N

N

Boundary null-controllability of coupled parabolic
systems with Robin conditions
Kuntal Bhandari, Franck Boyer

» To cite this version:

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with
Robin conditions. 2019. hal-02091091v1

HAL Id: hal-02091091
https://hal.science/hal-02091091v1

Preprint submitted on 7 Jul 2019 (v1), last revised 14 Jul 2019 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-02091091v1
https://hal.archives-ouvertes.fr

10

11

= e e
=W N

17
18
19
20
21
22

23

24
25
26

[\]
-~

BOUNDARY NULL-CONTROLLABILITY OF COUPLED PARABOLIC SYSTEM WITH
ROBIN CONDITIONS

KUNTAL BHANDARI* AND FRANCK BOYER*'

Abstract. The main goal of this paper is to investigate the boundary controllability of a coupled parabolic system in the cascade
form in the case where the boundary conditions are of Robin type. In particular, we prove that the associated controls satisfy suitable
uniform bounds with respect to the Robin parameters, that let us show that they converge towards a Dirichlet control when the Robin
parameters go to infinity. This is a justification of the popular penalisation method for dealing with Dirichlet boundary data in the
framework of the controllability of coupled parabolic systems.

Key words. Control theory, parabolic systems, moments method, spectral estimates.
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1. Introduction.

1.1. The problem under study. This paper is concerned with the boundary null-controllability problem for
linear coupled parabolic systems with less controls than equations. It is by now well-known that it can be a difficult
problem in various situations and that there is still no complete theory in the literature. We will concentrate here
on a particular case which is in the so-called cascade form and that can be written as follows

Oeyr — div(y(2)Vy1) =0 in (0,7) x €,

Ory2 — div(y(2)Vy2) +y1 =0 in (0,T) x Q,
(1.1) .

y1(0,-) = yo,1 in €,

y2(0,7) = yo,2 in €,

where the control v will be acting only on the component y; on some part I'y of the boundary I' of the domain €.
Since we want to control both components of the system and v has no direct influence in the equation for y,, the
role of the coupling term y; in the second equation is fundamental: it acts as an indirect control term. We refer for
instance to the review paper [5] for a general presentation of different results on that topic.

The usually studied case is the one of a Dirichlet control, which means that the above system is supplemented
with the following boundary conditions

(1.2) {yl =1pr,v on (0,T)xT,

y2 =0 on (0,7)xT.

In the present work we would like to analyse the controllability properties of the same system when one considers,
instead of the Dirichlet boundary conditions, a set of Robin boundary conditions with two non negative parameters

/817B2

0
a% + 51y1 = ]lFOU on (07T) x T,
(1.3) ay”
2
— =0 0, T r
51/7 +62y2 on ( 5 ) x 1,

where the conormal derivative operator associated to the diffusion tensor - is defined by

0
oy v-(yV-).
1.2. Motivations and overview of the paper. Our motivation for studying the above problem is two-fold.
The first one comes from the fact that it is an instance of the very popular penalisation approach to deal
with boundary condition that have never been studied, as far as we know, in the framework of the controllability of
coupled parabolic systems. From a numerical point of view, for instance when considering a Galerkin approximation
of an elliptic or parabolic equation, this approach consists in replacing a Dirichlet boundary condition y = g by
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2 K. BHANDARI, F. BOYER

a Robin boundary condition %Buvy +y = g, with a large penalisation parameter 8. It generally induces more
flexibility and robustness in the computational code. This approach is indeed proposed in many finite element
libraries and softwares. Moreover, it is also a suitable way to deal with data g that have a regularity lower than the
one expected to solve the problem in the usual energy spaces (typically if g ¢ H'/?(T") when solving the Laplace
equation). This approach was initially studied in [7] for elliptic problems or in [9] for parabolic problems. In the
framework of control theory, this penalisation approach was for instance analyzed in [8, 13] for solving optimal
control of elliptic equations. In each case, it is proven that the solution of the penalised problem actually converges
to the one of the original problem, with some estimate of the rate of convergence.

Our motivation is thus to investigate the same kind of issues for the coupled parabolic system (1.1) with a
single boundary control and in particular to show that, not only the problem (1.1)-(1.3) is null-controllable, but
more importantly, that it is possible to prove estimates on the controls that are (in some sense that will be precised
later) uniform with respect to the Robin (penalisation) parameter. It will follow that the corresponding controlled
solution converges towards a controlled solution of the Dirichlet problem when those parameters go to infinity.

Another motivation for this analysis, related to the discussion above, is that Robin boundary conditions have a
regularizing effect on the boundary data. Indeed, as it will be recalled at the beginning of Section 2, the functional
analysis adapted to boundary controls in L? for parabolic systems is a little intricate since, with such a low regularity
of the data, we cannot expect solutions to exist in the usual energy space C°([0,T], L2(Q))NL?(0, T, H*(Q)) and to
satisfy a standard weak formulation. Instead the solutions are known to live in a larger space C°([0,T], H=1(Q)) N
L?(0,T, L*(9)), the boundary condition being understood in a weak sense. When changing the Dirichlet boundary
condition into Robin (or Neumann) boundary conditions, the functional setting is more comfortable and we recover
the expected regularity for weak solutions even if the boundary data is only in L2.

Finally, we want to recall here that we lack of general mathematical techniques to deal with the controllability
issue for those systems; applicability of the few available methods is very dependent on the structure of the underlying
operators. Therefore, the analysis of each significantly new system needs to develop more elements (of spectral
nature in our case) that are interesting by themselves and possibly useful in other situations. More precisely,
there are not that many works regarding the controllability of coupled parabolic systems with less controls than
equations, especially for boundary controls. This is mainly due to the fact that the very powerful Carleman estimates
approach is essentially inefficient in that context. In particular, we recall that the boundary controllability for such
systems is no longer equivalent with distributed controllability as it has been observed for instance in [18], see
also [5]. In particular, most of the available controllability results concern the 1D setting since they are based on
the moments method (that we will discuss below) which is not straightforward to implement in higher dimension.
Among the few results available, we mention [4] where the authors proved the controllability to trajectories of
a 1D system of n parabolic equations when m < n number of controls are exerted on a part of the boundary
through Dirichlet conditions. They actually proved that a general Kalman condition is a necessary and sufficient
controllability condition for this problem. In the multi-dimensional case, we quote [10, 2|, where controllability
results are obtained in particular cylindrical geometries by exploiting on the one hand a sharp estimate of the
control for the associated 1D problem and on the other hand spectral Lebeau-Robbiano inequalities, see also the
discussion in Section 2.4.2. We also mention [1] where symmetric parabolic coupled systems are analysed in any
dimension, provided that the control region satisfies the Geometric Control Condition.

Paper organisation. In Section 2, we first recall the different notions of solutions for (1.1) with boundary
conditions (1.2) or (1.3), that we will need in the paper and we give the associated wellposedness and regularity
results. In Section 2.4, we give the precise statements of our main results. As mentioned above, those results
essentially say that the coupled parabolic system with Robin boundary condition is null-controllable at any time
T > 0 and that we can find uniform bounds on the control that allow to justify the convergence towards a control
for the Dirichlet problem when the Robin parameters are large. The proofs are given in Sections 3,4 and 5. They
are based on the moments method [17] and on its recent extension called block moments method [11]; they require
in particular a careful analysis of spectral properties of the underlying operators, with estimates uniform with
respect to the parameters. Some of those spectral estimates are particularly difficult to obtain when the two Robin
parameters are different, that is why in that case we restrict our analysis to a constant diffusion coefficient ~y.

Notations. Throughout this paper C' or C’ denotes a generic positive constant (that may vary from line to
line) which does not depend on T, yo nor the parameters 81, 82 but may depend on the diffusion coefficient v C”.
Sometimes, we will make emphasis on the dependence of a constant on some quantities oy, g, - , @, (n > 1) by

Car sz, an-
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BOUNDARY CONTROLLABILITY OF COUPLED SYSTEMS: ROBIN CASE 3

Moreover, we shall use the following notation
(a,b)) := (min{a, b}, max{a,b}), for any a,b € R,

which is an open interval in R.
The euclidean inner product in R?, d > 1, will be denoted by &; - & for any &;, &, € R%.

2. General setting and main results. In this section, we will first discuss about the well-posedness for our
parabolic system with Dirichlet and Robin boundary condition with L? data. We will be particularly interested in
estimates on the solutions that are uniform with respect to the Robin parameters. Then, we will give our main
results concerning the associated control problems.

Let  C R9 be a smooth bounded domain and v : Q2 — My(RR) be a smooth bounded field of symmetric matrices
which are uniformly coercive: there is a 7,,;, > 0 such that

(Y(2)E) - € > Yminl€]?, VE € R VE € Q.

We will first study the scalar problem before discussing the coupled cascade system.
2.1. The scalar problem.

2.1.1. Dirichlet boundary data. We first recall the usual setting adapted to the analysis of the Dirichlet
problem

Oy —div(yVy) = f in (0,T) x Q,
(2.1) y=g on (0,T)xT,
y(0,-) =yo inQ,
with non smooth data. In the case where ¢ = 0, we can easily solve the above problem in a weak sense in
C°([0,T7], L*(Q)) N L%(0, T, H(Q)) for given yo € L?(2). This can be done by using the continuous semigroup in
L?(Q) associated with the operator —Ap = div(yV:) with the domain D(Ap) = H?(2) N H}(Q). However, if one
considers the case where g is any data in L?((0,T) x T') which is the usual framework in control theory, we cannot

define as easily a good notion of weak solution because of a lack of regularity of the data. Instead, we have the
following well-posedness result in a dual sense, see for instance [14, 25].

PROPOSITION 2.1. For any yo € L*(Q), f € L*((0,T) x Q), g € L*((0,T) x I), there exists a unique y €
CY([0,T], H~Y(Q)) N L2((0,T) x Q) solution of (2.1) in the following sense: for any t € [0,T] and ¢ € H (), we

have
() Oy = (o, e”PC) 1 +/Ot /szf(e_(t_')%g) _/Ot/Fgei (et2c).

REMARK 2.2. The operator Ap being self-adjoint, we could have replaced A}, by Ap in the previous statement
but we prefer to keep it in order to be consistent with the non-scalar case that we will consider in Section 2.35.

2.1.2. Homogeneous Robin boundary data. For any 3 € [0, +0), we consider now the following parabolic
problem
Oy —div(yVy) = f in (0,T) x Q,

Oy

(2.2) 5o

+B8y=0 on (0,T)xT,
y(oa ) = Yo in Q7
where the regularity of yy and f will be precised below.

If the data are regular enough, the semigroup theory also gives a solution for this problem. Indeed, if one
introduces the (self-adjoint) unbounded operator Ag = —div(yV:) in L?(Q) associated with the domain

D(Ap) = {u € H*(Q)| ;)i + By =0 on r},

then we can prove that —Ag generates a continuous semigroup in L?(Q). Hence, the following result holds.



132
133

134

136

137

4 K. BHANDARI, F. BOYER

PROPOSITION 2.3. Let B € [0,+00) be given. For any yo € D(Ag) and f € C1([0,T], L3()), there exists a
unique strong solution y to (2.2) in C1([0,T], L*(Q)) N C°([0,T], D(Ag)), which is given by

t
y(t) = e oy, —l—/ e (=945 £(5) ds.
0

Moreover, this solution satisfies the energy estimates
(2.3) Iyl 2 o.1.22 ) + Wllz2 07,8 ) + VBl 22 0.1y < ClYollz2y + 1 F 122 0.1)x)s
and
(2.4)  yll=rm @) + 10wllz2 0y x2) + Wl 20020 + VBIYll L 0.7,22(r))
< Cr(IVyoll 2y + VBIoll ey + 1f 22 (0.7 x0)s

where Cp > 0 does not depend on (.
In particular, if yo € D(Ag) N H (), we have an estimate whose right-hand side does not depend on f3

(2.5) [yl or.m ) + 10l 20y <) + 19l 20,1 m20)) + VBIYl L 0.1,2 ()
< Cr([IVyollLz) + 1 fllLz(0.1)x2))-
Proof. The existence of a unique strong solution is a standard result from semigroup theory, see for instance

[15, Corollary 7.6]. We only sketch the proof of the estimates. The weak estimate (2.3) simply comes by multiplying
the equation by y and using that

(2.6) (AsC, Oz = /Q (YY) V¢ + B /F C[2, ¥ € D(As).

To prove the stronger estimate, we first assume that yo € D(A3) and that f € C'([0,T], D(Ap)), the final result
being deduced by a density argument. With this regularity of the data we can justify that

| =

(Agy, y) 12 = (Apy, Oy) 12 = — |07 2 + (f, Oiy) L2

DN =
QU

t

Using the Cauchy-Schwarz inequality, and integrating in time, we get

t t
(Asy(0), y(1)) 2 + / 101122 < (Asyo,yo)zz + / 17112

By (2.6), it follows that
2.7 Nyllz=o.r.m @) + 10l 2(0,1)x9) + VBl L= (0.7,L2(T))
< Cr(IIVyollza(o) + VBlIvoll L2y + I1fll 2o,y x)-
It remains to prove the L?(0, T, H?(Q2)) estimate. To this end, we observe that
[ AsyllL2(0,r)x0) < I1fllL2(0,7)x0) + 110yl L2((0,7)x)

and thus the claim is just a consequence of (2.7) and of the following elliptic regularity property: there exists a
C > 0, independent of 8 € [0, +00), such that

<l m20) < CIClL2) + 1 As¢I L2 (0)), V¢ € D(Ap).

This can be proved, for instance, as in [12, Theorems I11.4.2 and II1.4.3] and using the fact that 8 > 0 to obtain a
constant which is independent of 5. ]
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BOUNDARY CONTROLLABILITY OF COUPLED SYSTEMS: ROBIN CASE 5

2.1.3. Non-homogeneous Robin boundary data. Let us now consider the same problem but with a non-
homogeneous boundary data

Oy —div(yVy) = f in (0,T) x Q,

0
(2.8) Y 4 By=g on(0,T)xT,
Ovy

y(0,) =yo in .
The theory developed in [23] for this problem gives the following result concerning existence and uniqueness of a
solution in the natural energy spaces.

PROPOSITION 2.4. Let B € [0,+00) be given. For any yo € L*(Q), f € L*((0,T) x Q), g € L*((0,T) xT), there
exists a unique weak solution y € C°([0,T], L*(Q)) N L2(0,T, H'(2)) to (2.8) in the following sense:

* y(0) = yo.
e For any test function v € H*(0,T,L*(Q)) N L?(0,T, H' (), and any t1,t2 € [0,T] we have

[ oo fomenesof [
:Aymwwn—éy@ / /f¢+lf/“”

Moreover, it satisfies the estimate

(2.10)  yllcoqo,m,z2)) + lYllL20,7,m1 @) + 108yl L2(0,7, -1 (02))
< Crllyollz2c) + 1 fl2 0,y <) + N9l 20,1y x 1))

for some Cp > 0 independent of 3.
REMARK 2.5 (Strong estimates do not pass to the limit). Note that if the boundary data for the Robin problem
(2.8) is chosen in the form g = Bgp, with gp € L*((0,T) x T) then the boundary condition reads
1 (9y
B Ovy
and we can formally expect the solution to converge, when B — oo, towards the one associated with the Dirichlet

boundary condition y = gp, that is to a solution of (2.1).
However, the estimate in the proposition above reads

= 9D, fOTBE (07—1_00)’

llyllcoo,ry,2()) + lllz2 0,151 ) + 10yl 20,7, 5-1(2)) < Cr(llvollz2) + 1 fllz2(0,)x0) + Bllgpll L2 ((0,1)x1))

which is not uniform with respect to B and therefore we cannot a priori prove that the associated solution y is
bounded when  — co. This is due to the fact that, considering only L? boundary data, we cannot expect a uniform
bound in L*(0,T, H'(Q)) of the solution that would necessitate at least gp to be in L?(0,T, H/?(T)).

For the reasons above, we need to introduce a weaker formulation of the Robin problem that will allow to
analyse the limit towards the Dirichlet problem with L? data in a convenient way.

PROPOSITION 2.6. We consider the same assumption as in Proposition 2.4.
1. The weak solution y to the problem (2.8) is the unique function belonging to C°([0,T], L?(Q)) and satisfying,
for any ¢ € L?(Q) and any t € [0,T],

W01z = oo ™30 = [ [ 1 (e05) 1 [ [ gemttoic

in addition with the estimate (2.10).
2. The weak solution y to the problem (2.8) with 8 € (0,400), is also the unique function belonging to
C°([0,T), H-*(Q)) and satisfying, for any ¢ € D(A%) N Hg () and any t € [0,T],

W), O mr,my — (o, e 47¢) 2 = /Ot /Qf (6_(t_')Aﬁ / / /3’8u7 ~G) ZC)-
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K. BHANDARI, F. BOYER

Moreover, this weak solution satisfies the estimate

(2.11)  lyllcoqo, 11,12y + lllL2(0,7)x2) + 10yl 20,7, 2-2(02))

B

g
<Cr <||y0|L2<Q) + 1 fllz2(0,myx0) + H ) )
L2((0,T)xT)

where Cp > 0 does not depend on .

REMARK 2.7. As explained in Remark 2.2, we decided to keep the adjoint notation Aj instead of Ag in the
previous statement, even though it is unnecessary.

Proof. 1. Let us first consider any ¢ € D(Aj) = D(Ap) and let us choose as a test function in (2.9) the

strong solution of the homogeneous backward problem ¢ — ¥(t) = e*(T*t)AEC . The integration by parts
are well justified and naturally lead to the expected formula. By density of D(Ag) in L?(2) and by the
estimate (2.3), we can extend the equality to any ¢ € L?(Q).

. In the case where ¢ € D(Ap) N H} (), we know that ¢ (t) € D(Ap) for any ¢, and in particular we have the

equality 8877{’1 + BY =0on (0,7) x I, which gives the claimed equality. Now, applying the estimates (2.3)

and (2.5) to ¥, we obtain for any ¢t € [0, 7] and S € (0, +00),

% V¢l 22 0-

y(@), O r—1.m1] < Crllyollz) + I fllz2(0.myx) <l 22(0) + Cr
L2((0,T)xT)

Since D(Ag) N Hj () is dense in Hy(2), we get the expected bound on ||y||cojo, 7], 11 (2))-
Let us show now the bound in L?((0,7) x €2). Consider any h € C°((0,T) x §2) and let ¥ be the unique
strong solution (as given by Proposition 2.3) to the backward problem

-0y —div(yVy) =h in (0,T) x Q,

0
(2.12) 9% By =0 on(0,T)xT,
Ovy
H(T,) =0 in Q.
By (2.5), we have the following estimate, uniformly with respect to the parameter /3

(2.13) ]l Lo 0,7,11 () + [¥llL2 0,7, 52 () + 19l 22(0,7,22(0)) < CT Pl L2((0,7)x )

Putting this test function in (2.9) and integrating by parts lead to

/OT/thz/Qy(ﬂb(O)Jr/oT/gfw—/oT/FZSZ, for 8 € (0, +00),

where we have used the boundary condition satisfied by ¢ at each time ¢ in the boundary term. Using the
Cauchy-Schwarz inequality and (2.13), we finally get

e

11 20,7, 12 ()
L2((0,T) xT)

g
<Cllyollzzey + I1f 1 z2o.r ) [l = (o..L2(52y) + C HB

g
<Cr <|yo||L2(Q) + 1l 20,1y x0) + Hﬂ |2l 20,7y %) -

|
L2((0,T)xT) )

Since C°((0,T) x ) is dense in L2((0,T) x ), we obtain the expected estimate by duality.
Finally, we can easily see that the weak solution y satisfies, in the distribution sense, the equation 0y —
div(yVy) = f, and the bound of 9,y in L*(0,T, H2(2)) immediately follows. d

REMARK 2.8 (Weak estimates pass to the limit). Going back to the situation described in Remark 2.5, that is
if g = Bgp, gp € L?((0,T) xT), we deduce now a bound of the associated solution which is uniform when B — oo,
yet in weaker norms than above. We shall see in the next section that those estimates allow us to pass to the limit
towards the Dirichlet problem.
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2.2. Passing to the limit to the Dirichlet problem. With the above existence results and estimates, we
can now state and prove a convergence result of the solutions of a suitable Robin problem to the one of a Dirichlet
problem.

THEOREM 2.9 (Convergence towards the Dirichlet problem). Let yo € L*(2) be a given initial data. For any
B > 0 we consider a source term fz € L*((0,T) x Q) and a boundary data gz € L*((0,T) x I), and we denote by
yg the associated weak solution to (2.8).

We assume that, for some fp € L*((0,T) x ), gp € L*((0,T) x T') we have the L*-weak convergences

fo, £
B—+o00 ’ 5 B—+40c0

(2.14) f/g apD,

Then ys converges, when 3 — +oo, weakly in L*((0,T) x Q) and strongly in L?(0,T,H=1(Q)) towards the
unique solution yp € C°([0,T), H=1(2)) N L2((0,T) x Q) to the Dirichlet problem (2.1) associated to the data fp

and gp-
Moreover, for any t € [0,T], ya(t)

t kly in H=1(Q).
—— yp(t) weakly in H~4(2)

Proof. From the hypothesis, we have a bound on the quantities ||gs/B3|L2((0,7)xr) and || fgl|z2((0,1)x0) uniform
with respect to § > 1. Hence, from (2.11), we deduce that, for some Cr ,, > 0, uniform in 3, we have

(2.15) lysllcoqo,m,m-1 ) + llysllLz(o.myxe) + 10y llL2 0,1, 5-2(2)) < CTy0-

We can then find some yp € C°([0,7], H~1(Q)) N L*((0,T) x Q) and a subsequence, still denoted by (ys)s such
that

Ys S Up weakly in L2((0,T) x ),
(216 Oy m Owyp weakly in L2(0,T, H=%(Q)),
' Ys 5o D weakly-+ in C°([0, T], H~'(€)),
Y o YD strongly in L?(0,T, H=1(1)).

The last strong convergence comes from the compactness of the embeddings L?(2) — H~1(Q2) and H-}(Q) —
H~2(Q) and the Aubin-Lions lemma.

All we need to show is that this limit yp is indeed the solution to the corresponding Dirichlet problem. By
uniqueness of the solution of Dirichlet problem (2.1) with the data fp,gp, the convergence of the whole family
(yp)p will be established.

Let us consider a final data ¢ € C2°(2) C D(A4j5) N H () for the adjoint homogeneous problem. The corre-

sponding strong solution is given by ¥z (t) = e~ (T=D45¢ and, thanks to (2.5), we have
(2.17) [¥sllcoqo.r)mr @) + 1¥sllL20.1.m2(0) + 198l L2(0.1)x2) < Ol 2 (02)5

where Cr is uniform in f.
We can then extract a subsequence, still denoted by (¢3)g, such that

wﬁ m wD weakly in L2(07 T, HQ(Q)),
Opg —— Oppp  weakly in L2((0,T) x ),
(2.18) Atoo
g weakly-s in CO(0,7), (),
0 ﬁ—+> Up strongly in L2(0,T, H(Q)),
—+00

for some p € L%(0,T, H*(Q)) N C°([0,T], H*(£2)). Here also we have used the Aubin-Lions lemma to obtain the

last strong convergence.
1 9¢p

Moreover, from the boundary condition satisfied by 1z, we have g = ~F v, O the boundary where the
quantity ‘ g%_‘: (0 xT is bounded for any large § (using (2.17)). Hence, it follows that

Y — 0 in L2((0,T) x T),

B—ro0
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8 K. BHANDARI, F. BOYER

which actually implies that ¢¥p = 0 on the boundary (0,T") x I". Moreover, by passing to the limit in the equation
in the distribution sense, we finally find that 1p is the unique solution to the backward homogeneous Dirichlet
problem, that is 1p(t) = e~ (T=D4b¢,

Now, using the trace theorem, we observe that

[

By (2.18) we see that the first factor of the very right hand side of the above inequality converges to 0 as § — +o0,
whereas the second factor is bounded. Thus, we have

s Wl

Ovy Ovsy

T
<c / s — ol ey s — ol s

< Cllvs —¥pllr2o,r,m81 @)llYs — ¥pllL20,1,H2(Q)-

0vs , 0¥

I
oy i Ovy in L=((0,T) x I).

(2.19)

In particular, from the third point of (2.18) we have

(2.20) (0, ) ﬁ ¥p(0,-) weakly in H' ().

With the convergence results (2.19) and (2.20) above together with (2.14) we get

95 0%s /t /’f / O
: - p(0)) 0 + - 9
(yo wﬁ / /fﬁwﬂ / /F 5 al/,y B—+o0 (Z/O wD( ))L2 0 JQ fD,(/)D 0 pgD 81/7
Using the weak formulation (2.9) satisfied by yg with 15 as a test function we see that have actually proved that
Mp
t SN _
(y5(1),¢) ;2 E— (0. vp(0) / / fp¥p / / D50,

and in the same time, by (2.16), we have

(W5(1:€) 12 = W8 )1 sir —— (W (D), 1.

0 B—+o0

As a conclusion, we have proved that yp satisfies

{(up (), Q) -1 1y = (Yo, e ~t4b¢) 2 / /fD —(t=) DC / /gD —(t=) BC),

which is exactly the definition of the solution of (2.1) with the data fp, ¢gp, see Proposition 2.1. |

REMARK 2.10 (Convergence towards the Neumann problem). By similar, and in fact simpler, arguments one
can prove that if (f3)s and (gz)p both weakly converge, when 3 — 0, towards some fn and gy in L*((0,T) x )
and L*((0,T) x T') respectively, then the corresponding solution ys converges, when 3 — 0, to the solution yn of
the corresponding non-homogeneous Neumann problem.

2.3. The coupled system. We can now move to the cascade coupled parabolic systems we are interested in,
namely the one with Dirichlet boundary condition

Opy1 — div(yVyy) =f1 in (0,T) x 9,
Oy — div(yVye) +y1 = fo  in (0,T) x Q,
y1=¢1 on (0,7)xT
y2=g2 on (0,7)xT

y1(0,-) =yo,1 in Q,

y2(0,) =yo2 in Q,

(2.21)
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and the one with Robin boundary conditions

Oryr — div(yVyr) =fi in(0,T)xQ,
Oy2 — div(yVyz) +y1 = fo in (0,T) x Q,
0
8& +6iy1 =g on (0,7) xT,
Vy
(2.22) A
ﬁ +B2y2 = 9> o (0,T) xT,
y1(0,-) = yo,1 in Q,
yg(O, ) = yo,g il’l Q

We can obviously solve those two systems by simply using the results on the scalar case: we first solve the equation
for 4, then we solve the scalar equation for y» by considering the coupling term y; as an additional L? source term.

THEOREM 2.11. We suppose given yo := (Yo.1,Y0,.2) € (L2())%, f := (f1, f2) € (L*((0,T) x Q))? and g :=
(91,92) € (L3((0,) x T))2.

1. There exists a unique solution y = (y1,y2) € (C°([0,T], H=Y(Q)) N L2((0,T) x Q))? of (2.21), that is, for
any t = 1,2, y; satisfies the corresponding scalar problem in the sense of Proposition 2.1.

2. For any B1, 32 € [0, +00), there exists a unique solution y = (y1,y2) € (C°([0,T], L*())NL*(0,T, H(Q)))?
of (2.22), that is, for any i = 1,2, y; satisfies the corresponding scalar problem in the sense of Proposi-
tion 2.4.

3. For any B = (b1, B2) € (0,+00)%, we suppose given fig € L*((0,T) x Q) and gig € L*((0,T) x I), for
i =1,2 such that

5 Bote 9i, fip R fi-

Then, the solution yg of (2.22) corresponding to the data fg, gg converges weakly in (L?((0,T) x §2))? and
strongly in (L?(0,T, H=1(2)))? towards the unique solution of the corresponding Dirichlet problem.

For the analysis of the control problem, it is not convenient to make appear the component y; of the solution
as a source term in the equation for ys since it breaks down the cascade structure of the system which is essential
to prove its controllability with only one control. That is the reason why it is necessary to introduce the following
unbounded operators in (L?(2))%: let Ag, 3, and Ap be defined by the same formal expression

—div(yV+) 0
(2.23) ( . div('yV~)> ,
but with the different domains
0 0
D(Ag, ) = {y € (H*(Q))°| 525+ i =0, 522 + fays =0 on r} :
Uy Ovy

and
D(Ap) == (H*(Q) N Hy())?,

respectively. Those operators are no more self-adjoint and we define their adjoints by D(Aj 5 ) = D(Ag, 5,) and
D(A},) = D(Ap) and the same formal expression

Standard elliptic theory shows that —Ag, 5,, and —Aj; 5 as well as —Ap and —AjJ, generate continuous
semigroups in (L2(2))2. A similar analysis as in Section 2.1.3 for the scalar case, leads to the following result.
PROPOSITION 2.12. We suppose given any yo € (L*(Q))?, f € (L*((0,T) x Q))? and g € (L*((0,T) x I))?.
1. The solution to (2.21) is the unique element y € (C°([0,T], H=1(Q)))? satisfying, for any ¢ € (Hg(Q))?
and any t € [0, T

T T N R G B A EE G
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2. For any 1,32 € [0,+00), the solution to (2.22) is the unique element y € (C°([0,T],L*(Q)))? satisfying,
for any ¢ € (L*(Q))? and any t € [0,T]

((8), On = (0, e~ 5 / JRA Gy / Lo+ (g,

2.4. Main results. Let now I'y be a part of I'. Using the analysis presented in the previous sections we can
now formulate the null-control problems we are interested in as follows.

PROPOSITION 2.13. Let yo € (L%(R2))? be given.
1. A function v € L?((0,T) x I') is a null-control at time T for the Dirichlet problem (1.1)-(1.2), if and only
if it satisfies: for any ¢ € (H}(Q))?

e e [ () e

2. A function v € L?((0,T) x T') is a null-control at time T for the Robin problem (1.1)-(1.3), if and only if
it satisfies: for any ¢ € (L?(2))?

(2.26) (g0, e THhumng) / /1F0 () —(T )Azl,szg).

2.4.1. The 1D case. We start with a discussion of the 1D setting since, as we will see in the next section, we
can deduce some multi-D results from the 1D analysis.

Hence, we particularize the above control problem to the 1D situation where @ = (0,1), Ty = {0} and the
diffusion coefficient is simply a scalar function v € C*([0, 1]) with ~,in = infjg 177 > 0 and Ypee = suppg,1) ¥ < +00.
In that case the control we are looking for is just a scalar function v € L?(0,7) and the formulations (2.25), (2.26)
just reads

(2.27) — (yo, e "45¢) ;. = 7(0) /OTv(t) (é) -gx‘ro (e*T*” Bc) dt

for the Dirichlet problem and

. T 1 ;
(2.28) _ (yo’efTAﬁlﬁ2 C)L2 :/0 v(t) <0) . (67(T7t)-/4[311[32 <)|x:0 dt,

for the Robin problem with the same notations for the adjoint of the diffusion operators as in multi-D. It is convenient
to introduce the observation operator B* (that does not depend on the Robin parameters 31, 32) defined as follows

(2.20 5 (&) e . o o)

in such a way that (2.28) becomes

T
(2.30) — (yo, e e Q) L, = / o(t)B* (eI () dt.
0

Most of the work in Sections 4 and 5 will consist in solving this problem with suitable estimates of the control with
respect to the parameters 51 and B3. Our main result in that direction is the following.
THEOREM 2.14. Let yo € (L?(0,1))% and T > 0 be given.
1. Let B € (0,+00) and set 31 = B2 = (. Then, there exists a null-control vg € L*(0,T) for the 1D problem
(2.30) that satisfies in addition the estimate

llvgllL2(o,1y < Ce“/T(1+ Bllvollz2(0,1)

where C' > 0 does not depend on 3 and T'.

2. Assume that 7y is a positive constant and let f* > 0 be given. Let B = (B1,2) € (0,+00)? be any couple of
Robin parameters. Then, there ezists a null-control vg € L?(0,T) for the 1D problem (2.30) that satisfies
in addition the estimate

lvgllL20,r) < Cr.g+ (1 + B1)llyoll L2(0,1),
as soon as either By, B2 € (0, 8*], or B1, B2 € [B*, +00), where Cp g« > 0 does not depend on 3.
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COROLLARY 2.15 (Convergence towards Dirichlet control). Let 3,, = (B1.n, B2.n) € (0,+00)? be any sequence
of Robin parameters such that 3; , — +00 when n — oo, fori =1,2. If the diffusion coefficient v is not a constant,
we assume in addition that 81, = Ba.y, for anyn. For eachn, let v, (resp. yn) be the unique null-control of minimal
L2(0,T) norm (resp. the associated trajectory) for the problem (2.30) with Robin parameters (1, and Ba.,.

Then, there exists a subsequence (ng)g such that

v .
Tk swp, in L*(0,T),
6177”@ k— oo

Yn, — Yp, strongly in (L*(0,T, H~*(0,1)))* and weakly in (L*((0,T) x (0,1)))?,

k— o0
where vp (resp. yp) is a null-control (resp. the associated trajectory) for the Dirichlet control problem (2.27).

REMARK 2.16 (Convergence towards Neumann control). With the same notation as in the previous corollary,
if we assume that B; , — 0 when n — oo, for i = 1,2, then we obtain the convergence, up to a subsequence, of the
null-control v,, (resp. of the trajectory y, ) towards a null-control vy (resp. the trajectory yn) corresponding to the
Neumann boundary conditions on both components.

REMARK 2.17 (The Dirichlet/Neumann case). In point 2 of Theorem 2.14, we needed to assume that either
the two Robin parameters are both smaller than some B* or that they are both higher than some B*. It is worth
noticing that we cannot expect to prove a similar result without those assumptions.

Indeed, if we were able to prove the estimate |lvg|l < Cr(1 4+ B1)l|lyollz2(0,1), for any couple of parameters
81 and Ba, then by following the same lines as in Corollary 2.15, we would be able to prove the convergence,
up to a subsequence, of vn/B1n when 1, — +00 and B, — 0 to some vpy that would be a null-control for the
Dirichlet/Neumann problem (that is system (1.1) in 1D, with a Dirichlet boundary condition for the first component
y1 and a Neumann boundary condition for the second component ys). However, we know that this last problem is
not even approximately controllable since the underlying operator A%, , has eigenspaces of dimension higher than
1, which prevents the Fattorini-Hautus criterion (see [16, 24]) from being satisfied.

The same remark holds for the Neumann/Dirichlet problem, that is when 81, — 0 and Bz, — +00.

2.4.2. A multi-D result. By using the methodology described in [2, 10] it is possible, starting from a suitable
null-controllability result for the 1D problem, at least when both Robin parameters are the same, to deduce the
corresponding result in any cylinder of R? for d > 2, see Figure 1.

FIGURE 1. The cylindrical geometry

More precisely, we consider a domain = (0,1) x 9 in R? where €5 is a bounded smooth connected domain
in R4~L. The variable in © will be denoted by (z, %), with z € Q; and # € 5 and we assume that the diffusion
tensor has the following form

@) 0 0

0
with v: Q7 - R and 4 : Qo — My_1(R). Let wy C Q9 be a non empty open subset of Q2. The control region we
will consider is T'g = {0} x wy so that the control problem is the following

Oyr — 0x(v(@)0py1) — diva(¥(Z)Vayr) =0 in (0,7) x €,
(2.31) Ory2 — 0x(7(7)02y2) — diva(¥(2)Vzy2) +y1 =0 in (0,7) x €,
' y1(0,-) = yo,1 in Q,

y2(0,-) = yo,2 in §,
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associated with either Dirichlet boundary conditions

=1 W, on (0,T)xT,
(2.32) Y1 = Loy xwn (0,7)
yo =0 on (0,7) x T,
or Robin boundary conditions with the same parameter
0
aiyl + Byl = ]l{O}XwQ’U on <OaT) x T,
Vy
(2.33) ay
2
— =0 0,7) xT.
ay’y_‘_ﬁy? On(7 )X

Note that the result below is restricted to the case 51 = (2 for two reasons. The main one is that when the two
parameters are different, the problem has no more a suitable tensor product structure that is crucial in the analysis
(see [2]). The second one is that the constant Cr g+ in point 2 of Theorem 2.14 is not explicit enough with respect
to T'; we would need an exponential dependence of the constant for the analysis to apply directly.

THEOREM 2.18. Let yo € (L*(Q2))? be given. For any T > 0 and any B € (0,+0c0), there exists a null-control
vg € L2((0,T) x T) for the multi-D problem (2.31)-(2.33) that satisfies in addition the estimate

lvgll 20,1y x) < CeC/T(1+ B)llvoll 20y
where C > 0 neither depends on 8 nor on T.

Proof. The proof is mainly based on the strategy developed in [2, 10] which needs the sharp estimate with respect
to T of the 1D control cost given by point 1 of Theorem 2.14 and a Lebeau-Robbiano spectral inequality, uniform
in g € (0,400), relative to our control region wsy, for the eigenfunctions of the diffusion operator —divz(¥(Z)Vz:)
with homogeneous Robin boundary condition in Q.

The required Lebeau-Robbiano inequality has been proved in [22, Theorem 1.2] for the eigenfunctions of Laplace-
Beltrami operator in a multi-dimensional connected compact C l_smooth Riemannian manifold M with the boundary
condition l% +ilu=0 (u€ H*(M)) for =1 and any [ € L°(T") with [ > 0. Although they did not mention it in
the paper, a careful look at their computations ensures us that the Lebeau-Robbiano inequality in this reference is
in fact uniform with respect to ! > 0. Thus, the required inequality holds true for our operator — divz(4(Z)Vz:) in
Q9 with homogeneous Robin boundary condition with any parameter 8 € (0, 400).

COROLLARY 2.19 (Convergence towards Dirichlet control). Let (8,)n be any sequence of positive Robin pa-
rameters such that 3, — +oo when n — +o0o. For each n we define v, (resp. yy) to be the null-control of minimal
L? norm (resp. the associated trajectory) for the problem (2.31)-(2.33) with Robin parameter [3,,.

There exists a subsequence (ny)x such that

S syp, in L2((0,T) x T),

ﬁnk k—o0

Ynw YD, strongly in (L*(0,T, H()))?
—00
and weakly in (L*((0,T) x Q))?,

where vp (resp. yp) is a null-control (resp. the associated trajectory) for the Dirichlet control problem (2.31)-(2.32)
for the same initial data.

REMARK 2.20 (Convergence towards Neumann control). When (5,), goes to 0, we obtain the convergence
towards a null-control for the Neumann problem as in Remark 2.16.

2.5. Outline. The rest of the paper is dedicated to the proof of our main theorem for the 1D case, namely
Theorem 2.14. First of all, we establish useful spectral properties for the 1D Robin eigenvalue problem in Section
3. Then, we prove in Section 4 the controllability result in the case of an arbitrary diffusion coefficient but for the
same Robin parameter for both components (point 1 of Theorem 2.14). Finally, in Section 5, we investigate the
case of a constant diffusion coefficient with two different Robin parameters (point 2 of Theorem 2.14).

3. Some spectral properties of the 1D Robin eigenvalue problem. In this section, we develop some
properties of the eigenvalue-eigenfunctions of the 1D scalar operator Ag as introduced in Section 2.1.2. Note that
we use same notation as for the general higher dimension case. Those results will be used to draw some spectral
properties of our main operator A% 5 .
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3.1. The case of a non-constant diffusion coefficient. We begin with the following scalar eigenvalue
problem

—0:(7(2)0xp) = Mg in (0,1),
(3.1) =7(0)2¢(0) + B (0) = 0,
Y(1)0z(1) + Be(1) =0,
where 3 is any non-negative parameter and -y is chosen as in Section 2.4.1. Let us denote the eigenvalue-eigenfunction

pairs of the Sturm-Liouville problem (3.1) as ()\f o @fﬁ)kzu We recall that the eigenvalues are simple and real
and can be numbered in such a way that

(3.2) 0SNG, <A, < <X <X, S +oo,

see for instance [6, Theorem 8.4.5]. Also it is well-known that the family (tpg,y)kzo is a Hilbert basis of L?(0,1),
as soon as they are normalized, and indeed each of cpfﬁ belongs to the domain of the corresponding differential
operator in (3.1).

REMARK 3.1. Observe that for § = 0, the problem (3.1) reduces to a Neumann eigenvalue problem where we
denote the Neumann eigenvalues by )\fxw = )\2’,Y for k> 0.

On the other hand, for 8 = 400, (3.1) degenerates into a Dirichlet eigenvalue problem and we denote by
)\kDﬁ = g, for k >0, the Dirichlet eigenvalues.

For any 3 € [0,400) and any ¢ € H*(0,1), ¢ # 0, we define the Rayleigh quotient associated with (3.1),

Jy N0l + B0 + e (DI?)

Rﬁ((p) = 1
fo |2
For 8 = +o0, we set
Jo NOzpl?
L, ifpe Hj(0,1), p #0,
Rec(9) =14 [Tl ’
+o0, if o & HL(0,1).

Conventionally we set Rg(0) = 0 for any 8 € [0, +o0].
We recall that, for any 8 € [0, +oc] the eigenvalues of our problem can be characterised by the min-max formula

(3.3) )\57 = inf sup Rg(p).
’ Xpy1CH'(0,1) @€Xpi1
dlkaJrl k+1

REMARK 3.2. A first consequence of the above formula is that, for any 0 < g < B*, we can bound from below
the smallest eigenvalue Agw as follows

. B B s
M = iof R — inf  Rg« —\
07 em(0,1) o(e) 2 B* peH(0,1) o) = B0
p#0 @#0
LEMMA 3.3. For any two parameters 0 < a < 8 < 400, we have the following strict inequality
B
vy <Aeqyr VEZ20

In particular, for any parameter 0 < f < 400, we have
N B D
My <Ay < Akyy VEZ0.

Proof. From (3.3), we write

ko = inf sup Ra(9)
' Xp41CH'(0,1) p€Xji1
dim Xy 41=k+1
< sup R.(9)
(3.4) pespan{eg 9]}
< sup Rs(p)

pespan{eg 9] |}

= Rﬁ(g@gﬁ) - )«,‘jﬂ.
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Let us show that the inequality is in fact strict.
Assume first that S < +oo and that there exists some k > 0 such that Aj | = )\’2 - This implies that all the

inequalities above are, in fact, equalities. Thus, there is some @ = Z?:o ajapﬁ , with Z?:o laj|? = 1, such that

g,'y = sup Ro(p) = Ra(9),

wéspan{gogﬁ,m ,Lpﬁv,y}

which yields that
1
(3.5) /0 Y0231 + a|2(0)* + [(1)?) = AR, = Ay

On the other hand, since each @i L isa L2-normalized eigenfunction of the operator —,(y(x)d,) with the Robin

boundary condition with parameter 3, corresponding to eigenvalue )\f,7 for 0 < 5 < k, we see that ¢ enjoys the
following

1 k k
(3.6) / 0.2 + BUGO)P +12W2) = SN g2 < XS o = AL,
j=0

0 =
Since 8 < 400, and « < 3, we can compare (3.5) and (3.6) to deduce that $(0) = ¢(1) = 0 and moreover

k

k
B 2 _ B 2
YoNlaP =X gl
=0

=0

By (3.2), this equality implies that a; = 0 for any 0 < j < k — 1 and then that ¢ is proportional to gogﬁ. However,
such an eigenfunction cannot vanish at @ = 0 (see for instance Theorem 3.5 below) which is a contradiction.
In the case where 8 = 400, we use the previous results to simply write

[eY a+1 ')
koy < )‘kn/ < Ay

and the proof of the lemma is complete. 0

REMARK 3.4. Let 0 < 8 < +00. We denote by XE i and )\f s for k >0, the eigenvalues to the operator
—Ymin02 and —Ymax0? respectively, with Robin boundary conditions with parameter 3. Then from (3.3), one has
the following inequality

Moo SALL SN Vk>0 and VB € [0,+00].

Let us observe now that, for any non-trivial eigenfunction gag , of our problem (3.1), the quantity @f 7(0) (and

hence ((pfﬁ)’(O)) is non-zero for any k > 0 and 8 € (0,400). In fact, we prove the following theorem that give
bounds from below for those quantities.

THEOREM 3.5. There exists a constant C' > 0 depending only on the diffusion coefficient v such that we have

b 2 P C, Vk
(3.7) |25, (0)] <1+ v(O)Af) >C, >0, B€(0,+00),
0))2 0
(3.8) () O (”;2) +;g>) >0, k>0, B e (0,+o0),
k,y
(3.9) N1y = Noy = CVNL . Y >0, B€[0,+00].

We first state the following lemma which is a straightforward consequence of [3, Lemma 2.2 and Lemma 2.3].
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LEMMA 3.6. Let f:[0,1] = R be a continuous function and X\ > 0. Suppose that u : [0,1] — R is smooth and
satisfies the following second-order differential equation (without any assumptions on the boundary conditions):

(3.10) =0, (y(z)0pu)(z) = Mu(z) + f(x), Vz e (0,1),
then there exits C' > 0, depending only on ~, such that we have

|f (@)
@) ) , Vz,y€(0,1).

By )P+ 2w < ¢ (P + L |

REMARK 3.7. We recall that in [3, Lemma 2.2], the authors have assumed that X\ > 1 but this was related to
the fact that they considered the slightly more general second-order differential equation

=0y (y(2)0zu) (z) + q(z)u(z) = Au(z) + f(z), Vz e (0,1).

In our case we have q(x) = 0 in (3.10), and so having a careful look at the proof of [3, Lemma 2.3], one can observe
that we simply need X > 0 for the constant C' in Lemma 3.6 to be uniform with respect to .

Proof of Theorem 3.5.
e We recall the eigenvalue problem (3.1) and apply Lemma 3.6 to u = @fvﬂ{, A= )\fﬂ and f = 0 to obtain for
each k> 0 and 8 € (0,+0c0) that

V() 1 7(y)

- (@)” + ATI(«J?Q'(@")I2 > & <|80§,7(y)|2 + )\Tl(wfﬁ)’(y)IQ , Va,y €(0,1).
k,y k.

Putting # = 0 above and integrating over y € (0, 1), we obtain

(0 1 "y
O + PG OF 2 5 (nso‘zﬁnim - A%)Keofﬁ)'(yn?dy) .
ied Y

Thanks to the normalizing condition ||<,0£ WH r2(0,1) = 1 and due to the positivity of the second integral in
the right hand side of the last inequality, we have

1

o, (0)] + gl (2 Y (0)]> > &

B kyy
Ak,’v

— In one hand, we use the boundary condition of wiﬁ at x = 0 to express ((pf,,y)'(O) as a function of
¢} ,(0) and obtain (3.7).
— On the other hand, we use the same boundary condition to express (pfﬁ (0) as a function of (@fﬁ)’(())

and obtain (3.8).
e Secondly, for any k > 0 and S € [0, +00], we define

u(z) = @y, (@)gh - (0) — @ (@)gh,(0), Yz € (0,1),
which satisfies
—05(7(2)0pu)(2) = Ay, u(z) + f(z), ¥x €(0,1)
with
@) = (M1 = M) 9 (@) 211, 0)

Moreover, we observe that u(0) = 0 and «/(0) = 0, from the construction of u. So, by taking x = 0 in the
inequality (3.11), we see

2 —\ 1
v(y) 1y~ My 1
lu(y)|* + [/ (y)]* < C’< ) waﬂ,y(o)lz/ 7\@5,48)\%,

B B
ANi1q Nos1 0 (s)
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192 for all y € (0,1). Thanks to the normalizing condition ||g0£,y|\L2(071) = 1 and the definition of u together

493 implies
(Mo M)
ot Y

191 a1, 9 0) = 9, ), OF < O o),
495 “min k41,7

196 for all y € (0,1). Now integrating the left hand side over y € (0,1) and using the L2-orthonormality
197 condition of (9057)1@0 we have

2
(Mias = No)

, +1,y .y

198 e A (O + enys A (O < C7 Y |14, (0)
499 YminAg41 ~
500 which yields that
501 N1y = Ny = O Vk >0 and 8 € [0, +o0]
502 k41 k+1y = ’ :
503 where the constant C' depends only on +.
504 The proof is complete. ]

505 3.2. The case of a constant diffusion coefficient. In this case, without loss of generality we can assume
506 that v =1 on [0, 1] and so we can find a more explicit form of the eigenfunctions to the following problem

—0%p = \p in (0,1),
507 (3.12) —0:¢(0) + Bp(0) = 0,
9up(1) + Be(1) = 0.

508 Let us first assume that 8 € (0, +00). Using the boundary condition at = 0, and solving explicitly the differential
509 equation, we shall look for <pf in the following form

/)\5
510 (3.13) o2 (z) = 7’“ cos \/ Aoz + sin \/ APz, Vo € (0,1), VB >0 and Vk >0,
512  where the eigenvalue )\’8 will be required to satisfy the following transcendental equation

ol (3.14) 261/ AL cos \/ AL + (B2 = \D)sin /Ay =0, VB >0 and Yk > 0.

515 This equation is obtained from the boundary condition that gpf should satisfy at = = 1.

516 Notice that, in order to simplify the formulas, we do not assume here that go[,j is normalised in L?. This will
517 mnot be a problem in the sequel since we will only use the fact that this family is complete in L2.

REMARK 3.8. 1. We know that the family of eigenvalue-eigenfunctions of the operator —0% with Dirichlet
and Neumann boundary conditions are

©P(x) = sin((k + V)7x), 2 €[0,1] with A2 = (k4 1)?72, Vk >0, and
o (z) = cos(kmx), x € [0,1] with \Y = k*x?, Vk > 0.

518 From above, our first obvious observation is )\kD = )‘fgv+1’ Vk > 0.
519 2. Secondly, one has )\f € (k*r?, (k + 1)?7%), Vk > 0 and 3 € (0,+00), thanks to Lemma 3.3. To be more
520 precise, )\g is the unique solution of (3.14) in the interval (k*m?, (k + 1)2m2) for each k > 0.

REMARK 3.9. For any fized A € (k*72%,(k +1)%72%), k > 0, the following quadratic equation
26VA cos VA + (8% = \)sin VA =0,

for the unknown B, has one and only one positive solution. Indeed, we see that the solutions of the above equation
are given by

B = \/Xtan@ and B" = —V/Acot ?,

521 that clearly have different signs. More precisely, since VA € (km, (k4 1)7) we can see that
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e for k even we have 8’ >0 and 8" <0,
e for k odd, we have 8’ <0 and 3" > 0.

REMARK 3.10. One can obtain from the transcendental equation (3.14) that

2
Akkﬁ+1€/8+0ﬁ<

1
). e

See, for instance [19, Problem Ib].

We have seen in Remark 3.8 that the sequence of eigenvalues for the Dirichlet boundary condition and the one
for the Neumann boundary condition almost coincide. The following lemma shows that, for other pairs of Robin
parameters the corresponding sequences of eigenvalues are in fact disjoint.

LEMMA 3.11. Consider two parameters 1, B2 € [0,4+00], such that 81 < Ba. If for some k,l we have
A/SQ — )\l,Bl7

then we necessarily have
B1=0, o =+0c0, and l=k+1.

Proof. If 81 > 0, then /\161 € (I?7%,(1 + 1)?72) and thus )\532 ¢ mN* and thus 82 < +oo. Similarly, if we
assume fs < +00 then we necessarily have 8; > 0.
Therefore, there are now two cases:
e First case (81, 82) = (0,400): the result follows from Remark 3.8.
e Second case 0 < 81 < B2 < +oo: the common value A of )\fl and )\52 simultaneously belongs to (1272, (I +
1)27%) and (k*m?, (k+ 1)?>7?), which implies that k = [ and thus we have a contradiction with Lemma 3.3.0

4. Boundary controllability of the 1D problem with single Robin parameter. This section is devoted
to establish the one-dimensional boundary null-controllability of our cascade system with same non negative Robin
parameter on both components and for any diffusion coefficient v as defined in section 2.4.1. In that case, the
system (1.1)-(1.3) simply reads as

Oy1 — 8x(’7(x)awy1) =0 in <O’T) X (0’ 1)7
atyQ - ax(’Y(x)aa:yZ) +y1=0 in (OvT) X (01 1)7
- 1) () + Bon ) = Laoye(t) om (0,7) x {0,1),
e )%iu 2)+ B(t) = 0 on (0,7) x {0,1},
n(0,) = in (0.1,
(0, = in (0,1),

which is associated with the operator Ag g as introduced in Section 2.3, but specialized here to the one-dimensional
setting, that is for 0 = (0,1). To simplify the notation, we will simply denote this operator by Ag, since the two
Robin parameters are equal.

4.1. Spectrum of AE. We consider the eigenvalue problem
Aju=Au, AeC,
for a complex-valued function u, that is

_aa:(’)/(x)awuﬁ +uz = Auy in (07 1)7

=0y (y(x)Opuz) = Ausg in (0,1),
(42) 1) T @)+ fur(a) =0 for # € {0,1},
8u2

’y(x)g(m) + Buz(z) =0 for z €{0,1}.
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e Assume first that us # 0. Multiplying the second equation by @y and integrating by parts, we obtain that
A= )\fﬁ for some k and that we can assume that us = wgﬁ. Moreover, taking the real or imaginary part,
we can assume that wu; is real-valued, then multiplying the first equation by us and integrating by parts,
we obtain that fol |uz|? = 0 which is a contradiction.
e We have proved that, necessarily, uo = 0. From the first equation we deduce that A = ng - for some k and
that, up to a multiplicative constant, we have u; = (pgﬂ.
Hence, the eigenfunctions of A} are

B
(4.3) @fﬁ = <('0’6ﬁ> corresponding to the eigenvalues )\fﬁ, VEk > 0.

We observe that the set {@f . }k>0 is not sufficient generate the whole space (L?(0,1))? because the second compo-

nent of @fﬁ is 0 for each k > 0. Hence we need to look for the generalized eigenfunctions by solving the following

problem
Aju =X, _u+®_, Vk>0,

kv’
that is
—0u ((2)Dpur) +up = X, wy + @ in (0,1),
=0, (V(2)Opu2) = )\fﬁ Ug in (0,1),
4 v(x)%(;v) + Bui(z) =0 for x € {0,1},
v(x)%(:v) + Buz(z) =0 for z € {0,1}.

The second equation shows that us = acpf_,y for some a € R. But multiplying the first equation by (us — gpg 7)7 ie.,

(a— l)wf) , and performing an integration by parts yields us that the only admissible value for a is 1.
Now its enough to take w; = 0, which is by default an admissible solution of the system (4.4) and hence the
generalized eigenfunctions can be interpreted as

0
4.5 4 :( ) Yk > 0.
( ) k,y (pgﬁ

We observe now that, the family {@ZW, ‘I/fﬁ}kzo is a Riesz basis of (L?(0,1))?, made of eigenfunctions and

generalized eigenfunctions of the operator AZ. By construction we simply have

0o L T ST T vt € [0, T,
4.6 ’ ’
o tAS \yfW _ e*ﬂ’i,w(\yfﬁ - t@fﬁ), vt e [0, 7).

REMARK 4.1 (Approximate controllability). We observe that the eigenfunctions of .A’g are observable, in the
sense that
B*®] =} (0)#0, Vk>0,
where B* is given by (2.29).
By using the Fattorini-Hautus test (the hypothesis of which are fulfilled in our case, see for instance [16, 24]),
we deduce that the control system (4.1), with any 5 > 0, is approzimately controllable at any time T > 0.

4.2. Null-controllability. We are now in position to prove the null-controllability of our system, with a
precise bound of the control with respect to 3, that is the first point of Theorem 2.14.

4.2.1. The moments problem. We recall that {(I)g,n,,‘l’iw}kzo (defined by (4.3)-(4.5)) forms a complete
family in (L?(0,1))?, so it is enough to check the controllability equation (2.30) (with the operator A% here) for

@fﬁ and \Ijg,’y for each k > 0. This indeed tells us, for any yo € (L*(0,1))2, that the input v € L?(0,T) is a null
control for (4.1) if and only if we have

T
—e Ty (y07 CI>£,w>L2(0,1) - /0 U(t)ei(Tit))\fﬁ B*Cbgw dt, vk 20,

T
_Ta? Tt o
—e”Pkn (4o, \Pf,v - T(I)g,v)m(O,l) - /0 v(t)e" T B (\Ilg,v (T~ t)@fﬂ) dt, Vk =0,
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579 using the formulas given by (4.6).

580 Now since B*(Iyl,j’,y = @fﬂ(O) # 0 and B’*\I/f_’7 = 0 for each k£ > 0, we can simplify the above set of equations as
—TX\? T
€ "k 8 AP (Tt
—To(yo,h@kﬁ)m(o’l) = / v(t)e e T gt vk > 0,
o 4.7 wk7'y( ) 0
581 ( . ) 7T)\£ -
e s B —AL (T
_Bi (CZ—‘(yO’l7 SOk,’y)L2 (071) — (:(10727 SOk’,’Y)L2(O71)> = / U(t) (T - t)e k,'y( t)dt, Vk 2 0.
Wk,y(o) 0

582 The above set of equations is the moments problem that we shall solve in our case.

583 4.2.2. Existence of a bi-orthogonal family to real exponentials. To construct our control v by solving
584 the moments problem above, the existence of a suitable bi-orthogonal family to time-dependent exponential functions
585 is one the most important ingredient. In this context, it is worth mentioning [10, Theorem 1.5] where the authors
586 proved the existence of bi-orthogonal families to (#e™*#!)y>0 0<;j<, (7 € N) for a complex sequence (Ay)x>o with
587 non-decreasing modulus. This proof is based on a proper gap condition of |Ax — A,,| for all £ # n and some property
588 of the counting function associated with (Ag)r>o which has been introduced by point 5 and 6 of their proof. In
589 fact, concerning this hypothesis on the counting function, a slightly more general version has been introduced in [2,
590 Remark 4.3] and we indeed make use of this fact in the present study.

591 We deal with the real sequence ()\f 7) k>0 and we show that this sequence satisfies all the assumptions of [10,
592 Theorem 1.5] uniformly with respect to the parameter 3.

593 1. The gap condition:

594 Without loss of generality we assume that k& > n and therefore, k = n + m for some m € N. We recall (3.9)
595 and Lemma 3.3 to observe that

o B B B

596 (4.8) Moty = Moy 2OV N1, 2OV ANY L, YE20, VB 2>0.

598 Also, by Remark 3.4, we have )‘116\[4-1,7 > )\;CV-Fl,’Ymin’ and since it is easy to observe from Remark 3.8 that
599 )\]]‘X"/min = Ymin k272 for each k > 0, so the inequality (4.8) is simplified as

600 (4.9) Mty = My > Copmin(k +1), Yk >0, VB>0,

601 which gives us

n+m

. B B . ‘ mm+1)] _C 2 2

602 /\n—i-m,’y — )‘n,'y > C'Ymin™ .ZH] = C'Ymin™ [mn + — s | = E’Ymmﬂ [(m +n)°—n"+ m] .
j=n

603 Thus for any k,n with £ > n + 1, and for any 5 > 0, we have

6pe (4.10) Noo = Mo > p(k* = n?), Vhkn:k-—n>1

606 with p := %’}/minﬂ.
2. The counting function: Let N be the counting function associated with the sequence ()\}f 7)’920’ defined by

N(r)=#{k: X\, <r}, V¥r>0.

607 We observe that, the function N is piecewise constant and non-decreasing in the interval [0, +00). Also for
608 every 1 € [0, +00) we have N(r) < +oo and lim,_, . N(r) = +00. Moreover,

609 N(r) =k = )\f’7 <rand /\f,erm >,

611 so that, in particular, if N(r) = k, we have

iy B B
313 Mo SV <V Ak

614 which yields, by Lemma 3.3 and Remark 3.4, that

1 N N D D
g2 V M S Ay SV < \/Akﬂ,v < \/)‘kﬂ,vmx
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But we have A\

kyYmin = ’Ymax(k + 2)2772, hEHCe

_ 2 2 D
= Ymink“7™ and >\k7+1

»Ymax

VYin kT < VT <\ Ymax (kK + 2)7.

Replacing k by N(r), we determine that

1 1 1
—Vr = 2<N(r) < r< r+ 2,
AV ’Ymaxﬂ-\[ ( ) Ymin 77\/ Ymin ﬂ'\f

1 1
VYmax ® VYmin T’
From the discussion above, and any given T' > 0, we can ensure that the existence of a bi-orthogonal family in

which is the point 6 given just before [2, Remark 4.3] with o = 2, ppin =

and Pmax =

B
L?(0,T), denoted by (qu)kzo,ogjgl, to the family of exponential functions ((T—-)Ze_)"w(T_'))kzo’ggigl. Moreover,
this family satisfies the following estimates

el
(4.11) laf, ;I z2or) < Ce“VIa™T k>0, j=0,1,
where the constant C' > 0 is independent on T > 0 and uniform with respect to k& > 0 and to the parameter 5 > 0
since all the quantities p, a, Pmin and ppax introduced above do not depend on the Robin parameter 3.

4.2.3. The controllability result. We can now proceed to the proof of the null-controllability result in that
case.

Proof of Point 1 of Theorem 2.14. Consider

(4.12) vg(t) = va(t)’ Vvt € (0,T), where
k>0
B e~ TN B 5 e TN B 5 5
Vg (t) =— 3 (y0,17 (pk”Y)LZ(O,l) qk’o(ﬂ -3 N <T(yo,1, (pk,’y)LZ(O,l) - <y0,27 @k,’Y)Lz(O,l)) qkyl(t)
901@,7(0) ()Ok),'y(o)

With this choice of v = vg, one can observe that the set of moment equations in (4.7) are formally satisfied.
Now, all we have to check is the convergence of the series (4.12) in L?(0,T), with explicit bounds with respect to
B € (0,+00). To this end, for each k > 0, we compute

< Iwoallz2on 7y Tllyoa

|z2(0,1) + 1Yo.2ll2(0,1) _pas
[vgllz2 0.y < (0.1) (0.1) ~TAf
e ,(0)]

ler, (0)]

gy ollz20.7) + lgg 1 llz2 0.1

thanks to the normalizing condition ||g0£7||L2(0,1) = 1. Moreover, the result (3.7) gives us

<C|1+ b , Yk>0, 8€(0,+00),

(4.13) —
9, (0)] Y.

Y

where C' depends only on ~.
Now, using (4.13) and the bounds on bi-orthogonal functions in (4.11), we deduce for each k > 0 and for any
finite T" > 0 that

B A8 CAF 4 g
(4.14) ||UI€HL2(O,T)§C(T+2) 1+F e ke ’”+T||y0||L2(0,1),
Ak
Y

since ¥(0) > Ymin > 0. Now, Young’s inequality gives us

T 2
(4.15) C\A, < 5 +£

by S Nt op YRZ 0.

Thus, we see

TP B T8 c
(4.16) e TR TOV XL TOIT < =3 XN+ F g > 0.
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But we have, )\f,y > )\,{XV > )\k]\{%m = Ymin k272 for k > 0, and so, in one hand, we have
_ZAfH 7C’C2Z ]. ]_
(4'17) Ze Qk’VSZG 2<1GCT/2<C<1+T>‘
k>0 k>0

On the other hand, we see

ﬂ _T )P ,8 _T\B ﬂ 1
(4.18) d ——e M < e ENy P N2
k>0 /)\,I(j’/y \/E T/Ymin k>1 k

<P gyt

)\g,ﬂY k>1

The second quantity in the right hand side of (4.18) has the bound C (1 + %) where the bound of first quantity
is not so obvious because we see that )\g’,y is getting smaller with respect to smaller 5 > 0. But, we have

Jfé?i < \/‘i% < C(1+p), for 0 < g <1, by Remark 3.2, and

B_ < ©p, for B> 1, which is easy to observe.

VA,

Now, using this in (4.18), one can deduce that

(4.19) 3 B30 <c(i+8) <1 + ;) .

k>0 W/Afﬁ

Now, we take summation over k > 0 in (4.14), and using the estimates (4.16), (4.17) and (4.19), we get for any
B € (0,400) and finite T' > 0 that

Z g |20, < C(L+ B)e?/ Tlyoll2(0,1)-
k>0

This completes the proof. 0

5. Boundary controllability result of the 1D problem with different Robin parameters. In this
section, we discuss about the boundary controllability of the system (1.1)-(1.3) in 1D with two different parameters
B1 # P2 with By, B2 € (0,+00) for the two components of the system and as mentioned in the introduction of this
paper, we assume now that ~ is a positive constant that we arbitrarily choose to be equal to 1. We rewrite the
control system (1.1)-(1.3) in that setting below

Oy — 02y =0 in (0,7) x (0,1),
Nya — 2ya +1y1 =0 in (0,T) x (0,1),
o
- %(t,x) + By (t,x) = Lipgyo(t) on (0,T) x {0,1},
5.1
o
%(t,x) + Boya(t, ) = 0 on (0,T) x {0,1},
n (07 ) =Y0,1 in (Oa 1)7
Y2(0,-) = yo,2 in (0,1).

In this case, we recall that the associated operator is Ag, g,, as defined in Section 2.3, specified here for Q = (0, 1)
and for vy = 1.

The main difference between the present section and Section 4 concerns the spectral properties of the adjoint
operators. Unlike the previous case, we will have here a possible condensation of eigenvalues with two different sets
of eigenfunctions that form a complete family of the state space, instead of having well-separated eigenvalues and
associated generalized eigenfunctions.
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5.1. Spectrum of A} ;. In the present situation, the eigenvalue problem associated with A% 5 is explicitly
given by

—692;111 +us = Aup in (0, 1),
—éﬁug = A\uy in (0,1),
ou

(5-2) Ch =0 on{0,1},
ou
a—jwfm =0  on{0,1}.

First case: Assume that us = 0, then our system (5.2) reduces to the Robin eigenvalue problem (3.12) with positive
i‘ corresponding A = /\f1 which is real for any k& > 0 (recall that,
@5 has already been given by (3.13) for all £ > 0 and 5 € (0,400)). This gives us the following set of eigenfunctions

(without normalizing) of AEDBQ

parameter 31 and this gives us the solution u; = ¢

B1
(5.3) Dy, 1 = <<‘0(’)c > corresponding to the eigenvalues )\fl, Yk > 0.

Second case: Assume now that us # 0, then we first solve the second set of equations of (5.2), i.e.,

—0%uy = \uy in (0,1),
8’[1,2

5 + Baug =0 on {0,1},

which gives ug = @52, up to a multiplicative constant (which we can take 1), corresponding to A = /\fj2 for all £ > 0.
Now by implementing us = 5052 for each k& > 0 to the first equation of (5.2) address us the following problem

—aiul + @t = X,%ul in (0,1),
(5.4) —02u1(0) + B1u1 (0) = 0,
&cul(l) + 51U1(1) =0.

The existence and uniqueness of the solution to (5.4) follows from the Fredholm alternative theorem and to the fact
that /\Z2 ¢ (/\lﬁl)lzo for any k > 0 and f8; # B2 (by Lemma 3.11). Let us denote the unique solution u; of (5.4) by
w,f LA 2, for k > 0 and hence the second set of eigenfunctions (without normalizing) of A, 5, 1s given by

B1,B2
(5.5) P o 1= ( * s ) corresponding to the eigenvalues )\52, VEk > 0.
Pk

The family {® 1, Pk 2}r>0 is complete in (L?(0,1))?, and we observe that

e_t'AZ;LBz Qk,l = eitkfl ¢k71’ Vk Z O,
(5.6)

_tA* _4\B2
e t'Aﬂl’52¢k’2 =€ A @k’g, Vk > 0.

5.1.1. More on spectral properties and approximate controllability. This section is devoted to show
some properties of the first component w,f 1B2 of the eigenfunction @ » and how the spectral gap |/\g1 —)\£2| depends
on the parameters 31, 82 (for any k > 0). We need all these to find a proper bound of our null-control.

Proving the estimates of this section for any non constant diffusion coefficient -y is still an open problem, that
is why we restrict here our attention to the constant coeflicient case.

LEMMA 5.1. Let 81 # P2 be any two real parameters with 81, B2 € (0,400) and
(wfl’ﬁz)kzo be the set of solutions to (5.4) as introduced before. Then, we have

Ae + 53

[P (0)] > :
4Bor\/ N |8y — Bol

vk > 0.
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Proof. 1. Observe that 1/)51’5 * satisfies the second order ordinary differential equation (5.4), i.e.,

delflﬂz

(5.7) e

+ )\22 wgl’ﬁZ’ = 4,052, for each k > 0.

To solve this, recall the explicit form of ¢ from (3.13) (with 8 = f;), and hence for each k£ > 0, we are

looking for 1/)51’5 * in the following form
(5.8) @bfl’ﬁz () =(Az+ B) cos(\/)\fzx) + (Cz + D)sin(y/ )\gzx), vz € [0,1].
Substituting (5.8) into the equation (5.7), we get
1 1
21/ A2 2

B1,82
k

Then, from the boundary conditions at x = 0 and 1 satisfying by ¢ , one can obtain

D\/A?* =5 B— A, and

(5.10) B (251\/ )\22 cos )\52 + (6% — )\52) sin 4/ )\52>

— A [m [ A2 [ 52
_ (ﬁlﬂz & )COS )\52 [ (B BN 4 BB sin )\22
B2 235 //\22
respectively. We must mention here that the coefficient of B in the left hand side of (5.10) never vanishes

due to Remark 3.9.
. By (3.14), it is known that the eigenvalue )\gz is the unique solution to

(5.11) 262\/)\22 cos /\g2 + (B3 — )\fz) sin 4/ /\’Z2 =0, foreachk>0.
Now by substituting the expression of cos )\22 from (5.11) into (5.10) and replacing B by 1/)51’52, we get

1/)51’52 (0) [51()\52 _ Bg) + ﬂz(ﬁ% _ )\52)} _ (B1B2 — )‘52)()‘22 — 622) . (1+p81+ BQ)A? + [152

4p3 \/ﬁ 262 \/)\722

where we omitted sin\/)\fz from both sides since sin )\52 # 0 for all k > 0 and B3 € (0,400). Now by
simplifying the above equality provides us

(512) sy — ZOW) = BN — BN — 260 — 26155~ piBR I
| 1.k (g) )

16N [~ 88) + 3a(6] ~ A2) e

Here one can rewrite the quantity Jj as

L
P2

(5.13) Te = 4B\ N2 (B1 = B2) N + BiBa), Yk >0,
whereas, I} enjoys the following
(5.14) Te] > (\2)2 + BLBadi? + BN + Bufs = (NZ + BRNZ + Buf2),  Vk > 0.

To this end, we use (5.13) and (5.14) in the expression (5.12) to deduce that

)\ﬁz 2
i)z — OB gs,

4B/ N |81 — o

and this concludes the lemma. O
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REMARK 5.2 (Approximate controllability). The control problem (5.1) is approzimately controllable for any
finite time T > 0.

To prove this, we will again use Fattorini-Hautus test as mentioned in Remark 4.1, that is to show B*®y 1 # 0
and B*®y, o # 0 for each k > 0 (where B* has been defined in (2.29)). But (3.13) and Lemma 5.1 respectively ensure
us

B*®py = i (0) £ 0 and B*dy5 = 2 (0) £0, Vk >0,
which gives the claim.

LEMMA 5.3. Let 81 # B2 be any two parameters such that p1, B2 € (0,+00) and /\gl,)\gz, k >0, be defined as
before. Let 8* > 0 be a fized finite number. Then
1. for 0 < 1, B2 < B*, we have

181 — B2| < Cg*l)\fl - /\£2|7 Yk >0,
2. for 81,82 > %, we have

1 1
By B ="

Proof. We begin with the fact that any 5 € (0, +00) can be represented by

5
\//\f tan \/E’ for k even and

2

AR AP k> 0.

(5.15) &

5
= —\/)Tf cot \/2/\:, for k odd (by Remark 3.9).
Also, since we have \//\g € (km,(k + 1)) by point 2 of Remark 3.8, so one can write

(5.16) N7 = kr 46 forj=1,2, and \/A" =kr+6, Vk>0,

where 5?,65* € (0,).
1. Now, we assume that 0 < 1, B2 < 8* which implies 0 < 5517552 < 55* < m, Yk > 0. We denote

(5.17) 0 < dg» :=sup 65* <,
k>0

where dg« < 7 since the quantity (55 " s getting smaller as k£ > 1 getting larger due to the asymptotic

behavior of \/)\f* given by Remark 3.10.
We discuss the proof for k& even, for odd k the steps will be similar. We have

k §h k 552
(5.18) B1 — Po = (kr + 551)tan (; + ’5) — (km + 552)tan (; i g)
§h 502 ) 55 . 552
=kr (tang — tanS) —|—5,€ tan% — 5,[3 tan%.

Applying Mean value theorem to the functions tan § and ptan 4 on u € ((551,652 ), we have for some ¢},
and ¢}/ in ((551,552)), that

5y o B 5B 2 0, B 5B
tan —- — tan — | < [0, — 0,7 sec 35 = Cp+|0," — 6,71,
and

5ﬁ1 5B2 5 5 1

B k B k B B k 2 % k

(Skl tanT_(Skz ta.n? S |6k1 _6k2| ?Sec E‘i‘tan?
oY oy sin(67/2) oy
< |§Pr — 582 Zk 2% 4 > \O%/2) L0k
< |0y, k|2sec 5 57/ sec -

< Cpe (0" + 6718 — 07,
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789 where we make use of the fact that the quantities sec % and sec %’“ can be bounded by sec 6‘% which is
790 some constant Cg-. Now, we turn back to (5.18) to deduce that

791 |81 — Ba| < Cp-(km + 8" + 612)|0" — 6,7

792 = Cg- <\/)\>fl+ﬁ) ‘\/@—\/)\?2

7 < G X =X

795 2. Here also, we demonstrate the result for k even. We recall (5.15) to observe that
11 1 kr o) 1 kr 0

796 (519) —_—— = 7,@ cot i + k — 75 cot l + -k
Br Bz kr+5)} 2 2 km+ 6.7 2 2

1 5 1 522
797 = —— 5 ot = — ——-cot —,
798 kT( + 5k1 2 kﬂ' + 6k2 2

Let us define the function

M 1 2
o) = oot for e (62,62) € (0.7,
Consequently,
/ 1 o I 1 Iz
= - e — t p
9(n) 2(km + 1) <3 (km + p)? Oty

799 and |¢’| is monotonically decreasing function in (0,7). Now, applying Mean value theorem on g(u), we
800 have from (5.19)

1 1

801 (5.20) — = | <82 = 5P|g'(8x)|, for some Oy € (8, 572)).
802 b B2
803 But we have 5,fj,5k > (55* (j = 1,2), since By, B2 > B*, and hence
< 1 1 1 5
804 (5.21) g ()] < . — + — cot =
km + 0 | 25in? (5k/2> km + Oy 2
0 < 1 1 n 1 1
805 < - " - "
. k00| 2sin? (6 /2) k70 sin (5] /2)
Let us recall the asymptotic formula of )\'g* from Remark 3.10 to observe
« 26" 1 B
5 = Op [ =) >—=, Vk>1
k kw+5(k3>_lm’ =
— B* —
for some S > 0 depending only on *. As a consequence, sin 5’5 > sin %, since sinz is monotonically
increasing on (0,7/2). Also, since sinaz > 2z for all z € (0,7/2), eventually we have
B _ B
—>— Vk>1
M okr = k2
807 Now we come back to (5.21), we obtain for any k # 0 even, that
~ 1 k2 4 k 2
808 g/ (3)| < = ”

809 < Cp- )\f* < Cg- (\/)\fl + \/)\52) )

810
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811 Implementing this estimate into (5.20), we obtain that

1 1
812 (5.22) — = | < Cpe [N =N (1/,\51 + ,//\1,32)

B B
813 = Cp- N = A2|, Yk #0 even.
815 For k = 0, one can observe from (5.21) that

< 1 1 14
816 19 (6))] < — | ———— + = cot =
do | 2sin? ((50/2) do 2
1 1 1 1

ST < 5 Nt - < Cp-,
N 5 | 2sin? (55 /2) 55 sin (55 /2)
819 and so (5.20) now provides us the same inequality (5.22) for &k = 0. The proof is complete. O
820 Lemma 5.3 now helps us to prove the following proposition which is the key point to obtain a uniform L2(0,7T)-
821  bound of a control that we construct in next section, with respect to the parameters 1, 5o.
822 PROPOSITION 5.4. Let 81 # By be any two parameters with B, B2 € (0,+00) and ()\gl,@k71>, (AfZ,ng) be

823 the eigenvalue-eigenfunction pairs of the operator A% 5 for each k > 0. Also, assume that * be any positive real
824 number. Then, for any k > 0, we have

Cﬁ*a Zf 0<61362 <ﬁ*7
<
201 | Ca-Bi\/ A2, if B, B2 > B,

1
A=

Doy P2
B*@kJ B*@kg

[0}
[\v)
ot

(5.23)

826 where B* is defined in (2.29).

Proof. Since B* = 1{,_0y (1 0) (introduced in (2.29)), and using the definitions (5.3) and (5.5), the quantity
we want to estimate can be denoted by
Ch
O = < k> ,
F\et

where the two components are

1 S0/31 (13) wﬁhﬁfz (.T)
@]1“(1') = A B2 ];1 B ];31,32 » T E (O’ 1)’
AR = A7) N\ (0)  ¢72(0)
B2
1 o (x)
0% (x) := k , x €(0,1).
()\51 _ )\gz) ¢]l31752 (O)
827 In order to ease the computations, we will denote by u; = )\f for i = 1,2, the dependence in k being now
828 implicit.
829 1. We first assume that 0 < f1,82 < p*. Using this assumption, and the fact that )\gi > %)\g (by
830 Remark 3.2) and simply )\gi > k272, Vk > 1 (by point 2 of Remark 3.8), we obtain uniformly in k > 0, that
831 (524) i = O,B* \/Biv = 1,2
832 e Estimate of the first component ©}:
833 Recall the expression ¢, (with § = 1) and @bgl’ﬂz from (3.13) and (5.8) respectively and following
834 some steps of computations we obtain
835
B1 B1.82 : .
836 (5.25) 90;21(30) - %Zh ﬁ2(x) = cos(pu1z) — cos(pzx) + 1 SRAT  SRMeT
e (0)  ¥72(0) M1 2
a7 7 coslyuae) — T (o) + £ sin(yize)
8 — — cos(ugx) — — sin(ugx sin(psx).
83; B M2 B K2 B H2

839 Let us bound the contribution of each term in the L? norm of O}, recalling that ()\fl — )\52) = p? — 3.
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— First, it is easy to deduce that for any 8; # (2 and any z € (0, 1], we have
sin (522 7) sin (%x)

(5t (H5ter)

2

cos(p1w) — cos(pow) | x°
2

pi— 3

(5.26) <

1
5"

— For x € (0,1] fixed, let us define the function p — f(u) := w, whose derivative is f/(u) =
Lo cos(ux) — /%2

14

sin(uz). Applying Mean value theorem, we have

[f () = f(p2)| < Jpa — po| [/ ()], for some fi € (1, p2)).
Now, if 0 < i < 1 (consequently 0 < iz < 1 for z € (0, 1]), then we have

1f' ()] = ’;x cos(fix) — % sin(jiz)
P cos(fiz) =1  sin(iw) — ,&x)‘
"‘ i ( () (ar)?
< jiz® <1, Vx € (0,1],

(pz)—1 in(fiz)—fi
0923 < C an |2
On the other hand, for & > 1, it is quite obvious to see that |f'(%)| < C, and so finally we have
uniformly in x,

since

<, for 0 < fix < 1.

|f(1) = f(p2)] < Clpn — pal, VB # B2 positive.
This implies that for 0 < 8; < 8* one has
B1 sin(piz)  sin(pox) CpB
uf—u3l | p2 | T e

where the last inequality follows from (5.24).
— For estimating the remaining three terms, we use the values of A and C' from (5.9) and Lemma 5.1,
that gives the bound from below

A

(5.27)

S Cﬁ*7

M2
1Bl = 455|81 — Ba|

With the inequality proved in the first point of Lemma 5.3 and (5.24) we see that

1 A 2 - Cy~
(5.28) T R —mcos(,ugx) < 522‘521 522| < 6262 < Cg-.
i — w3l | B palpi — pal 13
Similarly, we have
1 C — 2si
(5.29) b ()| < |ﬁ; /3§| 22 sin(uo) <Oy,
lui — w3l | B i — i3] p2
and
1 A 1 Al 2 - Cp~
(5.30) T o | 7 ‘ < % |ﬁ; %' < ﬁfz < Cp-
|11 — p3| | Bhe i —ps| [ Bl ™ g [y —pal = pa
Hence, gathering all the estimates from (5.26)-(5.30), one can deduce that [|©}||r2(0,1) < Cg+ for
any k > 0.

e Estimate of the second component ©%:

By using the expression of <p’£2 from (3.13), we have for each k > 0 that

P (x) | _ pa|cos(uar)| | |sin(up)]
Y2 0) | T B2 [P 0)] P2 (0)
< 4|61 — Ba2| + 452|f1 — Bl M
Mo

<A1+ B2)|Br — B2l < Cpe(1+ B2) [pf — 3],

where we make use the facts that |w£1’52 0)] > m and the estimate in the first point of
Lemma 5.3. Consequently, we deduce that ||@iHL2(071) < Cg+ for any k > 0.
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878 This completes the proof of the uniform estimate of O, in L? for 0 < 1, B2 < 8%, 81 # Po.
879 2. Let us assume now that (1,8: > f* > 0. Using this assumption, and the fact that )\gi > )\0*8 and
880 )\gi > k272, Vk > 1, we obtain uniformly in k£ > 0, that
881 (5.31) pi > Cpge, 1=1,2.
882 We need to prove that é@k is bounded uniformly in &k, 8 and fs.
883 e Estimate of the first component O} :
884 We still start from (5.25) and we estimate each term as follows.
885 — Analogous to (5.26) and (5.27), we respectively have
— 1
886 (5.32) COS('Lleg C(;S(’uﬁ) < -
H1 — K3 2
887 and
sin(pix sin(uax
388 (5.33) 251 . [ () . (2 )} < & < Cj- B,
i — sl H1 2 H1
889 by (5.31).
2 2
890 — Now using the fact |B| > #ﬁ?iﬁzl from Lemma 5.1, and the second point of Lemma 5.3, we
891 can bound the remaining three terms as follows
1 Az 2[B1 — B B3 251 1 1
892 (5.34) ——5 | =5 cos(paz)| < < — — —| < Cp:By.
i —p3l | B Bo |t = p3l (n3+53) ~ i —p3l |8y Ba
893 Similarly, we have
1 Cx . |61 — Ba|  2B2u2
894 (5.35) —— | =5 sin(ugz)| < < Cpf,
i — 3l | B B2 |t — w3l (13 + 53)
895 and finally
1 Ax A
896 (5.36) ———— | =——sin(uez)| < —5—— ‘ < Cg- B,
807 i — p3| | Bpe i — 13| | B
898 which is obtained by a similar type of computations as in (5.34).
899 Gathering all the estimates from (5.32)-(5.36), we get that |©}|2(0,1) < Cp+1 for any k > 0.
900 e Estimate of the second component ©%:
901 Using the same ingredients as before, we compute
. o (@) | _ gz |cos(pan)|  [sin(uze)]
wlflﬁz(o) - 62 ‘B‘ |B|
26152/1,2 1 1 ﬂlﬂ% 1 1
903 S2Up—5——oe |5 — o | T2 |5 — 5
(3 +B3) |B1 B2 (5 +535) |81 P2
904 < Cprpzb |1 — pi3]
906 by the second point of Lemma 5.3. This implies
1 op (z)
907 3 ) < Cp- Py,
008 1d = 131 |72 (0)
909 and thus the expected bound [|©%] 20,1y < Cp= B2 for any k > 0. ad
910 5.2. Null-controllability. We can now prove the null-controllability of our system, with a precise bound of

911 the control with respect to 81 and (9, that is the second point of Theorem 2.14.
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5.2.1. The moments problem. In the present context, we recall that the family {@y 1, Pr2}r>0 (defined
by (5.3)-(5.5)) is complete in (L?(0,1))? and so, by checking the equation (2.28) for @) ; and @y » for each k > 0,
indeed tells us that for any yo € (L*(0,1))? the input v € L*(0,T) is a null control for (5.1) if and only if one has

767T)\/Zl (yOa gpk,l)Lz(O)l)

T
B1
= [ v)e T Ddt, Vi >0,
B*®y, 1 /o ®) -

(5.37) (0.0 :
e TAR WO T2 201 _ / U(t)e—AfQ (T=8) gt Yk >0,
B*®y, o 0

where we used the formulas given in (5.6).

5.2.2. The block moment method. It is known that for any & > 0 the eigenvalue )\Z is continuous with
respect to the parameter 8 € [0, 4+o00], see for instance [21, Theorem 3.1] and as a consequence, it may occur that
the two eigenvalues )\fl and )\52 are arbitrarily close if 8; and By are close. This phenomenon is called spectral
condensation and may, in general, prevent us from obtaining uniform bounds on the controls when 8, and (5 are
getting closer (see for instance a discussion on the influence of the condensation index on controllability properties
of parabolic systems in [20]).

Indeed, the classic way to solve the moments problem, as we did in Section 4 is inadequate. More precisely,
it is not true anymore that any bi-orthogonal family to (e”‘fl (T*t))kzo,jzo,l will satisfy uniform L2(0,7T)-bound
with respect to the parameters 31, (82 since the gap infy |/\g1 — )\£2| may be arbitrary small when |81 — 2] is small
(see Lemma 5.3).

To overcome this situation, and still prove uniform controllability result, we will use the block moment approach
developed in [11] to solve problems like (5.37) when a weak gap condition holds, instead of a usual uniform gap
condition. This method let us take benefit of the condensation of eigenfunctions that actually compensate the
condensation of the eigenvalues. Let us go into the details.

We first define AP := {)\fi, k > 0} for ¢ = 1,2, the two families of eigenvalues we are concerned with and we
set AP1:B2 = AB1 U AB2,

As we have seen in (4.9), each of the two families satisfies a uniform spectral gap property

5.38 inf |\ — A > O, i=1,2,
k k+1 k

and their reciprocal values are uniformly summable in the sense that, there exists a function N : (0, +00) — (0, +00)
that does not depend on 7 and B3, such that

(5.39) > % <e,

AeAPi
A>N(g)

for any € > 0 and any i = 1,2.
Therefore, by [11, Lemma 2.1], we know that the union family A®1+%2 satisfies a weak-gap property : for any
p > 0 (independent of 81 and (5) such that

(5.40) p < Cm,

we have that AP%2 N [, u + p), contains at most 2 elements for any p > 0. Moreover, the reciprocal values of
AP1P2 are also uniformly summable as in (5.39) but with a possibly different function N

By [11, Proposition 7.1] we know that, for each value of 81 and S5, we can find a family of disjoint non empty
groups (G, ), each of them having a cardinal less or equal than 2 and such that

APB2 — U G,

(min Gp41) — (max G,) > p/2,
diam(G) < p.

Let us prove now that, for p small enough, the structure of those groups is actually simple.
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LEMMA 5.5. Let 5* > 0 be fixed and for By # P2 assume that either 51, s < B* or p1, B2 > B*.
There exists p* depending only on B* such that, if we assume that p < p* in the above construction in addition
o (5.40), then for any group G, of cardinal 2, there exists an integer k such that

n= {0

Proof. Without loss of generality, we assume that 81 < 2. Since the diameter of GG, is less than p and using
(5.38) and (5.40) we know that G,, contains exactly one element from A and one element from A®2, that is

Gn={N" N2},

for some integers k and j. We want to show that j = k.
By Lemma 3.3 and Lemma 3.11 we know that

(5.41) A< AP <N

thus the only possibilities are j =k or j = k+ 1.
e First, we treat the case when 0 < 1 < 52 < 5*. We have

Vo = VN = N = A =m0

since Ay, ; = (k4 1)*7? by point 1 of Remark 3.8; )\g* and dg~ have been introduced in (5.16) and (5.17)
respectively. Hence, for all k£ > 0, we have

= = (VA V) (Vs =)
> m(m—dg-) > 0.

We choose p* = m(m — dg~). From the computation above we see that if p < p*, then )\fﬂ and )\52 cannot
belong to the same group G,, and thus we necessarily have j = k and the claim is proved.
e Assume now that 8y > 81 > * > 0. Then, from the asymptotic formula given by Remark 3.10, we see

since AP = (k +1)272 by point 1 of Remark 3.8. Now, it is obvious that )\gl+1 + )\52 > (k4 1)m, for all
k > 0 and so, there exists a kg- > 1, depending only on * such that

N =N > B> 0, VE > kg
It remains to deal with the other values of k = 0,1,--- ,kg- — 1. We simply use the fact that
TR VD VA Vo

to define

- in (A0, — AP .
p" :=min (ﬁ ) II?<HI§,3( ot )) >0
Here also we conclude that if p < p*, /\ffH and /\f2 cannot be in the same group G, and thus j = k, and
the proof is complete. 0

We can now proceed to the proof of our main result concerning the uniform null-controllability of the system
with two different Robin parameters.

Proof of Point 2 of Theorem 2.14. We proved above that the sequence of eigenvalues A%1:52 satisfy the good
weak-gap and summability conditions required by the block moment method. More precisely, we can apply [11,
Theorem 2.1] to find a solution to the set of equations (5.37) as an infinite sum of terms, each of them corresponding
to the resolution of the contribution of the group G,. In our case, we can observe that, by Lemma 5.5, the set
{)\fl , )\52} for any k > 0, is either exactly one of the groups G,, or the union G,, U G,,41 of two distinct groups of
cardinal 1.



977

978

979

980

981

982
983
984
985
986

987

988

989
990
991

992

993
994

995

996

997

998

999

1003

1004
1008

1006

BOUNDARY CONTROLLABILITY OF COUPLED SYSTEMS: ROBIN CASE 31

It follows that, the result of [11, Theorem 2.1] can be reformulated as follows: there exist functions v,fl’ﬂ ’ e

L?(0,T) for each k > 0, which satisfy the following

T
/ ’Ufl’ﬁ2 (t)ef)\il (T—t) dt — _eiTAil (yoa @k’l)LQ(O,l)
0

B*ék,l ’
T
(5.42) / e (t)e—A§2(T—t) di — — =T (yo’ékﬂ)w(o,l)’
0 B*®y, 0

T .
/ VP e N T g =0, Vi£k, Vi=1,2.
0

and satisfying the following bound, for any & > 0,

H Pri Pr2

B*®y 4 B*®y o 2

B1.B2 (e—T)N1 Di;1 : 21lL2(0,1)

(5:43) o200y < Crenpre * max H : 190l 22(0,1)-
B dsk,l L2(0,1) ’ |A£1 — Agzl

Note that in [11] it is assumed that all the eigenvalues in the system are greater than 1, whereas in our case we only
know that they are non-negative (we recall that /\g goes to 0 when 8 — 0). However, one can check that this does
not change significantly the result since it simply amounts to add a factor e’ in front of the constant Cre N, p I
the estimate.

We now define vg as

(5.44) va(t) ==Y v (), Vtelo,T],
k>0

so that vg formally satisfies the set of moments problem (5.37), it remains to show that the series converges and to
obtain the expected bound on vg.
e In the case when (5, = 2, the result is just a particular case of point 1 of Theorem 2.14.

B
o Assume that B # 5. We observe that | g2 o = o which can be bounded by C(1+6;)
' ’ L L2(0,1)

for any £ € (0,400) (recall the expression of ¢, from (3.13)).
We can then choose e = T'/2 and apply Proposition 5.4 to obtain that, for 0 < 1, 82 < 8%,

B
(5.45) [0 P2 L2 0.y < Crp= (14 B1) e 22 |lyol L2 (0,19,

and for BlaIBQ > 6*7

_T B
(5.46) [0 || 20y < Crog (14 B AL €22 [lyoll 22 (0.1)-

From (5.44), it follows that
lvallrz0,1) < Z [g" 21l 20,7
k>0

in which we can plug (5.45) or (5.46) to finally obtain

lvallzz(0,r) < Cr,p-(1 + B1) ol L2(0,1)5

. . s
where C7 g > 0 does not depend explicitly on the parameters 3, 32 because the two series >, - e TN

and )< \/)\fz e N converges uniformly with respect to the parameters due to the fact )\QI < )\gi < )\kD,
Vk >0,¢=1,2, by Lemma 3.3.
The proof of the theorem is complete. 0
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