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On a Ring-Shaped Service of Collective Taxis,
Part 1: Traffic Physics and Service Quality

Fabien Leurent, ]
Université Paris Est, Laboratoire Ville Mobilité &nsport, Ecole des Ponts ParisTech

Abstract

In the digital era of mobility, the generalizatioh connectivity for customers as well as for
vehicles has enabled for the development of diffekends of platform-based shared mobility
services. Here we consider a service of collediaés that combines on-demand access and
egress of customers and “transit cycles” of vebicdéong a ring-shaped circuit to serve
mobility demand.

The paper brings about a physical theory of custaane vehicle traffic in an abstract ring-
shaped service of collective taxis. The traffic tegs is parameterized by (i) on the
infrastructure side, the ring circumference andaherage run speed, (ii) on the vehicle side,
the cab passenger capacity and the stop time eehjtor pick up and drop off a passenger,
(i) on the service side, the fleet size and theet span of daily operations, (iv) on the
demand side, the trip volume and the average edgth. Spatial and temporal homogeneity
are postulated to devise a mathematical formulatiofl) cab occupancy and the availability
of vacant places to potential customers, (ii) dating, Alighting and Boarding phases
(CAB), (iii) average service speed, in the opergberspective, (iv) average commercial
speed, in the user perspective, yielding typiai time, (v) access length and typical access
time to an incoming user.

The mathematical treatment is based on a stochislstikov chain model of one collective
cab with state vector that combines the C/A/B statith the number of riders. We establish
the stationary regime of this dynamical stochasiistem and characterize its stochastic
equilibrium as a Fundamental Equation of Serviafikrin one scalar variable of load factor.
The solution is unique and it exists if a capaaiyguirement is satisfied. Closed-form
analytical formulas are provided to characterizeergvmodel outcome, together with
sensitivity properties with respect to all systeangmeters.
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1. Introduction

1.1 Background and literature review

In the big cities of emerging countries, for exaenplairobi and Addis Ababa in Africa,
collective taxis often account for 20 or 30% ofgm®ger transport (Ferro, 2015). The reasons
for this high modal share are twofold: on the oaedj a relative paucity of public transport
lines and private cars; and on the other handge larcal supply of collective taxis, which
attract large numbers of customers, making it jpds<go spread production costs and offer
attractive prices.

In the developed countries, collective taxi sersiaee only present in certain niche markets:
for example point-to-point links between an airpard the city center, or on-demand
transport services targeting a particular custopmpulation (particularly people without
private cars) and with relatively impractical opgarg conditions (booking a day in advance,
setting a time window for pickup, risk of signifitawaiting times, detours...) (Orski, 1977,
Jansson et al., 2016).

However, with the digital revolution, mobility hdscome connected and shared mobility
services are developing fast, particularly in biges in developed countries. The meteoric
rise of the Uber platform is one emblematic examipleéhe taxi industry, alongside other
competing firms (Lyft in the US, Didi in China, Oia India, etc.). Collective taxi services
seem to be the next source of growth for these eomep: for example, Uber Pool, Lyft Line,
Padam, etc. allow travelers to share the use atheshin real time, at much lower fares than
the individual taxi (around $5 or €5 per ride ityaientral areas). Moreover, the anticipated
arrival of self-driving vehicles will sharply redeiadriving costs, which will in turn lower
production costs by half or two thirds: this canex@ected to have similar effects on use as
the impact on taxis of the dramatic fall in trangat costs brought about by online platforms.

Collective taxi services (CTS) have given rise to academic literature in transportation
analysis that splits in two streams according ®rtbrientation towards either operations or
planning. Service operations have been modeledmiceoscopic way, detailing each vehicle
and each customer request, so as to develop spaflgbrithms for vehicle dispatching and
vehicle-customer matching (e.g. Malucelli et aB99, Lioris, 2010): such models involve
two levels of analysis, the lower one for dynamicnosimulation with much detail in both
space and time, the higher one to manage servieatgns and optimize the assignment of
resources. Yet service demand is exogenous asgersrated randomly from a stochastic
process with given parameters. Micro-simulation eledf Personal Rapid Transit systems
belong to that category (e.g. Andreasson, 19943 .22005), as do traffic modeling studies for
cities, for instance the simulation of self-drivisgared cabs for Lisbon city (ITF, 2015), the
simulation study of some shared mobility serviaasthe Zurich area (Horl et al., 2019) and
the Barcelona MaaS study by PTV (Lenz, 2019).

The second stream of literature is focused on sy§tlanning: it involves the demand side

and especially Travel Demand Modeling in order e¢oi\ce the potential usage, frequentation,
customership and fare revenues of a given CTS. @Eg§e is modeled per individual trip-

maker as the outcome of travel decisions, fromggperation to mode choice in which CTS
stands as a specific option that competes with mades of private car, mass transit, maybe
also bike and walk. Recent contributions includgrféat and Kockelman (2014, 2016) and
Fagnant et al. (2015).

Version Oc, 2nd April 2019 2/43



F. Leurent (UPE, LVMT, ENPC) Collective Taxi SeryRart 1 : traffic physics & service quality

The next step is to combine a supply-oriented madledervice operations and a demand-
oriented model of service planning in order fistensure physical consistency (e.g. Berrada
et al., 2019) and then to look for profitable besisn models (e.g. Horl, 2019).

On comparing the CTS academic literature to the o@me, a prominent difference is the
shortage of microeconomic theory for CTS. The necomomic theory of taxi services has
been pioneered by Douglas (1972) who identified faain components in a taxi service as a
system of supply and demand: namely combining @@@and function with respect to price
and wait time, (ii) a pricing rule linking the tHrifare to trip time, (iii) a production cost
function proportional to taxi time occupied and amag; (iv) a “delay distribution” i.e. a
function relating the taxi unoccupied time from tcuser drop-off to next customer pick-up,
to the density of vacant taxis and also the caedpe

The Douglas model has given rise to subsequentibations, notably Arnott (1996) who
considered homogenous 2D space to demonstratelteetive interest to subsidy taxi supply
in a less aggregative perspective, by Yang et2@0Z) who explored the effects of different
regulation policies on the market equilibrium oe tasis of a network model of taxi supply
and demand in the Hong-Kong urban area, and by Yamg. (2010) who put forward a
matching function to derive the respective waiteinof taxis and customers to fleet size and
demand volume.

Indeed, microeconomic analysis is required to beftelerstand taxi sharing, especially the
interaction between several customers using thee saghicle at the same time, thereby
imposing delays to each other.

1.2 Objective and contribution

The paper brings about a stylized analytical marfeh CTS as a system of supply and
demand. A basic set of modeling assumptions areiged both for the supply side and the
demand side, so as to model their dynamic intemacnd derive the “usage conditions” of
vehicle occupancy, vehicle availability times farstomers and ride time per user trip. Thus
the model deals primarily with traffic physics: y&e physical representation is stylized in
order to constitute a microeconomic model of a GKSa “technology function” that is
suitable for further economic analysis (such agpugemand equilibrium, optimal service
management, regulation policy).

More precisely, the demand is represented by arathwalume of demand trips over a time
period, its spread in space and the average tggthe Service supply is represented by fleet
size, vehicle capacity, run speed, average timgit& up and drop off an individual
passenger. From these parameters, postulatingcdisgpatial configuration as a ring shape,
specific service operational processes, on-demandce and a stationary traffic regime, we
obtain mathematical formulas for the probability w¢hicle availability, the statistical
distribution of vehicle occupancy by passengers, alierage access time, the average ride
time.

The formulas are relatively simple, especiallyvehicle capacity of 1 and 2. It is then easy to
assess the respective performances of differeniceespecifications under a given pattern of
demand.

Key to the analysis is a postulate of ring shapebiath demand and supply: the spatial
distribution of customer origins is postulated hg®wous along a ring (such as a circular
road) and the service vehicles are assumed toontincously, each in one direction along
the ring. While it may seem highly restrictive, theg shape in fact matches the basic
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principle of vehicle cycles in the operation ofrisé lines. The specific postulate induces a
spatial homogeneity that is essential to our mattiea analysis.

1.3 Methodology

Our modeling methodology combines elements frofii¢ranicrosimulation, queuing theory
and stochastic modeling. Space is represented sgeafic configuration of places: this
enables for the identification of different positsoin space as well as of distances between
points along the ring.

As for traffic microsimulation, we consider two kis of entities: collective taxis as vehicles
and individual customers that use the vehicles assgngers. Each entity is an individual
element of the set of its kind: individual situatsoare modeled in an abstract way owing to
stochastic modeling that enables for generic treatrand formal calculus.

The traffic model of CTS, with its vehicles as s¥s/and its customers, is related to queuing
theory in which a number of servers are availabiden certain conditions to a flow of
customers. The classical interpretation in quetimgpry is that servers have fixed positions
and that customers get to them as “arrival streashsérvice requests (e.g. Kleinrock, 1975).
In our model, the servers are mobile; every customaéts for one of them at their own place
prior to boarding, riding and alighting. Using pesfles of spatial homogeneity together with
some additional simplifications, we model everyigkhas a stochastic system with states and
transitions: the state vector combines the numbgassengers on board and the “logistical
status” either Circulating, Boarding and Alightinghe transition rates from one state to
another depend on the physical situation, notaldy number of on-board passengers, the
average trip length, the flow of customer arrivaatsl the base circulation speed.

Under the Markov postulate that the next systerte slapends only on the current one, we
study the stochastic equilibrium of the system dlyiag the balance equations of probability
flows between the elementary states. The resulitagionary distribution of probability
enables us to characterize the conditions of traffid usage in a fairly simple way.

Coming to the time dimension, stochastic equilibrioorresponds to a stationary regime of
system dynamics. The equilibrium distributions otess times, of vehicle occupancy and
availability are endowed with fairly simple anabal formulas.

In all, we obtain an analytical model of the seevaonditions (intensity of usage, quality of
service) according to supply and demand charatitexis

1.4 Paper structure

The rest of the paper is organized in eight paNfs. begin by specifying the territorial
framework and the service process (section 2). Maermodel the access time of a given
customer to the service as a random variable depgrmeh the number of available vehicles
(section 3). Next, we build up the stochastic modtlone vehicle by identifying the
elementary states and the transitions between thathpy specifying the transition rates as
functions of the state variable and exogenous peailens (section 4). We then study the
stationary regime and characterize its determinadi® a “Fundamental Equation of Service
Traffic” (FEST) in one scalar variable only, callékde “load factor” and denoted by
(section 5). Based on the solution of the FESTdestve the availability probability and also
the access length (section 6). We also deriveeghgce speed and the commercial speed that
correspond to vehicles and customers, respectigaly we emphasize the difference between
them as a traffic relativity effect typical of cetitive transit (section 7). The last consequences
pertain to the ride time and the access time @e®&). To conclude, we synthesize the model
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framework and also the directions of influencehsf tiverse factors onto the different model
outcomes (section 9).

Table 1: Notation
C ring circumferenceR ring radius,Q ring geometric centr€
¢ bandwidth of catchment area along the ring

M point along the ring, referred to by an@lebetweenQ Mgy and Q M
vy reference speed of vehicle running, excludingsstop

N fleet size (number of vehicles)
H period of service operations in a typical day

t¢ (resp.ts) delay caused to the vehicle to allow a custaiméoard (resp. alight)

K total number of places in a collective taxi (ispenger “capacity”)
Q demand volume: number of trips per day

Lr average length of cab ride requested by a custafme€DF of ride lengths

to = Lg /v, base ride time (under free flow speed)

tgr = Lg /Vv° effective ride time, under service speed

L, average access length from cab position to wadusjomer;F, CDF of access lengths
ta =L, / VO effective ride time, under service speed

n the number of customers on board a collectiveaaai given moment

o logistical status either C for Circulating, A falighting or B for Boarding

Psn the probability that the collective taxi will be stateo.n at a given momertt

P, Availability rate is the probability of cab havimge place available at a given momant
P, pseudo-availability rate

P- probability of Circulating phase

y ratio between demand and supply

p composite load index

x load factor

Y characteristic function involved in Fundamental &tpn of Service Traffic
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2. Territory, mobility and collective taxi system

Let us define the service of collective taxis bydifying first the territory and the ring sha
(8 2.1), then the mobility demano be served along the ring arterial (8§ 2.2), negtroadway
infrastructure and its traffic conditions (8 2.3)ddastly the service quality and its operatic
processes (8§ 2.:

2.1 Territory and ring shape

Here the “territory” refers o the geographical pace that i a set of places whic
accommodates a human population. Each place idifiddnby a point M in 2D space
which some activities can take ple

The idealterritorial configuration for an urban transit system is thfaa @inc-shaped city, ¢
claimed by Maupu (2006) and studied by Leurent §30ar a taxi service. Indeed, an arte
ring road enables collective taxis to circulate aisb to stop for passenger alighting
boarding

Let us postulate that such an arterial road existhe city and exhibits some ring shaj
circle, ellipse or a somewhat less regular circGibnsider a reference poi Q as “ring
center” and a reference “major axis” passing thioiigThen, each poirM along the rig is

characterized by polar coordinates: ar80[0,2r] between thevectors QMg on the majo

axisand QM , and radiusrg from the center

The main physical parameter of the circu its circumference, denoteC. If the ring is ¢
circle of radiusR, then rg=R for every angle® and we have thaC =2mrR. More
generally, we consider as “rinadius” the average radilR =C/(2m) . A second parameter

the width of the ring, sa2/ on average assuming that each position on thecang‘catct
up” trips for places up to distan ¢ from it.

Thusthe ring extends in two dimensions of space noy asla circuit but more brdly as a
band of land around, called its catchment area (cf. Figure

Area A

Fig. 1. Ring circuit and its catchment ar
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2.2 Mobility demand

We consider the mobility demand of individual usess the set of trips that they make
individually. On a given day, during service peridtime lengthH , there areQ such trips.

Each user trip is a 3-leg sequence of Walk, Rid® \Afalk legs. We focus on the Ride legs
and consider the ring arterial as the locus of Ridgins and destinations.

Spatial homogeneity is postulated: that each pMntalong the arterial generates ride trips
with uniform rate of generation and uniform stat@tk distribution of ride length fronM (in
each traffic direction). We shall denote By the CDF of ride lengths antg its average
value. Uniform origins generating i.i.d. trips yeliniform distribution of destination points
along the circuit.

We moreover postulate temporal homogeneity: by timi¢ within the service interval) /H
rides are generated.

2.3 Transport infrastructure and speed of travel

We postulate that a two-way arterial road runsugloall the points on the ring and serves all
the places along it. The following modelling asstions are made:

[11] in each direction of traffic, vehicles runat average speed denotedvgy

[12] a collective taxi may stop at any point to aor pick up or drop off a customer, without
disturbing the flow;

[I3] each collective taxi travels in only one ditiea: it never changes direction, whether or
not there are customers on board;

[14] servicing customers entails manoeuvres in ptddeave the traffic flow, to stop, to open
a door, to let the customer board or alight, tselthe door, to move off again and re-enter
the traffic flow. Each manoeuvre generates a débmythe vehicle, and therefore for the
customers on board and for customers who have lbdoakd are waiting. We will take into
account the cumulative effect of these manoeuvrdisa service speed.

2.4 The collective taxi service: quality of service andervice process

We further assume that rides are provided by alesingllective taxi operator, under the
following conditions:

[S1] a given vehicle type, with uniform level of méort and a number oK places for
simultaneous transport of passengers;

[S2] a ride time on board, denoted Iy, proportional to the distance coverég and
inversely proportional to the commercial speed;

[S3] the “customer process” in terms of the seqadPlan-Book-Ticket is managed by a web
application: for each ride, the transaction timethe customer ig;. For the collective taxi, a
customer’s boarding (resp. alighting) generateslaydoft (resp.ts).

[S4] an access time denoted iy between the moment the customer makes a requeshen
moment the collective taxi arrives to pick them This time is proportional to the length
that the collective taxi needs to cover betweerbtiwking and actual boarding.

In summary, the quality of service level for thesttumer is characterised in terms of comfort
level and timesg, tr andta.
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Concerning the operational management of the ssrwie assume the following service
process. We denote the size of the operator’'satodéetaxi fleet, and therefore the number of
vehicles, byN . We ignore the proportion of vehicles off the rdadmaintenance or repair.

At a given momenh:
[P1] the spaces occupied in the vehicles are tassigned to a customer;

[P2] available vehicles are those where there isadt one empty place, e.g. a seat with no
occupant;

[P3] when a new customer arrives, they inform tiistesm that they need a ride, and the
system assigns the request to the direction oklrthat minimises the distance covered on
board. Among the collective taxis travelling in thirection, the customer is assigned to the
nearest vehicle with a seat available at that mémen

[P4] the customer waits for this designated vehidearrive in order to board and be
transported to their destination point;

[P5] in each direction, the number of availableigtes is 5 NP, , where the probability of the

vehicle being available, i.e. having at least onecgupied space, is denoted By. It holds
that P, =1- px, where pi is the probability of a collective taxi being fulith its K places
occupied;

From [P3], each new customer request is treatenlgusie shortest route in terms of ride

distance. Assuming that the ride lengtlhs are distributed according to Cumulative
Distribution FunctionFy in each traffic direction, then

C/2

Le =E[L]= [ LdR(L). (2.1)

3. Access length

In a given direction of traffic, at a given momettie k available vehicles have random
positions that are distributed uniformly and indegently from each other on the road. At
every point where a request is generated, thentisthetween the customer position and that
of the i-th available vehicle is a random varialdle with uniform distribution in interval

[0,C]. The access length, is the minimum of the distancés.

Random variabld; has Cumulative Distribution Function as follows:

mir{ x, C}
C

The available vehicle closest to the customer teesthe ride in the assigned traffic direction
is located at distanck, = miniy; \ Li . This distance is distributed with CDF as follows:

F(x)=PiL<x= Yq) - (3.1)

Fa(X) =Pr{Ls <X} =Pr{min, L, < x}
=1-Pr{L; > x : 0i}
=1-[];P{L >x asthepositionsareindependetty distribute

Thus 1—FA(x):|‘|i(1—F,(x)):((1—%)+)k for x<C. (3.2)

From this stems the average access length conalitydo k :
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E[La | K] = |5 X0Fa (%) =[XFa(X)1S = [ Fa (X)dX
=C-C[J[1-(1-u¥]du=C[(1-u)*cu

_C
Thus ElLa K=~ (3.3)

This average value is conditional to the numkepof available cabs. In turn, this number
comes from theN, = N /2 cabs assigned to the traffic direction. Takingadkailability status
of cabs as independent Bernoulli-distributed vdeslvith success probabilitly, , thenk is
distributed binomial with parametef$, and B, . Its probability distribution function is:

N
Ok 0{0,1..N,} , R, :( kzj.P)\‘.(l— Py)Nek. (3.4)
The unconditional mean is then
N,! C
=NV N2 —\'N2 pk  — No—k 2
E[La] =2 RElLa | K] = 22 PE .= F) KI(N, k) K+1
_cyN PL.A-PO)M*N! _ C Ny PEHLL=Py)N* (N, +1)!
KD TN, =K (N +DPy, <0 (k+2) (N, —k)!
= C Ny +1 PAI\((]-_ PA)N2+1_k(N2 +1)'
(N, +)p, = k! (N, +1-K)!
C

=~ (- Q- PN
Noapp AR
Neglecting (L1- P, )N2* and approachindN, +1= N,, we obtain the following approximation
for E[La]:
C

E[LA]:N = .
2T A

(3.5)

4. Stochastic model of one cab

Let us now model the dynamical state of one cah s®chastic Markov chain. To keep the
model simple enough, we consider a state vectoighaduced to the logistical status and the
number of passengers on board. We shall first defie elementary states and the transitions
between them (8 4.1). Then, we model the transitadas so as to capture the physics of
service traffic: some simplifications are requitednake the model Markovian (8§ 4.2). Based
on the transition rates, we derive the stationasridution of probability that characterizes a
CAB system in stochastic equilibrium (§ 4.3).

4.1 States and transitions

In real time, a collective taxi is in one or otharthe following states, depending on the
numbern< K of passengers on board and the logistical plsase

» on the move withn>0, in a fixed direction and at speeg: a state denoted bg.n (C
standing for Circulating);

Version Oc, 2nd April 2019 9/43



F. Leurent (UPE, LVMT, ENPC) Collective Taxi SeryRart 1 : traffic physics & service quality

» on the move with no passengers on board or boaatimdjghting: a state denoted Hy.0
i.e. C.n with n=0;

» stationary for an additional passenger to boastate denoted by.n (B for Boarding);
» stationary for a passenger to alight: a state @ehioy A.n (A for Alighting).

As customers arrive individually and independerithyg transitions from one state to another
occur between “neighbouring states” as in a Birdwaid process i.e. from to n+1 or from
n+1 to n, and only betwee andC or betweenA andC:

« from C.n wheren<K, to B.n+1, each time the vehicle has to stop to pick upstcrner.
« from B.n+1 to C.n+1 when the boarding stop takes end.

 from C.n wheren=1 to A.n: each time one of the passenger’s rides ends dpthen
vehicle has to stop so that the customer can alight

e from A.n wheren=1 to C.n—1 when the alighting stop ends up.

Figure 2 describes the typical states and theitrans.

Arrival of 1 End of
more user Board stop

End of Ride of 1 user
Alight stop ends up

Fig. 2. Topology of states and transitions in CABrkbv chain.

4.2 Transition rates

We reduce the system description to the pairs of logistical statuso[1{C, A, Bl}and the
numbern0 {0,1,..K} of passengers on board. By takiogy as state vector, we omit such

things as the cab current position along the rihg,locations of pending customer requests
and the destinations of the riders. These are sstitw residual ride lengths from the cab
current position. Furthermore, we take the resideragths as independent random variables
identically distributed according to an exponentsal. Similarly, we take the boarding and

alighting times as independent random variablel exponential laws.

These approximations enable us to consider timegieddent transition rates that suffice to
model the system dynamics and derive its statiostate (e.g. Kleinrock, 1975).

Between states.n, transitions occur with positive rates only in tbbowing cases.

From C.n wheren<K, to B.n+1, each time the vehicle stops to pick up a newoeust:
per traffic direction, the total flow of customenas rateQ/(2H) and it is split intoN, Py
cabs. Then, per cab the customers arrive accotditige following rate:

Yy Lo
A=—, whereiny=——. 4.1
P y HN (4.1)
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This rate applies on average at any instant. Yé&tenrmodel only the system stat€s with
n<K can support customer arrivals. So, definiBg= Zr*f:'olPr{C n} the probability of such
supportive states, the effective arrival rate satisfies thatA'.P, =y instead ofA.R, =y,
hence

vt Q@ (4.2)

We call Py the pseudo-rate of availability.

RateA' applies for any transition fror@.n with n<K, to B.n+1.

Let us now consider a transition froBin to C.n. As a boarding stop has average duration of
ts, we model its duration by an exponential randomadde of identical mean, hence with
parameterl/t. Thus, the transition fronB.n to C.n occurs at time raté/t, which is the
time rate at which that kind of random variable esro its end.

Similarly, let us consider a transition from.n wheren>1, to C.n—-1. As an alighting stop
has average duration d§, we model its duration by an exponential randomabde of
identical mean, hence with parametéts . Thus, the transition fromh.n to C.n—1 occurs at
time ratel/ts.

Lastly, a transition fromC.n with n>1, to A.n corresponds to the ending of a ride for one
on-board passenger. As a ride requests an aveuagénme of t; =Lz /vy, we model the
duration as an exponential random variable of idahtnean, hence with parameiee 1/t;.
The transitions fromC.1 to A.1 will occur at time ratqu of ride ending. FronC.n to A.n
with n>1, the transition occurs with rate equalrtotimes 1 since any of then riders may
end his or her ride. Ratap is the rate of ending of the ride of minimal resitl length

among the n ones. Indeed, among n independent erpahvariables, the minimum is still
an exponential variable, its parameter being the efithose of its arguments, henogt if

they are identically distributed of parameger

To sum up, denoting bglM the transition rate frons.n to T.m, we have:

z8ml =" for n<K, (4.3a)
z§n =1/t for n>0, (4.3b)
z§h,, =1/t5 for n<K, (4.3c)
zZ2h=np=n/ty, for n>0. (4.3d)

4.3 Stationary regime and distribution

Along the time dimension, which we index by instantstateo.n has a probabilityp, ,(h)

that varies owing to transition occurrences. Thaghan-Kolmogorov equation is as follows
for a short time lapsh from h:

Pon(h+3h) = pgn(h) —0hpsn(h).( 2 Z57) +0N.( 2 ZZ7.pem(h)) .- (4.4)

T.Mm#0.n T.m#0.n

The state probabilities are stable over time ifdach state the probability flows in and out of
it are balanced. This condition is called the ldmbnce equation (dropping the time index):
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po.n-( Z Zttxrrrl]) = 2 ZZim-Pem - (4-5)
T.M#0.n T.M#£0.N

At B.n the local balance equation ipg,, /t& = pcn-tA': then

Pen = Pcn-tA'tE for n<K. (4.6a)
At A.n the local balance equation ips ,/ts = pcp.NU : then

Pan = Pcn-Npts for n>0. (4.6b)

Let us now split the set of states in two subdeysartificially cutting the transitions from
C.n-1to B.n and fromC.n to A.n. Between the two subsets, the flow balance candis

PcnaA' = Pcn i, SO that

T

Pcn =—-Pcnga forn>0. (4.6¢)
Nyt
Combining (4.6c) and (4.6b), we recover that
Pan = PcnaA'ts for n>0. (4.6d)
Let us define a “load factork =A'/ . By induction, it comes out that
X nx_xn
Pcn =—Pcn1= Peo[]+=—5-Pco forn>0. 4.7)
n =11 nl

Denote alsax, = x"/n!, py = pco and tg =t +ts.

For everyn(1{0,1,..K -1}we can put together the stat€sn, B.n+1 and A.n+1: their joint
probability amounts tq; = (L+A'ts).pcp, -

Then, the total probability of all states is
Ps = Pc +Zr}1<=_olpﬁ = Po-Xk +Z§=_olpc.n @+A'ts)

= PoXe + Yoo PoXn (L+ XLs)
= po(X+ ax X)

Wherein:a =tgt :I—S, X =YK x, and X saix =%
0 X

As the total probability is equal to 1, it followsat

1
= = 4.8
Po X+ax.X (4.8)
From this and (4.6) we get that:
n-1
Pan = PN's ——— for nO{1,..K} . (4.9a)
(n-1!
_ et Xn—l
Pe.n = PoA'ls (n=1)! for n0O{1,..K} . (4.9b)
Xn
Pen = Po— for n0{0,1,..K}. (4.9¢)
n!
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Figure 3 depicts the stationary distribution ofability for K =4, t, =18 min, t{ = 45 s
andts = 75 s andx = 226.

p(B,n)
H p(C,n)

020 ®p(A,n)
0,15
0,10
0,00 - T T T T
0 1 2 3 4

Fig. 3. Stationary distribution.

5. Stochastic equilibrium and FEST

The stationary probability distribution of the CAfBates involves the flow rate of customer
arrivals per available cab. By combining the assed conditions, we obtain a Fundamental
Equation of Service Traffic (FEST) that charactesizhe CAB system state in stochastic
equilibrium (8 5.1). The FEST is a mono-dimensionahlinear relationship linking a service
load factorx as unknown variable, to exogenous conditions afalel volume, service time
span and fleet size that are encapsulated in aasiteparameter denotg We shall study

this parameter and analyze its sensitivity to Xsgenous factors (8 5.2). Turning to th&
function that relatex to p, we will provide a physical interpretation, establmathematical

properties and its sensitivity with respect to capacityK (8 5.3). Next, we demonstrate the
existence and uniqueness of a solution to the F&ST we establish its sensitivities with
respect to the different model parameters (8 %.43tly, we provide a general computation
scheme, together with analytical solutions to tB&F with K =1 andK =2 (§ 5.5).

5.1 Fundamental equation of service traffic

Based on demand volun@, service time spaid and fleet sizeN , all taken as exogenous

factors, let us define a composite parameter gh#he average cab productivity in rides per
day:

Q
—. 5.1
ON (5.1)
The flow rate of customer arrivals per availabld,ca’ defined in (4.2), can then be
expressed as

y

N=ylP,. (5.2)

There are two relations betwee¥i and the load factox. The first one consists in the
definition of the pseudo-rate of availability, whican be restated as:

PA =X pen = PoX. (5.3a)

The other relation consists in the definitionxof
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X=A'ty=yty/Ps. (5.3b)
Combining the two relations, we obtain a uniqueditoon that characterizes:
x=Ybo
P X

:yTtO(X+ axX) afterreplacingp, by its expressiomwith respecto x
As a=tg/ty, we get that
_Yb ts gy X
X=——(X+=2xX) = y(tg=—+1t5X) .
< ( t ) Y(ox s X)

Recombining, it comes out that

X - Ylo_| (5.4)
XKy 1-ty
The subscripts (K) remind tha and X involve the cab capacitif .
Let us define:
A
pP=E . (5.5a)
1-ty
X
W (x) = 2000 (5.5h)
(K)

Proposition 1 (FEST) (i) Apart from cab capacityK, the exogenous factors in the CAB
model are summarized by the composite parametel(ii) The stationary state depends

entirely on a factor x that must satisfy the follogvequation, called the FEST:

W (X) =p. (5.6)
Proof. The modelling assumptions made in Section 4.2yir(a4) as a necessary condition.
It determinesx with respect to exogenous factoks, Q, H, N, t¢, ts, Lg and vy, via
y=Q/HN), ts=td+ts and ty=Lg/vy. Apart from K, all of the exogenous factors
influencex via p only, making (i) hold true. In turn, under the idéfons (5.5), then (5.4)
implies (5.6), yielding point (ii).

Figure 4 depicts sever&8 graphs for different values df .
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Fig. 4. Graphs ofP, functions.

5.2 Properties of composite parameteip

Given fleet sizeN and time sparH, the total vehicle operating timd N must meet two
requirements from th& customers:

* The first requirement pertains to dwell time, ateleQ(t$ +t5) = Qits: the constraint is
Qis<NH.

» The other one involves base ride times: as thezeKarplaces per cabQ.t, < K.N.H,
yielding a vehicle time requirement Qft,/ K < N.H.

As the dwell times and the base ride times ar®idisjit must hold that
Q.(ts+ ) < N.H, or equivalently
y.(ts + 1) < 1.
Recombining, we get the following condition that

Yo g, (5.7)
1-yts

In which the composite parametercan be recognized.
This establishep as a cab occupancy index that must be lower thhrcapacityK .

Proposition 2: Sensitivity of cab load index p. Provided thaty>0, t; >0 and yits<1,
index p is an increasing function of QLr, t¢ andts, and a decreasing function &f, N
and vy .

Proof. The sensitivities op to its immediate factors are as follows:

o _P
o, to
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9 _p*

ots 1t

op_p ts
—==@1+>y)
@y y 1o

All of them are nonnegative under the blanket aggiom. Thusp is an increasing function
of t, and in turn it increases withg and decreases witly, sincet, =Lg/Vy. Furthermore,
p is an increasing function d§, and in turn ofty andts sincetg=t¢ +ts. Lastly, p is an
increasing function ofy : in turn, it increases witk) and decreases witH and N .

5.3 The ¥, function

Conditionally to cab running, the passenger loarhaan value as follows:

K
Efn|c) = 2o Pen,

n=0 pC.n
nxn Xn—l
On the one handy. ;npc, = pozr*fzoT = poxzrlem = po XX
On the other handy."_, pc., = po X . Thus
Thus E[n(C] =% -y, (%). (5.8)

We can then interpret cab load inde»as the mean passenger load of a running cab.
The following proposition is demonstrated in thep&pdix, 8§ A.2.

Proposition 3: Properties of the W, function.

() Function Wy is continuous orj0,+oo[ and strictly increasing.

(i) On that range, the function takes on all trdues fromO to K excluded.

(iii) It is a concave function.

(iv) Given x, the sequend¢€ — Wy (X) is increasing.

5.4 FEST solution

Proposition 4: Existence and uniqueness of FEST solution. Provided thatp < K the FEST
admits one solutiorx, which is unique.

Proof. From Proposition 3 (i) and (ii), functiowy can be inverted and the inverse function
WY is increasing from[0,K[ to [0+oo[. As p<K then x, =W (p) exists and is the
unique value such that(x) =p. Put in other words,x, solves the FEST equation
associated t@ and it is the unique solution to it.
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Proposition 5: Sensitivities of FEST solution to exogenous factors.

(i) The solution x=W{ P (p) is an increasing function of Qlg, t¢ and ts, and a
decreasing function dfi, N and ;.

(i) A combined variation of these parameters iafluaes x in the same direction as it
influencesp .
(iii) Given p, the sequenc& — WS (p) is decreasing.

Proof. (i) x depends on any said parameter only thropghs it increases witp, it inherits
its sensitivities so it varies in the same dirat@sp with respect to each factor. So point (i)
stems from Proposition 2.

(i) Any combined variation influences only via p, with positive coefficient fronp to x.

(i) Let x be the solution ofW(x)=p. As K> W (X) is an increasing sequence,
necessarily W (X) 2 W (X) =p. As W3 is increasing, thenx>W {3 (p) and in turn
W (p) 2 W () -

5.5 General computation scheme and special instances

General computation scheme. In the general case, the FEST can be solvedtiitela by
setting it as the following fixed-point problem:
p. X

The iterative algorithm has initial value® and induction rule from stek to stepk +1 as
follows:

X0 =p. (5.10a)

ey = PXY
¢ (k

with X = X(x®) and X ¥ = X(x®) | (5.10b)

Special instance with unit passenger capacity. If K =1 then the cab service is individual.
This requiresp <1. It is straightforward to inver®#;(x) = x/(x+1) into

WDy =—F_. 5.11
e =1 (5.11)
In turn, replacingp by its expression depending gnyields that

x=— Yo (5.12)
1-y(to +1s)

More generally, recovering from p at orderK amounts to solving a K-th degree equation
in x. There exist analytical formulas up k0o=4 only (by Abel's theorem).

Special instance with cab capacity of 2. At orderK =2, itis required thap < 2and we have

X(x+1)

qJZ(X):1+x+%x2'
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Condition W,(x) = p is equivalent tgp(+ x+3 x?) = x+x2, hence to

1_—px— 2p =0.

X2+2 - =
2-p  2-p

This second degree equation has one positive rogt o

- 1- 2 1-
Wi (p) =J(2_‘;)Z e (5.13)

6. On Cab Availability and Service Access

In stochastic equilibrium, the primary outcomestb& CAB model consist in the state

probabilities which are intimately related to tlead factor x. From the elementary state

probabilities stem the probability of any subset sthtes: of particular interest are the
availability rates that play a crucial role bothtbe supply side (the effective rate) and on the
demand side (since the true rate is essentiaktonéban access length).

This section provides characteristic formulas abgivity properties first for the availability
rates (8§ 6.1), second for the mean access lendit?)§
6.1 Availability rates

The effective availability ratd®, is defined as the probability of a given cab torbening
and having at least one place available:

P =3 Pen- (6.1a)
This definition gives rise to characteristic formsilas follows:
- X
P = X=— "~ 6.2a
AT T Ak (6.22)
= qJK—(X) ] (6.2b)
X(L+aW (x))
P
PA=——~. 6.2C
A X[L+ap) ( )
=Y (6.2d)
X

Each of these equivalent forms may be used to exdbe effective rate from together with
eithery or p.

The following Proposition is demonstrated in thepapdix, 8A.3.
Proposition 6: Sensitivities of the pseudo-rate of availability.

() Given K, the rateP, is a decreasing function of.
(i) Rate Py is a decreasing function &f and Lg but an increasing function of, .

(i) Rate Py is a decreasing function @ and an increasing function i and H .
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The “true” availability rateP, is defined as the probability of having at least @lace
available in a given cab. It has more significafarethe quality of service than the effective
availability rate. It stems from the distributiohstationary probability as follows:

Pa =1-(pck + Pak * Pek)- (6.2)

Thus, Py =1- (L+aK) pek =1- (L+aK)xq _ X=X¢ +a(xX—Kx) _ X+axX

X+ axX X+axX X+axX |
This gives rise to characteristic formulas as foio
Py = po(X+ axX). (6.3a)
Py = po X.(L+aWc4(X)). (6.3b)
Pr =R.@+a¥1(X). (6.3c)

From the last expression, it comes out tRat> P, all the more so aK is larger. The two
rates are identical only IK =1 i.e. no real-time sharing of cab capadty

The following sensitivity properties are demonsdain the Appendix, 8 A.3.
Proposition 7: Sensitivities of the true availability rate P, .

() Given K, the rateP, is a decreasing function of.
(i) Rate P, is a decreasing function & and Lz but an increasing function of, .
(i) Rate P, is a decreasing function of Q and an increasingcfion of N, K and H.

These theoretical properties are in accordanceptisical intuition.

Proposition 8: Sensitivities of therateratio P,/ Pa . (i) The ratio is an increasing function of
Q, t¢, ts and a decreasing function ™ and H . (ii) The twofold influence of, onto the

ratio, via x (increasing) and via (decreasing), is decreasing as a whole: thus #t®1is an
increasing function ofj;, and a decreasing function af .

[llustration. Assume thats =2 min andt, =18 min, yieldinga=1/9. Figure 5 exhibits the

variations of the effective rate (on the left sig@d those of the true rate (on the right side)
with respect to load factox, for selected values of cab capacKy. The difference between
the two rates becomes more and more apparentask increases.

1,0 1,0 -
3 N\ ———PpA_20 RN — o~

0,9 AN s 0,9 _ \ \ ,%
0,38 0,38

0,7 N\ PpA_8 07 \ Aim—&_
0,6 \ \ _PpA 4 0,6 \

05 AN PpA_1 05 +— AN - PA—\S—

04 : \ 0, P \ -
03 \ 013 \ PA_4
02 \ 7A

— | "7

0,1 — 01 - PA_1

0,0 T T T ] 0,0 T T T |
0 5 10 15 20 0 5 10 15 20

Fig. 5. Effective rate (left part) and True rategfnt part) as functions of load factor.
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6.2 Access length

The mean access length has been modelled in S&#srthe circuit circumference divided

by the number of available cabs in the traffic dii@ of interest, i.eN,P, .
C

N

La (6.4)

It thus inherits its characteristic formulas andssvity properties from the true availability
rate, but with variations in the inverse directibet us state them as follows.

L, =& XraxxX. (6.5a)
N, X+ axX
L= 1 . (6.5b)
Ny po X(L+aW1(X))
C

La (6.5¢)

NoPA L+ a%¥a(X)
Proposition 9: Sensitivities of the access length.

(i) L, is a decreasing function df and H.

(i) L, increases with QLg and tg but diminishes withy, .
(i) Lp is anincreasing function of the ring circumferer.

The sensitivities ofL, to N and C are intuitive. The influences difz, ts andQ are easy
to envisage. The influence gf is less obvious, but well-established (see AppeBdi.4).
[llustration. Figure 6 depicts the influence of local factoron the mean access length for

different values ofK . In this instance, the parameter values are se¢b U= 4 km hence
C = 25.1 km,N = 100 cabst, andts as previously so tha =1/9.

5
——LA_20

—LA_12
LA_8
——1A_4

y
2

O T T T 1
0 5 10 15 20

Fig. 6: Mean access length with respect to loaddac
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7. On service and commercial speeds

The reference speed, applies to vehicle running on the ring arteriabdo In service

operations, the cab speed stems from all phasasiibg and alighting as well as circulating.
This makes the operator-centric speed lower thamdference speed. Yet on the demand side
the associated speed is still a different notibe:dpeed that is experienced by the users is the
commercial speed that stems from the passengeenues on board during all phases, with
emphasis on the number of riders as much as ologisical status. The commercial speed
can also be called user-centric.

This section is devoted to the operator- and usetric speeds and their comparison. After
studying firstly the service speed (8 7.1) and esdbothe commercial speed (8 7.2), we
compare the two indicators and demonstrate avilagffect (8 7.3).

7.1 Service, operator-centric speed

The reference speeg, is the speed of the vehicle during its run phaBmsstatesC.n for
every n>0. We also consider that the vehicle runs in st@i, be it for travelling to meet
the next customer, or to avoid delays in the ndvwsp of availability (delays associated to
vehicle parking or to driver's engagement in a seeoy activity).
The service speed, denoted Wy (superscripto for Operator) arises both from the reference
speedv, and from the proportion of time spent on the maleanoted byP- = Zr}fzo Pcn . per
unit of time,

Ve =v.R:. (7.1)
At the FEST solutionx, the circulating probability is endowed with simptharacteristic
formulas as follows:

X 1

P- = X = _ = . 7.2a

C TP T a1+ a¥ (%) (7.23)
1 yio

P = =2 = 7.2b

T (7.2

PC :l_ yts (720)

So in fact it is not required to solve the FESTobtain that probability, as it depends solely
onts and y. The last formula also implies th& does not depend aiy (hence neither on

Lgr nor onvy) nor on ring circumferenc€ .
It then holds that
Ve =y, (1-ytg) . (7.3)

The sensitivities with respect to the exogenoutfaare stated in the following Proposition,
which is demonstrated in the Appendix, 8 A.5. Intigalar, Ly does not influencesg° .

Proposition 10: Sensitivities of move probability and service speed. (i) The probability of a
vehicle being on the movE€;, is a decreasing function of and oftg. It does not depend on
K, Lg andyv,.

(i) P and v° vary in the same direction: they both decreasér vt and tg, and both
increase withN , H and v,. NeitherK nor Ly influencesP- or v°.
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7.2 Commercial, user-centric speed

Now, the commercial speed is the average speedierped by users riding in a collective
taxi. Per unit of system time, there aresuch users present in states, therefore the time
they spend on board is:

Tlu = Zrifzo n-(pC.n + pB.n + pA.n)
X+axX _

X————=XP,
X+ axX

We note in passing that this relation allows usiterpret xP, as the time average number of
users on board a vehicle from the perspective aidside observer.

Per unit of system time, users cover the followtotgl travel distance:
X

DU :VO K_ n.pC :VO—..
1 Zn_o N X+ axX

The commercial speed, denoted Wy with a superscripti to indicate the users’ perspective,
is defined by
Dy X 1 _ R

- — =V =V, . 7.4
T CUX+axX Cl+a¥ Py (74)

It possesses the following properties (see Appefdib):
Proposition 11: Sensitivities of the commercial speed.

() The ratiov¥ /v, is a proportion that decreases withand also witha.

(i) Commercial speed decreases with [ andts, and increases witiN , H and v, .

7.3 The user vs. operator relativity of speed

Let us now compare the two speeds. The ratio betwee service speed and the commercial
speed amounts to

ve _ 1+aW%y 4 (7.5)
W l+aW '

Proposition 12: Properties of the ratio between service and commercial speed.

() Commercial speed! is greater than service speef.

(i) Ratio ve/v! is a decreasing function of and also ofa.

(iif) With respect to the exogenous factors, ratit/ v¢ is a decreasing function of QLg

and tg, and an increasing function ™ , H andv;,.

Proof. Point (i) stems from (7.5) and the increasingressequenceK — Wy (x) according

to K. Points (ii) to (iv) are demonstrated in the Apgeng A.5.

The relation that is greater tharv® may seem paradoxical: we would intuitively tend to
imagine that the more users on board, the morelidgyadelays, thus the lower experienced
speed. But in fact, the more users on board, the pductive are the running phases and
the wider is their benefit to the demand on the l@ho
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The difference between the service, operator-cespeed and the commercial, user-centric
speed is a relativity effect: speed depends omatha’s perspective. There are similar effects
well-known in transportation: from the relativityf evait time to an arriving user (or a
ridesharing passenger) versus headway time togbeator of a transit line (or a ridesharing
driver), to the relativity of passenger load in iot#s of a transit line (Leurent et al., 2012).

[llustration. Figure 7 depicts thg®/v' ratio as it varies according to. Cab capacity is set
to K =4. Base ride time and stop times are set up asqushi.

10 —~——
0,8
\

0,6

0,4
=V _op/v_us

0,2 ——vVv_us/v 0
=—v_op/v_0

0,0 T T T 1

0 5 10 15 20

Fig. 7. Speed ratios®/v', v' /v, andv® /v, as functions of load factor.

8. On Ride and Access Times

Vehicle occupancy and service speed characterezephrational performance of the service:
they are of interest for supply management. Asterservice demand, the characteristics of
primary interest are the ride time and the acaess per trip. The two kinds of time are key

components of service quality. We will considernthéor a typical trip with ride lengthLg

and access length, .

This section brings about characteristic formulag sensitivity properties for both kinds of
time. We address first the ride time (8 8.1) tHendccess time (8§ 8.2).
8.1 Ride time

The average ride time is defined as the ratio betwthe average ride length; and the
commercial speed" since the customer is on board: thus,
Lr

tg = o (8.1)
Characteristic formulas fdg are easily derived from those for commercial speed
tr :£(1+3-LPK—1)- (8.2)
Vo
tR =t0 +tsLPK_1. (83)

Version Oc, 2nd April 2019 23/43



F. Leurent (UPE, LVMT, ENPC) Collective Taxi SeryRart 1 : traffic physics & service quality

The last formula reveals the respective influerafelsase ride time, and stop timdg in a
clear way: at least the direct part of them, sthege is also an indirect part via

Omitting the relativity effect, an apparent rideé would be defined as the ratio between ride
length L and service speed, yielding

L

0 =
=t

(8.4)

On comparing the apparent and true, user-centte times, the influence of the user speed
becomes obvious:

R =t+ap) =t (1+a¥(x)). (8.5a)

tg _1+aWe4(X)

) (8.5b)
tg  1+a¥(x)

When the user is on board, there is one less plaaiable to other users. So, during his own
ride, the particular user is an observer extem#hé K —1 residual places.

Proposition 13: Ride time sengitivities. (i) Average ride timetg =Lg/Vv! is an increasing
function of factors Q Lg andtg, and a decreasing function of factods, H and v, . (ii) It

Is an increasing function dfy .

The proof is given in the Appendix, § A.6.

8.2 Access time

On waiting for the service, the customer is extetméhe incoming cab: to him, the lengti
is covered at the service speetl; since there is at least one place available omdbdes
v2_, =Vv¢ (both under load factox ), we must define the access time as the ratiodsivthe
access distance, and the user speed :

) Et_ﬁ. (8.6)
The access time is endowed with characteristic ddamthat result from those fay, andvV:
ta = NZICDZVU = NovGPL owing to (7.4). (8.7a)
= X _C X _JCH iho,=0/2. (8.7b)

Nao oy Nz Lgy  Qalg
Proposition 14: Access time sensitivities. The access timé, =L, /VY is an increasing
function of factors Q Ly, ts and C, and a decreasing function of factols, H, v, and K.

The proof is given in the Appendix, § A.6.

[llustration. Figure 8 depicts the variations f andt, as functions of demand voluntg,
given N = 100 cabsH = 14 h,K = 12, base and stop times as previously. The twotitms
are increasing: in service dynamic operations,itkeraction between customers is not only
sharing but also rivalry for available places aimudrance owing to cab dwelling that is a
detour at least in time.
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Fig. 8. Average ride time and access time with eespo demand volume.

9. Conclusion

9.1 Summary

We have modelled the dynamic interaction betwegplguand demand for a collective taxi
service shaped as a ring. The exogenous factansrimodel are a collective taxi’'s passenger
capacity K, the fleet sizeN, the passenger boarding and alighting timigsand ts, the
volume of demandQ and the average ride lengthy, together with the speed of travel on the

road infrastructurey, and the ring circumferena@ (or equivalently radius?).

The postulates both on demand generation and eitsaperations, owing to the spatial and
temporal heterogeneity, are essential to modekhtiwities of one cab as a Markov chain.
The state variable is the number of passengersoanditogether with the logistical status
either Circulating (denoted by C), Alighting (deadtby A) or Boarding (denoted by B). We
modelled the transitions between neighbouring statgth rates derived from the average
time that is spent in each state.

We showed that the exogenous factors can be cothinte a single key parameter which

is a ratio between passenger demand and transpoptys sincep = yt,/(1- yts) where
y=Q/(HN) . This ratio must be less than vehicle passengexaiy K .

We also showed that a vehicle’s stationary regiatsfies a fundamental equation of service
traffic, Wk (X) =p, which uniquely determines a load factor denotedbprovided thatp is

less thanK .

From the solutionx follow all the important system performance indarat in particular the
probability of availability P, , the pseudo-rate of availability), , the probability of movement
P-, then the average access length to the custdmerthe service speed® and the
commercial speedV, and finally the ride timeg and access tim&, . Every outcome is

endowed with characteristic formulas and sensjtiiroperties with respect to every
exogenous factor.
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In the process, through the distinction betweenst@ice speed and the commercial speed,
we have shown the relativity of the perspectivasvben the service operator on one side, and

users on the other.

Collective Taxi Serykeart 1 : traffic physics & service quality

Figure 9 shows the causal chain in the model. Thaokhe properties of the functidHy

and the formulas that link the variables, we hastal@dished the sensitivities of the indicators

to the different exogenous factors. These sensgts/are summarised in Table 2.

Q, Demand

H, Time
span

N, Fleef
size

R, Ride

LR, Ride _——¥ time
length

N —

p, Cab | X, Load ,| Stationary N OVU, User speed ‘/Vsop’)eil:jn
load index factor probabilities V", Operator speed
h
/ \ R, Ring
ts, Stop | | K, Cab La, Access| [t Access radius
time capacity

length time

Fig. 9. Causal sequence.

Table 2. Directions of influence from exogenousdigconto model outcomes.

Factor P X P Pa P La | VO vu tr ta
Q 7] S © © © ) © © ) 7]
L ® @ © © © 5] 0 S) @ 5]
ts @ @ © © © 7] © © @ ®
N © S) S2) S S S) @ @ S) ©
Vo © © @ ® S © 7] @ © ©
H © © @ ® @ S) @ @ S) ©
CorR 0 0 0 0 0 &) 0 0 0 &)
K 0 © @ ® @ © 0 S) 0 ©
P ® | & | o |lo |0 | 9 | |6 | 0|6
52 52 © © © 52 52 52 52 52
CHECK FOR K
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9.2 Discussion

We have postulated a set of assumptions in ordeegresent system things in an explicit
model. The idealized and abstract form of the regmation makes the model a theoretical
one. Owing to mathematical formulation and stodhastodeling, it is also a quantitative

model endowed with characteristic formulas suitatdecapture and interpret complex

influences. Numerical application is easy.

Associated to each postulate is a limitation. Relgpe is a strong assumption: yet the
postulate empowers the principle of vehicle cycleberent to transit operations by
augmenting the catchment area.

The postulates of homogeneity in space as wellnasme are even stronger. They are
essential to derive analytical formulas that cduatgitheoretical properties.

Modeling the roadway traffic conditions by a cantaieference speed, omits local

variations, temporal variability, interactions betm vehicles and with traffic management on
the infrastructure. Would the road have only omelper traffic direction and no parking lane
associated to it, then collective cab operatiohsh{zlling as well as running) would interact
strongly with the roadway traffic, requiring specimodel development.

We have also modeled the dwelling time per passesgea certain parametgy. In fact, the

individual boarding and alighting times are likeétydepend on the number of passengers on
board, mostly in an increasing way. The vehicle daetter be designed so as to limit that
congestion.

Conversely we have considered individual userserdtian passenger groups of variable size.
We may expect such groups to induce scale economabsell times. But their precise effect
on system states and especially the transitionvedset states would be difficult to model.

The model can support a number of theoretical dgweénts, from traffic analysis to

economic theory. Another direction for further r@sd is to model an ideal ring using traffic
micro-simulation in order first to check the analgt formulas and then to investigate the
influence of heterogeneity in space as well age t
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A. Appendix

A.l. Short Lemmas
Lemma 1 Functiony(x) = x(XX—X2) + XX satisfies thay(x) =0 and y(x) >0 if x>0.
Proof. Let us develop
V(X) = X(XX—=X2)+ XX
= XX (X = Xk -1) = XX X + X.(X+ X )
= XX (X=X g) = XX g X+ Xy X+ X2
= xX¢ X— (K =D x¢ X+ X2
Thus y(r) decomposes into the sum of three polynomials:

X K-1 X K1 Xf+m

Y(X) = Yns !K!_( D0 TR =0y

To demonstrate thay(x)=0 for x>0, we only have to show that the coefficients of the
power terms inx are all non-negative. As only the median part iwe® negative
coefficients, it is sufficient to show the non-ngg#y of the coefficients associated to the

degreesK +n for nJ{0L.K -1} . To do that, let us calculate coefficierjt,,, of the term in
xK#n

I K-1 —kaXosk+n-rsk4
Ck+n = - + =0 v 71, . — 1
(n—l)!K! niK! (K +n=10)!
- n Z ]{n+1<f}
NK! niK! <= (K+n-7)1
— n+1-K LKA 1
niK! =LK +n=10) !

At n=K -1 the first part vanishes and so does the secondsonge get that,x4 =0.
At n<K -1 the second part involvek —1-(n+1)+1=K -1+n terms1/[/! (K +n-/)!]: for
each of them we have that

K! £| /-n-1 /-n-1

m_ﬁ_ |‘|(K—|)— |‘|(£—|)>O

The underlying reason is that each product is camp@f/-n positive terms and every term
in the first product is strictly greater than itsuaterpart in the second product sinceK -1.

K! /! 1 1 .
Thus——— >, hence > , and in turn
(K+n-0)! nl M(K+n-0)! nlK!
K-1 1 > K-1+n , yielding thatck.n >0. QED.

(K +n-0)!  nlK!

This demonstrates thg{x) =0 for x>0 and also thay(x) >0 for x>0.
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Lemma 2. (i) Function x— X X—X2 is negative, as is function— X X—-X2.
(i) Function x— X X-X X is negative.
Proof. (i) As X =X+ x¢ and X = X—-x¢_;, we have that
X X = X2 = (X+%¢) (X = X¢q) = X2
= Xk X_ XK_1X = XK_]_(X x/ K _X)

. . . + .

Yet x% :zr*fzolxn% =Ky 1—2 _1xn S0 x%—x = —1—z§=1xn(1—£) <-1<0.

The same property holds for the sign of functidéX— X2 that follows an analogous formula
if X is replaced byX , which amounts to decrementitg.

(i) Let us develop
X X—X X =(X+ XK)(X_ XK—Z) _X X

= X X Xi—p X
_ X2 .
—XK—z(mX_X)

X2 k-2 (n+)(n+2) _ n(n-1)
T e (R T
X2 v n(n-1) oA

Thusm Zn ZX”(K(K ) -1)-x-1<-1<0.

QED.

A.2. Properties of function W,

Proof of Proposition 3. (i) Function Wy is well defined on interval(,+o [ where it takes on

non-negative values, including 0 at= 0. It is continuous and continuously differentialds,
the ratio between two such polynomials with denatun one above 1 on the range of
variations.

The first derivative function oy , denoted¥, , satisfies
XX+X _=xX2 _ XX+ x(XX-X?)
X X2 X2 '

. 0
W (x) = a_l'PK (X) =
X
It has the same sign as functigfx) = x(XX—-X2)+X . Xhus, from Lemma 1, we have that
Wy (x) 20 and W, (x) > 0if x>0, which implies that¥, is strictly increasing ong+co [.
From this we derive that functioWy is strictly positive over its range.

XXk-1 _

(i) The limit value of W¢ is lim,_ ., WY« =lim,_ ., =K. Thus the characteristic

Xk
equation has a solution only@f< K , which is equivalent t&.Lg < Kvy(HN —tQ) .
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Wr(X) - XXk-2 ; XXk -1 - Xk -2Xk
Wk (X) X1 Xk X%
Lemma 2(i). Thus¥Wx_1(X) £ Wk (X) and the sequenc& — Wy (X) is increasing.

(iv) Given x, L itis less than 1 sinc¥ X—X2<  fdom

(iii) To demonstrate concavity, let us demonsttase ¥, <0 by formal calculus.

First, we have that

) | ooy L
By (%) E%LPK (%) :%(Vg)) _ (X X24XXy(x) _X¥(¥) xgx V)

Thus the sign ofy is that of functionX y—2 Xy, in which:
Y00 zaiy:ai(xX+x(x>‘<-xz» = 2X X+ (X KX K).
X' OX

Let us develop expressiony-2Xy:
XY=2Xy=2X2X+xX(X X=X X)=2X2X-2xX (XX ~-X?2)
=2(X = xX)(XX=X2) + xX(X X=X X)
Let us replaceX X—X2 by xg X—xx1 X and X X-X X by x« X—x«_, X, according to
Lemma 2:
Xy-2Xy
= 2(X = xX) (X X= X1 X) + XX (X X = Xg_p X)
= 2% X X = 2Xp 3 X2= 2X X X2+ 2X X g X X+ XX XX = XXy p X2
= 2% X2+ 2X2 X = 2%k 4 X 2= A% X X = 2X X3 — 2X X X2+ 2X X g X2+ 2X X X X
+ XX X 24 XXB X = XX X1 X = XXk 1X3 — XX _p X 2= 2X X Lo X X— XXy X3
= X2(2% = 2Xk1 — 2XX + 2X X4 + XX — XXk _2)
+ X(2X2 = A% 1 X + 2X X1 X + XXB = X X X — 2X X —olk )

= Xg (2%c-1+ XXk 1+ XX -2)

=§%1X2012+b«K+D—(K+D@K+2»+§%%1XO@+U<+ax—2K(K+Dy—&xwﬂx+K+D

Up to factor x«_,/ K , which is positive, functionX y—2Xy is decomposed in three parts

depending on whether the powerXfis equal to 2, 1 or 0. These terms denoted respéct
by T, for i0{0,1,2} are polynomials ir:

To=-Kxz (x+K +1),
T, = % X2 + (K +2)x—2K (K +1)),
T, = X2(-x2 + 2x(K +1) = (K + (3K +2)).
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. n . /+m
Here are the detailed coefficients, sinte: er:_ol% henceX2 = 2;0% A :
2K+1 2K
Ty =KX —K(K +) >,
(K1)? (K1)?
_ K_an+K+2 K—l(K + 2)Xn+K+1 _ K_12K(K +1)Xn+K
R TR TY TV

T, = X2(-x2+2x(K +1) - (K +1)(3K +2))

gkt X sk (KA o (KHDEK +2)xm
LTEO gm0 Hm=0 tm!

Thus the powers ok range from degree=0 to degree2K +1.
At order n=2K+1 only T, and T, are contributors and their respective coefficients
compensate each other:

X2K+1 XK—1+K+2
+
(K2 (K-1)IK!

=0, so that in fact, + T, + T, is a polynomial of order at mogK .

At order n=2K the three terms all contribute to a total coeéfintiof

CK(K+D, 1 (K+2) 1 -K(K+D+K(K-D+(K+2)(K-D-K2 _
(K2 (K=2)IK! (K-DIK! (K-1 (K12

so that the polynomial, +T; + T, has degree of at mog8K -1.

0,

At degreesn< 2K -1, To does not contribute any longer, whilecontributes by 3 terms:

T = L nsk 42} + Tnekoy (K+2) ey 2K(K +1)
L T (n-K-2*1K! (n-K-D"K! (n-K)"K!

_ e (N-K-=-D*(n-K)* +(n=-K)*(K +2)-2K(K +1))

" (n-K)*IK!
>k K ,
s%((n—K—lﬁﬂK +2)—-2(K+1)) since n<2K -1 hence n-K<K,
n-K)*K!
s%((n«—w—m
n-K)*IK!
<0

As for T, its contribution at orden< 2K -1 is

_ k1 Yreme=n k-1 Lo+mu=n k-1 Jormeny
TZ‘(n) - _Z/,,m:o f;nm!n +2(K +1)Z/z,mzoﬁ_(l< +1)(3K +2)Z/,,m:0 /1 nr::
The amounts are all negative, as only the median teay be positive yet it remains lower
than the right-hand side term. Precisely, two casest be dealt with specifically, depending
on whethem<K orn=K.

. _ : P 1
2 Which can be stated as followk:2 = 325 2 xn r;:'g{n’K i} _
LY (min{n,K =1} = /) !
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If n<K then the median term involves exactlycouples(/,m) such that/+m+1=n : one
per value of/0{ 0,n-1}. To every such couple, we shall associate the @am) = (¢ +1,m)
which yields a nonzero element in the right-hardke sof ", because’/+1+m=n with
/+1<K -1 since/<n-1<K -1, and m< K -1. Then the coefficients associated to the two
couples, in their respective terms, && +1)/(/!m!) and - (3K +2)(K +1)/(/ +1)(¢'m!) . Their
sum is negative because:

(K+1) @BK+2)(K+1) _ (K+D a- 3K + 2) < _2(K +1) .

('mb  @+D'mD)  (L'ml) (+1 (L' ml)

If n>K then the midpoint term i, involves exactly2K -n couples (¢,m) such that
/+m+1=n: one per value o J{ n-K,K -1}. To every pair such that<K -1 we shall
associate pai(/',m) =(¢+1,m): as before, the sum of the coefficients associaidabth pairs
in their respective terms is negative. As for pg@am) = (K -1 n-K), the midpoint coefficient
2(K+1)/(¢'m!) is compensated by the « right hand side » coeffidhat is associated to pair
(¢',m)=(¢+1Lm) which is combined with(/,m)=(n-K,K -1) since, in absolute value, the
coefficient on the right hand side is more thane¢hitimes greater than the midpoint
coefficient.

In all, polynomial To+T. +T, has all its coefficients that are negative or zdrence it is
negative for values= 0. This implies thatX y—2X y< 0and in turn thatV, <0.

QED.

A.3. Sensitivities of the availability rates
Proof of Proposition 6 on the pseudo-rate of availability.

Let us study the pseudo-rate of availability byngsformula Py =t;y/x which involves 3
intermediate variableg, t, andy. We have that:

0P, _ P . 0Py _P . 0P _R:

ox X oy y 0ty to
Yet factorst, and y influence Py not just directly but also via. Their total influence is
respectively:

dPy _0F OB OX_PL, yox

dy dy O0xX0y Yy Xay

dFy _OPA L 0R 0x_PL 4 l 09X,

dt, oty, O0x 0ty tg X 0t

We shall restaté\gﬂ = (t_o@)_(gﬂ) _POx as bop =1, and

oty padty” xdp” xadp p dt,

X0y ‘poy xap
%: Wi (X) 0X 1

It holds thatE : since—=———.
xop xXWx(X) 0p 0Wk(x)/ox

Version Oc, 2nd April 2019 34/43



F. Leurent (UPE, LVMT, ENPC) Collective Taxi SeryRart 1 : traffic physics & service quality

As function W, is concave, Wy (X) =Wy (0) +(x-0)Wc(X). Yet W (0)=0 so that
W, (x) = X (), yielding that? 9% 51,

;ap
It then follows thatt—oﬂ >1, hencedﬁ <0.
X 0ty dt,
Furthermore,X% =Y b 5= 1 >1so thatlﬂ >1, hencedi <0.
pody pA-yts)? 1-ytg Xay dy

We are now in position to assert the sensitivitiieate P, to the different factors:
+ Q increasesy hence its overall influence dp, is a decreasing one.

+ N andH each decreaseg hence increasei, .

+ tg increasesx hence it decreasds, .

+ t, decrease®, , hencely decrease®, , andy, increase; .

+ cab capacityK decreases hence it increasei, .

Proof of Proposition 7 on the true rate of availability.
Concerning the true rate of availability, it depgma x in the following way based on (6.3):
X+axX
Py=——.
X+axX
Let us differentiate this formula with respectxo

0P, _ (X+aX+axX)(X+axX)—(X+axX)(X+aX+axX)
ox (X+axX)?2

The numerator part satisfies

Num = (X+aX+axX)(X+axX) —(X+axX)(X+aX+axX)
= X X= X2+ g X(X+ xX) + XXX =X (X+ xX) = xXX] +aZ (X+ xX)xX = xX(XX-X?2)]
= (X X=X2)(1+a) +ax(X X- X X) +a2x2(X X-X?2)

From Lemma 2, every term in the last summatioreigative: thus their sum is negative, and
S0 isdR, /0x< O

As 0P,/ 0x < 0, true rateP, is a decreasing function of, yielding point (i) in Proposition 7.
FurthermoreP, is differentiable with respect to factar, with partial derivative:

0Py _ xX(X+axX) = xX(X+axX) _ x(XX-X?2)
da (X+axX)?2 (X+axX)?2

which is<0 from Lemma 2-(i).

Thus the true rat®, is also a decreasing function af
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The sensitivity of By, to the basic exogenous factor®, Lg,H,N,ts,\, depend on the
influences of the said factors gnhence onx, and also ora =pts =tslg /vy :

* FactorsQ, H and N influenceP, only via x: Q influencesx in an increasing way

and in turnP, in a decreasing wayN (resp.H) influencesx in a decreasing way
and in turnP, in an increasing way.

* Ly (resp.ts) influencesP, on one hand via and on the other hand ve. As both

influences are increasing ones, and as botand a exert decreasing influences on
P, , the total influence oty (resp.tg) on B, is decreasing.

* \p influencesx et a in a decreasing way, so that it will exert a twdfpositive
influence onP, .

These properties make up points (i) and (iii) nopdsition 7.

Proof of Proposition 8 on therateratio $ =B, /P, .

As ¢ =1+aWx_1(x), it involves the basic factors via or x. Let us identifyx, t, andtg as
intermediary variables for sensitivity analysis. Waeve that:

0
ad) = aLPK—l(X)
X
09 _ Weu(X)
ots t
09 _
-2y
Oto . k-1(X)

Yet factorst, andtg influence ¢ not just directly but also via. Their total influence is
respectively:

ﬂ :ﬂ +@ﬂ :—LIJK_]'(X)
dtg Jdts 0xO0tg to

dd _dd 9 dx
99 _09,0909X__8y (x+a¥ x—
dt, dt, 9xdt, 1o <2 *+ aPica(x) dt,

+ aLiJK_l(x)ﬂ which is positive sincd X 0.
dts Ots

__a P 1(X)
R Wya(x).A- Bt () ato)

We have established previously th@L pax W (¥
oty ~ dap W (X

So we obtain that

% - _ a ( ) ( l'|JK-1(X) l'|JK (X))
dt, to - W (X) P (X)
K 1( ) l'IJK (X) (LIJK—l(X) l'IJK (X))
tz W (X)Wt Wk ()
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The bracketed term is the derivative of functlnnm, knowing thatrk2(9) - XX
Wy (X) Wy (X) Xz

Yet function x— X.X/X2 is decreasing (cf. § A.7): so is its logarithm plging that the
derivative function is negative: thus the brackdaxd is negative, and in turdg /dt, < 0.

We are now in position to assert the sensitivibiesatio ¢ = P, / Py to the different factors:
+ Q increasesx hence increaseg.

+ N andH each decreases hence decreasds.

+ tg increasesp .

+ t, decrease® , hencely decrease$ , andv, increasesp.

A.4. Sensitivity of Access Length
Proof of Proposition 9 on the sensitivities of the access length.

(i) Factor N exerts a twofold influence: first a direct inflleenas an increase iN (under
fixed P,) makesL, decrease, and second an indirect influencePyiafrom Proposition 7,
an increase inN increasesP,. Thus, the productN.P, increases withN, so thatL,
decreases witiN .

(i) FactorsQ, vy, Lg andtg each influenceL, in a simple way viaP, , hence each in the
opposite direction of its own influence onBy that is indicated in Proposition 7.

(iif) Being proportional to circumferenc& (and radiusR), L, varies with it in an
increasing, linear way.

A.5. Sensitivities of the service speed and of the commoml speed
Proof of Proposition 10 on the sensitivities of the service speed.

(i) Probability of being on the mover:, decreases with respect § as well astg since
aPC/Oy = _ts and apclats =Y.

As for factorsQ, H and N, each of them influencelR: via y only: Q exerts an increasing
influence ony while N (resp.H) exerts a decreasing influence on it, so Qatvill have
P~ to decrease whil& andH will have R- to increase.

The formulaPR- =1- yts also implies thaK , Lg andv, do not influenceR:.

(i) K andLg do not influenceR- nor v, so they do not influence®. The influence of vy
onto v° is linear increasing. The sensitivities of with respect toQ, ts, H and N are
proportional to those oR- with respect to each factor, with a proportioryakbefficient
Vo = 0: thus bothR: andv® are increasing functions ¢ and N, and decreasing functions
of Q andts.
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Proof of Proposition 11 on the sensitivities of the commercial speed.

u
Let us remark the formal analogy betwe\én: : — and R = X —: the ratiov¥/ v,
Vo X+axX X+axX

is equal toP: for a collective cab service with one less plagegab, sinceX k) =X k-1 -

() The influences ofx anda on ratiov! /v, are decreasing since an increase in any of them
makes the denominator increase/il vy = (L+aW¢_1(p)) ™t = @+ aWx 1 o W (X)) .

(i) Q (resp.H, N) has an increasing (resp. decreasing) influence drence a decreasing
(resp. increasing) influence ont /vy, hence onvV.

An increase ing makes bothx anda increase, hence it reduces/ v, and in turnvy.

As for ty, its respective influences ananda have opposite directions. We calculate:

ow 1 oa - 0X
— == W1 (X) — + a%Wy 1 (X) —
dto Vo (1+aLIJK_1(x))2( kil )ato <l )6t0)
1 a . ox dp
=- Wea(X)(——) +a%%a(X) ——=).,
(1+alPK_1(x))2( k-1(X)( tO) k-1( )ap ot
aW¢_41(x) _ ljJK—1 qJK)

= (1
to 1+ aWx1(X))? W4 Wk

Which is non-negative since the bracketed exprass@onon-negative, cf. the proof of
Proposition 8.
Proof of Proposition 12 on the sensitivities of the n =v°/vY speed ratio.

0
Let us denotey =~ = 1ra¥ea().
Vi 1+ a%W (X)

(i) Let us calculate the partial derivatives withspect to the intermediary variablesand x .
We have that:

on_ Wea(®) _We@+aWe) _ Wi -
da 1+a¥(x) @+a¥)? @+aW¥y)?

on _ aWe4(X) _ Pk (Ha+a¥(x) _ a%4 - Wy
ox 1+aWy (x) 1+ aWy (X))? A+aW¢)?2 © W,

- anK)
Both are negative, sinc¥x_, < W¢ for dn/oa, while for on/ox we use the relation that

.qJ—K > P >1, yielding a negative value for the bracketed egpion.

LPK—l LIJK—l

(iii) FactorsQ, H and N exert their respective influence ontovia x only: asQ increases
X, it decreases|. As H and N each decreases, each of them increases

As for tg, it increases botta and x: thus its twofold influence om is decreasing in both
ways.

As for t,, its influences onta) via a and x have opposite directions: overall,
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dn _onoa, onox__aon, p 0N g, 9X_0X0p _pOx__p

dt, dadt, 9xdt, t,0a tW ax ot, 0pot, thop toWx
d_r] :_a(LlJK—l_LPK) + p a% 4 - ‘LIJK —aW,)
dtg tol+aWe)? tWe L+a%)? Wi

_ a l'iJK—l
to(L+ ap)? (P k-1+PL—ap) W, P)
___ap Wea Wi
= (Ql-ap)——-——=
to L+ ap)? (4-ap) Wy Wy )

Now, as—kt ¢ P gngq ap <1, the bracketed expression is negative, so%?:ﬂz 0.
K K 0

Thus, t, exerts a decreasing influence on so doeslLy, whereasy, has an increasing
influence. QED.
A.6. Sensitivities of user times

Proof of Proposition 13 on the sensitivities of theridetime tg = Lg / VY.

(i) All factors except forLg influencetg only throughv¥, and they do so in an inversely
proportional way. Thus their respective influenae tg is opposite to that ow“. From
Proposition 11, it follows thati; in a decreasing function o , H, K andv,, while it is an
increasing function ofQ andtsg.

As for (ii), the influence ofLg on tg is twofold: the direct one is an increasing omel 80 is
the indirect one viasV, so that the overall influence is twofold increwsi

Proof of Proposition 14 on the sensitivities of the accesstime ty = La /VY.

() The sensitivity oft, to C, or equivalently toR is obvious asR does not influence the
other variables in the model: it is an increasind Bnear influence.

(i) Formula (8.7a) reveals the influence of fastather thanC, N and v,: each factor
among Q, Ly, ts, H, influencest, in the opposite way as it influences the effective
availability rate Py . From Proposition 6, we recover that is an increasing function d@,

Lr, ts, and a decreasing function bif.

(iii) The influence of N onto t, is twofold: using definition (8.6), first vid,, second via
vu. As an increase ilN makeslL, decrease and' increase, both parts have consistent
influences, yielding a decreasing overall sengjtiof t, to N .

The same applies tg,: its twofold influence ort, is a decreasing one.

A.7. Long Lemma

We already know that functiorf : x— 1-X.X/X2: is positive. Let us show that it is an
increasing function, by demonstrating that its \d#ive is non-negative,
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0 .0 XX _9 X

=22 —x
ox ax( X2 X X2 )
It holds that Xk X and X=Xk =y
olds thatxx— = = an - -
(K- K! K Znso )X”
a Xn+K—1
Thus — f = — (-X2 K-=-n )
™ ( PO ) K1 )

By differentiating each term, we get that

0 n+K -2 Xn+K -1

—f =X¥X K-n(n+K -1 -2X K-n
F™ (X 2ho( )( ) PN ) K1 )
. a K1 Xn+6+K—2 K Xn+l+K—l
| X3 = — -1
K!'X axf rn=o(K=n)(n+K -1) 7 Zzno /O(K n) T
ki3 2 f = ;<n10(K M+K D) vz Zzﬁ,louxw“—z on passing frony
0X nt /! nt /!
to /'=¢+1, so thatl/ a1=/¢"1 0.
In all,
Kkixz9 0 f =gk (K=n)(n+K -1-2/¢) K2
[0)4 £n=0 n! ¢!

In this sum, let us consider the terms with a eerfower /+n+K -2, for every degree
m=/+n. To each pair(/,n) corresponds the symmetric pdir,/) with respect tom/2. By

grouping the respective coefficients, we get a matoe of
(K=n)(n+K-1-20)+(K =/)(/ + K =1-2n)
=(K=-2+F-n)(n+K-1-20) +(K -2+ (T -0))(¢ +K -1-2n)
=(K=-D(n+K-1-20+(+K-1-2n) = (F - )(n+K -1-2( - -~ K +1+2n)
=(K -)(2K -2-m) -3 (¢~ n)2

By allocating the total between the two indicésand n in a balanced way, we obtain a
“symmetrical” term

C™=C{" =(K -2)(K -1-2) -3(/ - D)2,

The selection of the indices that meet conditiai{01.K -1} constitutes an extraction from a
binomial law with numbem and proportiornt/2 :

Sm = ZK_]_ ]{n+[:m} Cf(

(m) (m) —
=0 g =>n O(m Z)'E' , Wherein we denot&;™ =1/<k 1} km-r<k 4} .

_m
(m=-1017!

Let us also denotg") = the binomial coefficient anqbgm) =(M)/2m :in all,

Sm =%ng10 pMamc(m :%E[aq . hence mi2-mSy, = E[5.C] .

If m<K-1thend{™ =1 O¢ henceE[d] =1.
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If m>K -1 then there ar&K -1-(m-K -1)+1=2K -1-m indices/ from m-K -1 to K-1
2K -1-m

for which 8™ =1, so thatE[d] =
' m+1

Furthermore, for every index there is also the symmetrical index-¢, so thatE[5./] =4 m.

This mean is identical to that of the binomial ramdvariable/ of parametersn and 1.

Each termC{™ includes a par€{7, = (K -)(K -1-1) independent of hence called fixed,
and a variable part that is zerofah (hence only ifm is even).

On average, the fixed part yields a contributifa]C{"), = E[5](K - T)(K -1-1).

Also on average, the variable part can be integgras -3 times the variance of the indi¢es
such thatd =1 : thus

E[5.C] = E[5]C{}, - 3E[5.(¢ - 1)2] .

Yet E[5./2] = (E[5./])2 + E[5.( - E[5./])2] = (g)z +E[3.(4 —g) 2],

Whereas, by the properties of the binomial |&f,2] = (E[/])2 + V[ /] = (g)z +%_
By comparison, we obtain the inequality

[
e SmZE[R(K ~B)(K -1~ ~$m.

Whenms<K -1 thenE[3]=1 andK -1-2>2, hence

m!

%Sm > (K-9)(K —1—%)—%m
2((2+)2-2m=2im(m-1)

>0 since m=1

If m>K -1, we differentiate two cases depending on whetheis even — thus denoted as
2K -2-2i - or odd and thus denoted 2 -1-2i .

In the even case, witm=2K -2-2i>K -1, then%: K-1-i et K-3=1+i hence the fixed

term amounts ta{"), =i(i +1).

The variable term ok O{%,.K -1} is equal to-3(k-7)2 = -3(K -1-i-k)2: with respect to
the complement t& -1 of k, j =K -1-k, the variable term amounts +®3(i - j)2.

Thus, C{™ =i(i +1)-3(i - j)2 for j{0,..i} .
The binomial probabilityp(™ is maximal atk =2. The respective probabilities satisfy that

P _(m/2)! (m/2)! _ 1
pm,  (F (M=K K2 (m 4y

k-m/2-1
ﬂ/:o (%_f) ’
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Th (m) — ~(m) k—m/Z% (-1
US P = Pmizf s

2
It is a decreasing function &= .
Let k* be the largest indek>1 such thatclim) =i(i+1)-3(i-j)2=0.

We can now gather the non-zero terms nm2-mS, by counting with eachk>7 its

symmetricalm-k :
m! e i-1 .
om S =i +D)+23 200 +1) -3 - ))2) Bl
> pii(+D)+2p{ Y700 +1) -3 - j)2)

2 i (1 + D+ 21) - 6% 2 - 1)2)

PV (i (i +1)(2 +1) - 6Y,.,¢2)
Since, fork O{2,.k}, p{™ = p{" andi(i+1)=3(i - j)2, hence
p{Mc{™ > plM (i (i +1) - 3(i - j)2).
For k>k*, pi™ < p{™ andi(i+1) <3(i - j)2, so the inequality also holds.
As Zig:lﬁ =i(i+1)(2i +1)/6, we derive thats, =0 in the case wheren is even and K -1.

Let us come to the case of an odd=2K —1-2i with i <K /2 to ensure thamm>K -1. Then

M=K -i-2 is not an integer. The relation between the priiiab becomes

k-K+i-1 . .
(M = g K= (K== (m) |_|4=o+I _K"‘l C_ ) kk+i K=i-0
D T TR S

p

It is a decreasing function &= 7.
In the termsC{™, the fixed part is now
Cie = (K-D(K-1-D) = +)( 1) =4 (@ +D@ -.
Let againk* be the largest indek such thatc{™ =c{l, -3(i - j-1)2 = 0.

By associating to eack>7 its symmetricaim-k , we can expresSym!/2m as
Mg =25 @@ +1)2i -1 -3 - | -2)2) g™, , hence
om TM T “Zuj=0'4 17209 Py »

mH Sm

2m ™ 225 G @I+D@-) -3 - -1)2) =i @i - D@ +1) -6, 5 (1 -1)2. Or
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SA(-L2 =131 20 -1)2
=1+ 3220235 (20)2)
:%(14_ 2-2@2-D4i-3) _4(i =i (2 —1))

6 6
=1+ (i -D(@ —1)(%—2%)
=@+ -D@ -2 -3)
Thus
M Sm_ o150 +1)@2i 1) -8 (1+1 (i - 1)@ - 1)(2i -3)
2m pm =4 42873

>1((2-1)2+1)-3-(-D@ -2 -3) =1 @ -D( (2 +1) - (i -2 -3) -3)
>1(2i -1)(2i2 +2i -2i2+5 -3-3) =1 (2 -1)(7i - 6)

%

As soon as =1, which holds sincen< 2K -2.

All'in all, we have demonstrated that in all cafessumS,, is non-negative.
QED.

This implies thatdf /dx =0, hence thatf is an increasing function.

Version Oc, 2nd April 2019 43/43



