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23 Abstract

24 A recent suite of Relative Sea-Level (RSL) data for the past 12 ka BP have provided new insights into the 

25 sea-level histories of the western Mediterranean region. Our analysis of the chronostratigraphic context of 

26 sea-level indicators from Spain (Catalonia, Balearic Islands and Gulf of Valencia), France (Corsica Island) 

27 and Italy (Sardinia Island) has yielded 163 new sea-level index and limiting points. These data have 

28 considerably enhanced previous RSL compilations, in addition to improving the quality of spatio-temporal 

29 sea-level reconstructions and our capacity to estimate isostatic-related vertical motions in the western 

30 Mediterranean basin. The glacial and hydro-isostatic adjustment (GIA) pattern elucidated by the new 

31 database shows discrepancy with respect to those predicted by the available GIA models. In particular, the 
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32 new results underscore a non-coherent isostatic response of the central portion of the western Mediterranean, 

33 with the Balearic Islands manifesting significant departures from the sea-level histories of Corsica, Sardinia 

34 and, more generally, along most of the western Mediterranean coast. Our results are a crucial contribution to 

35 defining both the pattern and the magnitude of the isostatic signal along the western Mediterranean coast. In 

36 fact, vertical isostatic motions represent a key to better assess any possible post-industrial acceleration in sea-

37 level rise and to define future scenarios of coastal inundation in the context of global change.

38
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42
43 1. Introduction

44 Understanding how changing ice volumes have contributed to sea-level rise in the past can provide insights 

45 into the sensitivity of ice sheets to future warmer conditions, and constrain physical models used to project 

46 ice-sheet response to future climate change (e.g., Kopp et al., 2009; Dutton et al., 2015; Purcell et al., 2016). 

47 Glacial and hydro-isostatic adjustment (GIA) constitutes an important driver of past, present and future sea-

48 level variability (e.g. Milne et al., 2009; Gehrels et al., 2011; Khan et al., 2015). For this reason, a major 

49 focus of current sea-level research is the continuous improvement of GIA geophysical models in an attempt 

50 to provide more accurate constraints for future sea-level scenarios (e.g. Nicholls et al., 2014; Goldberg et al., 

51 2016; Roy and Peltier, 2018). Our understanding of current rates of sea-level rise from tide gauges or 

52 satellite data (e.g. Church and White, 2006; Cazenave et al., 2014; Bonaduce et al., 2016) requires correction 

53 for GIA effects that can be quantified using observations of former sea levels (e.g. Kemp et al., 2009; 

54 Engelhart et al., 2011; Rovere et al., 2016). Holocene (i.e. the last 12.0 ka BP) Relative Sea-Level (RSL) 

55 reconstructions have frequently been used to test and calibrate GIA models over timescales longer than the 

56 instrumental record (e.g., Shennan and Horton, 2002; Engelhart et al., 2011, Bradley et al., 2016; Edwards et 

57 al., 2017; Khan et al., 2017). 

58 According to published geophysical models (e.g. Lambeck and Purcell, 2005; Stocchi and Spada, 2007; 

59 2009; Lambeck et al., 2011; Roy and Peltier, 2018), GIA-related deformation in the Western Mediterranean 
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60 is mainly controlled by water loading, which has resulted in widespread subsidence throughout much of the 

61 basin at an average rate of RSL rise of ~1 mm a-1 over the last 6000 years. Such models were tuned with 

62 RSL data from several areas, particularly from the Italian coast (e.g., Lambeck et al., 2004; 2011; Antonioli 

63 et al., 2009) and the western Mediterranean (Vacchi et al., 2016). However, due to its complex tectonic 

64 setting (e.g., Ferranti et al., 2006; Faccenna et al., 2014), RSL histories from the Mediterranean Sea are often 

65 reported as being influenced by the Holocene activity of major faults (e.g., Stiros et al., 2000, Mastronuzzi 

66 and Sansò, 2002, Scicchitano et al., 2011). This has often hampered the identification of the GIA component 

67 in the RSL record. This issue is even more complex in those coastal regions located at the mouth of major 

68 Mediterranean rivers (e.g., Amorosi et al., 1999; 2013; Vella et al., 2005; Marriner et al., 2012a), where the 

69 RSL record is strongly affected by long-term subsidence induced by sediment loading and compaction.

70 The aim of this study is to improve the quality of spatio-temporal sea-level reconstructions along a large 

71 portion of the Mediterranean coast of Spain (Catalonia coast, Balearic Islands and Gulf of Valencia, figure 

72 1), Corsica (France) and Sardinia (Italy), the third and second largest islands of the western Mediterranean 

73 Sea, respectively (figure 1). These regions are generally located far from major tectonic boundaries (e.g. 

74 much of the northern Spanish Mediterranean coast, figure 1). Furthermore, Balearic, Corsica and Sardinia 

75 Islands are located in the centre of the basin, where GIA models predict a maximum hydro-isostatic 

76 contribution (e.g., Lambeck and Purcell, 2004; Stocchi et al., 2007; Roy and Peltier, 2018). In all the five 

77 regions, conflicting sea-level histories (see section 3), in addition to poor data quality or a paucity of Sea 

78 Level Index Points (SLIPs, Shennan et al., 2015), have hindered the construction of robust RSL histories 

79 and, as a result, a clear understanding of the isostatic contribution (Vacchi et al., 2016). However, a 

80 significant number of new studies has been published since 2016 for these regions (see section 3).  We 

81 critically reviewed these recently published studies that, along with older data, allowed us to produce a new 

82 suite of SLIPs and RSL limiting points following the protocol described by the International Geoscience 

83 Programme (IGCP) projects 61, 200, 495 and 588 (e.g., Preuss, 1979; van de Plassche, 1982; Gehrels and 

84 Long, 2007; Shennan et al., 2015). We subsequently compared the reconstructed RSL histories with the 

85 predictions based on the ICE-6G (VM5a) GIA model (Peltier et al., 2015) to visualize and discuss the spatio-

86 temporal variability of the isostatic response in the Western Mediterranean. 

87
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88 2. Study area

89 The study area encompasses a large portion of the Western Mediterranean basin, at latitudes between ~ 39.0° 

90 N and ~43.0° N and longitudes between ~ -0.5° E and ~ 9.5° E (figure 1). The area is characterized by a 

91 microtidal regime, with tidal ranges typically not exceeding 0.45 m (Tsimplis et al., 1995). 

92 The long record of historical seismicity, coupled with on-going crustal deformation, contributed to define the 

93 neotectonic framework of the Western Mediterranean (e.g. Faccenna et al., 2004; Serpelloni et al., 2007; 

94 Noquet, 2012).  Two small oceanic basins (the Tyrrhenian and the Liguro-Provençal back-arc basins) lie on 

95 the Nubia-Eurasia convergent margin and are separated by the Corsica-Sardinia rigid continental block (e.g. 

96 Vernant et al., 2010; Faccenna et al., 2014). Some parts of the back-arc basin margins are undergoing active 

97 compressional tectonics along the east-Alboran, Algerian, and south-Tyrrhenian margins (Billi et al., 2011; 

98 Serpelloni et al., 2013). The south-Tyrrhenian compressional domain extends to northeast Sicily, while the 

99 Tyrrhenian side of the Calabrian Arc and central-southern Apennines are dominated by extension (figure 1; 

100 e.g., Ferranti et al., 2006; Faccenna et al., 2014). In these coastal areas, a major tectonic influence on the 

101 Holocene RSL evolution has often been reported (e.g., Ferranti et al., 2010; Scicchitano et al., 2011). By 

102 contrast, tectonic stability characterizes much of the Tyrrhenian and Liguro-Provençal basin (e.g. Ferranti et 

103 al., 2006; Billi et al., 2011, Nocquet, 2012). All of the coastal sectors discussed in this paper lie within areas 

104 characterised by a minimal or negligible tectonic influence on the late-Quaternary RSL evolution (e.g., 

105 Ferranti et al., 2006; Lorscheid et al., 2017; Stocchi et al., 2018). Absence of historical seismicity 

106 characterizes much of the Spanish regions included in the database (regions 1, 2 and 3, figure 1). One 

107 possible exception is the Valencia coastal plain, where weak seismic activity (< 5.0 M) is reported (Olivera 

108 et al., 1992; Anzidei et al., 2014).  Both Corsica (France) and Sardinia (Italy) (regions 4 and 5, figure 1) are 

109 widely acknowledged to be amongst the most tectonically stable areas of the Mediterranean, with the 

110 absence of significant historical seismicity (Nocquet, 2012).  In addition, Ferranti et al. (2006) defined 

111 negligible vertical motions during the last ~ 125 ka BP according to the present elevation of the last 

112 interglacial shoreline. 

113

114 3. Previous sea-level compilations and recent sources of the RSL datapoints
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115 A review of the available RSL data at the Western Mediterranean scale (Vacchi et al., 2016) allowed us to 

116 constrain coastal areas where Holocene RSL histories were conflicting, of low quality or almost non-

117 existent. For the Catalonia coast, extending along the northernmost portion of the Spanish Mediterranean 

118 coast (region 1, figure 1), previous data included beachrock samples and lagoonal data, the current positions 

119 of which have been significantly affected by sediment compaction, especially during the mid to late-

120 Holocene (Somoza et al., 1998, Roqué Pau and Pallí Buxó, 1997; Gámez Torrent, 2007; Vacchi et al., 2016). 

121 Recent investigations on the Barcelona and Empúries coastal plains (Daura et al., 2016; Ejarque et al., 2016), 

122 in the Ebro Delta (Cearreta et al., 2016) and on remains of seagrass palaeo-soils (Posidonia oceanica mats, 

123 López-Merino et al., 2017) provided useful new data to help to evaluate the RSL history of the area. The 

124 Vacchi et al. (2016) review did not include a Holocene RSL curve for the Balearic Islands (region 2, figure 

125 1). This was mainly due to the very limited amount of RSL data in the area. However, recent investigations 

126 performed in Mallorca and Menorca (Burjachs et al., 2017, Giaime et al., 2017) coupled with the sparse 

127 older data (Fornós et al., 1998, Yll et al., 1999) allowed us to comprehensively reassess the RSL history of 

128 this insular complex. 

129 Vacchi et al. (2016) underlined the poor quality of the RSL reconstruction for the Gulf of Valencia (region 3, 

130 figure 1).  Large uncertainties are associated with the SLIPs and poor descriptions of the original data did not 

131 allow us to robustly assess the RSL history in this area, notably for the last 6000 years. A new dataset of 

132 dated estuarine facies (Carmona et al., 2016; Blázquez et al., 2017; Rodríguez-Pérez, 2018) has facilitated a 

133 significant advance in the definition of the mid- to late-Holocene RSL evolution of this coastal sector. 

134 RSL histories in Corsica (region 4) show some inconsistencies (Vacchi et al., 2016). Fossil fixed biological 

135 indicators sampled on the northern coast of the island (Laborel et al., 1994) indicate that RSL variations 

136 during the last ~4.0 ka BP did not exceed ~2 m (Vacchi et al., 2016); these data are in agreement with the 

137 new RSL dataset produced by Vacchi et al. (2017) for the eastern coast of Corsica. Conversely, data obtained 

138 from a series of submerged beachrocks in the Bonifacio Strait (i.e. the narrow strait dividing Corsica and 

139 Sardinia, see figure 4, Nesteroff, 1984; De Muro and Orrù, 1998; Lambeck et al., 2004) show a significant 

140 departure from the above-mentioned data, with an offset of up to -3 m, especially for the mid to late-

141 Holocene (Vacchi et al., 2017). Such a discrepancy is difficult to explain in terms of the tectonic setting (see 

142 section 2) or compaction-related subsidence (Vacchi et al., 2016). In this database, we tried to resolve these 



6

143 discrepancies by including a new RSL dataset derived from palaeoenvironmental investigations recently 

144 performed in several Corsican coastal marshes and lagoons (Currás et al., 2017; Ghilardi et al., 2017a,b; 

145 Poher et al., 2017; Vacchi et al., 2017). 

146 Sardinia (region 5) has been widely investigated and several types of sea-level data have been used to infer 

147 the RSL evolution (De Muro and Orrù, 1998; Orrù et al., 2004; 2011; 2014; Pirazzoli, 2005; Antonioli et al., 

148 2007, 2012; De Falco et al., 2015). These data mainly constrain the late-Holocene RSL evolution. 

149 Conversely, a larger scatter is present in the early to mid-Holocene data. This is essentially related to 

150 compaction (such as in the Cagliari coastal plain, Antonioli et al., 2007) or beachrock dating problems 

151 (Vacchi et al., 2016; 2017). Sardinia has also been the object of recent investigations (Melis et al., 2017, 

152 2018; Palombo et al., 2017; Pascucci et al., 2018; Ruiz et al, 2018), mainly focused on multiproxy palaeo-

153 environmental reconstructions, yielding new sea-level data in these coastal areas. 

154

155 4. Production of RSL datapoints

156 4.1. RSL index and limiting points

157 Most of the SLIPs (cf. Shennan et al., 2015; Hijma et al., 2015) in the database are derived from cores in 

158 coastal and alluvial plains, coastal marshes and lagoons. In particular, lagoons (i.e. low-energy inland 

159 waterbodies that are either intermittently or continuously connected to the open sea) are very common 

160 geomorphological features on clastic Mediterranean coasts (e.g., Di Rita et al., 2011; Salel et al., 2016; 

161 Fontana et al., 2017). Here, water depth very seldom exceeds a few meters (e.g., Marco-Barba et al., 2013; 

162 Di Rita and Melis, 2013) and samples collected in lagoonal facies have often been used to assess the palaeo 

163 sea-level position (e.g., Primavera et al., 2011; Sander et al., 2015; 2016; Vacchi et al., 2017). 

164 In this study, we produced SLIPs from sedimentary records following the recent protocol developed for the 

165 Mediterranean (Vacchi et al., 2016, table 1). This methodology has recently been applied to a number of 

166 studies focused on Mediterranean RSL reconstructions (e.g., Fontana et al., 2017; Karkani et al., 2017, 2018; 

167 Melis et al., 2017, 2018; Ruello et al., 2017; Vacchi et al., 2017, Ghilardi et al., 2018, Kaniewsky et al., 

168 2018). The definition of the depositional facies was based on a biostratigraphic basis and, in particular, on 

169 the macro-and micro-faunal assemblages (i.e., malacofauna, foraminifera and ostracod assemblages, e.g., 
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170 Rossi et al., 2011; Marriner et al., 2012b; 2014). The detailed description of the indicative meaning 

171 associated with the different depositional facies (table 1) is provided in Vacchi et al., (2016). 

172 We subsequently added to the database beachrocks, fixed biological and archaeological SLIPs already 

173 present in previous RSL reconstructions for the area (Lambeck et al., 2011; Vacchi et al., 2016). 

174 All samples that did not show a clear and robustly established relationship with the MSL were converted into 

175 limiting points (Engelhart et al., 2015; Vacchi et al., 2016). These data are extremely important in 

176 constraining the RSL position above or below a reconstructed elevation. Reconstructed RSL points must fall 

177 below terrestrial limiting points and above marine limiting points (e.g. Engelhart and Horton, 2012; Vacchi 

178 et al., 2014). In this database, marine limiting points are typically from samples deposited in the infralittoral 

179 zone and from interlaced roots and rhizomes of the marine seagrass Posidonia oceanica (known as matte, 

180 López-Merino et al., 2017).  Terrestrial limiting points are typically samples deposited in freshwater 

181 swamps, fluvial environments and upper beach/foreshore deposits (table 1). Furthermore, we considered 

182 terrestrial limiting points those archaeological indicators that were theoretically above the MSL at the time of 

183 their functioning period, such as tombs and burials (Auriemma and Solinas, 2009).

184

185 4.3. Altitude of the RSL data points

186 For each dated SLIP, RSL is estimated by the following equation: 

187

188 RSLi=Ai-RWLi [1]

189

190 (Shennan and Horton, 2002), where Ai is the altitude and RWLi is the reference water level of sample i, both 

191 expressed relative to the same datum; i.e. MSL in our analysis. 

192

193 The total vertical uncertainty on RSLi is mainly represented by the indicative range and by the elevation 

194 error (Shennan and Horton, 2002). In the database presented here, the latter range from ±0.05 m for sample 

195 altitudes measured using high-precision survey methods (e.g., differential GPS) to ±0.5 m when the altitude 

196 was estimated using Digital Elevation Models, such as the sites of Torregrande and Posada in Sardinia 

197 (Melis et al., 2017, 2018). 
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198 In line with Hijma et al. (2015), we also considered and corrected for the following potential sources of 

199 additional vertical uncertainties: (1) a core stretching/shortening error (±0.15 m for rotary corers and 

200 vibracorers to ±0.05 m for hand coring), (2) a sample thickness uncertainty (3) an angle of borehole 

201 uncertainty, as a function of the overburden of the sample, taken in this study to be 1 %, and (4) an 

202 environmental uncertainty of 0.5 m for those samples deposited in undifferentiated brackish environments 

203 (Vacchi et al., 2016, see section 4.1). Due to the microtidal setting of the research area and lack of specific 

204 regional studies, we did not include an uncertainty term for potential changes in the palaeo-tidal range. 

205 We subdivided the SLIPs into intercalated and basal categories (Horton and Shennan, 2009). Intercalated 

206 samples are those recovered from organic horizons located between clastic layers and, therefore, are subject 

207 to compaction (e.g., Hijma et al., 2015). Basal lagoonal samples are recovered from sedimentary units 

208 overlying incompressible substrates (rocky basements or a thick layer of coarse sand or gravel) and are 

209 therefore less prone to compaction. Virtually incompressible samples are also the fossil remains of fixed 

210 biological indicators, represented by fossil rims of Lithophyllum byssoides (Laborel et al., 1994; Vacchi et 

211 al., 2016) and beachrock samples (Mauz et al., 2015).

212

213 4.4 Chronology of sea-level data points

214 The age of the samples was estimated using radiocarbon (14C) dating of peat layers, organic material, wood, 

215 plant remains, seagrass remains and marine shells. Radiocarbon ages were calibrated into sidereal years with 

216 a 2σ range. All SLIPs are presented as calibrated years before present (BP), where year 0 is AD 1950 

217 (Stuiver and Polach, 1977) and were calibrated using CALIB 7.1. We employed the IntCal13 and Marine13 

218 (Reimer et al., 2013) datasets for terrestrial and marine samples, respectively. Where available, local 

219 reservoir corrections were taken from either the Marine Reservoir Database (Reimer and Reimer, 2001) or 

220 from other published values.  In calibrating the samples of organic sediment, we assumed that the original 

221 depositional environment was a transitional zone in the back-coastal area, influenced by fluvial processes as 

222 well as marine inputs. Therefore, for sediment dates where the percentage of marine carbon was available 

223 (Melis et al., 2017, 2018) a mixed IntCal13/Marine13 calibration method was applied (Di Rita et al. 2011, Di 

224 Rita and Melis, 2013).  
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225 A concern with old radiocarbon ages is the correction for isotopic fractionation (Törnqvist et al., 2015) that 

226 became a standard procedure at most laboratories by the mid-1980s (Hijma et al. 2015). In the database, the 

227 majority of samples were dated after 1990 and, therefore, most are not subject to this potential source of 

228 error. For the seven ages that are affected, we followed the procedure described by Hijma et al. (2015) to 

229 correct for isotopic fractionation. 

230

231 5. Prediction of RSL

232 The RSL calculations presented herein have been performed using the Sea Level Equation solver SELEN 

233 (https://geodynamics.org/cig/software/selen/). The program, which was first introduced by Spada and 

234 Stocchi (2007) adopting the classical GIA theory of Farrell and Clark (1976), has now been improved and 

235 includes the rotational feedbacks on sea level, according to the method outlined by Milne and Mitrovica 

236 (1998). Furthermore, following the generalised Sea Level Equation theory described by Mitrovica and Milne 

237 (2003), our calculations fully account for the horizontal migration of the shorelines, for the transition from 

238 grounded to floating ice and for time variations of the ocean function in response to sea-level variations. In 

239 our GIA runs, we adopted the recent ICE-6G_C chronology (Peltier et al., 2015), and the mantle rheological 

240 profile VM5a. The Sea Level Equation is solved to harmonic degree 256, on a global equal area grid with 

241 spacing of ~20 km.

242

243 6. Results

244 We assessed 169 new radiocarbon-dated RSL data points collected in the western Mediterranean Sea. We 

245 combined these new data with 78 RSL data reported in Vacchi et al. (2016). We then reconstructed the RSL 

246 histories of the 5 regions using a database comprising 165 SLIPs and 70 limiting points (appendix A). 12 

247 data points were rejected because of  i) dating problems (i.e., Bonifacio Strait beachrocks, Vacchi et al., 

248 2017) and anomalous 13C (‰) values of the sample, ii) difficulties in the definition of the indicative 

249 meaning and iii) discrepancies in the measurements of the altitude of archaeological structures. 

250 The newly produced RSL data points (163 SLIPs and limiting points) constitute ~68% of the present 

251 database; the number of SLIPs (figure 2A) was increased by ~58% with respect to the Vacchi et al. (2016) 

252 compilation. It has engendered a significant improvement in the assessment of the RSL histories of the 
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253 Western Mediterranean. The age range of the new data spans the last ~12.0 ka BP (figure 2A), with a 

254 considerable increase in the number of SLIPs, notably for the mid to late-Holocene (figure 2B). 

255

256 6.1. Catalonia coast (Region 1)

257 In region 1, we improved the RSL history with 15 SLIPs and 19 terrestrial limiting points spanning the last 

258 ~6 ka BP (figure 3). These data, coupled with the previously available SLIPs, facilitate the reconstruction of 

259 the RSL history for the last ~6 ka BP. A suite of early-Holocene SLIPs documents a rapid rise in RSL from -

260 40 ± 0.8 m at ~12.0 ka BP to -12.3 ± 0.7 m ~8.4 ka BP. In the mid-Holocene, there is a significant 

261 discrepancy between the new data and some of the older SLIPs (figure 3). However, two basal SLIPs 

262 robustly place the RSL position at ~-3.0 m at ~5.8 ka BP. RSL rose slowly to -2.6 ± 0.5 m at ~4.6 ka BP and 

263 at -0.8 ± 0.6 m at ~2.0 ka BP.  In the last 1.5 ka BP the total RSL variation was -0.1 ± 0.6 m.

264

265 6.2. Balearic Islands (Region 2)

266 The RSL record for region 2 includes 27 SLIPs and 7 limiting points (figure 3). They constrain ~9.5 ka BP 

267 of RSL evolution in an area lacking any previous sea-level reconstructions. A suite of marine limiting points 

268 constrains the RSL to above ~-21 m at ~9.5 ka BP, above ~-11.5 m at ~8.4 ka BP and above ~-10.8 m at 

269 ~8.0 ka BP. The oldest SLIP indicates that RSL was at -6.9 ± 0.8 m at ~7.9 ka BP, followed by a continuous 

270 rising rate which brought the RSL to -3.6 ± 0.8 m at ~7.2 ka BP and to -1.5 ± 0.8 m at ~6.0 ka BP when a 

271 SLIP places RSL at -1.5 ± 0.8 m. Since that period, the rising trend has slowed dramatically, with total RSL 

272 variation being within 1.7 m during the last 5.3 ka BP. Younger SLIPs place the RSL at -0.5 ± 1 m at ~3.5 ka 

273 BP and at -0.4 ± 1 m at ~2.0 ka BP. 

274

275 6.1. Gulf of Valencia (Region 3)

276 In region 3, we improved the RSL record with 12 SLIPs and 5 limiting points spanning the last ~8.2 ka 

277 (figure 3). These new data, added to the previously available ones, allow us to assess the RSL history for the 

278 last ~9.1 ka BP, when the oldest SLIP places the RSL at -16.1 ± 0.6 m (figure 3). RSL rose rapidly to -10.6 ± 

279 0.6 m at ~8.7 ka BP, to -4.6 ± 0.5 m at ~8.2 ka BP and to -2.1 ± 0.3 at ~7.5 ka BP. Despite significant scatter, 

280 younger RSL data clearly show a significant deceleration in the rising trend. At ~4.8 ka BP, one SLIP places 
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281 the RSL at -0.9 ± 0.3 m while the remaining data are consistent with total RSL variation not exceeding 1 m 

282 in the late-Holocene period (figure 3). 

283

284 6.4. Corsica Island (Region 4)

285 In region 4, we improved the RSL record with 27 SLIPs and 16 limiting points spanning the last 5.4 ka BP 

286 (figure 4). These data, merged with the previously available ones, constrain a RSL history that spans the last 

287 ~8.8 ka BP (figure 4). The oldest SLIPs are both beachrocks and document a progressive RSL rise from -

288 17.5 ± 1.6 m at 8.8 ka BP to -3.8 ± 0.8 m at ~5.4 ka BP. One younger lagoonal SLIP places the RSL at -1.4 ± 

289 1.0 m at ~4.6 ka BP. Since this period, the RSL is robustly constrained with the new SLIPs (mainly from 

290 lagoonal samples) that are in very good agreement with the previously available Lithophyllum byssoides 

291 SLIPs. At ~4.5 and 3.5 ka BP, RSL was at -1.77 ± 0.5 and -1.1 ± 0.3 m, respectively. RSL rose slowly to -

292 0.8 ± 0.3 m at ~2.1 ka BP and the total RSL variation in the last ~1.6 ka BP was within ~0.7 m. 

293

294 6.4. Sardinia Island (Region 5)

295 In region 5, we improved the RSL record with 17 SLIPs and 18 limiting points spanning the last  ~7.7 ka BP. 

296 These data, merged with previously available ones, shed new light on a RSL history covering the last ~11 ka 

297 BP (figure 4). A suite of basal and beachrocks SLIPs documents the rapid RSL rise of the early-Holocene 

298 from -45.5 ± 1.6 m at ~10.8 ka BP to -27 ± 1.1 m at ~9.4 ka BP. At the beginning of the mid-Holocene, two 

299 basal SLIPs place the RSL at -8.2 ± 1.2 and at -7.4 ± 1.2 m at ~7.7 and ~7.5 ka BP, respectively. These data 

300 are only partly in agreement with two terrestrial limiting points derived from Neolithic burials (~7.3 ka BP) 

301 found in the Grotta Verde cave. In fact, a first limiting point constrains the RSL below ~-8 m while a second 

302 one constrains the RSL ~2 m deeper (below -10 m, Figure 4). The subsequent mid-Holocene RSL evolution 

303 is constrained by a suite of SLIPs placing RSL at -4.4 ± 0.8 m at ~6.0 ka BP, at -3.6 ± 0.8 m at ~5.6 ka BP 

304 and finally at -2.2 ± 1.1 m at ~4.6 ka BP. The new mid-Holocene dataset shows significant discrepancy with 

305 respect to the previously available SLIPs, mainly represented by the lagoonal samples from the Gulf of 

306 Cagliari and the beachrocks found in the northern sector of the Island (figure 4). 

307 The late-Holocene record shows significant scatter, mainly related to the large error bar of most of the 

308 SLIPs.  A SLIP places the RSL at -2.3 ± 1.0 m at ~3.1 ka BP. At ~2.6 ka, a marine limiting point constrains 
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309 the RSL above -1.1 ± 0.2 m, in agreement with a slightly younger (~2.5 ka BP) SLIP that places the RSL at -

310 1.4 ± 1.0 m. At ~2.0 ka BP, archaeological RSL datapoints (SLIPs and terrestrial) constrain the RSL to 

311 between -0.6 and -1.4 m while a younger SLIP places the RSL at -0.3 ± 1.1 m at ~1.3 ka BP. 

312

313 7. Discussion

314 The main result of our work is a new compilation of RSL data that significantly improves the reconstruction 

315 of RSL histories for five Western Mediterranean regions that were previously characterized by either a 

316 paucity of data or conflicting records (Vacchi et al., 2016). The newly assembled database therefore 

317 constitutes an essential benchmark to evaluate RSL patterns in the western Mediterranean Sea. 

318 In effect, sediment compaction significantly influenced previous RSL reconstructions, such as those recorded 

319 in the Ebro and Llobregat deltas (Somoza et al., 1998; Gámez Torrent, 2007) and the Cagliari coastal plain 

320 (Orrù et al., 2004; Antonioli et al., 2007). Moreover, dating problems associated with old beachrock samples 

321 from sites located between Corsica and Sardinia (figure 4, Bonifacio Strait, Nesteroff, 1984; De Muro and 

322 Orrù, 1998) led to poor constraints on RSL evolution, notably for the mid to late-Holocene (Vacchi et al., 

323 2017). 

324 The newly assembled RSL record clearly shows a rapid rise in the early-Holocene (~12.0 to ~8.0 ka BP) 

325 followed by a sudden slowdown in the rates of RSL rise in the mid-Holocene (~7.5 and ~4.0 ka BP) and, 

326 finally, by minimal changes during the late-Holocene (since ~4.0 ka BP). This sudden reduction in the rising 

327 rates closely mirrors the final phase of the North America deglaciation (~7.0 ka BP; Lambeck et al., 2014). 

328 This Holocene sea-level behaviour is in agreement with the pattern previously reported along the tectonically 

329 stable coasts of the Western Mediterranean (Vacchi et al., 2016). 

330 The new record from Catalonia shows agreement with the ICE-6G (VM5a) GIA model and is comparable, 

331 within errors, to the reconstructed RSL histories of the French Mediterranean coast and northwest Italy 

332 (Vacchi et al., 2016). This suggests minimal variations in the isostatic pattern over much of the northern 

333 coast of the western Mediterranean. 

334 Similarly, the ICE-6G (VM5a) model shows agreement with the data from Corsica and Sardinia, where the 

335 expanded RSL record allowed us to resolve conflicting data and to improve our ability to quantify the 
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336 maximum isostatic contribution in the western Mediterranean basin by very significantly increasing the 

337 number of SLIPs for the last ~8.0 ka BP (see details in section 7.1). 

338 By contrast, the model underestimates the RSL position in both the Gulf of Valencia and in the Balearic 

339 Islands, especially for the mid-Holocene. However, the RSL record from Valencia cannot be considered as 

340 an ideal setting for testing GIA models, because the area is potentially affected by land-level changes related 

341 to historical seismicity (Olivera et al., 1992; Anzidei et al., 2014). Moreover, GPS vertical velocities 

342 document a general subsidence trend (≤ 2 mm a-1), especially for the Valencia coastal plains (Serpelloni et 

343 al., 2013), where most of the data were collected. For this reason, the RSL record from Valencia should be 

344 used with caution because post-depositional vertical changes (either positive or negative) may have affected 

345 the current elevation of the SLIPs and limiting points.

346 The Balearic Islands are located far from the Mediterranean’s major tectonic boundaries (Faccenna et al., 

347 2014; Devoti et al., 2017) and have been affected by negligible historical seismicity (Nocquet, 2012) and by 

348 minimal vertical motions during the last ~125 ka BP (Dorale et al., 2010; Stocchi et al., 2018). Here, the fit 

349 between the ICE-6G (VM5a) GIA model and the geological RSL data does not appear to be completely 

350 satisfactory, especially with regards to the mid-Holocene. This raises intriguing questions and issues 

351 potentially related to GIA processes that we address in section 7.2. 

352

353 7.1. New insights into the RSL evolution of Corsica and Sardinia

354 A variety of geophysical models (Lambeck and Purcell, 2005; Stocchi and Spada, 2007; Roy and Peltier, 

355 2018) predict maximum GIA-related subsidence in the centre of the western Mediterranean basin and 

356 notably along the coasts of Sardinia. This assumption was questioned by Pirazzoli (2005), who, for the last 

357 two millennia, suggested a general overestimation of the predicted isostatic signal in this area. In a more 

358 recent analysis, Antonioli et al. (2007) and subsequently Lambeck et al. (2011) improved the knowledge of 

359 the RSL evolution of Sardinia by combining previously available data (Lambeck et al., 2004) with a number 

360 of archaeological RSL indicators spanning the last 2.5 ka.  

361 These coastal archaeological structures, mainly comprising coastal quarries, harbour structures and tombs 

362 provided new points to reconstruct the RSL history of Sardinia, representing a minimal limit for the RSL 

363 position (i.e., terrestrial limiting points, Auriemma and Solinas, 2009; Morhange and Marriner, 2015). These 
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364 data, coupled with the new SLIPs included in the present database are not consistent with a negligible RSL 

365 variation in the last 2.0 ka BP as indicated by Pirazzoli (2005). Specifically, they are consistent with a RSL 

366 change greater than ~0.8 m in the last ~2.3 ka BP (Phoenician tomb found at ~-0.76 m MSL; Antonioli et al., 

367 2007). Unfortunately, the large vertical uncertainties of the new Sardinian SLIPs do not help to significantly 

368 improve the quality of the late-Holocene RSL history. 

369 Conversely, the new dataset for Corsica robustly corroborates the previous RSL reconstructions (Laborel et 

370 al., 1994; Vacchi et al., 2017), with an entire RSL variation that has not exceeded ~1.5 m since the beginning 

371 of the late-Holocene. During this period (e.g., last ~4.0 ka BP), any RSL change in tectonically stable regions 

372 is entirely controlled by GIA-related subsidence (e.g., Milne et al., 2005; Engelhart et al., 2009). The new 

373 dataset for Corsica suggests a relatively uniform GIA-related subsidence pattern for the whole island, with 

374 rates of ~0.4 mm a-1 during the last 4.0 ka. Even if the magnitudes are different, current GIA models (e.g., 

375 Stocchi and Spada, 2009; Lambeck et al., 2011; Roy and Peltier, 2018) predict an increase in GIA 

376 subsidence rates from Corsica to Sardinia. Unfortunately, the lack of robust SLIPs for Sardinia during the 

377 last 4.0 ka BP hampers a proper assessment of this assumption, and additional investigations are therefore 

378 required to improve understanding of the local late-Holocene RSL history. 

379 By contrast, the new dataset for Sardinia has yielded new information to assess the mid-Holocene RSL 

380 evolution of the area. As stated in the introduction, the previously available data were mainly based on 

381 lagoonal samples from the Cagliari plain (probably effected by compaction, Antonioli et al., 2007) and on 

382 beachrock samples mostly collected in the Bonifacio strait (Nesteroff, 1984, De Muro and Orrù, 1998), 

383 which are potentially affected by apparent younger ages related to problems in the radiometric dating of bulk 

384 cement more than 30 years ago (Vacchi et al., 2017).  The new lagoonal SLIPs, collected from both the 

385 eastern and the western coasts of the island, show a significant departure from the data previously available 

386 for the Sardinian coast. In fact, the new dataset is consistent with a RSL variation that did not exceed ~9 m in 

387 the last ~7.5 ka BP. This is concomitant with the Neolithic burials (~7.3 ka BP) found at ~-8.5 m in the 

388 Grotta Verde cave (Antonioli et al., 1996; 2012; Guillot, 1997), but conflicts with the coeval pottery found in 

389 the same cave at -10 to -11 m (Benjamin et al., 2017; Palombo et al., 2017). Exploration of this submerged 

390 cave dates back to the 1970s (Lo Schiavo, 1987) and it represents one of the oldest archaeological findings 

391 used to infer past sea level in the Mediterranean (Benjamin et al., 2017). However, considerable debris flow 
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392 is reported along the flank of the cave and several ceramic fragments were found mixed within these debris 

393 down to ~-22 m (Guillot, 1997). Furthermore, lack of information on the levelling tools adopted during the 

394 cave exploration makes difficult to properly assess the vertical uncertainty of these archaeological findings.    

395 The large number of SLIPs produced in this paper seems to suggest that the terrestrial limiting point found at 

396 -10 to -11 m may significantly underestimate the RSL position in the first portion of the mid-Holocene. 

397 However, new high-resolution mapping of archaeological findings and of the stratigraphic context of the 

398 Grotta Verde are imperative to shed fresh light on this important palaeo sea-level position.

399

400 7.2. The Balearic Islands: an isostatic conundrum 

401 The new dataset from the Balearic Islands is interesting for an assessment of the GIA pattern within the 

402 Mediterranean basin. This is because the maximum GIA-related subsidence of the whole Western 

403 Mediterranean (with a magnitude comparable to Sardinia) is predicted in the Balearic region (Lambeck et al., 

404 2004; Lambeck and Purcell, 2005; Stocchi and Spada, 2007; Roy and Peltier, 2018, figure 5B). However, 

405 comparison with the Sardinia record shows clear discrepancies with the Balearic Islands, with the RSL 

406 history in the latter plotting significantly above the first one. For instance, at ~6.0 ka, RSL in the Balearic 

407 Islands (figure 3) was at least ~2 m higher than in Sardinia (figure 4).  

408 As already discussed above, the Balearic Islands are considered to be amongst the most tectonically stable 

409 areas of the Mediterranean (Fornós et al., 2002; Dorale et al., 2010; Sàbat et al., 2011). Thus, any possible 

410 tectonic movement cannot account for the observed discrepancy that is most likely related to a differential 

411 GIA response in this Mediterranean sector. The RSL history of this portion of the basin may thus represent 

412 an unicuum in the western Mediterranean, for which the entire RSL variation in the last ~6.0 ka BP is within 

413 ~2.5 m. The new lagoonal data are in agreement with the RSL reconstruction proposed on the basis of 

414 archaeological findings and submerged speleothems (Gràcia et al., 2003; Tuccimei et al., 2010) and provides 

415 evidence that GIA-related subsidence for this sector of the Mediterranean basin was minimal. 

416 In figure 5A, we compared the best estimates of RSL changes in the Balearic Islands with Sardinia, both 

417 spanning the last ~8.0 ka BP. In these regions, a comparable GIA fingerprint is predicted by the available 

418 models (Galassi and Spada, 2014, figure 5B). 
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419 This comparison suggests a significant offset between the two RSL records, in conflict with the GIA model 

420 predictions. Although these data need to be corroborated by additional RSL investigations, we remark that 

421 understanding the causes of the departure of the Balearic record with respect to other regions in the database 

422 is crucial in refining the geography of isostatic processes in the Mediterranean. This is, in turn, essential in 

423 (i) defining future relative sea-level rise scenarios (e.g., Church and White, 2006; Love et al., 2016) and (ii) 

424 testing the exportability of global GIA models (e.g., Roy and Peltier, 2018). Concerning the model 

425 predictions, it should be noted that the GIA models currently employed to model RSL in the Mediterranean 

426 Sea (Lambeck and Purcell, 2005; Stocchi and Spada, 2007, 2009; Roy and Peltier, 2018) are affected by a 

427 major limitation – they do not take into account the lateral variations in mantle viscosity or in the thickness 

428 of the lithosphere. From global calculations, we know that these may well affect the Earth’s response to 

429 deglaciation (e.g., Spada et al., 2006).

430

431 8. Conclusions 

432 In this paper, we produced a new dataset of RSL index and limiting points for a number of Mediterranean 

433 regions effected by minimal tectonic influence and where GIA was the major driver of RSL evolution, 

434 notably for the last 8000 years. The isostatic pattern defined from newly assembled databases shows 

435 significant disparity with respect to those predicted by present GIA models. In particular, the new data 

436 outline a non-coherent isostatic response of the central portion of the western Mediterranean, with the 

437 Balearic Islands manifesting significant departures from the RSL evolution recorded in Corsica and Sardinia. 

438 The new data presented in this work are crucial in defining the maximum magnitude of GIA contribution 

439 along the Mediterranean coast. Ongoing GIA-related vertical motions represent a key parameter to quantify 

440 any possible post-industrial acceleration in RSL rise and to define future scenarios of coastal inundation in 

441 the Mediterranean region.

442
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827 Figure captions

828
829 Figure 1. Spatial extent of the study area. Numbered rectangles denote the location of sea-level data for this 

830 study, grouped into five regions as explained in the text. Tectonic framework of the western Mediterranean. 

831 Faults are modified after Faccenna et al. (2014) and Vacchi et al. (2016).

832
833 Figure 2. A) Total plot of the 165 SLIPs used for the RSL reconstructions in the 5 regions. Red SLIPs 

834 represent those produced for the present database. Grey SLIPs are those included in the Vacchi et al. (2016) 

835 compilation. B) Stacked histogram of the SLIPs showing an increase in the number of SLIPs compared to 

836 the Vacchi et al. (2016) compilation. 

837
838 Figure 3. RSL reconstructions in Catalonia (1), the Balearic Islands (2) and Gulf of Valencia (3) regions. 

839 SLIPs (boxes) are plotted as calibrated ages against change in sea level relative to present. Limiting points 

840 are plotted as terrestrial or marine horizontal lines. The dimensions of boxes and lines for each point are 

841 based on elevation and age errors. Black lines denote the geography of relative sea-level predictions 

842 calculated using SELEN and adopting the ICE-6G (VM5a) GIA model (see section 5). Pe: Pego; Va: 

843 Valencia; Am: Amenara; Ed: Ebro Delta; Cu: Cubelles; Ll: Llobregat Delta; Em: Empuries, Al: Alcudia; Gr: 

844 El Grau.

845
846 Figure 4. RSL reconstructions in northern Corsica (4) and Sardinia (5) regions. SLIPs (boxes) are plotted as 

847 calibrated ages against change in sea level relative to present. Limiting points are plotted as terrestrial or 

848 marine horizontal lines. The dimensions of boxes and lines for each point are based on elevation and age 

849 errors. Black lines denote the geography of relative sea-level predictions calculated using SELEN and 

850 adopting the ICE-6G (VM5a) GIA model (see section 5). Cc: Cap Corse; Cf: Cala Francese; Sc: Scandola; 

851 Sl: Sale lagoon; Sa: Sagone; Tg: Tanghiccia; Cv: Cavallo Island; Bs: Bonifacio Strait; Mj: Mignataghja; Ps: 

852 Posada; Ca: Capo Caccia; Cl: Cala Liberotto; Or: Gulf of Oristano; Tb: Terralba; At: Sant`Antioco; Mf: 

853 Capo Malfatano-Piscinni; Nr: Nora; Cg: Cagliari.

854
855 Figure 5. A) Top: 4th-order polynomial fits of the Balearics (blue, region 2) and Sardinia (red, region 5) 

856 SLIPs. Bottom: Difference between the two fitted RSL curves through time, in metres. B) GIA sea-level 

857 fingerprints for 2040–2050 relative to 1990–2000 in the Mediterranean Sea (modified from Galassi and 



30

858 Spada, 2014). Predictions were obtained by SELEN (Spada and Stocchi, 2007), using models ICE-5G 

859 (VM2) (a, Peltier, 2004) and KL05 (b, Lambeck et al., 1998, Lambeck and Purcell, 2005).

860
861 Appendix A: SLIPs and limiting points included in the Relative Sea Level database. Latitude and Longitude 

862 are expressed in decimal degrees. 

863
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Table 1. Summary of the indicative meanings used to estimate the relative elevation of the sea-level index points (SLIPs) and limiting points for the database 

(see Vacchi et al., 2016 for the detailed facies descriptions). HAT: Highest Astronomical Tide; MHW: Mean High Water; MLW: Mean Low Water; MSL: Mean 

Sea Level. Note that the investigated coastal sectors have a lower microtidal regime. HAT values are equivalent to the Mean Highest High Water and typically 

do not exceed 0.05 m above MHW. Similarly, the Mean Lowest Low Water values are equivalent to the MLW.

Sample Type Evidence Reference Water Level Indicative Range

SLIPs

Lithophyllum 
byssoides rim

Identifiable in situ coralline rhodophyte Lithophyllum byssoides (formerly known as 
Lithophyllum lichenoides) recognized at species level (Laborel et al. 1994; Faivre et 
al., 2013).

(HAT to MSL)/2 HAT to MSL

Salt-marsh
Salt-marsh plant macrofossils (e.g. Vella et al., 2005; Di Rita et al., 2010, Primavera et 
al., 2011). Foraminiferal assemblages dominated by saltmarsh taxa (e.g., Caldara and 
Simone, 2005; Shaw et al., 2016, Cearreta et al., 2016).

(HAT to MSL)/2 HAT to MSL

Open or marine 
influenced lagoon

Macrofossil taxa dominated by marine brackish molluscs with the presence of 
Cerastoderma glaucum, Bittium recticulatum often associated with Cerithium 
vulgatum and Loripes lacteus (e.g. Di Rita et al., 2011; Giaime et al., 2017, Melis et 
al., 2018). Foraminiferal and ostracods assemblages dominated dominated by marine 
brackish littoral taxa or outer estuary taxa (e.g., Marriner et al., 2012b; Carmona et al., 
2016; Salel et al., 2016). Higher species diversity compared to the semi-enclosed 
lagoon system.

-1 m MSL to -2 m

Inner or semi 
enclosed lagoon

Macrofossil taxa dominated by brackish molluscs typical of sheltered marine-
lacustrine environments with the presence of Cerastoderma glaucum, Abra 
segmentum, Hydrobbiidae spp.  (e.g. Marriner et al., 2012b, Sabatier et al., 2012; 
Ghilardi et al., 2017a,b;).  Foraminifera and ostracod assemblages dominated by 
brackish littoral taxa or inner estuarine taxa (Ejarque et al., 2016; Salel et al., 2016, 
Cearreta et al., 2017). Lower species diversity compared to the open lagoon system.

-0.5 m MSL to -1 m



Undifferentiated 
brackish 
environment

Foraminiferal, diatom and ostracod assemblages dominated by freshwater-slightly 
brackish or swamp taxa and shallow marine taxa (e.g. Amorosi et al., 2013; Ghilardi et 
al., 2017a,b).

(HAT to MLW)/2 HAT to MLW

Beachrock with 
cement fabric or 
stratigraphic 
information

Samples showing intergranular intertidal cements (i.e., irregularly distributed needles 
or isopachous fibres of aragonitic cement or isopachous rims (bladed or fibrous) and 
micritic High-Mg Calcite cement e.g. Vacchi et al., 2012; Mauz et al., 2015)

(HAT to MLW)/2 HAT to MLW

General 
beachrock

Samples that do not meet the above requirements for a classification as intertidal 
beachrocks (e.g., Vacchi et al., 2016) 0.5 m -1 to +2 m MSL 

Limiting Points

Marine limiting

Identifiable marine shells in poorly to well-bedded sandy and silty sediments typical of 
the upper shoreface or prodelta environments (e.g., Sabatier et al., 2012; Marriner et 
al., 2012b). Posidonia oceanica beds found in inner bay and shoreface marine deposits 
(Vacchi et al., 2017; Pascucci et al., 2018). Foraminiferal and ostracod assemblages 
dominated by marine taxa (Carboni et al., 2002; Rossi et al., 2011 ; Amorosi et al., 
2013, Salel et al., 2017). 

MSL Below MSL

Terrestrial 
limiting

Freshwater plant macrofossils and peat with freshwater diatoms (e.g. Di Rita et al., 
2010; Melis et al., 2016). Upper beach/foreshore deposits and terrestrial paleosoils. 
Foraminiferal and ostracod assemblages dominated by freshwater taxa in swamps or 
fluvial environments (Carboni et al., 2002; Rossi et al., 2011; Salel et al., 2016).

MSL Above MSL


