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Abstract 
In the digital era of mobility, the generalization of connectivity for customers as well as for 
vehicles has enabled for the development of different kinds of platform-based shared mobility 
services. Here we consider a service of collective taxis that combines on-demand access and 
egress of customers and “transit cycles” of vehicles along a ring-shaped circuit to serve 
mobility demand.  

The paper brings about a physical theory of customer and vehicle traffic in an abstract ring-
shaped service of collective taxis. The traffic system is parameterized by (i) on the 
infrastructure side, the ring circumference and the average run speed, (ii) on the vehicle side, 
the cab passenger capacity and the stop time required to pick up and drop off a passenger, 
(iii) on the service side, the fleet size and the time span of daily operations, (iv) on the 
demand side, the trip volume and the average ride length. Spatial and temporal homogeneity 
are postulated to devise a mathematical formulation of (i) cab occupancy and the availability 
of vacant places to potential customers, (ii) Circulating, Alighting and Boarding phases 
(CAB), (iii) average service speed, in the operator perspective, (iv) average commercial 
speed, in the user perspective, yielding typical ride time, (v) access length and typical access 
time to an incoming user. 

The mathematical treatment is based on a stochastic Markov chain model of one collective 
cab with state vector that combines the C/A/B status with the number of riders. We establish 
the stationary regime of this dynamical stochastic system and characterize its stochastic 
equilibrium as a Fundamental Equation of Service Traffic in one scalar variable of load factor. 
The solution is unique and it exists if a capacity requirement is satisfied. Closed-form 
analytical formulas are provided to characterize every model outcome, together with 
sensitivity properties with respect to all system parameters. 
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1. Introduction 

1.1 Background and literature review 

In the big cities of emerging countries, for example Nairobi and Addis Ababa in Africa, 
collective taxis often account for 20 or 30% of passenger transport (Ferro, 2015). The reasons 
for this high modal share are twofold: on the one hand, a relative paucity of public transport 
lines and private cars; and on the other hand a large local supply of collective taxis, which 
attract large numbers of customers, making it possible to spread production costs and offer 
attractive prices.  

In the developed countries, collective taxi services are only present in certain niche markets: 
for example point-to-point links between an airport and the city center, or on-demand 
transport services targeting a particular customer population (particularly people without 
private cars) and with relatively impractical operating conditions (booking a day in advance, 
setting a time window for pickup, risk of significant waiting times, detours…) (Orski, 1977; 
Jansson et al., 2016). 

However, with the digital revolution, mobility has become connected and shared mobility 
services are developing fast, particularly in big cities in developed countries. The meteoric 
rise of the Uber platform is one emblematic example in the taxi industry, alongside other 
competing firms (Lyft in the US, Didi in China, Ola in India, etc.). Collective taxi services 
seem to be the next source of growth for these companies: for example, Uber Pool, Lyft Line, 
Padam, etc. allow travelers to share the use of vehicles in real time, at much lower fares than 
the individual taxi (around $5 or €5 per ride in city central areas). Moreover, the anticipated 
arrival of self-driving vehicles will sharply reduce driving costs, which will in turn lower 
production costs by half or two thirds: this can be expected to have similar effects on use as 
the impact on taxis of the dramatic fall in transaction costs brought about by online platforms.  

Collective taxi services (CTS) have given rise to an academic literature in transportation 
analysis that splits in two streams according to their orientation towards either operations or 
planning. Service operations have been modeled in a microscopic way, detailing each vehicle 
and each customer request, so as to develop specific algorithms for vehicle dispatching and 
vehicle-customer matching (e.g. Malucelli et al., 1999, Lioris, 2010): such models involve 
two levels of analysis, the lower one for dynamic microsimulation with much detail in both 
space and time, the higher one to manage service operations and optimize the assignment of 
resources. Yet service demand is exogenous as it is generated randomly from a stochastic 
process with given parameters. Micro-simulation models of Personal Rapid Transit systems 
belong to that category (e.g. Andreasson, 1994, 2003, 2005), as do traffic modeling studies for 
cities, for instance the simulation of self-driving shared cabs for Lisbon city (ITF, 2015), the 
simulation study of some shared mobility services for the Zurich area (Hörl et al., 2019) and 
the Barcelona MaaS study by PTV (Lenz, 2019). 

The second stream of literature is focused on system planning: it involves the demand side 
and especially Travel Demand Modeling in order to derive the potential usage, frequentation, 
customership and fare revenues of a given CTS. CTS usage is modeled per individual trip-
maker as the outcome of travel decisions, from trip generation to mode choice in which CTS 
stands as a specific option that competes with rival modes of private car, mass transit, maybe 
also bike and walk. Recent contributions include Fagnant and Kockelman (2014, 2016) and 
Fagnant et al. (2015). 



F. Leurent (UPE, LVMT, ENPC)   Collective Taxi Service, Part 1 : traffic physics & service quality 

Version 0c, 2nd April 2019 3/43  

The next step is to combine a supply-oriented model of service operations and a demand-
oriented model of service planning in order first to ensure physical consistency (e.g. Berrada 
et al., 2019) and then to look for profitable business models (e.g. Horl, 2019). 

On comparing the CTS academic literature to the taxi one, a prominent difference is the 
shortage of microeconomic theory for CTS. The microeconomic theory of taxi services has 
been pioneered by Douglas (1972) who identified four main components in a taxi service as a 
system of supply and demand: namely combining (i) a demand function with respect to price 
and wait time, (ii) a pricing rule linking the tariff fare to trip time, (iii) a production cost 
function proportional to taxi time occupied and vacant, (iv) a “delay distribution” i.e. a 
function relating the taxi unoccupied time from customer drop-off to next customer pick-up, 
to the density of vacant taxis and also the car speed. 

The Douglas model has given rise to subsequent contributions, notably Arnott (1996) who 
considered homogenous 2D space to demonstrate the collective interest to subsidy taxi supply 
in a less aggregative perspective, by Yang et al. (2002) who explored the effects of different 
regulation policies on the market equilibrium on the basis of a network model of taxi supply 
and demand in the Hong-Kong urban area, and by Yang et al. (2010) who put forward a 
matching function to derive the respective wait times of taxis and customers to fleet size and 
demand volume. 

Indeed, microeconomic analysis is required to better understand taxi sharing, especially the 
interaction between several customers using the same vehicle at the same time, thereby 
imposing delays to each other. 

1.2 Objective and contribution 

The paper brings about a stylized analytical model of a CTS as a system of supply and 
demand. A basic set of modeling assumptions are provided both for the supply side and the 
demand side, so as to model their dynamic interaction and derive the “usage conditions” of 
vehicle occupancy, vehicle availability times for customers and ride time per user trip. Thus 
the model deals primarily with traffic physics: yet the physical representation is stylized in 
order to constitute a microeconomic model of a CTS as a “technology function” that is 
suitable for further economic analysis (such as supply-demand equilibrium, optimal service 
management, regulation policy). 

More precisely, the demand is represented by an overall volume of demand trips over a time 
period, its spread in space and the average trip length. Service supply is represented by fleet 
size, vehicle capacity, run speed, average time to pick up and drop off an individual 
passenger. From these parameters, postulating a specific spatial configuration as a ring shape, 
specific service operational processes, on-demand service and a stationary traffic regime, we 
obtain mathematical formulas for the probability of vehicle availability, the statistical 
distribution of vehicle occupancy by passengers, the average access time, the average ride 
time. 

The formulas are relatively simple, especially for vehicle capacity of 1 and 2. It is then easy to 
assess the respective performances of different service specifications under a given pattern of 
demand. 

Key to the analysis is a postulate of ring shape for both demand and supply: the spatial 
distribution of customer origins is postulated homogenous along a ring (such as a circular 
road) and the service vehicles are assumed to run continuously, each in one direction along 
the ring. While it may seem highly restrictive, the ring shape in fact matches the basic 
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principle of vehicle cycles in the operation of transit lines. The specific postulate induces a 
spatial homogeneity that is essential to our mathematical analysis. 

1.3 Methodology 

Our modeling methodology combines elements from traffic microsimulation, queuing theory 
and stochastic modeling. Space is represented as a specific configuration of places: this 
enables for the identification of different positions in space as well as of distances between 
points along the ring. 

As for traffic microsimulation, we consider two kinds of entities: collective taxis as vehicles 
and individual customers that use the vehicles as passengers. Each entity is an individual 
element of the set of its kind: individual situations are modeled in an abstract way owing to 
stochastic modeling that enables for generic treatment and formal calculus. 

The traffic model of CTS, with its vehicles as servers and its customers, is related to queuing 
theory in which a number of servers are available under certain conditions to a flow of 
customers. The classical interpretation in queuing theory is that servers have fixed positions 
and that customers get to them as “arrival streams” of service requests (e.g. Kleinrock, 1975). 
In our model, the servers are mobile; every customer waits for one of them at their own place 
prior to boarding, riding and alighting. Using properties of spatial homogeneity together with 
some additional simplifications, we model every vehicle as a stochastic system with states and 
transitions: the state vector combines the number of passengers on board and the “logistical 
status” either Circulating, Boarding and Alighting. The transition rates from one state to 
another depend on the physical situation, notably the number of on-board passengers, the 
average trip length, the flow of customer arrivals and the base circulation speed. 

Under the Markov postulate that the next system state depends only on the current one, we 
study the stochastic equilibrium of the system by solving the balance equations of probability 
flows between the elementary states. The resulting stationary distribution of probability 
enables us to characterize the conditions of traffic and usage in a fairly simple way. 

Coming to the time dimension, stochastic equilibrium corresponds to a stationary regime of 
system dynamics. The equilibrium distributions of access times, of vehicle occupancy and 
availability are endowed with fairly simple analytical formulas. 

In all, we obtain an analytical model of the service conditions (intensity of usage, quality of 
service) according to supply and demand characteristics. 

1.4 Paper structure 

The rest of the paper is organized in eight parts. We begin by specifying the territorial 
framework and the service process (section 2). Then we model the access time of a given 
customer to the service as a random variable depending on the number of available vehicles 
(section 3). Next, we build up the stochastic model of one vehicle by identifying the 
elementary states and the transitions between them, and by specifying the transition rates as 
functions of the state variable and exogenous parameters (section 4). We then study the 
stationary regime and characterize its determination as a “Fundamental Equation of Service 
Traffic” (FEST) in one scalar variable only, called the “load factor” and denoted by x  
(section 5). Based on the solution of the FEST, we derive the availability probability and also 
the access length (section 6). We also derive the service speed and the commercial speed that 
correspond to vehicles and customers, respectively, and we emphasize the difference between 
them as a traffic relativity effect typical of collective transit (section 7). The last consequences 
pertain to the ride time and the access time (section 8). To conclude, we synthesize the model 
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framework and also the directions of influence of the diverse factors onto the different model 
outcomes (section 9). 

 

Table 1: Notation 

C  ring circumference, R  ring radius, Ω  ring geometric centre Ω   

l  bandwidth of catchment area along the ring  

M  point along the ring, referred to by angle θ  between 0MΩ  and MΩ   

0v  reference speed of vehicle running, excluding stops 

N  fleet size (number of vehicles) 

H  period of service operations in a typical day 

+
St  (resp. −

St )  delay caused to the vehicle to allow a customer to board (resp. alight) 

K  total number of places in a collective taxi (its passenger “capacity”) 

Q  demand volume: number of trips per day  

RL  average length of cab ride requested by a customer; RF  CDF of ride lengths 

0R0 / vLt ≡  base ride time (under free flow speed) 

o
RR /vLt ≡  effective ride time, under service speed ov   

AL  average access length from cab position to waiting customer; AF  CDF of access lengths 

o
AA / vLt ≡  effective ride time, under service speed ov   

n  the number of customers on board a collective taxi at a given moment h  

σ  logistical status either C for Circulating, A for Alighting or B for Boarding 

np .σ  the probability that the collective taxi will be in state n.σ  at a given moment h  

AP  Availability rate is the probability of cab having one place available at a given moment h  

AP′  pseudo-availability rate 

CP  probability of Circulating phase 

y  ratio between demand and supply 

ρ  composite load index 

x  load factor 

KΨ  characteristic function involved in Fundamental Equation of Service Traffic 
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2. Territory, mobility and collective taxi system

Let us define the service of collective taxis by specifying first the territory and the ring shape 
(§ 2.1), then the mobility demand t
infrastructure and its traffic conditions (§ 2.3) and lastly the service quality and its operational 
processes (§ 2.4).

2.1 Territory and ring shape

Here the “territory” refers t
accommodates a human population. Each place is identified by a point M in 2D space at 
which some activities can take place.

The ideal 
claimed by Maupu (2006) and studied by Leurent (2019) for a taxi service. Indeed, an arterial 
ring road enables collective taxis to circulate and also to stop for passenger alighting and 
boarding.

Let us postulate that such an arterial road exists in the 
circle, ellipse or a somewhat less regular circuit. Consider a reference point 
center” and a reference “major axis” passing through it. Then, each point 

characterized by polar coordinates: angle 

axis and 

The main physical parameter of the circuit is
circle of radius 
generally, we consider as “ring r
the width of the ring, say 
up” trips for places up to distance 

Thus the ring extends in two dimensions of space not only as a circuit but more broa
band of land around it

Fig. 1. Ring circuit and its catchment area.
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2.2 Mobility demand 

We consider the mobility demand of individual users as the set of trips that they make 
individually. On a given day, during service period of time length H , there are Q  such trips. 
Each user trip is a 3-leg sequence of Walk, Ride and Walk legs. We focus on the Ride legs 
and consider the ring arterial as the locus of Ride origins and destinations. 

Spatial homogeneity is postulated: that each point M  along the arterial generates ride trips 
with uniform rate of generation and uniform statistical distribution of ride length from M  (in 
each traffic direction). We shall denote by RF  the CDF of ride lengths and RL  its average 
value. Uniform origins generating i.i.d. trips yield uniform distribution of destination points 
along the circuit.  

We moreover postulate temporal homogeneity: by time unit within the service interval, /HQ  
rides are generated. 

2.3 Transport infrastructure and speed of travel 

We postulate that a two-way arterial road runs through all the points on the ring and serves all 
the places along it. The following modelling assumptions are made: 

[I1] in each direction of traffic, vehicles run at an average speed denoted by 0v ; 

[I2] a collective taxi may stop at any point to park, or pick up or drop off a customer, without 
disturbing the flow; 

[I3] each collective taxi travels in only one direction: it never changes direction, whether or 
not there are customers on board;  

[I4] servicing customers entails manoeuvres in order to leave the traffic flow, to stop, to open 
a door, to let the customer board or alight, to close the door, to move off again and re-enter 
the traffic flow. Each manoeuvre generates a delay for the vehicle, and therefore for the 
customers on board and for customers who have booked and are waiting. We will take into 
account the cumulative effect of these manoeuvres in the service speed. 

2.4 The collective taxi service: quality of service and service process 

We further assume that rides are provided by a single collective taxi operator, under the 
following conditions: 

[S1] a given vehicle type, with uniform level of comfort and a number of K  places for 
simultaneous transport of passengers; 

[S2] a ride time on board, denoted by Rt , proportional to the distance covered RL  and 
inversely proportional to the commercial speed; 

[S3] the “customer process” in terms of the sequence Plan-Book-Ticket is managed by a web 
application: for each ride, the transaction time for the customer is T

~t . For the collective taxi, a 

customer’s boarding (resp. alighting) generates a delay of +
St  (resp. −

St ). 

[S4] an access time denoted by At  between the moment the customer makes a request and the 
moment the collective taxi arrives to pick them up. This time is proportional to the length AL  
that the collective taxi needs to cover between the booking and actual boarding. 

In summary, the quality of service level for the customer is characterised in terms of comfort 
level and times Rt , T

~t  and At . 
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Concerning the operational management of the service, we assume the following service 
process. We denote the size of the operator’s collective taxi fleet, and therefore the number of 
vehicles, by N . We ignore the proportion of vehicles off the road for maintenance or repair.  

At a given moment h : 

[P1] the spaces occupied in the vehicles are those assigned to a customer; 

[P2] available vehicles are those where there is at least one empty place, e.g. a seat with no 
occupant; 

[P3] when a new customer arrives, they inform the system that they need a ride, and the 
system assigns the request to the direction of travel that minimises the distance covered on 
board. Among the collective taxis travelling in that direction, the customer is assigned to the 
nearest vehicle with a seat available at that moment;  

[P4] the customer waits for this designated vehicle to arrive in order to board and be 
transported to their destination point; 

[P5] in each direction, the number of available vehicles is A2
1 NP , where the probability of the  

vehicle being available, i.e. having at least one unoccupied space, is denoted by AP . It holds 

that KpP −=1A , where Kp  is the probability of a collective taxi being full with its K  places 
occupied; 

From [P3], each new customer request is treated using the shortest route in terms of ride 
distance. Assuming that the ride lengths L  are distributed according to Cumulative 
Distribution Function RF  in each traffic direction, then 

 [ ] ∫=≡ 2/

0 RR )(dFE
C

LLLL . (2.1) 

3. Access length 
In a given direction of traffic, at a given moment, the k  available vehicles have random 
positions that are distributed uniformly and independently from each other on the road. At 
every point where a request is generated, the distance between the customer position and that 
of the i -th available vehicle is a random variable iL  with uniform distribution in interval 

[ ]C,0 . The access length AL  is the minimum of the distances iL .  

Random variable iL  has Cumulative Distribution Function as follows: 

 { } { }01
},{min

Pr)(F ≥=≤≡ xii
C

Cx
xLx . (3.1) 

The available vehicle closest to the customer to serve the ride in the assigned traffic direction 
is located at distance iki LL }{1,..A min ∈≡ . This distance is distributed with CDF as follows: 

ddistributetlyindependenarepositionstheas}{Pr1

}:{Pr1

}min{Pr}{Pr)(F AA

∏ >−=
∀>−=

≤=≤≡

i i

i

ii

xL

ixL

xLxLx

 

Thus k
i i

C

x
xx ))1(())(F1()(F1 A

+−=−=− ∏    for  Cx ≤ .  (3.2) 

From this stems the average access length conditionally to k : 
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Thus 
1

]|[E A +
=

k

C
kL . (3.3) 

This average value is conditional to the number k  of available cabs. In turn, this number 
comes from the 2/2 NN ≡  cabs assigned to the traffic direction. Taking the availability status 

of cabs as independent Bernoulli-distributed variables with success probability AP , then k  is 

distributed binomial with parameters 2N  and AP . Its probability distribution function is: 

 }{0,1.. 2Nk ∈∀ , kNk
k PP

k

N
P −−








= 2)1.(. AA

2 . (3.4) 

The unconditional mean is then 
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Neglecting 1
A 2)1( +− NP  and approaching 22 1 NN ≈+ , we obtain the following approximation 

for ][E AL : 

 
A2

A ][E
PN

C
L = . (3.5) 

4. Stochastic model of one cab 
Let us now model the dynamical state of one cab as a stochastic Markov chain. To keep the 
model simple enough, we consider a state vector that is reduced to the logistical status and the 
number of passengers on board. We shall first define the elementary states and the transitions 
between them (§ 4.1). Then, we model the transition rates so as to capture the physics of 
service traffic: some simplifications are required to make the model Markovian (§ 4.2). Based 
on the transition rates, we derive the stationary distribution of probability that characterizes a 
CAB system in stochastic equilibrium (§ 4.3). 

4.1 States and transitions 

In real time, a collective taxi is in one or other of the following states, depending on the 
number Kn ≤  of passengers on board and the logistical phase σ : 

• on the move with 0>n , in a fixed direction and at speed 0v : a state denoted by n.C  (C  
standing for Circulating); 
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• on the move with no passengers on board or boarding or alighting: a state denoted by 0.C  
i.e. n.C  with 0=n ; 

• stationary for an additional passenger to board: a state denoted by n.B  (B  for Boarding); 

• stationary for a passenger to alight: a state denoted by n.A  (A  for Alighting). 

As customers arrive individually and independently, the transitions from one state to another 
occur between “neighbouring states” as in a Birth-Death process i.e. from n  to 1+n  or from 

1+n  to n , and only between B  and C  or between A  and C :  

• from n.C  where Kn < , to 1.B +n , each time the vehicle has to stop to pick up a customer. 

• from 1.B +n  to 1.C +n  when the boarding stop takes end. 

• from n.C  where 1≥n  to n.A : each time one of the passenger’s rides ends up and the 
vehicle has to stop so that the customer can alight. 

• from n.A  where 1≥n  to 1.C −n  when the alighting stop ends up. 

Figure 2 describes the typical states and the transitions. 

 

Fig. 2. Topology of states and transitions in CAB Markov chain. 

 

4.2 Transition rates 

We reduce the system description to the pairs n.σ  of logistical status B}A,{C,∈σ  and the 
number {0,1,..K}∈n  of passengers on board. By taking n.σ  as state vector, we omit such 
things as the cab current position along the ring, the locations of pending customer requests 
and the destinations of the riders. These are reduced to residual ride lengths from the cab 
current position. Furthermore, we take the residual lengths as independent random variables 
identically distributed according to an exponential law. Similarly, we take the boarding and 
alighting times as independent random variables with exponential laws. 

These approximations enable us to consider time-independent transition rates that suffice to 
model the system dynamics and derive its stationary state (e.g. Kleinrock, 1975). 

Between states n.σ , transitions occur with positive rates only in the following cases. 

From n.C  where Kn < , to 1.B +n , each time the vehicle stops to pick up a new customer: 
per traffic direction, the total flow of customers has rate H)2/(Q  and it is split into A2PN  
cabs. Then, per cab the customers arrive according to the following rate: 

 
AP

y≡λ ,   wherein  
N

Q
y

H
≡ . (4.1) 

Ride of 1 user 

ends up 

… … 

Arrival of 1 

more user 
End of  

Board stop 

End of  

Alight stop 

  C,n   C,n+1

  B,n+1 

  A,n+1 
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This rate applies on average at any instant. Yet in the model only the system states n.C  with 

Kn <  can support customer arrivals. So, defining ∑ −
=≡′ 1

0A }.{PrK
n nCP  the probability of such 

supportive states, the effective arrival rate λ′  satisfies that yP =′λ′ A.  instead of yP =λ A. , 
hence 

 
AA H PN

Q

P

y
′

=
′

≡λ′ . (4.2) 

We call AP′  the pseudo-rate of availability. 

Rate λ′  applies for any transition from n.C  with Kn < , to 1.B +n . 

Let us now consider a transition from n.B  to n.C . As a boarding stop has average duration of 
+
St , we model its duration by an exponential random variable of identical mean, hence with 

parameter +
S/1 t . Thus, the transition from n.B  to n.C  occurs at time rate +

S/1 t , which is the 

time rate at which that kind of random variable comes to its end. 

Similarly, let us consider a transition from n.A  where 1≥n , to 1.C −n . As an alighting stop 
has average duration of −St , we model its duration by an exponential random variable of 

identical mean, hence with parameter −S/1 t . Thus, the transition from n.A  to 1.C −n  occurs at 

time rate −
S/1 t . 

Lastly, a transition from n.C  with 1≥n , to n.A  corresponds to the ending of a ride for one 
on-board passenger. As a ride requests an average run time of 0R0 / vLt ≡ , we model the 

duration as an exponential random variable of identical mean, hence with parameter 0/1 t≡µ . 
The transitions from 1.C  to 1.A  will occur at time rate µ  of ride ending. From n.C  to n.A  
with 1≥n , the transition occurs with rate equal to n  times µ  since any of the n  riders may 
end his or her ride. Rate µ.n  is the rate of ending of the ride of minimal residual length 
among the n ones. Indeed, among n independent exponential variables, the minimum is still 
an exponential variable, its parameter being the sum of those of its arguments, hence µ.n  if 
they are identically distributed of parameter µ . 

To sum up, denoting by m
nz .
.

τ
σ  the transition rate from n.σ  to m.τ , we have: 

 λ′=+1.B
.C
n
nz  for Kn < , (4.3a) 

 += S
.C
.B /1 tz n
n  for 0>n , (4.3b) 

 −
+ = S

.C
1.A /1 tz n

n  for Kn < , (4.3c) 

 0
.A
.C /. tnnz n
n =µ=  for 0>n . (4.3d) 

4.3 Stationary regime and distribution 

Along the time dimension, which we index by instant h , state n.σ  has a probability )(. hp nσ  
that varies owing to transition occurrences. The Chapman-Kolmogorov equation is as follows 
for a short time laps hδ  from h : 

 ))(..()).((.)()(
..

.
.
.

..

.
.... ∑∑

σ≠τ
τ

σ
τ

σ≠τ

τ
σσσσ δ+δ−=δ+

nm
m

n
m

nm

m
nnnn hpzhzhphhphhp . (4.4) 

The state probabilities are stable over time if for each state the probability flows in and out of 
it are balanced. This condition is called the local balance equation (dropping the time index): 
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.

..
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.. .).( . (4.5) 

At n.B  the local balance equation is  λ′= −
+ ./ 1.CS.B nn ptp : then 

 +
− λ′= S1.C.B . tpp nn   for Kn < . (4.6a) 

At n.A  the local balance equation is  µ=− nptp nn ./ .CS.A : then 

 −µ= S.C.A . tnpp nn   for 0>n . (4.6b) 

Let us now split the set of states in two subsets, by artificially cutting the transitions from 
1.C −n  to n.B  and from n.C  to n.A . Between the two subsets, the flow balance condition is 

µ=λ′− ... .C1.C npp nn , so that 

 1.C.C . −µ
λ′

= nn p
n

p   for 0>n . (4.6c) 

Combining (4.6c) and (4.6b), we recover that 

 −
− λ′= S1.C.A . tpp nn  for 0>n . (4.6d) 

Let us define a “load factor” µλ′≡ /x . By induction, it comes out that 

 0.C
1
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!

. p
n

x

i

x
pp

n

x
p

nn

i
nn === ∏
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−   for 0>n . (4.7) 

Denote also !/ nxx n
n ≡ , 0.C0 pp ≡   and  −+ +≡ SSS ttt . 

For every 1}-{0,1,..K∈n  we can put together the states n.C , 1.B +n  and 1.A +n : their joint 

probability amounts to nSn ptp .C).1( λ′+≡+ . 

Then, the total probability of all states is 
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Wherein: 
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t
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∂
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0XX K
n nx
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As the total probability is equal to 1, it follows that 

 
X..X

1
0 &xa

p
+

= . (4.8) 

From this and (4.6) we get that: 
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S0.A −
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−
−
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x
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n   for {1,..K}∈n . (4.9a) 
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n   for {1,..K}∈n . (4.9b) 
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n =   for {0,1,..K}∈n . (4.9c) 
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Figure 3 depicts the stationary distribution of probability for 4=K , =0t 18 min, =+
St  45 s 

and =−
St  75 s and 26.2=x . 

 

Fig. 3. Stationary distribution. 

5. Stochastic equilibrium and FEST 
The stationary probability distribution of the CAB states involves the flow rate of customer 
arrivals per available cab. By combining the associated conditions, we obtain a Fundamental 
Equation of Service Traffic (FEST) that characterizes the CAB system state in stochastic 
equilibrium (§ 5.1). The FEST is a mono-dimensional, nonlinear relationship linking a service 
load factor x  as unknown variable, to exogenous conditions of demand volume, service time 
span and fleet size that are encapsulated in a composite parameter denoted ρ . We shall study 

this parameter and analyze its sensitivity to its exogenous factors (§ 5.2). Turning to the KΨ  
function that relates x  to ρ , we will provide a physical interpretation, establish mathematical 
properties and its sensitivity with respect to cab capacity K  (§ 5.3). Next, we demonstrate the 
existence and uniqueness of a solution to the FEST and we establish its sensitivities with 
respect to the different model parameters (§ 5.4). Lastly, we provide a general computation 
scheme, together with analytical solutions to the FEST with 1=K  and 2=K  (§ 5.5). 

5.1 Fundamental equation of service traffic  

Based on demand volume Q , service time span H  and fleet size N , all taken as exogenous 
factors, let us define a composite parameter that is the average cab productivity in rides per 
day: 

 
N

Q
y

H
≡ . (5.1) 

The flow rate of customer arrivals per available cab, λ′  defined in (4.2), can then be 
expressed as 

 Α′=λ′ Py / . (5.2) 

There are two relations between λ′  and the load factor x . The first one consists in the 
definition of the pseudo-rate of availability, which can be restated as: 

 X0
1
0 .A

&ppP K
n nC =≡′ ∑ −

= . (5.3a) 

The other relation consists in the definition of x , 
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 Α′=λ′≡ Ptytx /00 . (5.3b) 

Combining the two relations, we obtain a unique condition that characterizes x : 
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Recombining, it comes out that 
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The subscripts (K) remind that X  and X&  involve the cab capacity K . 

Let us define: 

 
yt

ty

S

0

1−
≡ρ . (5.5a) 
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K
K

x
x

&

≡Ψ . (5.5b) 

Proposition 1 (FEST) (i) Apart from cab capacity K , the exogenous factors in the CAB 
model are summarized by the composite parameter ρ . (ii) The stationary state depends 
entirely on a factor x that must satisfy the following equation, called the FEST: 

 ρ=Ψ )(xK . (5.6) 

Proof. The modelling assumptions made in Section 4.2 imply (5.4) as a necessary condition. 
It determines x  with respect to exogenous factors K , Q , H , N , +

St , −
St , RL  and 0v , via 

)/(H NQy ≡ , −+ +≡ SSS ttt  and 0R0 / vLt ≡ . Apart from K , all of the exogenous factors 

influence x via ρ  only, making (i) hold true. In turn, under the definitions (5.5), then (5.4) 
implies (5.6), yielding point (ii). 

Figure 4 depicts several KΨ  graphs for different values of K . 
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Fig. 4. Graphs of KΨ  functions. 

5.2 Properties of composite parameter ρ  

Given fleet size N  and time span H , the total vehicle operating time NH  must meet two 
requirements from the Q  customers: 

• The first requirement pertains to dwell time, at level SSS .)( tQttQ =+ −+ : the constraint is 

H. S NtQ ≤ . 

• The other one involves base ride times: as there are K  places per cab, H... 0 NKtQ ≤ , 

yielding a vehicle time requirement of H./. 0 NKtQ ≤ . 

As the dwell times and the base ride times are disjoint, it must hold that 

H.).( 0
1

S NttQ K ≤+ , or equivalently  

1).( 0
1

S ≤+ tty K . 

Recombining, we get the following condition that 

 K
ty

ty ≤
− S

0

1
, (5.7) 

In which the composite parameter ρ  can be recognized. 

This establishes ρ  as a cab occupancy index that must be lower than cab capacity K . 

Proposition 2: Sensitivity of cab load index ρ . Provided that 0≥y , 00 ≥t  and 1. S <ty , 

index ρ  is an increasing function of Q , RL , +
St  and −

St , and a decreasing function of H , N  

and 0v . 

Proof. The sensitivities of ρ  to its immediate factors are as follows: 
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All of them are nonnegative under the blanket assumption. Thus ρ  is an increasing function 

of 0t  and in turn it increases with RL  and decreases with 0v  since 0R0 / vLt ≡ . Furthermore, 

ρ  is an increasing function of St , and in turn of +
St  and −

St  since −+ +≡ SSS ttt . Lastly, ρ  is an 

increasing function of y : in turn, it increases with Q  and decreases with H  and N . 

5.3 The KΨ  function 

Conditionally to cab running, the passenger load has mean value as follows: 
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We can then interpret cab load index ρ  as the mean passenger load of a running cab. 

The following proposition is demonstrated in the Appendix, § A.2. 

Proposition 3: Properties of the KΨ  function. 

(i) Function KΨ  is continuous on [,0[ +∞  and strictly increasing. 

(ii) On that range, the function takes on all the values from 0  to K  excluded. 

(iii) It is a concave function. 

(iv) Given x, the sequence )(xK KΨa  is increasing. 

5.4 FEST solution 

Proposition 4: Existence and uniqueness of FEST solution. Provided that K<ρ , the FEST 

admits one solution ρx  which is unique. 

Proof. From Proposition 3 (i) and (ii), function KΨ  can be inverted and the inverse function 
)1(−ΨK  is increasing from [,0[ K  to [,0[ +∞ . As K<ρ  then )()1( ρΨ≡ −

ρ Kx  exists and is the 

unique value such that ρ=Ψ )(xK . Put in other words, ρx  solves the FEST equation 

associated to ρ  and it is the unique solution to it. 
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Proposition 5: Sensitivities of FEST solution to exogenous factors.  

(i) The solution )()1( ρΨ≡ −
Kx  is an increasing function of Q , RL , +

St  and −
St , and a 

decreasing function of H , N  and 0v . 

(ii) A combined variation of these parameters influences x  in the same direction as it 
influences ρ . 

(iii) Given ρ , the sequence )()1( ρΨ −
KK a  is decreasing. 

Proof. (i) x  depends on any said parameter only through ρ : as it increases with ρ , it inherits 
its sensitivities so it varies in the same direction as ρ  with respect to each factor. So point (i) 
stems from Proposition 2. 

(ii) Any combined variation influences x  only via ρ , with positive coefficient from ρ  to x . 

(iii) Let x  be the solution of ρ=Ψ )(xK . As )(xK KΨa  is an increasing sequence, 

necessarily ρ=Ψ≥Ψ + )()(1 xx KK . As )1(
1

−
+ΨK  is increasing, then )()1(

1 ρΨ≥ −
+Kx  and in turn 

)()( )1(
1

)1( ρΨ≥ρΨ −
+

−
KK . 

5.5 General computation scheme and special instances 

General computation scheme. In the general case, the FEST can be solved iteratively by 
setting it as the following fixed-point problem: 

 
X
X.
&

ρ=x . (5.9) 

The iterative algorithm has initial value )0(x  and induction rule from step k  to step 1+k  as 
follows: 

 ρ≡)0(x . (5.10a) 
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Special instance with unit passenger capacity. If 1=K  then the cab service is individual. 
This requires 1<ρ . It is straightforward to invert )1/()(1 +=Ψ xxx  into  

 
ρ−

ρ=ρΨ −

1
)()1(

1 . (5.11) 

In turn, replacing ρ  by its expression depending on y  yields that 
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More generally, recovering x  from ρ  at order K  amounts to solving a K-th degree equation 
in x . There exist analytical formulas up to 4=K  only (by Abel’s theorem). 

Special instance with cab capacity of 2. At order 2=K , it is required that 2<ρ  and we have 
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Condition ρ=Ψ )(2 x  is equivalent to ²²)1( 2
1 xxxx +=++ρ , hence to 

0
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1
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ρ−
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ρ−
ρ−+ xx . 

This second degree equation has one positive root only: 
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6. On Cab Availability and Service Access 
In stochastic equilibrium, the primary outcomes of the CAB model consist in the state 
probabilities which are intimately related to the load factor x . From the elementary state 
probabilities stem the probability of any subset of states: of particular interest are the 
availability rates that play a crucial role both on the supply side (the effective rate) and on the 
demand side (since the true rate is essential to the mean access length). 

This section provides characteristic formulas and sensitivity properties first for the availability 
rates (§ 6.1), second for the mean access length (§ 6.2). 

6.1 Availability rates  

The effective availability rate AP′  is defined as the probability of a given cab to be running 
and having at least one place available: 
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=≡′ 1

0 .CA
K
n npP . (6.1a) 

This definition gives rise to characteristic formulas as follows: 
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Each of these equivalent forms may be used to recover the effective rate from x  together with 
either y  or ρ .  

The following Proposition is demonstrated in the Appendix, §A.3. 

Proposition 6: Sensitivities of the pseudo-rate of availability. 

 (i) Given K , the rate AP′  is a decreasing function of x . 

(ii) Rate AP′  is a decreasing function of St  and RL  but an increasing function of 0v . 

(iii) Rate AP′  is a decreasing function of Q  and an increasing function of N  and H . 
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The “true” availability rate AP  is defined as the probability of having at least one place 
available in a given cab. It has more significance for the quality of service than the effective 
availability rate. It stems from the distribution of stationary probability as follows: 

 )(1 .B.A.CA KKK pppP ++−≡ . (6.2) 
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This gives rise to characteristic formulas as follows: 

 )XX(0A
&&& xapP += . (6.3a) 

 ))(1.(X 10A xapP K−Ψ+= & . (6.3b) 

 ))(1.( 1AA xaPP K−Ψ+′= . (6.3c) 

From the last expression, it comes out that AA PP ′≥ , all the more so as K  is larger. The two 
rates are identical only if 1=K  i.e. no real-time sharing of cab capacity K . 

The following sensitivity properties are demonstrated in the Appendix, § A.3. 

Proposition 7: Sensitivities of the true availability rate AP . 

(i) Given K , the rate AP  is a decreasing function of x . 

(ii) Rate AP  is a decreasing function of St  and RL  but an increasing function of 0v . 

(iii) Rate AP  is a decreasing function of Q  and an increasing function of N , K  and H . 

These theoretical properties are in accordance with physical intuition. 

Proposition 8: Sensitivities of the rate ratio AA / PP ′ . (i) The ratio is an increasing function of 

Q , +
St , −

St  and a decreasing function of N  and H . (ii) The twofold influence of 0t  onto the 

ratio, via x (increasing) and via a  (decreasing), is decreasing as a whole: thus the ratio is an 
increasing function of 0v  and a decreasing function of RL . 

Illustration. Assume that =St 2 min and =0t 18 min, yielding 9/1=a . Figure 5 exhibits the 
variations of the effective rate (on the left side) and those of the true rate (on the right side) 
with respect to load factor x , for selected values of cab capacity K . The difference between 
the two rates becomes more and more apparent as x  or K  increases. 

 

Fig. 5. Effective rate (left part) and True rate (right part) as functions of load factor. 
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6.2 Access length 

The mean access length has been modelled in Section 3 as the circuit circumference divided 
by the number of available cabs in the traffic direction of interest, i.e. A2PN .  

 
A2

A
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C
L ≡ . (6.4) 

It thus inherits its characteristic formulas and sensitivity properties from the true availability 
rate, but with variations in the inverse direction. Let us state them as follows. 
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Proposition 9: Sensitivities of the access length. 

(i) AL  is a decreasing function of N  and H . 

(ii) AL  increases with Q, RL  and St  but diminishes with 0v . 

(iii) AL  is an increasing function of the ring circumference C . 

The sensitivities of AL  to N  and C  are intuitive. The influences of RL , St  and Q   are easy 

to envisage. The influence of 0v  is less obvious, but well-established (see Appendix § A.4). 

Illustration. Figure 6 depicts the influence of local factor x  on the mean access length for 
different values of K . In this instance, the parameter values are set up to =R  4 km hence 

=C  25.1 km, =N  100 cabs, 0t  and St  as previously so that 9/1=a . 

 

Fig. 6: Mean access length with respect to load factor. 
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7. On service and commercial speeds 

The reference speed 0v  applies to vehicle running on the ring arterial road. In service 
operations, the cab speed stems from all phases, boarding and alighting as well as circulating. 
This makes the operator-centric speed lower than the reference speed. Yet on the demand side 
the associated speed is still a different notion: the speed that is experienced by the users is the 
commercial speed that stems from the passenger presences on board during all phases, with 
emphasis on the number of riders as much as on the logistical status. The commercial speed 
can also be called user-centric. 

This section is devoted to the operator- and user-centric speeds and their comparison. After 
studying firstly the service speed (§ 7.1) and secondly the commercial speed (§ 7.2), we 
compare the two indicators and demonstrate a relativity effect (§ 7.3). 

7.1 Service, operator-centric speed  

The reference speed 0v  is the speed of the vehicle during its run phases, for states n.C  for 
every 0≥n . We also consider that the vehicle runs in state 0.C , be it for travelling to meet 
the next customer, or to avoid delays in the next phase of availability (delays associated to 
vehicle parking or to driver’s engagement in a secondary activity). 

The service speed, denoted by ov  (superscript o  for Operator) arises both from the reference 

speed 0v  and from the proportion of time spent on the move, denoted by ∑ =≡ K
n npP 0 .CC : per 

unit of time, 

 C0
o .Pvv ≡ . (7.1) 

At the FEST solution x , the circulating probability is endowed with simple characteristic 
formulas as follows: 
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So in fact it is not required to solve the FEST to obtain that probability, as it depends solely 
on St  and y . The last formula also implies that CP  does not depend on 0t  (hence neither on 

RL  nor on 0v ) nor on ring circumference C . 

It then holds that 

 )1( S0
o tyvv −= . (7.3) 

The sensitivities with respect to the exogenous factors are stated in the following Proposition, 
which is demonstrated in the Appendix, § A.5. In particular, RL  does not influences ov . 

Proposition 10: Sensitivities of move probability and service speed. (i) The probability of a 
vehicle being on the move, CP , is a decreasing function of y  and of St . It does not depend on 

K , RL  and 0v . 

(ii) CP  and ov  vary in the same direction: they both decrease with Q  and St , and both 

increase with N , H  and 0v . Neither K  nor RL  influences CP  or ov . 
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7.2 Commercial, user-centric speed  

Now, the commercial speed is the average speed experienced by users riding in a collective 
taxi. Per unit of system time, there are n  such users present in states n.σ , therefore the time 
they spend on board is: 
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We note in passing that this relation allows us to interpret A.Px  as the time average number of 
users on board a vehicle from the perspective of an outside observer. 

Per unit of system time, users cover the following total travel distance: 
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The commercial speed, denoted by uv  with a superscript u  to indicate the users’ perspective, 
is defined by 
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It possesses the following properties (see Appendix § A.5): 

Proposition 11: Sensitivities of the commercial speed. 

(i) The ratio 0
u / vv  is a proportion that decreases with x  and also with a . 

(ii) Commercial speed decreases with Q, RL  and St , and increases with N , H  and 0v . 

7.3 The user vs. operator relativity of speed  

Let us now compare the two speeds. The ratio between the service speed and the commercial 
speed amounts to 
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Proposition 12: Properties of the ratio between service and commercial speed. 

(i) Commercial speed uv  is greater than service speed ov . 

(ii) Ratio uo / vv  is a decreasing function of x  and also of a . 

(iii) With respect to the exogenous factors, ratio uo / vv  is a decreasing function of Q, RL  

and St , and an increasing function of N , H  and 0v . 

Proof. Point (i) stems from (7.5) and the increasingness of sequence )(xK KΨa  according 
to K . Points (ii) to (iv) are demonstrated in the Appendix, § A.5. 

The relation that uv  is greater than ov  may seem paradoxical: we would intuitively tend to 
imagine that the more users on board, the more dwelling delays, thus the lower experienced 
speed. But in fact, the more users on board, the more productive are the running phases and 
the wider is their benefit to the demand on the whole. 
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The difference between the service, operator-centric speed and the commercial, user-centric 
speed is a relativity effect: speed depends on the actor’s perspective. There are similar effects 
well-known in transportation: from the relativity of wait time to an arriving user (or a 
ridesharing passenger) versus headway time to the operator of a transit line (or a ridesharing 
driver), to the relativity of passenger load in vehicles of a transit line (Leurent et al., 2012). 

Illustration. Figure 7 depicts the uo / vv  ratio as it varies according to x . Cab capacity is set 
to 4=K . Base ride time and stop times are set up as previously. 

 

Fig. 7. Speed ratios uo / vv , 0
u / vv  and 0

o / vv  as functions of load factor. 

8. On Ride and Access Times 
Vehicle occupancy and service speed characterize the operational performance of the service: 
they are of interest for supply management. As for the service demand, the characteristics of 
primary interest are the ride time and the access time per trip. The two kinds of time are key 
components of service quality. We will consider them for a typical trip with ride length RL  

and access length AL .  

This section brings about characteristic formulas and sensitivity properties for both kinds of 
time. We address first the ride time (§ 8.1) then the access time (§ 8.2). 

8.1 Ride time 

The average ride time is defined as the ratio between the average ride length RL  and the 

commercial speed uv  since the customer is on board: thus, 
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Characteristic formulas for Rt  are easily derived from those for commercial speed uv : 
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The last formula reveals the respective influences of base ride time 0t  and stop time St  in a 
clear way: at least the direct part of them, since there is also an indirect part via x . 

Omitting the relativity effect, an apparent ride time would be defined as the ratio between ride 
length RL  and service speed ov , yielding 
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On comparing the apparent and true, user-centric ride times, the influence of the user speed 
becomes obvious: 
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When the user is on board, there is one less place available to other users. So, during his own 
ride, the particular user is an observer external to the 1−K  residual places. 

Proposition 13: Ride time sensitivities. (i) Average ride time u
RR / vLt ≡  is an increasing 

function of factors Q, RL  and St , and a decreasing function of factors N , H  and 0v . (ii) It 

is an increasing function of RL .  

The proof is given in the Appendix, § A.6. 

8.2 Access time 

On waiting for the service, the customer is external to the incoming cab: to him, the length AL  

is covered at the service speed o
1−Kv  since there is at least one place available on board. As 

uo
1 KK vv =−  (both under load factor x ), we must define the access time as the ratio between the 

access distance AL  and the user speed uv : 
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The access time is endowed with characteristic formulas that result from those for AL  and uv : 
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Proposition 14: Access time sensitivities. The access time u
AA / vLt ≡  is an increasing 

function of factors Q, RL , St  and C , and a decreasing function of factors N , H , 0v  and K .  

The proof is given in the Appendix, § A.6. 

Illustration. Figure 8 depicts the variations of Rt  and At  as functions of demand volume Q , 
given =N  100 cabs, =H  14 h, =K  12, base and stop times as previously. The two functions 
are increasing: in service dynamic operations, the interaction between customers is not only 
sharing but also rivalry for available places and hindrance owing to cab dwelling that is a 
detour at least in time. 
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Fig. 8. Average ride time and access time with respect to demand volume. 

9. Conclusion 

9.1 Summary 

We have modelled the dynamic interaction between supply and demand for a collective taxi 
service shaped as a ring. The exogenous factors in our model are a collective taxi’s passenger 
capacity K , the fleet size N , the passenger boarding and alighting times +

St  and −
St , the 

volume of demand Q  and the average ride length RL , together with the speed of travel on the 

road infrastructure 0v  and the ring circumference C  (or equivalently radius R).  

The postulates both on demand generation and on service operations, owing to the spatial and 
temporal heterogeneity, are essential to model the activities of one cab as a Markov chain. 
The state variable is the number of passengers on board together with the logistical status 
either Circulating (denoted by C), Alighting (denoted by A) or Boarding (denoted by B). We 
modelled the transitions between neighbouring states, with rates derived from the average 
time that is spent in each state.  

We showed that the exogenous factors can be combined into a single key parameter ρ  which 

is a ratio between passenger demand and transport supply, since )1( S0 tyty −=ρ  where 
)/(H NQy = . This ratio must be less than vehicle passenger capacity K . 

We also showed that a vehicle’s stationary regime satisfies a fundamental equation of service 
traffic, ρ=Ψ )(xK , which uniquely determines a load factor denoted by x , provided that ρ  is 
less than K . 

From the solution x  follow all the important system performance indicators: in particular the 
probability of availability AP , the pseudo-rate of availability AP′ , the probability of movement 

CP , then the average access length to the customer AL , the service speed ov  and the 

commercial speed uv , and finally the ride time Rt  and access time At . Every outcome is 
endowed with characteristic formulas and sensitivity properties with respect to every 
exogenous factor. 
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In the process, through the distinction between the service speed and the commercial speed, 
we have shown the relativity of the perspectives between the service operator on one side, and 
users on the other.  

Figure 9 shows the causal chain in the model. Thanks to the properties of the function KΨ  
and the formulas that link the variables, we have established the sensitivities of the indicators 
to the different exogenous factors. These sensitivities are summarised in Table 2. 

 

Fig. 9. Causal sequence.  

 

Table 2. Directions of influence from exogenous factors onto model outcomes. 

Factor ρ  x  AP′  AP  CP  AL  ov  uv  Rt  At  

Q  ⊕ ⊕ ⊝ ⊝ ⊝ ⊕ ⊝ ⊝ ⊕ ⊕ 

RL  ⊕ ⊕ ⊝ ⊝ ⊝ ⊕ 0 ⊝ ⊕ ⊕ 

St  ⊕ ⊕ ⊝ ⊝ ⊝ ⊕ ⊝ ⊝ ⊕ ⊕ 

N  ⊝ ⊝ ⊕ ⊕ ⊕ ⊝ ⊕ ⊕ ⊝ ⊝ 

0v  ⊝ ⊝ ⊕ ⊕ ⊕ ⊝ ⊕ ⊕ ⊝ ⊝ 

H  ⊝ ⊝ ⊕ ⊕ ⊕ ⊝ ⊕ ⊕ ⊝ ⊝ 

C  or R  0 0 0 0 0 ⊕ 0 0 0 ⊕ 

K  0 ⊝ ⊕ ⊕ ⊕ ⊝ 0 ⊝ 0 ⊝ 

ρ  ⊕ ⊕ ⊝ ⊝ ⊝ ⊕ ⊕ ⊕ ⊕ ⊕ 

x  ⊕ ⊕ ⊝ ⊝ ⊝ ⊕ ⊕ ⊕ ⊕ ⊕ 
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9.2 Discussion 

We have postulated a set of assumptions in order to represent system things in an explicit 
model. The idealized and abstract form of the representation makes the model a theoretical 
one. Owing to mathematical formulation and stochastic modeling, it is also a quantitative 
model endowed with characteristic formulas suitable to capture and interpret complex 
influences. Numerical application is easy. 

Associated to each postulate is a limitation. Ring shape is a strong assumption: yet the 
postulate empowers the principle of vehicle cycles inherent to transit operations by 
augmenting the catchment area. 

The postulates of homogeneity in space as well as in time are even stronger. They are 
essential to derive analytical formulas that constitute theoretical properties. 

Modeling the roadway traffic conditions by a certain reference speed 0v  omits local 
variations, temporal variability, interactions between vehicles and with traffic management on 
the infrastructure. Would the road have only one lane per traffic direction and no parking lane 
associated to it, then collective cab operations (at dwelling as well as running) would interact 
strongly with the roadway traffic, requiring specific model development. 

We have also modeled the dwelling time per passenger as a certain parameter St . In fact, the 
individual boarding and alighting times are likely to depend on the number of passengers on 
board, mostly in an increasing way. The vehicle would better be designed so as to limit that 
congestion. 

Conversely we have considered individual users rather than passenger groups of variable size. 
We may expect such groups to induce scale economies in dwell times. But their precise effect 
on system states and especially the transitions between states would be difficult to model. 

The model can support a number of theoretical developments, from traffic analysis to 
economic theory. Another direction for further research is to model an ideal ring using traffic 
micro-simulation in order first to check the analytical formulas and then to investigate the 
influence of heterogeneity in space as well as in time. 
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A. Appendix 

A.1. Short Lemmas 

Lemma 1. Function XX)XX(X)( 2 &&&& +−≡γ xx  satisfies that 0)( ≥γ x  and 0)( >γ x  if 0>x . 

Proof. Let us develop  
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Thus )(rγ  decomposes into the sum of three polynomials: 
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To demonstrate that 0)( ≥γ x  for 0≥x , we only have to show that the coefficients of the 
power terms in x  are all non-negative. As only the median part involves negative 
coefficients, it is sufficient to show the non-negativity of the coefficients associated to the 
degrees nK +  for }1..1,0{ −∈ Kn . To do that, let us calculate coefficient nKc +  of the term in 

nKx + : 
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At 1−= Kn  the first part vanishes and so does the second one, so we get that 012 =−Kc . 

At 1−< Kn  the second part involves nKnK +−=++−− 11)1(1  terms ]!)(![/1 ll −+ nK : for 
each of them we have that 
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The underlying reason is that each product is composed of n−l  positive terms and every term 
in the first product is strictly greater than its counterpart in the second product since 1−≤ Kl . 

Thus 
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, and in turn 
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, yielding that 0>+nKc . QED. 

This demonstrates that 0)( ≥γ x  for 0≥x  and also that 0)( >γ x  for 0>x . 



F. Leurent (UPE, LVMT, ENPC)   Collective Taxi Service, Part 1 : traffic physics & service quality 

Version 0c, 2nd April 2019 31/43  

Lemma 2. (i) Function 2XXX &&&a −x  is negative, as is function 2XXX &&&&&&a −x .  

(ii) Function XXXX &&&&&&a −x  is negative. 

Proof. (i) As Kx+= XX &  and 1XX −−= Kx&&& , we have that 
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The same property holds for the sign of function 2XXX &&&&&& −  that follows an analogous formula 

if X  is replaced by X& , which amounts to decrementing K . 

(ii) Let us develop 
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QED. 

A.2. Properties of function KΨ  

Proof of Proposition 3. (i) Function KΨ  is well defined on interval [ +∞,0 [ where it takes on 
non-negative values, including 0 at 0=x . It is continuous and continuously differentiable, as 
the ratio between two such polynomials with denominator one above 1 on the range of 
variations. 

The first derivative function of KΨ , denoted KΨ& , satisfies 

2

2

2

2

X

)XX(XXX

X

X

X

XX
)()(

&&&&&&&&
&

−+=−−+=Ψ
∂
∂≡Ψ xxx

x
x

x KK . 

It has the same sign as function XX)XX(X)( 2 &&&& +−≡γ xx . Thus, from Lemma 1, we have that 

0)( ≥Ψ xK
&  and 0)( >Ψ xK

&  if 0>x , which implies that KΨ  is strictly increasing on [+∞,0 [. 

From this we derive that function KΨ  is strictly positive over its range. 

(ii) The limit value of KΨ  is K
x

xx

K

K
xKx ==Ψ −

+∞→+∞→
1.

limlim . Thus the characteristic 

equation has a solution only if K<ρ , which is equivalent to )(. S0R QtHNKvLQ −< .  
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(iv) Given x , 
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: it is less than 1 since 0XXX 2 ≤− &&&  from 

Lemma 2(i). Thus )()(1 xx KK Ψ≤Ψ −  and the sequence  )(xK KΨa  is increasing.  

(iii) To demonstrate concavity, let us demonstrate that 0≤ΨK
&&  by formal calculus.  

First, we have that 
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Thus the sign of KΨ&& is that of function γ−γ X2X && , in which: 
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Let us develop expression γ−γ X2X && : 
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Let us replace 2XXX &&& −  by XX 1−− KK xx &  and XXXX &&&&&& −  by XX 2−− KK xx && , according to  
Lemma 2: 
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Up to factor KxK /1− , which is positive, function γ−γ X2X &&  is decomposed in three parts 

depending on whether the power of X&  is equal to 2, 1 or 0. These terms denoted respectively 
by iT  for {0,1,2}∈i  are polynomials in x :  

)1(2
0 ++−= KxKxT K , 

))1(2)2((X 2
1 +−++= KKxKxxT K

& , 

))23)(1()1(2(X 22
2 ++−++−= KKKxxT & . 
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Here are the detailed coefficients, since ∑ −
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Thus the powers of x  range from degree 0=n  to degree 12 +K .  

At order 12 += Kn  only 0T  and 1T  are contributors and their respective coefficients 
compensate each other: 
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At order Kn 2=  the three terms all contribute to a total coefficient of 
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so that the polynomial 210 TTT ++  has degree of at most 12 −K . 

At degrees 12 −≤ Kn , 0T  does not contribute any longer, while 1T  contributes by 3 terms: 
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As for 2T , its contribution at order 12 −≤ Kn  is 
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The amounts are all negative, as only the median term may be positive yet it remains lower 
than the right-hand side term. Precisely, two cases must be dealt with specifically, depending 
on whether Kn <  or Kn ≥ . 
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If Kn <  then the median term involves exactly n couples ),( ml  such that nm =++ 1l  : one 
per value of ∈l { 1,0 −n }. To every such couple, we shall associate the pair ),1(),( mm +=′′ ll  

which yields a nonzero element in the right-hand side of )(
2

nT , because nm=++1l  with 
11 −≤+ Kl  since 11 −<−≤ Knl , and 1−≤ Km . Then the coefficients associated to the two 

couples, in their respective terms, are )!!/()1(2 mK l+  and )!!)(1/()1)(23( mKK ll +++− . Their 
sum is negative because: 
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If Kn ≥  then the midpoint term in 2T  involves exactly nK −2  couples ),( ml  such that 
nm =++ 1l : one per value of ∈l { 1, −− KKn }. To every pair such that 1−< Kl  we shall 

associate pair ),1(),( mm +=′′ ll : as before, the sum of the coefficients associated to both pairs 
in their respective terms is negative. As for pair ),1(),( KnKm −−=l , the midpoint coefficient 

)!!/()1(2 mK l+  is compensated by the « right hand side » coefficient that is associated to pair 
),1(),( mm +=′′ ll  which is combined with )1,(),( −−= KKnml  since, in absolute value, the 

coefficient on the right hand side is more than three times greater than the midpoint 
coefficient. 

In all, polynomial 210 TTT ++  has all its coefficients that are negative or zero, hence it is 

negative for values 0≥x . This implies that 0X2X ≤γ−γ &&  and in turn that 0≤ΨK
&& . 

QED. 

A.3. Sensitivities of the availability rates 

Proof of Proposition 6 on the pseudo-rate of availability. 

Let us study the pseudo-rate of availability by using formula xytP /0A =′  which involves 3 

intermediate variables x , 0t  and y . We have that: 
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Yet factors 0t  and y  influence AP′  not just directly but also via x . Their total influence is 
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As function KΨ  is concave, )()0()0()( xxx KKK Ψ−+Ψ≥Ψ & . Yet 0)0( =ΨK  so that 

)()( xxx KK Ψ≥Ψ & , yielding that 1≥
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We are now in position to assert the sensitivities of rate AP′  to the different factors: 

+ Q  increases y  hence its overall influence on AP′  is a decreasing one. 

+ N  and H  each decreases y  hence increases AP′ . 

+ St  increases x  hence it decreases AP′ . 

+ 0t  decreases AP′ , hence RL  decreases AP′ , and 0v  increases AP′ . 

+ cab capacity K  decreases x  hence it increases AP′ . 

 

Proof of Proposition 7 on the true rate of availability. 

Concerning the true rate of availability, it depends on x  in the following way based on (6.3): 
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The numerator part satisfies 
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From Lemma 2, every term in the last summation is negative: thus their sum is negative, and 
so is 0/A ≤∂∂ xP .  

As 0/ ≤∂∂ xPA , true rate AP  is a decreasing function of x , yielding point (i) in Proposition 7. 

Furthermore AP  is differentiable with respect to factor a , with partial derivative: 
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 which is 0≤  from Lemma 2-(i). 

Thus the true rate AP  is also a decreasing function of a . 
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The sensitivity of AP  to the basic exogenous factors: 0SR ,,H,,, vtNLQ  depend on the 

influences of the said factors on ρ  hence on x , and also on 0RSS /. vLtta =µ=  : 

• Factors Q , H  and N  influence AP  only via x : Q  influences x  in an increasing way 

and in turn AP  in a decreasing way. N  (resp. H ) influences x  in a decreasing way 

and in turn AP  in an increasing way. 

• RL  (resp. St ) influences AP  on one hand via x  and on the other hand via a . As both 
influences are increasing ones, and as both x  and a  exert decreasing influences on 

AP , the total influence of RL  (resp. St ) on AP  is decreasing. 

• 0v  influences x  et a  in a decreasing way, so that it will exert a twofold positive 

influence on AP . 

These properties make up points (ii) and (iii) in Proposition 7. 

 

Proof of Proposition 8 on the rate ratio AA / PP ′≡ϕ .  

As )(1 1 xa K−Ψ+=ϕ , it involves the basic factors via a  or x . Let us identify x , 0t  and St  as 
intermediary variables for sensitivity analysis. We have that: 
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Yet factors 0t  and St  influence ϕ  not just directly but also via x . Their total influence is 
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The bracketed term is the derivative of function 
)(

)(
ln 1

x

x

K

K

Ψ
Ψ − , knowing that 

2
1

X

X.X

)(

)(
&

&&

=
Ψ

Ψ −

x

x

K

K .  

Yet function 2XX/.X &&&ax  is decreasing (cf. § A.7): so is its logarithm, implying that the 
derivative function is negative: thus the bracketed term is negative, and in turn, 0/dd 0 ≤ϕ t . 

We are now in position to assert the sensitivities of ratio AA / PP ′≡ϕ  to the different factors: 

+ Q  increases x  hence increases ϕ . 

+ N  and H  each decreases x  hence decreases ϕ . 

+ St  increases ϕ . 

+ 0t  decreases ϕ , hence RL  decreases ϕ , and 0v  increases ϕ . 

 

A.4. Sensitivity of Access Length 

Proof of Proposition 9 on the sensitivities of the access length. 

(i) Factor N  exerts a twofold influence: first a direct influence as an increase in N  (under 
fixed AP ) makes AL  decrease, and second an indirect influence via AP : from Proposition 7, 

an increase in N  increases AP . Thus, the product A.PN  increases with N , so that AL  
decreases with N . 

(ii) Factors Q , 0v , RL  and St  each influence AL  in a simple way via AP , hence each in the 

opposite direction of its own influence onto AP  that is indicated in Proposition 7. 

(iii) Being proportional to circumference C  (and radius R ), AL  varies with it in an 
increasing, linear way. 

 

A.5. Sensitivities of the service speed and of the commercial speed 

Proof of Proposition 10 on the sensitivities of the service speed. 

(i) Probability of being on the move, CP , decreases with respect to y  as well as St  since 

SC / tyP −=∂∂  and ytP −=∂∂ SC / .  

As for factors Q , H  and N , each of them influences CP  via y  only: Q  exerts an increasing 
influence on y  while N  (resp. H ) exerts a decreasing influence on it, so that Q  will have 

CP  to decrease while N  and H  will have CP  to increase. 

The formula StyP .1C −=  also implies that K , RL  and 0v  do not influence CP . 

(ii) K  and RL  do not influence CP  nor 0v , so they do not influence ov . The influence of  0v  

onto ov  is linear increasing. The sensitivities of ov  with respect to Q , St , H  and N  are 

proportional to those of CP  with respect to each factor, with a proportionality coefficient 

00 ≥v : thus both CP  and ov  are increasing functions of H  and N , and decreasing functions 

of Q  and St . 
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Proof of Proposition 11 on the sensitivities of the commercial speed.  

Let us remark the formal analogy between 
XX

X

0

u

&&&

&

axv

v

+
=  and 

XX

X
C &ax

P
+

= : the ratio 0
u / vv  

is equal to CP  for a collective cab service with one less place per cab, since )1()( XX −= KK
& . 

(i) The influences of x  and a  on ratio 0
u / vv  are decreasing since an increase in any of them 

makes the denominator increase in 1
1

1
10

u ))(1())(1(/ −
−

−
− ΨΨ+=ρΨ+= xaavv KKK o . 

(ii) Q  (resp. H , N ) has an increasing (resp. decreasing) influence on x  hence a decreasing 

(resp. increasing) influence on 0
u / vv , hence on uv . 

An increase in St  makes both x  and a  increase, hence it reduces 0
u / vv  and in turn uv . 

As for 0t , its respective influences on x  and a  have opposite directions. We calculate: 
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Which is non-negative since the bracketed expression is non-negative, cf. the proof of 
Proposition 8. 

Proof of Proposition 12 on the sensitivities of the uo / vv≡η  speed ratio.  

Let us denote 
)(1

)(1 1
u

o

xa

xa

v

v

K

K

Ψ+
Ψ+=≡η − .  

(ii) Let us calculate the partial derivatives with respect to the intermediary variables a  and x . 
We have that: 
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Both are negative, since KK Ψ≤Ψ −1  for  a∂η∂ / , while for x∂η∂ /  we use the relation that 

1
11

≥
Ψ
Ψ≥

Ψ
Ψ

−− K

K

K

K

&

&

 , yielding a negative value for the bracketed expression. 

(iii) Factors Q , H  and N  exert their respective influence onto η  via x  only: as Q  increases 
x , it decreases η . As H  and N  each decreases x , each of them increases η . 

As for St , it increases both a  and x : thus its twofold influence on η  is decreasing in both 
ways. 

As for 0t , its influences onto η  via  a  and x  have opposite directions: overall, 
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Now, as 
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 and 11 ≤ρ− a , the bracketed expression is negative, so that 0
d

d

0

≤η
t

. 

Thus, 0t  exerts a decreasing influence on η : so does RL , whereas 0v  has an increasing 
influence. QED. 

A.6. Sensitivities of user times 

Proof of Proposition 13 on the sensitivities of the ride time u
RR / vLt = .  

(i) All factors except for RL  influence Rt  only through uv , and they do so in an inversely 

proportional way. Thus their respective influence on Rt  is opposite to that on uv . From 

Proposition 11, it follows that Rt  in a decreasing function of N , H , K  and 0v , while it is an 

increasing function of Q  and St . 

As for (ii), the influence of RL  on Rt  is twofold: the direct one is an increasing one, and so is 

the indirect one via uv , so that the overall influence is twofold increasing. 

Proof of Proposition 14 on the sensitivities of the access time u
AA / vLt ≡ .  

(i) The sensitivity of At  to C , or equivalently to R is obvious as R does not influence the 
other variables in the model: it is an increasing and linear influence. 

(ii) Formula (8.7a) reveals the influence of factors other than C , N  and 0v : each factor 

among Q , RL , St , H , influences At  in the opposite way as it influences the effective 

availability rate AP′ . From Proposition 6, we recover that At  is an increasing function of Q , 

RL , St , and a decreasing function of H . 

 (iii) The influence of N  onto At  is twofold: using definition (8.6), first via AL , second via 
uv . As an increase in N  makes AL  decrease and uv  increase, both parts have consistent 

influences, yielding a decreasing overall sensitivity of At  to N . 

The same applies to 0v : its twofold influence on At  is a decreasing one. 

A.7. Long Lemma 

We already know that function 2X/X.X1: &&&a −xf : is positive. Let us show that it is an 
increasing function, by demonstrating that its derivative is non-negative,  
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By differentiating each term, we get that 
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In this sum, let us consider the terms with a certain power 2−++ Knl , for every degree 
nm += l . To each pair ),( nl  corresponds the symmetric pair ),( ln  with respect to 2/m . By 

grouping the respective coefficients, we get a numerator of 
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By allocating the total between the two indices l  and n  in a balanced way, we obtain a 
“symmetrical” term 
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The selection of the indices that meet condition }1..1,0{ −∈ Kl  constitutes an extraction from a 
binomial law with number m and proportion 2/1  : 
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 l∀  hence 1]E[ =δ . 
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If 1−≥ Km  then there are mKKmK −−=+−−−− 121)1(1  indices l  from 1−− Km  to 1−K  

for which 1)( =δ m
l

, so that 
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12
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m

mK
. 

Furthermore, for every index l  there is also the symmetrical index l−m , so that m
2
1].E[ =δ l . 

This mean is identical to that of the binomial random variable l  of parameters m and 
2
1 . 

Each term )(mC
l

 includes a part )1)((
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)(
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mmm
m KKC −−−=  independent of l  hence called fixed, 

and a variable part that is zero at m2
1  (hence only if m is even).  

On average, the fixed part yields a contribution )1)((]E[]E[
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Also on average, the variable part can be interpreted as -3 times the variance of the indices l  
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If 1−≥ Km , we differentiate two cases depending on whether m is even – thus denoted as 
iK 222 −−  - or odd and thus denoted as iK 212 −− . 

In the even case, with 1222 −≥−−= KiKm , then iKm −−= 1
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We can now gather the non-zero terms in mmSm −2!  by counting with each 
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As soon as 1≥i , which holds since 22 −≤ Km . 

All in all, we have demonstrated that in all cases the sum mS  is non-negative. 

QED. 

This implies that 0/ ≥∂∂ xf , hence that f  is an increasing function. 

 


