβk,γmax

for k ≥ 0, the eigenvalues to the operator439

−γmin∂
2
x and −γmax∂

2
x respectively, with Robin boundary conditions with parameter β. Then from (3.3), one has440

the following inequality441

λβk,γmin
≤ λβk,γ ≤ λ

β
k,γmax

, ∀k ≥ 0 and ∀β ∈ [0,+∞].442
443

Let us observe now that, for any non-trivial eigenfunction ϕβk,γ of our problem (3.1), the quantity ϕβk,γ(0) (and444

hence (ϕβk,γ)′(0)) is non-zero for any k ≥ 0 and β ∈ (0,+∞). In fact, we prove the following theorem that give445

bounds from below for those quantities.446

Theorem 3.5. There exists a constant C > 0 depending only on the diffusion coefficient γ such that we have447

|ϕβk,γ(0)|2
(

1 +
β2

γ(0)λβk,γ

)
≥ C, ∀k ≥ 0, β ∈ (0,+∞),(3.7)448

449

450

|(ϕβk,γ)′(0)|2
(

(γ(0))2

β2
+
γ(0)

λβk,γ

)
≥ C, ∀k ≥ 0, β ∈ (0,+∞),(3.8)451

452

453

λβk+1,γ − λ
β
k,γ ≥ C

√
λβk+1,γ , ∀k ≥ 0, β ∈ [0,+∞].(3.9)454

455

We first state the following lemma which is a straightforward consequence of [3, Lemma 2.2 and Lemma 2.3].456
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Lemma 3.6. Let f : [0, 1] → R be a continuous function and λ > 0. Suppose that u : [0, 1] → R is smooth and457

satisfies the following second-order differential equation (without any assumptions on the boundary conditions):458

−∂x(γ(x)∂xu)(x) = λu(x) + f(x), ∀x ∈ (0, 1),(3.10)459460

then there exits C ′ > 0, depending only on γ, such that we have461

(3.11) |u(y)|2 +
γ(y)

λ
|u′(y)|2 ≤ C ′

(
|u(x)|2 +

γ(x)

λ
|u′(x)|2 +

1

λ

∫ 1

0

|f(x)|2

γ(x)

)
, ∀x, y ∈ (0, 1).462

Remark 3.7. We recall that in [3, Lemma 2.2], the authors have assumed that λ ≥ 1 but this was related to463

the fact that they considered the slightly more general second-order differential equation464

−∂x(γ(x)∂xu)(x) + q(x)u(x) = λu(x) + f(x), ∀x ∈ (0, 1).465466

In our case we have q(x) ≡ 0 in (3.10), and so having a careful look at the proof of [3, Lemma 2.3], one can observe467

that we simply need λ > 0 for the constant C ′ in Lemma 3.6 to be uniform with respect to λ.468

Proof of Theorem 3.5.469

• We recall the eigenvalue problem (3.1) and apply Lemma 3.6 to u = ϕβk,γ , λ = λβk,γ and f = 0 to obtain for470

each k ≥ 0 and β ∈ (0,+∞) that471

|ϕβk,γ(x)|2 +
γ(x)

λβk,γ
|(ϕβk,γ)′(x)|2 ≥ 1

C ′

(
|ϕβk,γ(y)|2 +

γ(y)

λβk,γ
|(ϕβk,γ)′(y)|2

)
, ∀x, y ∈ (0, 1).472

Putting x = 0 above and integrating over y ∈ (0, 1), we obtain473

|ϕβk,γ(0)|2 +
γ(0)

λβk,γ
|(ϕβk,γ)′(0)|2 ≥ 1

C ′

(
‖ϕβk,γ‖

2
L2(Ω) +

∫ 1

0

γ(y)

λβk,γ
|(ϕβk,γ)′(y)|2 dy

)
.474

475

Thanks to the normalizing condition ‖ϕβk,γ‖L2(0,1) = 1 and due to the positivity of the second integral in
the right hand side of the last inequality, we have

|ϕβk,γ(0)|2 +
γ(0)

λβk,γ
|(ϕβk,γ)′(0)|2 ≥ 1

C ′
.

– In one hand, we use the boundary condition of ϕβk,γ at x = 0 to express (ϕβk,γ)′(0) as a function of476

ϕβk,γ(0) and obtain (3.7).477

– On the other hand, we use the same boundary condition to express ϕβk,γ(0) as a function of (ϕβk,γ)′(0)478

and obtain (3.8).479

• Secondly, for any k ≥ 0 and β ∈ [0,+∞], we define480

u(x) := ϕβk+1,γ(x)ϕβk,γ(0)− ϕβk,γ(x)ϕβk+1,γ(0), ∀x ∈ (0, 1),481
482

which satisfies483

−∂x(γ(x)∂xu)(x) = λβk+1,γu(x) + f(x), ∀x ∈ (0, 1)484
485

with486

f(x) =
(
λβk+1,γ − λ

β
k,γ

)
ϕβk,γ(x)ϕβk+1,γ(0).487

488

Moreover, we observe that u(0) = 0 and u′(0) = 0, from the construction of u. So, by taking x = 0 in the489

inequality (3.11), we see490

|u(y)|2 +
γ(y)

λβk+1,γ

|u′(y)|2 ≤ C ′

(
λβk+1,γ − λ

β
k,γ

)2

λβk+1,γ

|ϕβk+1,γ(0)|2
∫ 1

0

1

γ(s)
|ϕβk,γ(s)|2ds,491
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for all y ∈ (0, 1). Thanks to the normalizing condition ‖ϕβk,γ‖L2(0,1) = 1 and the definition of u together492

implies493

|ϕβk+1,γ(y)ϕβk,γ(0)− ϕβk,γ(y)ϕβk+1,γ(0)|2 ≤ C ′

(
λβk+1,γ − λ

β
k,γ

)2

γmin λ
β
k+1,γ

|ϕβk+1,γ(0)|2,494

495

for all y ∈ (0, 1). Now integrating the left hand side over y ∈ (0, 1) and using the L2-orthonormality496

condition of (ϕβk,γ)k≥0 we have497

|ϕβk,γ(0)|2 + |ϕβk+1,γ(0)|2 ≤ C ′

(
λβk+1,γ − λ

β
k,γ

)2

γminλ
β
k+1,γ

|ϕβk+1,γ(0)|2,498

499

which yields that500

λβk+1,γ − λ
β
k,γ ≥ C

√
λβk+1,γ , ∀k ≥ 0 and β ∈ [0,+∞].501

502

where the constant C depends only on γ.503

The proof is complete.504

3.2. The case of a constant diffusion coefficient. In this case, without loss of generality we can assume505

that γ ≡ 1 on [0, 1] and so we can find a more explicit form of the eigenfunctions to the following problem506

(3.12)


−∂2

xϕ = λϕ in (0, 1),

−∂xϕ(0) + βϕ(0) = 0,

∂xϕ(1) + βϕ(1) = 0.

507

Let us first assume that β ∈ (0,+∞). Using the boundary condition at x = 0, and solving explicitly the differential508

equation, we shall look for ϕβk in the following form509

ϕβk(x) =

√
λβk

β
cos

√
λβkx+ sin

√
λβkx, ∀x ∈ (0, 1), ∀β > 0 and ∀k ≥ 0,(3.13)510

511

where the eigenvalue λβk will be required to satisfy the following transcendental equation512

2β

√
λβk cos

√
λβk + (β2 − λβk) sin

√
λβk = 0, ∀β > 0 and ∀k ≥ 0.(3.14)513

514

This equation is obtained from the boundary condition that ϕβk should satisfy at x = 1.515

Notice that, in order to simplify the formulas, we do not assume here that ϕβk is normalised in L2. This will516

not be a problem in the sequel since we will only use the fact that this family is complete in L2.517

Remark 3.8. 1. We know that the family of eigenvalue-eigenfunctions of the operator −∂2
x with Dirichlet

and Neumann boundary conditions are

ϕDk (x) = sin((k + 1)πx), x ∈ [0, 1] with λDk = (k + 1)2π2, ∀k ≥ 0, and

ϕNk (x) = cos(kπx), x ∈ [0, 1] with λNk = k2π2, ∀k ≥ 0.

From above, our first obvious observation is λDk = λNk+1, ∀k ≥ 0.518

2. Secondly, one has λβk ∈ (k2π2, (k + 1)2π2), ∀k ≥ 0 and β ∈ (0,+∞), thanks to Lemma 3.3. To be more519

precise, λβk is the unique solution of (3.14) in the interval (k2π2, (k + 1)2π2) for each k ≥ 0.520

Remark 3.9. For any fixed λ ∈ (k2π2, (k + 1)2π2), k ≥ 0, the following quadratic equation

2β
√
λ cos

√
λ+ (β2 − λ) sin

√
λ = 0,

for the unknown β, has one and only one positive solution. Indeed, we see that the solutions of the above equation
are given by

β′ =
√
λ tan

√
λ

2
and β′′ = −

√
λ cot

√
λ

2
,

that clearly have different signs. More precisely, since
√
λ ∈ (kπ, (k + 1)π) we can see that521
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• for k even we have β′ > 0 and β′′ < 0,522

• for k odd, we have β′ < 0 and β′′ > 0.523

Remark 3.10. One can obtain from the transcendental equation (3.14) that524 √
λβk = kπ +

2β

kπ
+Oβ

(
1

k3

)
, ∀k ≥ 1.525

526

See, for instance [19, Problem Ib].527

We have seen in Remark 3.8 that the sequence of eigenvalues for the Dirichlet boundary condition and the one528

for the Neumann boundary condition almost coincide. The following lemma shows that, for other pairs of Robin529

parameters the corresponding sequences of eigenvalues are in fact disjoint.530

Lemma 3.11. Consider two parameters β1, β2 ∈ [0,+∞], such that β1 < β2. If for some k, l we have

λβ2

k = λβ1

l ,

then we necessarily have

β1 = 0, β2 = +∞, and l = k + 1.

Proof. If β1 > 0, then λβ1

l ∈ (l2π2, (l + 1)2π2) and thus
√
λβ2

k 6∈ πN∗ and thus β2 < +∞. Similarly, if we531

assume β2 < +∞ then we necessarily have β1 > 0.532

Therefore, there are now two cases:533

• First case (β1, β2) = (0,+∞): the result follows from Remark 3.8.534

• Second case 0 < β1 < β2 < +∞: the common value λ of λβ1

l and λβ2

k simultaneously belongs to (l2π2, (l +535

1)2π2) and (k2π2, (k+ 1)2π2), which implies that k = l and thus we have a contradiction with Lemma 3.3.536

4. Boundary controllability of the 1D problem with single Robin parameter. This section is devoted537

to establish the one-dimensional boundary null-controllability of our cascade system with same non negative Robin538

parameter on both components and for any diffusion coefficient γ as defined in section 2.4.1. In that case, the539

system (1.1)-(1.3) simply reads as540

(4.1)



∂ty1 − ∂x(γ(x)∂xy1) = 0 in (0, T )× (0, 1),

∂ty2 − ∂x(γ(x)∂xy2) + y1 = 0 in (0, T )× (0, 1),

γ(x)
∂y1

∂ν
(t, x) + βy1(t, x) = 1{x=0}v(t) on (0, T )× {0, 1},

γ(x)
∂y2

∂ν
(t, x) + βy2(t, x) = 0 on (0, T )× {0, 1},

y1(0, ·) = y0,1 in (0, 1),

y2(0, ·) = y0,2 in (0, 1),

541

which is associated with the operator Aβ,β as introduced in Section 2.3, but specialized here to the one-dimensional542

setting, that is for Ω = (0, 1). To simplify the notation, we will simply denote this operator by Aβ , since the two543

Robin parameters are equal.544

4.1. Spectrum of A∗β. We consider the eigenvalue problem

A∗βu = λu, λ ∈ C,

for a complex-valued function u, that is545

(4.2)



−∂x(γ(x)∂xu1) + u2 = λu1 in (0, 1),

−∂x(γ(x)∂xu2) = λu2 in (0, 1),

γ(x)
∂u1

∂ν
(x) + βu1(x) = 0 for x ∈ {0, 1},

γ(x)
∂u2

∂ν
(x) + βu2(x) = 0 for x ∈ {0, 1}.

546
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• Assume first that u2 6= 0. Multiplying the second equation by u2 and integrating by parts, we obtain that547

λ = λβk,γ for some k and that we can assume that u2 = ϕβk,γ . Moreover, taking the real or imaginary part,548

we can assume that u1 is real-valued, then multiplying the first equation by u2 and integrating by parts,549

we obtain that
∫ 1

0
|u2|2 = 0 which is a contradiction.550

• We have proved that, necessarily, u2 = 0. From the first equation we deduce that λ = λβk,γ for some k and551

that, up to a multiplicative constant, we have u1 = ϕβk,γ .552

Hence, the eigenfunctions of A∗β are553

Φβk,γ :=

(
ϕβk,γ

0

)
corresponding to the eigenvalues λβk,γ , ∀k ≥ 0.(4.3)554

555

We observe that the set {Φβk,γ}k≥0 is not sufficient generate the whole space (L2(0, 1))2 because the second compo-

nent of Φβk,γ is 0 for each k ≥ 0. Hence we need to look for the generalized eigenfunctions by solving the following
problem

A∗βu = λβk,γ u+ Φβk,γ , ∀k ≥ 0,

that is556

(4.4)



−∂x(γ(x)∂xu1) + u2 = λβk,γ u1 + ϕβk,γ in (0, 1),

−∂x(γ(x)∂xu2) = λβk,γ u2 in (0, 1),

γ(x)
∂u1

∂ν
(x) + βu1(x) = 0 for x ∈ {0, 1},

γ(x)
∂u2

∂ν
(x) + βu2(x) = 0 for x ∈ {0, 1}.

557

The second equation shows that u2 = aϕβk,γ for some a ∈ R. But multiplying the first equation by (u2 −ϕβk,γ), i.e.,558

(a− 1)ϕβk,γ and performing an integration by parts yields us that the only admissible value for a is 1.559

Now its enough to take u1 = 0, which is by default an admissible solution of the system (4.4) and hence the560

generalized eigenfunctions can be interpreted as561

Ψβ
k,γ =

(
0

ϕβk,γ

)
, ∀k ≥ 0.(4.5)562

563

We observe now that, the family {Φβk,γ ,Ψ
β
k,γ}k≥0 is a Riesz basis of (L2(0, 1))2, made of eigenfunctions and564

generalized eigenfunctions of the operator A∗β . By construction we simply have565

(4.6)

e
−tA∗βΦβk,γ = e−tλ

β
k,γΦβk,γ , ∀t ∈ [0, T ],

e−tA
∗
βΨβ

k,γ = e−tλ
β
k,γ (Ψβ

k,γ − tΦ
β
k,γ), ∀t ∈ [0, T ].

566

567

Remark 4.1 (Approximate controllability). We observe that the eigenfunctions of A∗β are observable, in the
sense that

B∗Φβk,γ = ϕβk,γ(0) 6= 0, ∀k ≥ 0,

where B∗ is given by (2.29).568

By using the Fattorini-Hautus test (the hypothesis of which are fulfilled in our case, see for instance [16, 24]),569

we deduce that the control system (4.1), with any β > 0, is approximately controllable at any time T > 0.570

4.2. Null-controllability. We are now in position to prove the null-controllability of our system, with a571

precise bound of the control with respect to β, that is the first point of Theorem 2.14.572

4.2.1. The moments problem. We recall that {Φβk,γ ,Ψ
β
k,γ}k≥0 (defined by (4.3)-(4.5)) forms a complete573

family in (L2(0, 1))2, so it is enough to check the controllability equation (2.30) (with the operator A∗β here) for574

Φβk,γ and Ψβ
k,γ for each k ≥ 0. This indeed tells us, for any y0 ∈ (L2(0, 1))2, that the input v ∈ L2(0, T ) is a null575

control for (4.1) if and only if we have576 
−e−Tλ

β
k,γ
(
y0,Φ

β
k,γ

)
L2(0,1)

=

∫ T

0

v(t)e−(T−t)λβk,γ B∗Φβk,γ dt, ∀k ≥ 0,

−e−Tλ
β
k,γ
(
y0,Ψ

β
k,γ − TΦβk,γ

)
L2(0,1)

=

∫ T

0

v(t)e−(T−t)λβk,γ B∗(Ψβ
k,γ − (T − t)Φβk,γ) dt, ∀k ≥ 0,

577

578
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using the formulas given by (4.6).579

Now since B∗Φβk,γ = ϕβk,γ(0) 6= 0 and B∗Ψβ
k,γ = 0 for each k ≥ 0, we can simplify the above set of equations as580

(4.7)


−e
−Tλβk,γ

ϕβk,γ(0)

(
y0,1, ϕ

β
k,γ

)
L2(0,1)

=

∫ T

0

v(t)e−λ
β
k,γ(T−t)dt, ∀k ≥ 0,

−e
−Tλβk,γ

ϕβk,γ(0)

(
T
(
y0,1, ϕ

β
k,γ

)
L2(0,1)

−
(
y0,2, ϕ

β
k,γ

)
L2(0,1)

)
=

∫ T

0

v(t)(T − t)e−λ
β
k,γ(T−t)dt, ∀k ≥ 0.

581

The above set of equations is the moments problem that we shall solve in our case.582

4.2.2. Existence of a bi-orthogonal family to real exponentials. To construct our control v by solving583

the moments problem above, the existence of a suitable bi-orthogonal family to time-dependent exponential functions584

is one the most important ingredient. In this context, it is worth mentioning [10, Theorem 1.5] where the authors585

proved the existence of bi-orthogonal families to (tje−Λkt)k≥0,0≤j≤η (η ∈ N) for a complex sequence (Λk)k≥0 with586

non-decreasing modulus. This proof is based on a proper gap condition of |Λk−Λn| for all k 6= n and some property587

of the counting function associated with (Λk)k≥0 which has been introduced by point 5 and 6 of their proof. In588

fact, concerning this hypothesis on the counting function, a slightly more general version has been introduced in [2,589

Remark 4.3] and we indeed make use of this fact in the present study.590

We deal with the real sequence (λβk,γ)k≥0 and we show that this sequence satisfies all the assumptions of [10,591

Theorem 1.5] uniformly with respect to the parameter β.592

1. The gap condition:593

Without loss of generality we assume that k > n and therefore, k = n+m for some m ∈ N. We recall (3.9)594

and Lemma 3.3 to observe that595

λβk+1,γ − λ
β
k,γ ≥ C

√
λβk+1,γ ≥ C

√
λNk+1,γ , ∀k ≥ 0, ∀β ≥ 0.(4.8)596

597

Also, by Remark 3.4, we have λNk+1,γ ≥ λNk+1,γmin
, and since it is easy to observe from Remark 3.8 that598

λNk,γmin
= γmin k

2π2 for each k ≥ 0, so the inequality (4.8) is simplified as599

(4.9) λβk+1,γ − λ
β
k,γ ≥ C γminπ(k + 1), ∀k ≥ 0, ∀β ≥ 0,600

which gives us601

λβn+m,γ − λβn,γ ≥ C γminπ

n+m∑
j=n+1

j = C γminπ

[
mn+

m(m+ 1)

2

]
=
C

2
γminπ

[
(m+ n)2 − n2 +m

]
.602

Thus for any k, n with k ≥ n+ 1, and for any β ≥ 0, we have603

λβk,γ − λ
β
n,γ ≥ ρ(k2 − n2), ∀k, n : k − n ≥ 1.(4.10)604

605

with ρ := C
2 γminπ.606

2. The counting function: Let N be the counting function associated with the sequence (λβk,γ)k≥0, defined by

N(r) = #{k : λβk,γ ≤ r}, ∀r > 0.

We observe that, the function N is piecewise constant and non-decreasing in the interval [0,+∞). Also for607

every r ∈ [0,+∞) we have N(r) < +∞ and limr→+∞N(r) = +∞. Moreover,608

N(r) = k ⇐⇒ λβk,γ ≤ r and λβk+1,γ > r,609
610

so that, in particular, if N(r) = k, we have611 √
λβk,γ ≤

√
r <

√
λβk+1,γ ,612

613

which yields, by Lemma 3.3 and Remark 3.4, that614 √
λNk,γmin

≤
√
λNk,γ ≤

√
r <

√
λDk+1,γ ≤

√
λDk+1,γmax

615
616
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But we have λNk,γmin
= γmink

2π2 and λDk+1,γmax
= γmax(k + 2)2π2, hence617

√
γmin kπ ≤

√
r <
√
γmax (k + 2)π.618619

Replacing k by N(r), we determine that620

1
√
γmax π

√
r − 2 < N(r) ≤ 1

√
γmin π

√
r <

1
√
γmin π

√
r + 2,621

622

which is the point 6 given just before [2, Remark 4.3] with α = 2, pmin = 1√
γmax π

and pmax = 1√
γmin π

.623

From the discussion above, and any given T > 0, we can ensure that the existence of a bi-orthogonal family in624

L2(0, T ), denoted by (qβk,j)k≥0,0≤j≤1, to the family of exponential functions ((T−·)ie−λ
β
k,γ(T−·))k≥0,0≤i≤1. Moreover,625

this family satisfies the following estimates626

‖qβk,j‖L2(0,T ) ≤ Ce
C
√
λβk,γ+C

T , ∀k ≥ 0, j = 0, 1,(4.11)627
628

where the constant C > 0 is independent on T > 0 and uniform with respect to k ≥ 0 and to the parameter β ≥ 0629

since all the quantities ρ, α, pmin and pmax introduced above do not depend on the Robin parameter β.630

4.2.3. The controllability result. We can now proceed to the proof of the null-controllability result in that631

case.632

Proof of Point 1 of Theorem 2.14. Consider633

vβ(t) =
∑
k≥0

vβk (t), ∀t ∈ (0, T ), where(4.12)634

635
636

vβk (t) = −e
−Tλβk,γ

ϕβk,γ(0)

(
y0,1, ϕ

β
k,γ

)
L2(0,1)

qβk,0(t)− e−Tλ
β
k,γ

ϕβk,γ(0)

(
T
(
y0,1, ϕ

β
k,γ

)
L2(0,1)

−
(
y0,2, ϕ

β
k,γ

)
L2(0,1)

)
qβk,1(t).637

With this choice of v = vβ , one can observe that the set of moment equations in (4.7) are formally satisfied.638

Now, all we have to check is the convergence of the series (4.12) in L2(0, T ), with explicit bounds with respect to639

β ∈ (0,+∞). To this end, for each k ≥ 0, we compute640

‖vβk ‖L2(0,T ) ≤
‖y0,1‖L2(0,1)

|ϕβk,γ(0)|
e−Tλ

β
k,γ‖qβk,0‖L2(0,T ) +

T‖y0,1‖L2(0,1) + ‖y0,2‖L2(0,1)

|ϕβk,γ(0)|
e−Tλ

β
k,γ‖qβk,1‖L2(0,T ),641

thanks to the normalizing condition ‖ϕβk,γ‖L2(0,1) = 1. Moreover, the result (3.7) gives us642

1

|ϕβk,γ(0)|
≤ C

1 +
β√
λβk,γ

 , ∀k ≥ 0, β ∈ (0,+∞),(4.13)643

644

where C depends only on γ.645

Now, using (4.13) and the bounds on bi-orthogonal functions in (4.11), we deduce for each k ≥ 0 and for any646

finite T > 0 that647

‖vβk ‖L2(0,T ) ≤ C(T + 2)

1 +
β√
λβk,γ

 e−Tλ
β
k,γe

C
√
λβk,γ+C

T ‖y0‖L2(0,1),(4.14)648

649

since γ(0) > γmin > 0. Now, Young’s inequality gives us650

C
√
λβk,γ ≤

T

2
λβk,γ +

C2

2T
, ∀k ≥ 0.(4.15)651

652

Thus, we see653

e
−Tλβk,γ+C

√
λβk,γ+C/T ≤ e−

T
2 λ

β
k,γ+C

T , ∀k ≥ 0.(4.16)654655
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But we have, λβk,γ ≥ λNk,γ ≥ λNk,γmin
= γmin k

2π2 for k ≥ 0, and so, in one hand, we have656

∑
k≥0

e−
T
2 λ

β
k,γ ≤

∑
k≥0

e−Ck
2 T

2 ≤ 1

1− e−CT/2
≤ C

(
1 +

1

T

)
.(4.17)657

658

On the other hand, we see659

∑
k≥0

β√
λβk,γ

e−
T
2 λ

β
k,γ ≤ β√

λβ0,γ

e−
T
2 λ

β
0,γ +

β

π
√
γmin

∑
k≥1

1

k
e−π

2γmink
2 T

2(4.18)660

≤ β√
λβ0,γ

+ Cβ
∑
k≥1

e−Ck
2 T

2 .661

662

The second quantity in the right hand side of (4.18) has the bound Cβ
(
1 + 1

T

)
where the bound of first quantity663

is not so obvious because we see that λβ0,γ is getting smaller with respect to smaller β > 0. But, we have664 
β√
λβ0,γ

≤
√
β√
λ1
0,γ

≤ C(1 + β), for 0 < β < 1, by Remark 3.2, and

β√
λβ0,γ

≤ Cβ, for β ≥ 1, which is easy to observe.
665

666

Now, using this in (4.18), one can deduce that667

∑
k≥0

β√
λβk,γ

e−
T
2 λ

β
k,γ ≤ C(1 + β)

(
1 +

1

T

)
.(4.19)668

669

Now, we take summation over k ≥ 0 in (4.14), and using the estimates (4.16), (4.17) and (4.19), we get for any670

β ∈ (0,+∞) and finite T > 0 that671 ∑
k≥0

‖vβk ‖L2(0,T ) ≤ C(1 + β)eC/T ‖y0‖L2(0,1).672

This completes the proof.673

5. Boundary controllability result of the 1D problem with different Robin parameters. In this674

section, we discuss about the boundary controllability of the system (1.1)-(1.3) in 1D with two different parameters675

β1 6= β2 with β1, β2 ∈ (0,+∞) for the two components of the system and as mentioned in the introduction of this676

paper, we assume now that γ is a positive constant that we arbitrarily choose to be equal to 1. We rewrite the677

control system (1.1)-(1.3) in that setting below678

(5.1)



∂ty1 − ∂2
xy1 = 0 in (0, T )× (0, 1),

∂ty2 − ∂2
xy2 + y1 = 0 in (0, T )× (0, 1),

∂y1

∂ν
(t, x) + β1y1(t, x) = 1{x=0}v(t) on (0, T )× {0, 1},

∂y2

∂ν
(t, x) + β2y2(t, x) = 0 on (0, T )× {0, 1},

y1(0, ·) = y0,1 in (0, 1),

y2(0, ·) = y0,2 in (0, 1).

679

In this case, we recall that the associated operator is Aβ1,β2
, as defined in Section 2.3, specified here for Ω = (0, 1)680

and for γ ≡ 1.681

The main difference between the present section and Section 4 concerns the spectral properties of the adjoint682

operators. Unlike the previous case, we will have here a possible condensation of eigenvalues with two different sets683

of eigenfunctions that form a complete family of the state space, instead of having well-separated eigenvalues and684

associated generalized eigenfunctions.685
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5.1. Spectrum of A∗β1,β2
. In the present situation, the eigenvalue problem associated with A∗β1,β2

is explicitly686

given by687

(5.2)



−∂2
xu1 + u2 = λu1 in (0, 1),

−∂2
xu2 = λu2 in (0, 1),

∂u1

∂ν
+ β1u1 = 0 on {0, 1},

∂u2

∂ν
+ β2u2 = 0 on {0, 1}.

688

First case: Assume that u2 = 0, then our system (5.2) reduces to the Robin eigenvalue problem (3.12) with positive689

parameter β1 and this gives us the solution u1 = ϕβ1

k corresponding λ = λβ1

k which is real for any k ≥ 0 (recall that,690

ϕβk has already been given by (3.13) for all k ≥ 0 and β ∈ (0,+∞)). This gives us the following set of eigenfunctions691

(without normalizing) of A∗β1,β2
692

Φk,1 :=

(
ϕβ1

k

0

)
corresponding to the eigenvalues λβ1

k , ∀k ≥ 0.(5.3)693

694

Second case: Assume now that u2 6= 0, then we first solve the second set of equations of (5.2), i.e.,695 
−∂2

xu2 = λu2 in (0, 1),

∂u2

∂ν
+ β2u2 = 0 on {0, 1},

696

which gives u2 = ϕβ2

k , up to a multiplicative constant (which we can take 1), corresponding to λ = λβ2

k for all k ≥ 0.697

Now by implementing u2 = ϕβ2

k for each k ≥ 0 to the first equation of (5.2) address us the following problem698

(5.4)


−∂2

xu1 + ϕβ2

k = λβ2

k u1 in (0, 1),

−∂xu1(0) + β1u1(0) = 0,

∂xu1(1) + β1u1(1) = 0.

699

The existence and uniqueness of the solution to (5.4) follows from the Fredholm alternative theorem and to the fact700

that λβ2

k /∈ (λβ1

l )l≥0 for any k ≥ 0 and β1 6= β2 (by Lemma 3.11). Let us denote the unique solution u1 of (5.4) by701

ψβ1,β2

k , for k ≥ 0 and hence the second set of eigenfunctions (without normalizing) of A∗β1,β2
is given by702

Φk,2 :=

(
ψβ1,β2

k

ϕβ2

k

)
corresponding to the eigenvalues λβ2

k , ∀k ≥ 0.(5.5)703

704

The family {Φk,1, Φk,2}k≥0 is complete in (L2(0, 1))2, and we observe that705

(5.6)

e
−tA∗β1,β2Φk,1 = e−tλ

β1
k Φk,1, ∀k ≥ 0,

e−tA
∗
β1,β2Φk,2 = e−tλ

β2
k Φk,2, ∀k ≥ 0.

706

5.1.1. More on spectral properties and approximate controllability. This section is devoted to show707

some properties of the first component ψβ1,β2

k of the eigenfunction Φk,2 and how the spectral gap |λβ1

k −λ
β2

k | depends708

on the parameters β1, β2 (for any k ≥ 0). We need all these to find a proper bound of our null-control.709

Proving the estimates of this section for any non constant diffusion coefficient γ is still an open problem, that710

is why we restrict here our attention to the constant coefficient case.711

Lemma 5.1. Let β1 6= β2 be any two real parameters with β1, β2 ∈ (0,+∞) and712

(ψβ1,β2

k )k≥0 be the set of solutions to (5.4) as introduced before. Then, we have713

|ψβ1,β2

k (0)| ≥
λβ2

k + β2
2

4β2

√
λβ2

k |β1 − β2|
, ∀k ≥ 0.714

715
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Proof. 1. Observe that ψβ1,β2

k satisfies the second order ordinary differential equation (5.4), i.e.,716

d2ψβ1,β2

k

dx2
+ λβ2

k ψβ1,β2

k = ϕβ2

k , for each k ≥ 0.(5.7)717
718

To solve this, recall the explicit form of ϕβ2

k from (3.13) (with β = β2), and hence for each k ≥ 0, we are719

looking for ψβ1,β2

k in the following form720

ψβ1,β2

k (x) = (Ax+B) cos(

√
λβ2

k x) + (Cx+D) sin(

√
λβ2

k x), ∀x ∈ [0, 1].(5.8)721
722

Substituting (5.8) into the equation (5.7), we get723

A = − 1

2
√
λβ2

k

and C =
1

2β2
.(5.9)724

725

Then, from the boundary conditions at x = 0 and 1 satisfying by ψβ1,β2

k , one can obtain726

D

√
λβ2

k = β1B −A, and727
728
729
730

(5.10) B

(
2β1

√
λβ2

k cos

√
λβ2

k + (β2
1 − λ

β2

k ) sin

√
λβ2

k

)
731

=

(
β1β2 − λβ2

k

2β2

)
cos

√
λβ2

k −

 (1 + β1 + β2)λβ2

k + β1β2

2β2

√
λβ2

k

 sin

√
λβ2

k732

733

respectively. We must mention here that the coefficient of B in the left hand side of (5.10) never vanishes734

due to Remark 3.9.735

2. By (3.14), it is known that the eigenvalue λβ2

k is the unique solution to736

2β2

√
λβ2

k cos

√
λβ2

k + (β2
2 − λ

β2

k ) sin

√
λβ2

k = 0, for each k ≥ 0.(5.11)737
738

Now by substituting the expression of cos
√
λβ2

k from (5.11) into (5.10) and replacing B by ψβ1,β2

k , we get739

1

β2
ψβ1,β2

k (0)
[
β1(λβ2

k − β
2
2) + β2(β2

1 − λ
β2

k )
]

=
(β1β2 − λβ2

k )(λβ2

k − β2
2)

4β2
2

√
λβ2

k

−
(1 + β1 + β2)λβ2

k + β1β2

2β2

√
λβ2

k

,740

where we omitted sin
√
λβ2

k from both sides since sin
√
λβ2

k 6= 0 for all k ≥ 0 and β2 ∈ (0,+∞). Now by741

simplifying the above equality provides us742

ψβ1,β2

k (0) =
−(λβ2

k )2 − β1β2λ
β2

k − β2
2λ

β2

k − 2β2λ
β2

k − 2β1β
2
2 − β1β

3
2

4β2

√
λβ2

k

[
β1(λβ2

k − β2
2) + β2(β2

1 − λ
β2

k )
] =:

Ik
Jk
.(5.12)743

744

Here one can rewrite the quantity Jk as745

(5.13) Jk = 4β2

√
λβ2

k (β1 − β2)(λβ2

k + β1β2), ∀k ≥ 0,746

whereas, Ik enjoys the following747

|Ik| ≥ (λβ2

k )2 + β1β2λ
β2

k + β2
2λ

β2

k + β1β
3
2 = (λβ2

k + β2
2)(λβ2

k + β1β2), ∀k ≥ 0.(5.14)748749

To this end, we use (5.13) and (5.14) in the expression (5.12) to deduce that750

|ψβ1,β2

k (0)| ≥
(λβ2

k + β2
2)

4β2

√
λβ2

k |β1 − β2|
, ∀k ≥ 0,751

752

and this concludes the lemma.753
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Remark 5.2 (Approximate controllability). The control problem (5.1) is approximately controllable for any754

finite time T > 0.755

To prove this, we will again use Fattorini-Hautus test as mentioned in Remark 4.1, that is to show B∗Φk,1 6= 0
and B∗Φk,2 6= 0 for each k ≥ 0 (where B∗ has been defined in (2.29)). But (3.13) and Lemma 5.1 respectively ensure
us

B∗Φk,1 = ϕβ1

k (0) 6= 0 and B∗Φk,2 = ψβ1,β2

k (0) 6= 0, ∀k ≥ 0,

which gives the claim.756

Lemma 5.3. Let β1 6= β2 be any two parameters such that β1, β2 ∈ (0,+∞) and λβ1

k , λ
β2

k , k ≥ 0, be defined as757

before. Let β∗ > 0 be a fixed finite number. Then758

1. for 0 < β1, β2 < β∗, we have759

|β1 − β2| ≤ Cβ∗ |λβ1

k − λ
β2

k |, ∀k ≥ 0,760761

2. for β1, β2 ≥ β∗, we have762 ∣∣∣∣ 1

β1
− 1

β2

∣∣∣∣ ≤ Cβ∗ |λβ1

k − λ
β2

k |, ∀k ≥ 0.763
764

Proof. We begin with the fact that any β ∈ (0,+∞) can be represented by765

(5.15)

β =
√
λβk tan

√
λβk
2 , for k even and

= −
√
λβk cot

√
λβk
2 , for k odd (by Remark 3.9).

766

Also, since we have
√
λβk ∈ (kπ, (k + 1)π) by point 2 of Remark 3.8, so one can write767 √

λ
βj
k = kπ + δ

βj
k for j = 1, 2, and

√
λβ
∗

k = kπ + δβ
∗

k , ∀k ≥ 0,(5.16)768
769

where δ
βj
k , δ

β∗

k ∈ (0, π).770

1. Now, we assume that 0 < β1, β2 < β∗ which implies 0 < δβ1

k , δ
β2

k < δβ
∗

k < π, ∀k ≥ 0. We denote771

0 < δβ∗ := sup
k≥0

δβ
∗

k < π,(5.17)772

773

where δβ∗ < π since the quantity δβ
∗

k is getting smaller as k ≥ 1 getting larger due to the asymptotic774

behavior of
√
λβ
∗

k given by Remark 3.10.775

We discuss the proof for k even, for odd k the steps will be similar. We have776

β1 − β2 = (kπ + δβ1

k ) tan

(
kπ

2
+
δβ1

k

2

)
− (kπ + δβ2

k ) tan

(
kπ

2
+
δβ2

k

2

)
(5.18)777

= kπ

(
tan

δβ1

k

2
− tan

δβ2

k

2

)
+ δβ1

k tan
δβ1

k

2
− δβ2

k tan
δβ2

k

2
.778

779

Applying Mean value theorem to the functions tan µ
2 and µ tan µ

2 on µ ∈ ((δβ1

k , δ
β2

k )), we have for some δ′k780

and δ′′k in ((δβ1

k , δ
β2

k )), that781 ∣∣∣∣∣tan
δβ1

k

2
− tan

δβ2

k

2

∣∣∣∣∣ ≤ |δβ1

k − δ
β2

k | sec2 δ
′
k

2
≤ Cβ∗ |δβ1

k − δ
β2

k |,782

783

and784 ∣∣∣∣∣δβ1

k tan
δβ1

k

2
− δβ2

k tan
δβ2

k

2

∣∣∣∣∣ ≤ |δβ1

k − δ
β2

k |
∣∣∣∣δ′′k2 sec2 δ

′′
k

2
+ tan

δ′′k
2

∣∣∣∣785

≤ |δβ1

k − δ
β2

k |
δ′′k
2

∣∣∣∣sec2 δ
′′
k

2
+

sin(δ′′k/2)

δ′′k/2
sec

δ′′k
2

∣∣∣∣786

≤ Cβ∗(δβ1

k + δβ2

k )|δβ1

k − δ
β2

k |,787788
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where we make use of the fact that the quantities sec
δ′k
2 and sec

δ′′k
2 can be bounded by sec

δβ∗

2 which is789

some constant Cβ∗ . Now, we turn back to (5.18) to deduce that790

|β1 − β2| ≤ Cβ∗(kπ + δβ1

k + δβ2

k )|δβ1

k − δ
β2

k |791

= Cβ∗

(√
λβ1

k +

√
λβ2

k

) ∣∣∣∣√λβ1

k −
√
λβ2

k

∣∣∣∣792

≤ Cβ∗ |λβ1

k − λ
β2

k |.793794

2. Here also, we demonstrate the result for k even. We recall (5.15) to observe that795

1

β1
− 1

β2
=

1

kπ + δβ1

k

cot

(
kπ

2
+
δβ1

k

2

)
− 1

kπ + δβ2

k

cot

(
kπ

2
+
δβ2

k

2

)
(5.19)796

=
1

kπ + δβ1

k

cot
δβ1

k

2
− 1

kπ + δβ2

k

cot
δβ2

k

2
,797

798

Let us define the function

g(µ) =
1

kπ + µ
cot

µ

2
, for µ ∈ ((δβ1

k , δ
β2

k )) ⊂ (0, π).

Consequently,

g′(µ) = − 1

2(kπ + µ)
csc2 µ

2
− 1

(kπ + µ)2
cot

µ

2
,

and |g′| is monotonically decreasing function in (0, π). Now, applying Mean value theorem on g(µ), we799

have from (5.19)800 ∣∣∣∣ 1

β1
− 1

β2

∣∣∣∣ ≤ |δβ1

k − δ
β2

k ||g
′(δ̃k)|, for some δ̃k ∈ ((δβ1

k , δ
β2

k )).(5.20)801
802

But we have δ
βj
k , δ̃k ≥ δ

β∗

k (j = 1, 2), since β1, β2 ≥ β∗, and hence803

|g′(δ̃k)| ≤ 1

kπ + δ̃k

 1

2 sin2
(
δ̃k/2

) +
1

kπ + δ̃k
cot

δ̃k
2

(5.21)804

≤ 1

kπ + δβ
∗

k

 1

2 sin2
(
δβ
∗

k /2
) +

1

kπ + δβ
∗

k

1

sin
(
δβ
∗

k /2
)
 .805

806

Let us recall the asymptotic formula of
√
λβ
∗

k from Remark 3.10 to observe

δβ
∗

k =
2β∗

kπ
+Oβ∗

(
1

k3

)
≥ β̄

kπ
, ∀k ≥ 1,

for some β̄ > 0 depending only on β∗. As a consequence, sin
δβ
∗
k

2 ≥ sin β̄
2kπ , since sinx is monotonically

increasing on (0, π/2). Also, since sinx ≥ 2
πx for all x ∈ (0, π/2), eventually we have

sin
β̄

2kπ
≥ β̄

kπ2
, ∀k ≥ 1.

Now we come back to (5.21), we obtain for any k 6= 0 even, that807

|g′(δ̃k)| ≤ 1√
λβ
∗

k

k2π4

2β̄2
+

kπ2

β̄
√
λβ
∗

k

808

≤ Cβ∗
√
λβ
∗

k ≤ Cβ∗
(√

λβ1

k +

√
λβ2

k

)
.809

810
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Implementing this estimate into (5.20), we obtain that811 ∣∣∣∣ 1

β1
− 1

β2

∣∣∣∣ ≤ Cβ∗ ∣∣∣∣√λβ1

k −
√
λβ2

k

∣∣∣∣ (√λβ1

k +

√
λβ2

k

)
(5.22)812

= Cβ∗ |λβ1

k − λ
β2

k |, ∀k 6= 0 even.813814

For k = 0, one can observe from (5.21) that815

|g′(δ̃0)| ≤ 1

δ̃0

 1

2 sin2
(
δ̃0/2

) +
1

δ̃0
cot

δ̃0
2

816

≤ 1

δβ
∗

0

 1

2 sin2
(
δβ
∗

0 /2
) +

1

δβ
∗

0

1

sin
(
δβ
∗

0 /2
)
 ≤ Cβ∗ ,817

818

and so (5.20) now provides us the same inequality (5.22) for k = 0. The proof is complete.819

Lemma 5.3 now helps us to prove the following proposition which is the key point to obtain a uniform L2(0, T )-820

bound of a control that we construct in next section, with respect to the parameters β1, β2.821

Proposition 5.4. Let β1 6= β2 be any two parameters with β1, β2 ∈ (0,+∞) and
(
λβ1

k , Φk,1

)
,
(
λβ2

k , Φk,2

)
be822

the eigenvalue-eigenfunction pairs of the operator A∗β1,β2
for each k ≥ 0. Also, assume that β∗ be any positive real823

number. Then, for any k ≥ 0, we have824

(5.23)
1

|λβ1

k − λ
β2

k |

∥∥∥∥ Φk,1
B∗Φk,1

− Φk,2
B∗Φk,2

∥∥∥∥
L2(0,1)

≤

Cβ∗ , if 0 < β1, β2 < β∗,

Cβ∗β1

√
λβ2

k , if β1, β2 ≥ β∗,
825

where B∗ is defined in (2.29).826

Proof. Since B∗ = 1{x=0}
(
1 0

)
(introduced in (2.29)), and using the definitions (5.3) and (5.5), the quantity

we want to estimate can be denoted by

Θk :=

(
Θ1
k

Θ2
k

)
,

where the two components are

Θ1
k(x) :=

1

(λ
β1

k − λ
β2

k )

(
ϕβ1

k (x)

ϕβ1

k (0)
−
ψβ1,β2

k (x)

ψβ1,β2

k (0)

)
, x ∈ (0, 1),

Θ2
k(x) :=

1

(λ
β1

k − λ
β2

k )

ϕβ2

k (x)

ψβ1,β2

k (0)
, x ∈ (0, 1).

In order to ease the computations, we will denote by µi =
√
λβik for i = 1, 2, the dependence in k being now827

implicit.828

1. We first assume that 0 < β1, β2 < β∗. Using this assumption, and the fact that λβi0 ≥ βi
β∗ λ

β∗

0 (by829

Remark 3.2) and simply λβik ≥ k2π2, ∀k ≥ 1 (by point 2 of Remark 3.8), we obtain uniformly in k ≥ 0, that830

(5.24) µi ≥ Cβ∗
√
βi, i = 1, 2.831

• Estimate of the first component Θ1
k:832

Recall the expression ϕβ1

k (with β = β1) and ψβ1,β2

k from (3.13) and (5.8) respectively and following833

some steps of computations we obtain834
835

(5.25)

(
ϕβ1

k (x)

ϕβ1

k (0)
−
ψβ1,β2

k (x)

ψβ1,β2

k (0)

)
= cos(µ1x)− cos(µ2x) + β1

[
sinµ1x

µ1
− sinµ2x

µ2

]
836

− Ax

B
cos(µ2x)− Cx

B
sin(µ2x) +

A

Bµ2
sin(µ2x).837

838

Let us bound the contribution of each term in the L2 norm of Θ1
k, recalling that (λβ1

k −λ
β2

k ) = µ2
1−µ2

2.839
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– First, it is easy to deduce that for any β1 6= β2 and any x ∈ (0, 1], we have840

(5.26)

∣∣∣∣cos(µ1x)− cos(µ2x)

µ2
1 − µ2

2

∣∣∣∣ =
x2

2

∣∣∣∣∣ sin
(
µ1−µ2

2 x
)

sin
(
µ1+µ2

2 x
)(

µ1−µ2

2 x
) (

µ1+µ2

2 x
) ∣∣∣∣∣ ≤ 1

2
.841

– For x ∈ (0, 1] fixed, let us define the function µ 7→ f(µ) := sin(µx)
µ , whose derivative is f ′(µ) =842

1
µx cos(µx)− 1

µ2 sin(µx). Applying Mean value theorem, we have843

|f(µ1)− f(µ2)| ≤ |µ1 − µ2| |f ′(µ̃)|, for some µ̃ ∈ ((µ1, µ2)).844845

Now, if 0 < µ̃ < 1 (consequently 0 < µ̃x < 1 for x ∈ (0, 1]), then we have846

|f ′(µ̃)| =
∣∣∣∣ 1µ̃x cos(µ̃x)− 1

µ̃2
sin(µ̃x)

∣∣∣∣847

=

∣∣∣∣µ̃x3

(
cos(µ̃x)− 1

(µ̃x)2
− sin(µ̃x)− µ̃x

(µ̃x)3

)∣∣∣∣848

≤ µ̃x3 ≤ 1, ∀x ∈ (0, 1],849850

since
∣∣∣ cos(µ̃x)−1

(µ̃x)2

∣∣∣ ≤ C and
∣∣∣ sin(µ̃x)−µ̃x

(µ̃x)3

∣∣∣ ≤ C, for 0 < µ̃x < 1.851

On the other hand, for µ̃ ≥ 1, it is quite obvious to see that |f ′(µ̃)| ≤ C, and so finally we have852

uniformly in x,853

|f(µ1)− f(µ2)| ≤ C |µ1 − µ2| , ∀β1 6= β2 positive.854855

This implies that for 0 < β1 < β∗ one has856

β1

|µ2
1 − µ2

2|

∣∣∣∣ sin(µ1x)

µ1
− sin(µ2x)

µ2

∣∣∣∣ ≤ Cβ1

µ1 + µ2
≤ Cβ∗ ,(5.27)857

858

where the last inequality follows from (5.24).859

– For estimating the remaining three terms, we use the values of A and C from (5.9) and Lemma 5.1,
that gives the bound from below

|B| ≥ µ2

4β2|β1 − β2|
.

With the inequality proved in the first point of Lemma 5.3 and (5.24) we see that860

1

|µ2
1 − µ2

2|

∣∣∣∣AxB cos(µ2x)

∣∣∣∣ ≤ 2β2 |β1 − β2|
µ2

2|µ2
1 − µ2

2|
≤ Cβ∗β2

µ2
2

≤ Cβ∗ .(5.28)861
862

Similarly, we have863

1

|µ2
1 − µ2

2|

∣∣∣∣CxB sin(µ2x)

∣∣∣∣ ≤ |β1 − β2|
|µ2

1 − µ2
2|

∣∣∣∣x2 sin(µ2x)

µ2x

∣∣∣∣ ≤ Cβ∗ ,(5.29)864
865

and866

(5.30)
1

|µ2
1 − µ2

2|

∣∣∣∣ AxBµ2
sin(µ2x)

∣∣∣∣ ≤ 1

|µ2
1 − µ2

2|

∣∣∣∣AB
∣∣∣∣ ≤ 2β2

µ2
2

|β1 − β2|
|µ2

1 − µ2
2|
≤ Cβ∗β2

µ2
2

≤ Cβ∗ .867

Hence, gathering all the estimates from (5.26)-(5.30), one can deduce that ‖Θ1
k‖L2(0,1) ≤ Cβ∗ for868

any k ≥ 0.869

• Estimate of the second component Θ2
k:870

By using the expression of ϕβ2

k from (3.13), we have for each k ≥ 0 that871 ∣∣∣∣∣ ϕβ2

k (x)

ψβ1,β2

k (0)

∣∣∣∣∣ ≤ µ2

β2

| cos(µ2x)|
|ψβ1,β2

k (0)|
+
| sin(µ2x)|
|ψβ1,β2

k (0)|
872

≤ 4|β1 − β2|+ 4β2|β1 − β2|
∣∣∣∣x sin(µ2x)

µ2x

∣∣∣∣873

≤ 4(1 + β2)|β1 − β2| ≤ Cβ∗(1 + β2)
∣∣µ2

1 − µ2
2

∣∣ ,874875

where we make use the facts that |ψβ1,β2

k (0)| ≥ µ2

4β2|β1−β2| and the estimate in the first point of876

Lemma 5.3. Consequently, we deduce that ‖Θ2
k‖L2(0,1) ≤ Cβ∗ for any k ≥ 0.877
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This completes the proof of the uniform estimate of Θk in L2 for 0 < β1, β2 < β∗, β1 6= β2.878

2. Let us assume now that β1, β2 ≥ β∗ > 0. Using this assumption, and the fact that λβi0 ≥ λβ
∗

0 and879

λβik ≥ k2π2, ∀k ≥ 1, we obtain uniformly in k ≥ 0, that880

(5.31) µi ≥ Cβ∗ , i = 1, 2.881

We need to prove that 1
β1

Θk is bounded uniformly in k, β1 and β2.882

• Estimate of the first component Θ1
k:883

We still start from (5.25) and we estimate each term as follows.884

– Analogous to (5.26) and (5.27), we respectively have885

(5.32)

∣∣∣∣cos(µ1x)− cos(µ2x)

µ2
1 − µ2

2

∣∣∣∣ ≤ 1

2
,886

and887

(5.33)
β1

|µ2
1 − µ2

2|

[
sin(µ1x)

µ1
− sin(µ2x)

µ2

]
≤ β1

µ1
≤ Cβ∗β1,888

by (5.31).889

– Now using the fact |B| ≥ µ2
2+β2

2

4β2µ2|β1−β2| from Lemma 5.1, and the second point of Lemma 5.3, we890

can bound the remaining three terms as follows891

(5.34)
1

|µ2
1 − µ2

2|

∣∣∣∣AxB cos(µ2x)

∣∣∣∣ ≤ 2 |β1 − β2|
β2 |µ2

1 − µ2
2|

β2
2

(µ2
2 + β2

2)
≤ 2β1

|µ2
1 − µ2

2|

∣∣∣∣ 1

β1
− 1

β2

∣∣∣∣ ≤ Cβ∗β1.892

Similarly, we have893

(5.35)
1

|µ2
1 − µ2

2|

∣∣∣∣CxB sin(µ2x)

∣∣∣∣ ≤ |β1 − β2|
β2 |µ2

1 − µ2
2|

2β2µ2

(µ2
2 + β2

2)
≤ Cβ∗β1,894

and finally895

1

|µ2
1 − µ2

2|

∣∣∣∣ AxBµ2
sin(µ2x)

∣∣∣∣ ≤ 1

|µ2
1 − µ2

2|

∣∣∣∣AB
∣∣∣∣ ≤ Cβ∗β1,(5.36)896

897

which is obtained by a similar type of computations as in (5.34).898

Gathering all the estimates from (5.32)-(5.36), we get that ‖Θ1
k‖L2(0,1) ≤ Cβ∗β1 for any k ≥ 0.899

• Estimate of the second component Θ2
k:900

Using the same ingredients as before, we compute901 ∣∣∣∣∣ ϕβ2

k (x)

ψβ1,β2

k (0)

∣∣∣∣∣ ≤ µ2

β2

| cos(µ2x)|
|B|

+
| sin(µ2x)|
|B|

902

≤ 2µ2
2β1β2µ2

(µ2
2 + β2

2)

∣∣∣∣ 1

β1
− 1

β2

∣∣∣∣+ 4µ2
β1β

2
2

(µ2
2 + β2

2)

∣∣∣∣ 1

β1
− 1

β2

∣∣∣∣903

≤ Cβ∗µ2β1

∣∣µ2
1 − µ2

2

∣∣ ,904905

by the second point of Lemma 5.3. This implies906

1

|µ2
1 − µ2

2|

∣∣∣∣∣ ϕβ2

k (x)

ψβ1,β2

k (0)

∣∣∣∣∣ ≤ Cβ∗β1µ2,907

908

and thus the expected bound ‖Θ2
k‖L2(0,1) ≤ Cβ∗β1µ2 for any k ≥ 0.909

5.2. Null-controllability. We can now prove the null-controllability of our system, with a precise bound of910

the control with respect to β1 and β2, that is the second point of Theorem 2.14.911
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5.2.1. The moments problem. In the present context, we recall that the family {Φk,1, Φk,2}k≥0 (defined912

by (5.3)-(5.5)) is complete in (L2(0, 1))2 and so, by checking the equation (2.28) for Φk,1 and Φk,2 for each k ≥ 0,913

indeed tells us that for any y0 ∈ (L2(0, 1))2 the input v ∈ L2(0, T ) is a null control for (5.1) if and only if one has914

(5.37)


−e−Tλ

β1
k

(
y0, Φk,1

)
L2(0,1)

B∗Φk,1
=

∫ T

0

v(t)e−λ
β1
k (T−t) dt, ∀k ≥ 0,

−e−Tλ
β2
k

(
y0, Φk,2

)
L2(0,1)

B∗Φk,2
=

∫ T

0

v(t)e−λ
β2
k (T−t) dt, ∀k ≥ 0,

915

where we used the formulas given in (5.6).916

5.2.2. The block moment method. It is known that for any k ≥ 0 the eigenvalue λβk is continuous with917

respect to the parameter β ∈ [0,+∞], see for instance [21, Theorem 3.1] and as a consequence, it may occur that918

the two eigenvalues λβ1

k and λβ2

k are arbitrarily close if β1 and β2 are close. This phenomenon is called spectral919

condensation and may, in general, prevent us from obtaining uniform bounds on the controls when β1 and β2 are920

getting closer (see for instance a discussion on the influence of the condensation index on controllability properties921

of parabolic systems in [20]).922

Indeed, the classic way to solve the moments problem, as we did in Section 4 is inadequate. More precisely,923

it is not true anymore that any bi-orthogonal family to (e−λ
βj
k (T−t))k≥0, j=0,1 will satisfy uniform L2(0, T )-bound924

with respect to the parameters β1, β2 since the gap infk |λβ1

k − λ
β2

k | may be arbitrary small when |β1 − β2| is small925

(see Lemma 5.3).926

To overcome this situation, and still prove uniform controllability result, we will use the block moment approach927

developed in [11] to solve problems like (5.37) when a weak gap condition holds, instead of a usual uniform gap928

condition. This method let us take benefit of the condensation of eigenfunctions that actually compensate the929

condensation of the eigenvalues. Let us go into the details.930

We first define Λβi := {λβik , k ≥ 0} for i = 1, 2, the two families of eigenvalues we are concerned with and we931

set Λβ1,β2 = Λβ1 ∪ Λβ2 .932

As we have seen in (4.9), each of the two families satisfies a uniform spectral gap property933

(5.38) inf
k
|λβik+1 − λ

βi
k | ≥ Cπ, i = 1, 2,934

and their reciprocal values are uniformly summable in the sense that, there exists a function N : (0,+∞)→ (0,+∞)935

that does not depend on β1 and β2, such that936

(5.39)
∑
λ∈Λβi
λ>N (ε)

1

λ
≤ ε,937

for any ε > 0 and any i = 1, 2.938

Therefore, by [11, Lemma 2.1], we know that the union family Λβ1,β2 satisfies a weak-gap property : for any939

ρ > 0 (independent of β1 and β2) such that940

(5.40) ρ < Cπ,941

we have that Λβ1,β2 ∩ [µ, µ + ρ), contains at most 2 elements for any µ > 0. Moreover, the reciprocal values of942

Λβ1,β2 are also uniformly summable as in (5.39) but with a possibly different function N .943

By [11, Proposition 7.1] we know that, for each value of β1 and β2, we can find a family of disjoint non empty
groups (Gn)n each of them having a cardinal less or equal than 2 and such that

Λβ1,β2 =
⋃
n

Gn,

(minGn+1)− (maxGn) ≥ ρ/2,

diam(Gn) < ρ.

Let us prove now that, for ρ small enough, the structure of those groups is actually simple.944
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Lemma 5.5. Let β∗ > 0 be fixed and for β1 6= β2 assume that either β1, β2 < β∗ or β1, β2 ≥ β∗.945

There exists ρ∗ depending only on β∗ such that, if we assume that ρ < ρ∗ in the above construction in addition
to (5.40), then for any group Gn of cardinal 2, there exists an integer k such that

Gn = {λβ1

k , λ
β2

k }.

Proof. Without loss of generality, we assume that β1 < β2. Since the diameter of Gn is less than ρ and using
(5.38) and (5.40) we know that Gn contains exactly one element from Λβ1 and one element from Λβ2 , that is

Gn = {λβ1

j , λ
β2

k },

for some integers k and j. We want to show that j = k.946

By Lemma 3.3 and Lemma 3.11 we know that947

(5.41) λβ1

k < λβ2

k < λβ1

k+1,948

thus the only possibilities are j = k or j = k + 1.949

• First, we treat the case when 0 < β1 < β2 < β∗. We have950 √
λβ1

k+1 −
√
λβ2

k ≥
√
λNk+1 −

√
λβ
∗

k = π − δβ∗ > 0,951
952

since λNk+1 = (k + 1)2π2 by point 1 of Remark 3.8; λβ
∗

k and δβ∗ have been introduced in (5.16) and (5.17)953

respectively. Hence, for all k ≥ 0, we have954

λβ1

k+1 − λ
β2

k =

(√
λβ1

k+1 +

√
λβ2

k

)(√
λβ1

k+1 −
√
λβ2

k

)
955

≥ π(π − δβ∗) > 0.956957

We choose ρ∗ = π(π − δβ∗). From the computation above we see that if ρ < ρ∗, then λβ1

k+1 and λβ2

k cannot958

belong to the same group Gn and thus we necessarily have j = k and the claim is proved.959

• Assume now that β2 > β1 ≥ β∗ > 0. Then, from the asymptotic formula given by Remark 3.10, we see960 √
λβ1

k+1 −
√
λβ2

k ≥
√
λβ
∗

k+1 −
√
λDk =

2β∗

(k + 1)π
+Oβ∗

(
1

k2

)
, ∀k ≥ 1,961

962

since λDk = (k+ 1)2π2 by point 1 of Remark 3.8. Now, it is obvious that
√
λβ1

k+1 +
√
λβ2

k ≥ (k+ 1)π, for all963

k ≥ 0 and so, there exists a kβ∗ ≥ 1, depending only on β∗ such that964

λβ1

k+1 − λ
β2

k ≥ β
∗ > 0, ∀k ≥ kβ∗ .965966

It remains to deal with the other values of k = 0, 1, · · · , kβ∗ − 1. We simply use the fact that

λβ1

k+1 − λ
β2

k ≥ λ
β∗

k+1 − λ
D
k ,

to define

ρ∗ := min

(
β∗, min

0≤k<kβ∗
(λβ

∗

k+1 − λ
D
k )

)
> 0.

Here also we conclude that if ρ < ρ∗, λβ1

k+1 and λβ2

k cannot be in the same group Gn and thus j = k, and967

the proof is complete.968

We can now proceed to the proof of our main result concerning the uniform null-controllability of the system969

with two different Robin parameters.970

Proof of Point 2 of Theorem 2.14. We proved above that the sequence of eigenvalues Λβ1,β2 satisfy the good971

weak-gap and summability conditions required by the block moment method. More precisely, we can apply [11,972

Theorem 2.1] to find a solution to the set of equations (5.37) as an infinite sum of terms, each of them corresponding973

to the resolution of the contribution of the group Gn. In our case, we can observe that, by Lemma 5.5, the set974

{λβ1

k , λ
β2

k } for any k ≥ 0, is either exactly one of the groups Gn or the union Gn ∪Gn+1 of two distinct groups of975

cardinal 1.976
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It follows that, the result of [11, Theorem 2.1] can be reformulated as follows: there exist functions vβ1,β2

k ∈977

L2(0, T ) for each k ≥ 0, which satisfy the following978

(5.42)



∫ T

0

vβ1,β2

k (t)e−λ
β1
k (T−t) dt = −e−Tλ

β1
k

(
y0, Φk,1

)
L2(0,1)

B∗Φk,1
,∫ T

0

vβ1,β2

k (t)e−λ
β2
k (T−t) dt = −e−Tλ

β2
k

(
y0, Φk,2

)
L2(0,1)

B∗Φk,2
,∫ T

0

vβ1,β2

k (t)e−λ
βi
l (T−t) dt = 0, ∀l 6= k, ∀i = 1, 2.

979

and satisfying the following bound, for any ε > 0,980

(5.43) ‖vβ1,β2

k ‖L2(0,T ) ≤ CT,ε,N ,ρ∗e(ε−T )λ
β1
k max


∥∥∥∥ Φk,1
B∗Φk,1

∥∥∥∥
L2(0,1)

,

∥∥∥ Φk,1
B∗Φk,1 −

Φk,2
B∗Φk,2

∥∥∥
L2(0,1)

|λβ1

k − λ
β2

k |

 ‖y0‖L2(0,1).981

Note that in [11] it is assumed that all the eigenvalues in the system are greater than 1, whereas in our case we only982

know that they are non-negative (we recall that λβ0 goes to 0 when β → 0). However, one can check that this does983

not change significantly the result since it simply amounts to add a factor eT in front of the constant CT,ε,N ,ρ∗ in984

the estimate.985

We now define vβ as986

vβ(t) :=
∑
k≥0

vβ1,β2

k (t), ∀t ∈ [0, T ],(5.44)987

988

so that vβ formally satisfies the set of moments problem (5.37), it remains to show that the series converges and to989

obtain the expected bound on vβ.990

• In the case when β1 = β2, the result is just a particular case of point 1 of Theorem 2.14.991

• Assume that β1 6= β2. We observe that
∥∥∥ Φk,1
B∗Φk,1

∥∥∥
L2(0,1)

=

∥∥∥∥ ϕ
β1
k

ϕ
β1
k (0)

∥∥∥∥
L2(0,1)

which can be bounded by C(1+β1)992

for any β1 ∈ (0,+∞) (recall the expression of ϕβ1

k from (3.13)).993

We can then choose ε = T/2 and apply Proposition 5.4 to obtain that, for 0 < β1, β2 < β∗,994

(5.45) ‖vβ1,β2

k ‖L2(0,T ) ≤ CT,β∗(1 + β1) e−
T
2 λ

β1
k ‖y0‖L2(0,1),995

and for β1, β2 ≥ β∗,996

(5.46) ‖vβ1,β2

k ‖L2(0,T ) ≤ CT,β∗(1 + β1)

√
λβ2

k e−
T
2 λ

β1
k ‖y0‖L2(0,1).997

From (5.44), it follows that998

‖vβ‖L2(0,T ) ≤
∑
k≥0

‖vβ1,β2

k ‖L2(0,T ),999

in which we can plug (5.45) or (5.46) to finally obtain1000

‖vβ‖L2(0,T ) ≤ CT,β∗(1 + β1)‖y0‖L2(0,1),1001

where CT,β∗ > 0 does not depend explicitly on the parameters β1, β2 because the two series
∑
k≥0 e

−T2 λ
β1
k1002

and
∑
k≥0

√
λβ2

k e−
T
2 λ

β1
k converges uniformly with respect to the parameters due to the fact λNk < λβik < λDk ,1003

∀k ≥ 0, i = 1, 2, by Lemma 3.3.1004

The proof of the theorem is complete.1005
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[1] F. Alabau-Boussouira and M. Léautaud, Indirect controllability of locally coupled wave-type systems and applications, Journal1007
de Mathématiques Pures et Appliquées, 99 (2013), pp. 544–576.1008

[2] D. Allonsius and F. Boyer, Boundary null-controllability of semi-discrete coupled parabolic systems in some multi-dimensional1009
geometries, Mathematical Control and Related Fields, (2018), https://hal.archives-ouvertes.fr/hal-01827044. to appear.1010

[3] D. Allonsius, F. Boyer, and M. Morancey, Spectral analysis of discrete elliptic operators and applications in control theory,1011
Numerische Mathematik, 140 (2018), pp. 857–911.1012
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