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In the digital era of mobility, the generalization of connectivity for customers as well as for vehicles has enabled for the development of different kinds of platform-based shared mobility services. Here we consider a service of collective taxis that combines on-demand access and egress of customers and "transit cycles" of vehicles along a ring-shaped circuit to serve mobility demand.

The paper brings about a physical theory of customer and vehicle traffic in an abstract ringshaped service of collective taxis. The traffic system is parameterized by (i) on the infrastructure side, the ring circumference and the average run speed, (ii) on the vehicle side, the cab passenger capacity and the stop time required to pick up and drop off a passenger, (iii) on the service side, the fleet size and the time span of daily operations, (iv) on the demand side, the trip volume and the average ride length. Spatial and temporal homogeneity are postulated to devise a mathematical formulation of (i) cab occupancy and the availability of vacant places to potential customers, (ii) Circulating, Alighting and Boarding phases (CAB), (iii) average service speed, in the operator perspective, (iv) average commercial speed, in the user perspective, yielding typical ride time, (v) access length and typical access time to an incoming user.

The mathematical treatment is based on a stochastic Markov chain model of one collective cab with state vector that combines the C/A/B status with the number of riders. We establish the stationary regime of this dynamical stochastic system and characterize its stochastic equilibrium as a Fundamental Equation of Service Traffic in one scalar variable of load factor. The solution is unique and it exists if a capacity requirement is satisfied. Closed-form analytical formulas are provided to characterize every model outcome, together with sensitivity properties with respect to all system parameters.

Introduction 1.1 Background and literature review

In the big cities of emerging countries, for example Nairobi and Addis Ababa in Africa, collective taxis often account for 20 or 30% of passenger transport [START_REF] Ferro | Paratransit: a key element in a dual system[END_REF]. The reasons for this high modal share are twofold: on the one hand, a relative paucity of public transport lines and private cars; and on the other hand a large local supply of collective taxis, which attract large numbers of customers, making it possible to spread production costs and offer attractive prices.

In the developed countries, collective taxi services are only present in certain niche markets: for example point-to-point links between an airport and the city center, or on-demand transport services targeting a particular customer population (particularly people without private cars) and with relatively impractical operating conditions (booking a day in advance, setting a time window for pickup, risk of significant waiting times, detours…) [START_REF] Orski | Paratransit: the coming of age of a transportation concept[END_REF][START_REF] Jansson | Public Transport in the era of ITS: Forms of Public Transport[END_REF].

However, with the digital revolution, mobility has become connected and shared mobility services are developing fast, particularly in big cities in developed countries. The meteoric rise of the Uber platform is one emblematic example in the taxi industry, alongside other competing firms (Lyft in the US, Didi in China, Ola in India, etc.). Collective taxi services seem to be the next source of growth for these companies: for example, Uber Pool, Lyft Line, Padam, etc. allow travelers to share the use of vehicles in real time, at much lower fares than the individual taxi (around $5 or €5 per ride in city central areas). Moreover, the anticipated arrival of self-driving vehicles will sharply reduce driving costs, which will in turn lower production costs by half or two thirds: this can be expected to have similar effects on use as the impact on taxis of the dramatic fall in transaction costs brought about by online platforms.

Collective taxi services (CTS) have given rise to an academic literature in transportation analysis that splits in two streams according to their orientation towards either operations or planning. Service operations have been modeled in a microscopic way, detailing each vehicle and each customer request, so as to develop specific algorithms for vehicle dispatching and vehicle-customer matching (e.g. [START_REF] Malucelli | Demand adaptive systems : some proposals on flexible transit[END_REF][START_REF] Lioris | Évaluation et optimisation de systèmes de taxis collectifs en simulation[END_REF]: such models involve two levels of analysis, the lower one for dynamic microsimulation with much detail in both space and time, the higher one to manage service operations and optimize the assignment of resources. Yet service demand is exogenous as it is generated randomly from a stochastic process with given parameters. Micro-simulation models of Personal Rapid Transit systems belong to that category (e.g. [START_REF] Andreasson | Vehicle distribution in large personal rapid transit systems[END_REF][START_REF] Andreasson | Reallocation of empty personal rapid transit vehicles en route[END_REF][START_REF] Andreasson | Ride-sharing on PRT[END_REF], as do traffic modeling studies for cities, for instance the simulation of self-driving shared cabs for Lisbon city (ITF, 2015), the simulation study of some shared mobility services for the Zurich area [START_REF] Hörl | Fleet operational policies for automated mobility: A simulation assessment for Zurich[END_REF] and the Barcelona MaaS study by PTV [START_REF] Lenz | PTV MaaS -Mobility as a Service, le cas d'étude de Barcelone[END_REF].

The second stream of literature is focused on system planning: it involves the demand side and especially Travel Demand Modeling in order to derive the potential usage, frequentation, customership and fare revenues of a given CTS. CTS usage is modeled per individual tripmaker as the outcome of travel decisions, from trip generation to mode choice in which CTS stands as a specific option that competes with rival modes of private car, mass transit, maybe also bike and walk. Recent contributions include Fagnant andKockelman (2014, 2016) and [START_REF] Fagnant | Operations of a shared autonomous vehicle fleet for the Austin, Texas Market[END_REF].
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The next step is to combine a supply-oriented model of service operations and a demandoriented model of service planning in order first to ensure physical consistency (e.g. [START_REF] Berrada | Demand modelling of autonomous shared taxis mixed with scheduled transit[END_REF] and then to look for profitable business models (e.g. Horl, 2019).

On comparing the CTS academic literature to the taxi one, a prominent difference is the shortage of microeconomic theory for CTS. The microeconomic theory of taxi services has been pioneered by [START_REF] Douglas | Price regulation and optimal service standards: The taxicab industry[END_REF] who identified four main components in a taxi service as a system of supply and demand: namely combining (i) a demand function with respect to price and wait time, (ii) a pricing rule linking the tariff fare to trip time, (iii) a production cost function proportional to taxi time occupied and vacant, (iv) a "delay distribution" i.e. a function relating the taxi unoccupied time from customer drop-off to next customer pick-up, to the density of vacant taxis and also the car speed.

The Douglas model has given rise to subsequent contributions, notably [START_REF] Arnott | Taxi travel should be subsidized[END_REF] who considered homogenous 2D space to demonstrate the collective interest to subsidy taxi supply in a less aggregative perspective, by [START_REF] Yang | Demand-supply equilibrium of taxi services in a network under competition and regulation[END_REF] who explored the effects of different regulation policies on the market equilibrium on the basis of a network model of taxi supply and demand in the Hong-Kong urban area, and by [START_REF] Yang | Equilibria of bilateral taxicustomer searching and meeting on networks[END_REF] who put forward a matching function to derive the respective wait times of taxis and customers to fleet size and demand volume.

Indeed, microeconomic analysis is required to better understand taxi sharing, especially the interaction between several customers using the same vehicle at the same time, thereby imposing delays to each other.

Objective and contribution

The paper brings about a stylized analytical model of a CTS as a system of supply and demand. A basic set of modeling assumptions are provided both for the supply side and the demand side, so as to model their dynamic interaction and derive the "usage conditions" of vehicle occupancy, vehicle availability times for customers and ride time per user trip. Thus the model deals primarily with traffic physics: yet the physical representation is stylized in order to constitute a microeconomic model of a CTS as a "technology function" that is suitable for further economic analysis (such as supply-demand equilibrium, optimal service management, regulation policy).

More precisely, the demand is represented by an overall volume of demand trips over a time period, its spread in space and the average trip length. Service supply is represented by fleet size, vehicle capacity, run speed, average time to pick up and drop off an individual passenger. From these parameters, postulating a specific spatial configuration as a ring shape, specific service operational processes, on-demand service and a stationary traffic regime, we obtain mathematical formulas for the probability of vehicle availability, the statistical distribution of vehicle occupancy by passengers, the average access time, the average ride time.

The formulas are relatively simple, especially for vehicle capacity of 1 and 2. It is then easy to assess the respective performances of different service specifications under a given pattern of demand.

Key to the analysis is a postulate of ring shape for both demand and supply: the spatial distribution of customer origins is postulated homogenous along a ring (such as a circular road) and the service vehicles are assumed to run continuously, each in one direction along the ring. While it may seem highly restrictive, the ring shape in fact matches the basic Version 0c, 2nd April 2019 4/43 principle of vehicle cycles in the operation of transit lines. The specific postulate induces a spatial homogeneity that is essential to our mathematical analysis.

Methodology

Our modeling methodology combines elements from traffic microsimulation, queuing theory and stochastic modeling. Space is represented as a specific configuration of places: this enables for the identification of different positions in space as well as of distances between points along the ring.

As for traffic microsimulation, we consider two kinds of entities: collective taxis as vehicles and individual customers that use the vehicles as passengers. Each entity is an individual element of the set of its kind: individual situations are modeled in an abstract way owing to stochastic modeling that enables for generic treatment and formal calculus.

The traffic model of CTS, with its vehicles as servers and its customers, is related to queuing theory in which a number of servers are available under certain conditions to a flow of customers. The classical interpretation in queuing theory is that servers have fixed positions and that customers get to them as "arrival streams" of service requests (e.g. [START_REF] Kleinrock | Queueing systems. Volume I: Theory[END_REF].

In our model, the servers are mobile; every customer waits for one of them at their own place prior to boarding, riding and alighting. Using properties of spatial homogeneity together with some additional simplifications, we model every vehicle as a stochastic system with states and transitions: the state vector combines the number of passengers on board and the "logistical status" either Circulating, Boarding and Alighting. The transition rates from one state to another depend on the physical situation, notably the number of on-board passengers, the average trip length, the flow of customer arrivals and the base circulation speed.

Under the Markov postulate that the next system state depends only on the current one, we study the stochastic equilibrium of the system by solving the balance equations of probability flows between the elementary states. The resulting stationary distribution of probability enables us to characterize the conditions of traffic and usage in a fairly simple way.

Coming to the time dimension, stochastic equilibrium corresponds to a stationary regime of system dynamics. The equilibrium distributions of access times, of vehicle occupancy and availability are endowed with fairly simple analytical formulas.

In all, we obtain an analytical model of the service conditions (intensity of usage, quality of service) according to supply and demand characteristics.

Paper structure

The rest of the paper is organized in eight parts. We begin by specifying the territorial framework and the service process (section 2). Then we model the access time of a given customer to the service as a random variable depending on the number of available vehicles (section 3). Next, we build up the stochastic model of one vehicle by identifying the elementary states and the transitions between them, and by specifying the transition rates as functions of the state variable and exogenous parameters (section 4). We then study the stationary regime and characterize its determination as a "Fundamental Equation of Service Traffic" (FEST) in one scalar variable only, called the "load factor" and denoted by x (section 5). Based on the solution of the FEST, we derive the availability probability and also the access length (section 6). We also derive the service speed and the commercial speed that correspond to vehicles and customers, respectively, and we emphasize the difference between them as a traffic relativity effect typical of collective transit (section 7). The last consequences pertain to the ride time and the access time (section 8). To conclude, we synthesize the model 
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Let us define the service of collective taxis by specifying first the territory and the ring shape ( § 2.1), then the mobility demand t infrastructure and its traffic conditions ( § 2.3) and lastly the service quality and its operational processes ( § 2.4).
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Mobility demand

We consider the mobility demand of individual users as the set of trips that they make individually. On a given day, during service period of time length H , there are Q such trips. Each user trip is a 3-leg sequence of Walk, Ride and Walk legs. We focus on the Ride legs and consider the ring arterial as the locus of Ride origins and destinations.

Spatial homogeneity is postulated: that each point M along the arterial generates ride trips with uniform rate of generation and uniform statistical distribution of ride length from M (in each traffic direction). We shall denote by R F the CDF of ride lengths and R L its average value. Uniform origins generating i.i.d. trips yield uniform distribution of destination points along the circuit.

We moreover postulate temporal homogeneity: by time unit within the service interval, /H Q rides are generated.

Transport infrastructure and speed of travel

We postulate that a two-way arterial road runs through all the points on the ring and serves all the places along it. The following modelling assumptions are made:

[I1] in each direction of traffic, vehicles run at an average speed denoted by 0 v ;

[I2] a collective taxi may stop at any point to park, or pick up or drop off a customer, without disturbing the flow;

[I3] each collective taxi travels in only one direction: it never changes direction, whether or not there are customers on board;

[I4] servicing customers entails manoeuvres in order to leave the traffic flow, to stop, to open a door, to let the customer board or alight, to close the door, to move off again and re-enter the traffic flow. Each manoeuvre generates a delay for the vehicle, and therefore for the customers on board and for customers who have booked and are waiting. We will take into account the cumulative effect of these manoeuvres in the service speed.

The collective taxi service: quality of service and service process

We further assume that rides are provided by a single collective taxi operator, under the following conditions:

[S1] a given vehicle type, with uniform level of comfort and a number of K places for simultaneous transport of passengers;

[S2] a ride time on board, denoted by R t , proportional to the distance covered R L and inversely proportional to the commercial speed;

[S3] the "customer process" in terms of the sequence Plan-Book-Ticket is managed by a web application: for each ride, the transaction time for the customer is T t . For the collective taxi, a customer's boarding (resp. alighting) generates a delay of

+ S t (resp. - S t ).
[S4] an access time denoted by A t between the moment the customer makes a request and the moment the collective taxi arrives to pick them up. This time is proportional to the length A L that the collective taxi needs to cover between the booking and actual boarding.

In summary, the quality of service level for the customer is characterised in terms of comfort level and times R t , T t and A t .
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Concerning the operational management of the service, we assume the following service process. We denote the size of the operator's collective taxi fleet, and therefore the number of vehicles, by N . We ignore the proportion of vehicles off the road for maintenance or repair.

At a given moment h :

[P1] the spaces occupied in the vehicles are those assigned to a customer;

[P2] available vehicles are those where there is at least one empty place, e.g. a seat with no occupant;

[P3] when a new customer arrives, they inform the system that they need a ride, and the system assigns the request to the direction of travel that minimises the distance covered on board. Among the collective taxis travelling in that direction, the customer is assigned to the nearest vehicle with a seat available at that moment;

[P4] the customer waits for this designated vehicle to arrive in order to board and be transported to their destination point;

[P5] in each direction, the number of available vehicles is A 2 1 NP , where the probability of the vehicle being available, i.e. having at least one unoccupied space, is denoted by A P . It holds that

K p P - = 1 A
, where K p is the probability of a collective taxi being full with its K places occupied;

From [P3], each new customer request is treated using the shortest route in terms of ride distance. Assuming that the ride lengths L are distributed according to Cumulative Distribution Function R F in each traffic direction, then

[ ] ∫ = ≡ 2 / 0 R R ) ( dF E C L L L L .
(2.1)

Access length

In a given direction of traffic, at a given moment, the k available vehicles have random positions that are distributed uniformly and independently from each other on the road. At every point where a request is generated, the distance between the customer position and that of the i -th available vehicle is a random variable i L with uniform distribution in interval [ ] C , 0 . The access length A L is the minimum of the distances i L .

Random variable i L has Cumulative Distribution Function as follows:

{ } { } 0 1 } , { min Pr ) ( F ≥ = ≤ ≡ x i i C C x x L x . (3.1)
The available vehicle closest to the customer to serve the ride in the assigned traffic direction is located at distance

i k i L L } {1,.. A min ∈ ≡
. This distance is distributed with CDF as follows:

d distribute tly independen are positions the as } { Pr 1 } : { Pr 1 } min { Pr } { Pr ) ( F A A ∏ > - = ∀ > - = ≤ = ≤ ≡ i i i i i x L i x L x L x L x Thus k i i C x x x ) ) 1 (( )) ( F 1 ( ) ( F 1 A + - = - = - ∏ for C x ≤ . (3.2)
From this stems the average access length conditionally to k :
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This average value is conditional to the number k of available cabs. In turn, this number comes from the 2 / 2 N N ≡ cabs assigned to the traffic direction. Taking the availability status of cabs as independent Bernoulli-distributed variables with success probability A P , then k is distributed binomial with parameters 2 N and A P . Its probability distribution function is:

} {0,1.. 2 N k ∈ ∀ , k N k k P P k N P - -         = 2 ) 1 .( . A A 2 .
(3.4)

The unconditional mean is then

) ) 1 ( 1 .( ) 1 ( )! 1 ( ! )! 1 ( ) 1 .( . ) 1 ( )! ( ! ) 1 ( )! 1 ( ) 1 .( . ) 1 ( )! ( ! ) 1 ( ! ) 1 .( . 1 )! ( ! ! ) 1 .( ] | [ E ] [ E 1 A A 2 1 1 2 2 1 A A A 2 0 2 2 A 1 A A 2 0 2 2 A A 0 2 2 A A 0 A A 2 2 2 2 2 2 2 2 2 2 + + = - + = - + = - = - = - - + = - + + - + = - + + - + = - + - = + - - = = ∑ ∑ ∑ ∑ ∑ N N k k N k N k k N k N k k N k N k k N k N k k P P N C k N k N P P P N C k N k N P P P N C k N k N P P C k C k N k N P P k L P L Neglecting 1 A 2 ) 1 ( + - N P and approaching 2 2 1 N N ≈ +
, we obtain the following approximation for ] [ E A L :

A 2 A ] [ E P N C L = . (3.5)

Stochastic model of one cab

Let us now model the dynamical state of one cab as a stochastic Markov chain. To keep the model simple enough, we consider a state vector that is reduced to the logistical status and the number of passengers on board. We shall first define the elementary states and the transitions between them ( § 4.1). Then, we model the transition rates so as to capture the physics of service traffic: some simplifications are required to make the model Markovian ( § 4.2). Based on the transition rates, we derive the stationary distribution of probability that characterizes a CAB system in stochastic equilibrium ( § 4.3).

States and transitions

In real time, a collective taxi is in one or other of the following states, depending on the number K n ≤ of passengers on board and the logistical phase σ :

• on the move with 0 > n , in a fixed direction and at speed 0 v : a state denoted by n . C ( C standing for Circulating); 

Transition rates

We reduce the system description to the pairs n . σ of logistical status B} A, {C, ∈ σ and the number {0,1,..K} ∈ n of passengers on board. By taking n . σ as state vector, we omit such things as the cab current position along the ring, the locations of pending customer requests and the destinations of the riders. These are reduced to residual ride lengths from the cab current position. Furthermore, we take the residual lengths as independent random variables identically distributed according to an exponential law. Similarly, we take the boarding and alighting times as independent random variables with exponential laws.

These approximations enable us to consider time-independent transition rates that suffice to model the system dynamics and derive its stationary state (e.g. [START_REF] Kleinrock | Queueing systems. Volume I: Theory[END_REF].

Between states n . σ , transitions occur with positive rates only in the following cases.

From n . C where Then, the total probability of all states is

K n < , to 1 . B + n ,
λ′ = +1 . B . C n n z for K n < , (4.3a) + = S . C . B / 1 t z n n for 0 > n , (4.3b) - + = S . C 1 . A / 1 t z n n for K n < , (4.3c) 0 . A . C / . t n n z n n = µ = for 0 > n . (4.3d)

Stationary regime and distribution

) X . . (X ) . . 1 ( . ) 1 ( . Pr 0 1 0 S 0 0 1 0 S . C 0 1 0 . C & x a p t x x p x p t p x p p p K n n K K n n K K n n K + = µ + + = λ′ + + = + = ∑ ∑ ∑ - = - = - = + Σ Wherein: 0 S S t t t a = µ ≡ , ∑ = ≡ K n n x 0 X and ∑ - = = ∂ ∂ ≡ 1 0 X X K n n x x & .
As the total probability is equal to 1, it follows that 

X . . X 1 0 & x a p + = . ( 4 

Stochastic equilibrium and FEST

The stationary probability distribution of the CAB states involves the flow rate of customer arrivals per available cab. By combining the associated conditions, we obtain a Fundamental Equation of Service Traffic (FEST) that characterizes the CAB system state in stochastic equilibrium ( § 5.1). The FEST is a mono-dimensional, nonlinear relationship linking a service load factor x as unknown variable, to exogenous conditions of demand volume, service time span and fleet size that are encapsulated in a composite parameter denoted ρ . We shall study this parameter and analyze its sensitivity to its exogenous factors ( § 5.2). Turning to the K Ψ function that relates x to ρ , we will provide a physical interpretation, establish mathematical properties and its sensitivity with respect to cab capacity K ( § 5.3). Next, we demonstrate the existence and uniqueness of a solution to the FEST and we establish its sensitivities with respect to the different model parameters ( § 5.4). Lastly, we provide a general computation scheme, together with analytical solutions to the FEST with 1 = K and 2 = K ( § 5.5).

Fundamental equation of service traffic

Based on demand volume Q , service time span H and fleet size N , all taken as exogenous factors, let us define a composite parameter that is the average cab productivity in rides per day:

N Q y H ≡ . (5.1)
The flow rate of customer arrivals per available cab, λ′ defined in (4.2), can then be expressed as

Α ′ = λ′ P y / .
(5.2)

There are two relations between λ′ and the load factor x . The first one consists in the definition of the pseudo-rate of availability, which can be restated as:

X 0 1 0 . A & p p P K n n C = ≡ ′ ∑ - = .
(5.3a)

The other relation consists in the definition of x , (5.3b)

Combining the two relations, we obtain a unique condition that characterizes x :

x p x a t y p t y x to respect with expression its by replacing after ) X (X X X 0 0 0 0 & & & + = = . As 0 S / t t a = , we get that ) X X ( ) X (X X S 0 0 S 0 x t t y x t t t y x + = + = & & & .
Recombining, it comes out that

y t t y x K K S 0 ) ( ) ( 1 X X - = & .
(5.4)

The subscripts (K) remind that X and X & involve the cab capacity K .

Let us define:

y t t y S 0 1- ≡ ρ . (5.5a) ) ( ) ( X X ) ( K K K x x & ≡ Ψ .
(5.5b) . Apart from K , all of the exogenous factors influence x via ρ only, making (i) hold true. In turn, under the definitions (5.5), then (5.4) implies (5.6), yielding point (ii). 

Properties of composite parameter ρ

Given fleet size N and time span H , the total vehicle operating time N H must meet two requirements from the Q customers:

• The first requirement pertains to dwell time, at level

S S S . ) ( t Q t t Q = + - + : the constraint is H . S N t Q ≤ .
• The other one involves base ride times: as there are . Lastly, ρ is an increasing function of y : in turn, it increases with Q and decreases with H and N .

The K Ψ function

Conditionally to cab running, the passenger load has mean value as follows:

∑ ∑ = = = K n n C K n n C p p n n 0 . 0 . . ] C | [ E .
On the one hand,

X ! ) 1 ( ! . . 0 1 1 0 0 0 0 . & x p n x x p n x n p p n K n n K n n K n n C = - = = ∑ ∑ ∑ = - = = .
On the other hand, X 0 0 .

p p K n n C = ∑ = . Thus Thus ) ( X X ] C | [ E x x n K Ψ = = & .
(5.8)

We can then interpret cab load index ρ as the mean passenger load of a running cab.

The following proposition is demonstrated in the Appendix, § A.2.

Proposition 3: Properties of the K Ψ function.

(i) Function K Ψ is continuous on [ , 0
[ +∞ and strictly increasing.

(ii) On that range, the function takes on all the values from 0 to K excluded.

(iii) It is a concave function.

(iv) Given x, the sequence

) (x K K Ψ a is increasing.

FEST solution

Proposition 4: Existence and uniqueness of FEST solution. Provided that K < ρ

, the FEST admits one solution ρ

x which is unique.

Proof. From Proposition 3 (i) and (ii), function K Ψ can be inverted and the inverse function (ii) A combined variation of these parameters influences x in the same direction as it influences ρ .

) 1 (- Ψ K is increasing from [ , 0 [ K to [ , 0 [ +∞ . As K < ρ then ) ( ) 1 ( ρ Ψ ≡ - ρ K x exists
(iii) Given ρ , the sequence ) (

) 1 ( ρ Ψ - K K a is decreasing.
Proof. (i) x depends on any said parameter only through ρ : as it increases with ρ , it inherits its sensitivities so it varies in the same direction as ρ with respect to each factor. So point (i) stems from Proposition 2.

(ii) Any combined variation influences x only via ρ , with positive coefficient from ρ to x .

(iii) Let x be the solution of

ρ = Ψ ) (x K . As ) (x K K Ψ a is an increasing sequence, necessarily ρ = Ψ ≥ Ψ + ) ( ) ( 1 x x K K . As ) 1 ( 1 - + Ψ K is increasing, then ) ( ) 1 ( 1 ρ Ψ ≥ - + K x and in turn ) ( ) ( ) 1 ( 1 ) 1 ( ρ Ψ ≥ ρ Ψ - + - K K .

General computation scheme and special instances

General computation scheme. In the general case, the FEST can be solved iteratively by setting it as the following fixed-point problem:

X X . & ρ = x .
(5.9)

The iterative algorithm has initial value ) 0 (

x and induction rule from step k to step 1 + k as follows:

ρ ≡ ) 0 (

x .

(5.10a)

) ( ) ( ) 1 ( . k k k X X x & ρ ≡ + with ) X( ) ( ) ( k k x X ≡ and ) ( X ) ( ) ( k k x X & & ≡ . (5.10b)

Special instance with unit passenger capacity.

If 1 = K then the cab service is individual. This requires 1 < ρ . It is straightforward to invert ) 1 /( ) ( 1 + = Ψ x x x into ρ - ρ = ρ Ψ - 1 ) ( ) 1 ( 1 .
(5.11)

In turn, replacing ρ by its expression depending on y yields that

) ( 1 S 0 0 t t y t y x + - = .
(5.12) More generally, recovering x from ρ at order K amounts to solving a K-th degree equation in x . There exist analytical formulas up to 4 = K only (by Abel's theorem).

Special instance with cab capacity of 2. At order

2 = K , it is required that 2 < ρ and we have ² 1 ) 1 ( ) ( 2 1 2 x x x x x + + + = Ψ . Condition ρ = Ψ ) ( 2 x is equivalent to ² ²) 1 ( 2 1 x x x x + = + + ρ , hence to 0 2 2 2 1 2 ² = ρ - ρ - ρ - ρ - + x x .
This second degree equation has one positive root only:

ρ - ρ - - ρ - ρ + ρ - ρ - = ρ Ψ - 2 1 2 2 ) 2 1 ( ) ( 2 ) 1 ( 2 .
(5.13)

On Cab Availability and Service Access

In stochastic equilibrium, the primary outcomes of the CAB model consist in the state probabilities which are intimately related to the load factor x . From the elementary state probabilities stem the probability of any subset of states: of particular interest are the availability rates that play a crucial role both on the supply side (the effective rate) and on the demand side (since the true rate is essential to the mean access length).

This section provides characteristic formulas and sensitivity properties first for the availability rates ( § 6.1), second for the mean access length ( § 6.2).

Availability rates

The effective availability rate A P′ is defined as the probability of a given cab to be running and having at least one place available:

∑ - = ≡ ′ 1 0 . C A K n n p P . (6.1a)
This definition gives rise to characteristic formulas as follows:

X X X X 0 A & & & x a p P + = = ′ . (6.2a) )) ( 1 ( ) ( A x a x x P K K Ψ + Ψ = ′ . (6.2b) ) 1 ( A ρ + ρ = ′ a x P . (6.2c) x y t P 0 A = ′ . (6.2d)
Each of these equivalent forms may be used to recover the effective rate from x together with either y or ρ .

The following Proposition is demonstrated in the Appendix, §A.3.

Proposition 6: Sensitivities of the pseudo-rate of availability.

(i) Given K , the rate A P′ is a decreasing function of x .

(ii) Rate A P′ is a decreasing function of S t and R L but an increasing function of 0 v .

(iii) Rate

A P′ is a decreasing function of Q and an increasing function of N and H .

The "true" availability rate A P is defined as the probability of having at least one place available in a given cab. It has more significance for the quality of service than the effective availability rate. It stems from the distribution of stationary probability as follows:

) ( 1 . B . A . C A K K K p p p P + + - ≡ . (6.2) Thus, X X X X X X ) X ( X X X ) 1 ( 1 ) 1 ( 1 ax x a ax Kx x a x ax x aK p aK P K K K K + + = + - + - = + + - = + - = .
This gives rise to characteristic formulas as follows:

) X X ( 0 A & & & x a p P + = . (6.3a) )) ( 1 .( X 1 0 A x a p P K - Ψ + = & . (6.3b) )) ( 1 .( 1 A A x a P P K - Ψ + ′ = . (6.3c)
From the last expression, it comes out that The twofold influence of 0 t onto the ratio, via x (increasing) and via a (decreasing), is decreasing as a whole: thus the ratio is an increasing function of 0 v and a decreasing function of R L .

Illustration. Assume that = S t 2 min and = 0 t 18 min, yielding 9 / 1 = a

. Figure 5 exhibits the variations of the effective rate (on the left side) and those of the true rate (on the right side) with respect to load factor x , for selected values of cab capacity K . The difference between the two rates becomes more and more apparent as x or K increases. 

Access length

The mean access length has been modelled in Section 3 as the circuit circumference divided by the number of available cabs in the traffic direction of interest, i.e. It thus inherits its characteristic formulas and sensitivity properties from the true availability rate, but with variations in the inverse direction. Let us state them as follows. 

X X X X 2 A & & & & x a ax N C L + + = . (6.5a) )) ( 1 ( X 1 1 0 2 A x a p N C L K - Ψ + = & . (6.5b) )) ( 1 ( 1 A 2 A x a P N C L K - Ψ + ′ = . ( 6 

On service and commercial speeds

The reference speed 0 v applies to vehicle running on the ring arterial road. In service operations, the cab speed stems from all phases, boarding and alighting as well as circulating. This makes the operator-centric speed lower than the reference speed. Yet on the demand side the associated speed is still a different notion: the speed that is experienced by the users is the commercial speed that stems from the passenger presences on board during all phases, with emphasis on the number of riders as much as on the logistical status. The commercial speed can also be called user-centric. This section is devoted to the operator-and user-centric speeds and their comparison. After studying firstly the service speed ( § 7.1) and secondly the commercial speed ( § 7.2), we compare the two indicators and demonstrate a relativity effect ( § 7.3).

Service, operator-centric speed

The reference speed 0 v is the speed of the vehicle during its run phases, for states n . C for every 0 ≥ n . We also consider that the vehicle runs in state 0 . C , be it for travelling to meet the next customer, or to avoid delays in the next phase of availability (delays associated to vehicle parking or to driver's engagement in a secondary activity).

The service speed, denoted by o v (superscript o for Operator) arises both from the reference speed 0 v and from the proportion of time spent on the move, denoted by

∑ = ≡ K n n p P 0 . C C : per unit of time, C 0 o .P v v ≡ . (7.1)
At the FEST solution x , the circulating probability is endowed with simple characteristic formulas as follows: 

) ( 1 1 X X X X 0 C x a ax p P K Ψ + = + = = & . (7.2a) ρ = ρ + = 0 C 1 1 t

Commercial, user-centric speed

Now, the commercial speed is the average speed experienced by users riding in a collective taxi. Per unit of system time, there are n such users present in states n . σ , therefore the time they spend on board is:

A 0 . A . B . C u 1 . X X X X ) .( P x x a x a x p p p n T K n n n n = + + = + + = ∑ = & & & &
We note in passing that this relation allows us to interpret A .P x as the time average number of users on board a vehicle from the perspective of an outside observer. Per unit of system time, users cover the following total travel distance:

X X X . 0 0 . C 0 u 1 & & x a v p n v D K n n + = = ∑ = .
The commercial speed, denoted by u v with a superscript u to indicate the users' perspective, is defined by

A A 0 1 0 0 u 1 u 1 u 1 1 X X X P P v a v x a v T D v K ′ = Ψ + = + = = .
(7.4)

It possesses the following properties (see Appendix § A.5):

Proposition 11: Sensitivities of the commercial speed.

(i) The ratio

0 u / v v
is a proportion that decreases with x and also with a .

(ii) Commercial speed decreases with Q , R L and S t , and increases with N , H and 0 v .

The user vs. operator relativity of speed

Let us now compare the two speeds. The ratio between the service speed and the commercial speed amounts to

K K a a v v Ψ + Ψ + = - 1 1 1 u o .
(7.5)

Proposition 12: Properties of the ratio between service and commercial speed.

(i) Commercial speed u v is greater than service speed o v . (ii) Ratio u o / v v
is a decreasing function of x and also of a .

(iii) With respect to the exogenous factors, ratio

u o / v v is a decreasing function of Q , R L and S
t , and an increasing function of N , H and 0 v .

Proof. Point (i) stems from (7.5) and the increasingness of sequence ) (x K K Ψ a according to K . Points (ii) to (iv) are demonstrated in the Appendix, § A.5.

The relation that u

v is greater than o v may seem paradoxical: we would intuitively tend to imagine that the more users on board, the more dwelling delays, thus the lower experienced speed. But in fact, the more users on board, the more productive are the running phases and the wider is their benefit to the demand on the whole.

The difference between the service, operator-centric speed and the commercial, user-centric speed is a relativity effect: speed depends on the actor's perspective. There are similar effects well-known in transportation: from the relativity of wait time to an arriving user (or a ridesharing passenger) versus headway time to the operator of a transit line (or a ridesharing driver), to the relativity of passenger load in vehicles of a transit line [START_REF] Leurent | A Relativity Theory of Traffic along a Transit Line[END_REF]. 

Illustration.

On Ride and Access Times

Vehicle occupancy and service speed characterize the operational performance of the service: they are of interest for supply management. As for the service demand, the characteristics of primary interest are the ride time and the access time per trip. The two kinds of time are key components of service quality. We will consider them for a typical trip with ride length R L and access length A L .

This section brings about characteristic formulas and sensitivity properties for both kinds of time. We address first the ride time ( § 8.1) then the access time ( § 8.2).

Ride time

The average ride time is defined as the ratio between the average ride length R L and the commercial speed u v since the customer is on board: thus

, u R R v L t ≡ . (8.1)
Characteristic formulas for R t are easily derived from those for commercial speed u v :

) 1 ( 1 The last formula reveals the respective influences of base ride time 0 t and stop time S t in a clear way: at least the direct part of them, since there is also an indirect part via x .

0 - Ψ + = K R R a v L t . (8.2) 1 S 0 - Ψ + = K R t t t . ( 8 
Omitting the relativity effect, an apparent ride time would be defined as the ratio between ride length R L and service speed

o v , yielding o R o R v L t ≡ . (8.4)
On comparing the apparent and true, user-centric ride times, the influence of the user speed becomes obvious:

)

) ( 1 ( ) 1 ( 0 0 o R x a t a t t K Ψ + = ρ + = . (8.5a) ) ( 1 ) ( 1 1 o R u R x a x a t t K K Ψ + Ψ + = - . (8.5b)
When the user is on board, there is one less place available to other users. So, during his own ride, the particular user is an observer external to the 1 -K residual places. 

v . (ii) It is an increasing function of R L .
The proof is given in the Appendix, § A.6.

Access time

On waiting for the service, the customer is external to the incoming cab: to him, the length A L is covered at the service speed o

1 - K v
since there is at least one place available on board. As

u o 1 K K v v = -
(both under load factor x ), we must define the access time as the ratio between the access distance A L and the user speed u v :

u A A v L t ≡ . (8.6)
The access time is endowed with characteristic formulas that result from those for A L and u v :

A 0 2 u A 2 A P v N C v P N C t ′ = = owing to (7.4). (8.7a) R 2 R 2 0 0 2 A H L Q C x y L x N C y t x v N C t = = = with 2 / 2 Q Q ≡ . (8.7b)

Proposition 14: Access time sensitivities. The access time

u A A / v L t ≡ is an increasing function of factors Q , R
L , S t and C , and a decreasing function of factors N , H , 0 v and K .

The proof is given in the Appendix, § A.6.

Illustration.

Figure 8 depicts the variations of R t and A t as functions of demand volume Q , given = N 100 cabs, = H 14 h, = K 12, base and stop times as previously. The two functions are increasing: in service dynamic operations, the interaction between customers is not only sharing but also rivalry for available places and hindrance owing to cab dwelling that is a detour at least in time. 

Conclusion

Summary

We have modelled the dynamic interaction between supply and demand for a collective taxi service shaped as a ring. The exogenous factors in our model are a collective taxi's passenger capacity K , the fleet size N , the passenger boarding and alighting times + S t and - S t , the volume of demand Q and the average ride length R L , together with the speed of travel on the road infrastructure 0 v and the ring circumference C (or equivalently radius R ).

The postulates both on demand generation and on service operations, owing to the spatial and temporal heterogeneity, are essential to model the activities of one cab as a Markov chain. The state variable is the number of passengers on board together with the logistical status either Circulating (denoted by C), Alighting (denoted by A) or Boarding (denoted by B). We modelled the transitions between neighbouring states, with rates derived from the average time that is spent in each state.

We showed that the exogenous factors can be combined into a single key parameter ρ which is a ratio between passenger demand and transport supply, since ) 1 ( S 0

t y t y - = ρ where ) /(H N Q y =
. This ratio must be less than vehicle passenger capacity K .

We also showed that a vehicle's stationary regime satisfies a fundamental equation of service traffic,

ρ = Ψ ) (x K
, which uniquely determines a load factor denoted by x , provided that ρ is less than K .

From the solution x follow all the important system performance indicators: in particular the probability of availability A P , the pseudo-rate of availability A P′ , the probability of movement C P , then the average access length to the customer A L , the service speed o v and the commercial speed u v , and finally the ride time R t and access time A t . Every outcome is endowed with characteristic formulas and sensitivity properties with respect to every exogenous factor. In the process, through the distinction between the service speed and the commercial speed, we have shown the relativity of the perspectives between the service operator on one side, and users on the other.

Figure 9 shows the causal chain in the model. Thanks to the properties of the function K Ψ and the formulas that link the variables, we have established the sensitivities of the indicators to the different exogenous factors. These sensitivities are summarised in Table 2. Table 2. Directions of influence from exogenous factors onto model outcomes. 

Factor ρ x A P′ A P C P A L o v u v R t A t Q ⊕ ⊕ ⊝ ⊝ ⊝ ⊕ ⊝ ⊝ ⊕ ⊕ R L ⊕ ⊕ ⊝ ⊝ ⊝ ⊕ 0 ⊝ ⊕ ⊕ S t ⊕ ⊕ ⊝ ⊝ ⊝ ⊕ ⊝ ⊝ ⊕ ⊕ N ⊝ ⊝ ⊕ ⊕ ⊕ ⊝ ⊕ ⊕ ⊝ ⊝ 0 v ⊝ ⊝ ⊕ ⊕ ⊕ ⊝ ⊕ ⊕ ⊝ ⊝ H ⊝ ⊝ ⊕ ⊕ ⊕ ⊝ ⊕ ⊕ ⊝ ⊝ C or R 0 0 0 0 0 ⊕ 0 0 0 ⊕ K 0 ⊝ ⊕ ⊕ ⊕ ⊝ 0 ⊝ 0 ⊝ ρ ⊕ ⊕ ⊝ ⊝ ⊝ ⊕ ⊕ ⊕ ⊕ ⊕ x ⊕ ⊕ ⊝ ⊝ ⊝ ⊕ ⊕ ⊕ ⊕ ⊕ CHECK FOR K ρ, Cab load index L R ,

Discussion

We have postulated a set of assumptions in order to represent system things in an explicit model. The idealized and abstract form of the representation makes the model a theoretical one. Owing to mathematical formulation and stochastic modeling, it is also a quantitative model endowed with characteristic formulas suitable to capture and interpret complex influences. Numerical application is easy.

Associated to each postulate is a limitation. Ring shape is a strong assumption: yet the postulate empowers the principle of vehicle cycles inherent to transit operations by augmenting the catchment area.

The postulates of homogeneity in space as well as in time are even stronger. They are essential to derive analytical formulas that constitute theoretical properties.

Modeling the roadway traffic conditions by a certain reference speed 0 v omits local variations, temporal variability, interactions between vehicles and with traffic management on the infrastructure. Would the road have only one lane per traffic direction and no parking lane associated to it, then collective cab operations (at dwelling as well as running) would interact strongly with the roadway traffic, requiring specific model development.

We have also modeled the dwelling time per passenger as a certain parameter S t . In fact, the individual boarding and alighting times are likely to depend on the number of passengers on board, mostly in an increasing way. The vehicle would better be designed so as to limit that congestion.

Conversely we have considered individual users rather than passenger groups of variable size. We may expect such groups to induce scale economies in dwell times. But their precise effect on system states and especially the transitions between states would be difficult to model.

The model can support a number of theoretical developments, from traffic analysis to economic theory. Another direction for further research is to model an ideal ring using traffic micro-simulation in order first to check the analytical formulas and then to investigate the influence of heterogeneity in space as well as in time.
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+ - - = + + - - = + + - - = + - = γ - - - - K K K K K K K K K K K x K x x x x x x x x x x x x x x x x x Thus ) (r γ
decomposes into the sum of three polynomials:

∑ ∑ ∑ - = + - = + - = + + + - - = γ 1 0 , 1 0 2 0 1 ! ! ! ! ) 1 ( ! ! ) ( K m m K n n K K n n K m x K n x K K n x x l l l .
To demonstrate that 0 ) ( ≥ γ x for 0 ≥ x , we only have to show that the coefficients of the power terms in x are all non-negative. As only the median part involves negative coefficients, it is sufficient to show the non-negativity of the coefficients associated to the degrees

n K + for } 1 .. 1 , 0 { - ∈ K n . To do that, let us calculate coefficient n K c + of the term in n K x + : ∑ ∑ ∑ - + = - = ≤ + - = - ≤ - + ≤ > + - + + - + = - + + - - = - + + - - - = 1 1 1 0 } 1 { 1 0 } 1 0 { } 0 { ! ) ( ! 1 ! ! 1 ! ) ( ! 1 ! ! 1 ! ! ! ) ( ! 1 ! ! 1 ! ! ) 1 ( 1 K n K n K K n K n n K n K K n K n n K K n K K n n n K K n K K n c l l l l l l l l l l l At 1 - = K n
the first part vanishes and so does the second one, so we get that

0 1 2 = - K c . At 1 - < K n the second part involves n K n K + - = + + - - 1 1 ) 1 ( 1 terms ] ! ) ( ! [ / 1 l l - + n K : for each of them we have that 0 ) ( ) ( ! ! ! ) ( ! 1 0 1 0 > - - - = - - + ∏ ∏ - - = - - = n i n i i i K n n K K l l l l l
The underlying reason is that each product is composed of n l positive terms and every term in the first product is strictly greater than its counterpart in the second product since

1 - ≤ K l . Thus ! ! ! ) ( ! n n K K l l > - + , hence ! ! 1 ! ) ( ! 1 K n n K > - + l l
, and in turn 

! ! 1 ! ) ( ! 1 1 1 K n n K n K K n + - > - + ∑ - + = l l l ,
(i) Function 2 X X X & & & a - x is negative, as is function 2 K K x x x x x x K K K K K As ∑ ∑ ∑ = - = + - = - - = - + + = - K n n K n n K n n K K n n x K K n n x K K x x 2 2 0 2 2 0 2 ) 1 ( ) 1 ( ) 1 ( ) 2 )( 1 ( ) 1 ( . Thus 0 1 1 ) 1 ) 1 ( ) 1 ( ( X X ) 1 ( 2 2 < - < - - - - - = - - ∑ = x K K n n x K K x K n n & & .
QED. . It is continuous and continuously differentiable, as the ratio between two such polynomials with denominator one above 1 on the range of variations.

A.2. Properties of function

The first derivative function of

K Ψ , denoted K Ψ & , satisfies 2 2 2 2 X ) X X (X X X X X X X X ) ( ) ( - + = - - + = Ψ ∂ ∂ ≡ Ψ x x x x x x K K . It has the same sign as function X X ) X X (X ) ( 2 & & & & + - ≡ γ x x
. Thus, from Lemma 1, we have that

0 ) ( ≥ Ψ x K & and 0 ) ( > Ψ x K & if 0 > x , which implies that K Ψ is strictly increasing on [ +∞ , 0
[.

From this we derive that function K Ψ is strictly positive over its range.

(ii) The limit value of K

Ψ is K x x x K K x K x = = Ψ - +∞ → +∞ → 1 . lim lim . Thus the characteristic equation has a solution only if K < ρ , which is equivalent to ) ( . S 0 R Q t HN Kv L Q - < . Version 0c, 2nd April 2019 32/43 (iv) Given x , 2 1 2 1 1 2 1 / ) ( ) ( - - - - - - = = Ψ Ψ K K K K K K K K K X X X X xX X xX x x : it is less than 1 since 0 X X X 2 ≤ -& & & from Lemma 2(i). Thus ) ( ) ( 1 x x K K Ψ ≤ Ψ - and the sequence ) (x K K Ψ a is increasing. (iii) To demonstrate concavity, let us demonstrate that 0 ≤ Ψ K & & by formal calculus.
First, we have that

3 4 2 2 X ) ( X 2 ) ( X X ) ( X X 2 X ). ( ) X ) ( ( ) ( ) ( x x x x x x x x x K K γ - γ = γ - γ = γ ∂ ∂ = Ψ ∂ ∂ ≡ Ψ - + = - + ∂ ∂ = γ ∂ ∂ ≡ γ x x x x x . x x & & , according to Lemma 2: ) 1 ( )) 1 ( 2 ) 2 ( ( X )) 2 3 )( 1 ( ) 1 ( 2 ( X ) . . 2 ( ) . 2 . . . 2 4 2 ( X ) . . . 2 . 2 2 2 ( X . X . 2 X . . X . X . X . X . 2 X . 2 X . 2 2 X 4 X 2 2 X 2 X . X X . X X . 2 X . 2 X 2 X X 2 X) X X( X) X )( X (X 2 X 2 X 1 2 2 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 1 2 2 2 2 2 2 2 1 1 2 2 1 2 1 2 2 1 1 2 1 2 2 2 2 1 2 2 1 2 1 + + - + - + + + + + - + + - = + + - - - + + - + - + + - - = - - - - - + + + + - - - - + = - + + - - = - + - - = γ - γ - - - - - - - - - - - - - - - - - - - - - - - - - - - - K x x x K K x K x K x x K K K x x K x x x x x x x r x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x X x x x x x x x x x x x x x x x x x x K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K Up to factor K x K / 1 - , which is positive, function γ - γ X 2 X & &
is decomposed in three parts depending on whether the power of X & is equal to 2, 1 or 0. These terms denoted respectively by i T for {0,1,2}

∈ i are polynomials in x : ) 1 ( 2 0 + + - = K x Kx T K , )) 1 ( 2 ) 2 ( ( X 2 1 + - + + = K K x K x x T K & , )) 2 3 )( 1 ( ) 1 ( 2 ( X 2 2 2 + + - + + - = K K K x x T & .
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Here are the detailed coefficients, since T and 1 T are contributors and their respective coefficients compensate each other:

∑ - = = 1 0 ! X K n n n x & hence ∑ - = + = 1 0 , 2 ! ! X K m m m x l l l & ( 2 ) : 2 2 2 1 2 0 ) ! ( ) 1 ( ) ! ( K x K K K x K T K K + - - = + , ∑ ∑ ∑ - = + - = + + - = + + + - + + = 1 0 1 0 1 1 0 2 1 ! ! ) 1 ( 2 ! ! ) 2 ( ! ! K n K n K n K n K n K n K n x K K K n x K K n x T , ∑ ∑ ∑ - = + - = + + - = + + + + - + + - = + + - + + - = 1 0 , 1 0 , 1 1 0 , 2 2 2 2 ! ! ) 2 3 )( 1 ( ! ! ) 1 ( 2 ! ! )) 2 3 )( 1 ( ) 1 ( 2 ( X K m m K m m K m m m x K K m x K m x K K x x T
0 ! ! ) 1 ( ) ! ( 2 1 2 1 2 = - + - + + - + K K x K x K K K K , so that in fact 2 1 0 T T T + + is a polynomial of order at most K 2 .
At order

K n 2 =
the three terms all contribute to a total coefficient of

0 ) ! ( ) 1 )( 2 ( ) 1 ( ) 1 ( ! ) 1 ( 1 ! ! ) 1 ( ) 2 ( ! ! ) 2 ( 1 ) ! ( ) 1 ( 2 2 2 2 = - - + + - + + - = - - - + + - + + - K K K K K K K K K K K K K K K K K , so that the polynomial 2 1 0 T T T + + has degree of at most 1 2 - K . At degrees 1 2 - ≤ K n , 0
T does not contribute any longer, while 1 T contributes by 3 terms:

0 ) ) 1 (( ! ! ) ( 1 hence 1 2 since )) 1 ( 2 ) 2 ( ) 1 (( ! ! ) ( 1 )) 1 ( 2 ) 2 ( ) ( ) ( ) 1 (( ! ! ) ( 1 ! ! ) ( ) 1 ( 2 1 ! ! ) 1 ( ) 2 ( 1 ! ! ) 2 ( 1 } { } { } { } { } 1 { } 2 { ) ( 1 ≤ - - - - ≤ ≤ - - ≤ + - + + - - - ≤ + - + - + - - - - = - + - - - + + - - = + + ≥ + + ≥ + + + + ≥ + ≥ + + ≥ + + ≥ K K n K K n K K K n K n K K K n K K n K K K K K n K n K n K K n K K n K K K K n K K K n T K n K n K n K n K n K n n , As for 2 T , its contribution at order 1 2 - ≤ K n is ∑ ∑ ∑ - = = + - = = + + - = = + + + + - + + - = 1 0 , } { 1 0 , } 1 { 1 0 , } 2 { ) ( 2 ! ! 1 ) 2 3 )( 1 ( ! ! 1 ) 1 ( 2 ! ! 1 K m n m K m n m K m n m n m K K m K m T l l l l l l l l l
The amounts are all negative, as only the median term may be positive yet it remains lower than the right-hand side term. Precisely, two cases must be dealt with specifically, depending on whether

K n < or K n ≥ .
2 Which can be stated as follows: 

∑ ∑ - = - = - - = 2 2 0 } 1 , { min 0 2 ! ) } 1 , { (min ! 1 X K n K n n K n x l l l
n m = + +1 l with 1 1 - ≤ + K l since 1 1 - < - ≤ K n l
, and

1 - ≤ K m
. Then the coefficients associated to the two couples, in their respective terms, are

) ! ! /( ) 1 ( 2 m K l + and ) ! ! )( 1 /( ) 1 )( 2 3 ( m K K l + + + - . Their sum is negative because: ) ! ! ( ) 1 ( 2 ) 1 2 3 1 ( ) ! ! ( ) 1 ( ) ! ! )( 1 ( ) 1 )( 2 3 ( ) ! ! ( ) 1 ( m K K m K m K K m K l l l l l l + - ≤ + + - + = + + + - + . If K n ≥ then the midpoint term in 2 T involves exactly n K - 2 couples ) , ( m l such that n m = + + 1 l : one per value of ∈ l { 1 , - -K K n }. To every pair such that 1 - < K l we shall associate pair ) , 1 ( ) , ( m m + = ′ ′ l l
: as before, the sum of the coefficients associated to both pairs in their respective terms is negative. As for pair

) , 1 ( ) , ( K n K m - - = l , the midpoint coefficient ) ! ! /( ) 1 ( 2 m K l + is compensated by the « right hand side » coefficient that is associated to pair ) , 1 ( ) , ( m m + = ′ ′ l l which is combined with ) 1 , ( ) , ( - - = K K n m l
since, in absolute value, the coefficient on the right hand side is more than three times greater than the midpoint coefficient.

In all, polynomial 2 1 0 T T T + + has all its coefficients that are negative or zero, hence it is negative for values

0 ≥ x . This implies that 0 X 2 X ≤ γ - γ & & and in turn that 0 ≤ Ψ K & & . QED.

A.3. Sensitivities of the availability rates

Proof of Proposition 6 on the pseudo-rate of availability.

Let us study the pseudo-rate of availability by using formula x y t P / 0 A = ′ which involves 3 intermediate variables x , 0 t and y . We have that: 

∂ - ′ = ∂ ∂ ∂ ′ ∂ + ∂ ′ ∂ = ′ ) 1 .( d d 0 0 0 A 0 A 0 A 0 A t x x t t P t x x P t P t P ∂ ∂ - ′ = ∂ ∂ ∂ ′ ∂ + ∂ ′ ∂ = ′ We shall restate ρ ∂ ∂ ρ = ρ ∂ ∂ ρ ∂ ρ ∂ ρ = ∂ ∂ x x x x t t t x x t ) ).( ( 0 0 0 0 as 1 0 0 = ∂ ρ ∂ ρ t t , and 
) ).( ( ρ ∂ ∂ ρ ∂ ρ ∂ ρ = ∂ ∂ x x y y y x x y . It holds that ) ( ) ( x x x x x K K Ψ Ψ = ρ ∂ ∂ ρ & since x x x K ∂ Ψ ∂ = ρ ∂ ∂ / ) ( 1 . Version 0c, 2nd April 2019 35/43 As function K Ψ is concave, ) ( ) 0 ( ) 0 ( ) ( x x x K K K Ψ - + Ψ ≥ Ψ & . Yet 0 ) 0 ( = Ψ K so that ) ( ) ( x x x K K Ψ ≥ Ψ & , yielding that 1 ≥ ρ ∂ ∂ ρ x x . It then follows that 1 0 0 ≥ ∂ ∂ t x x t , hence 0 d d 0 A ≤ ′ t P . Furthermore, 1 1 1 ) 1 ( S 2 S 0 ≥ - = - ρ = ∂ ρ ∂ ρ t

Proof of Proposition 7 on the true rate of availability.

Concerning the true rate of availability, it depends on x in the following way based on (6.3):

X X X X - + - + + - = - - + + - + - + + + - = + + + - + + + = x a ax a x x x a x x x x a ax a ax ax ax a
From Lemma 2, every term in the last summation is negative: thus their sum is negative, and so is 0

/ A ≤ ∂ ∂ x P . As 0 / ≤ ∂ ∂ x P A
, true rate A P is a decreasing function of x , yielding point (i) in Proposition 7.

Furthermore A P is differentiable with respect to factor a , with partial derivative:

2 2 2 A ) X (X ) X X X ( ) X (X ) X X ( X ) X (X X & x a x x a ax x ax x a P + - = + + - + = ∂ ∂ which is 0 ≤ from Lemma 2-(i).
Thus the true rate A P is also a decreasing function of a . P in an increasing way.

• R L (resp. S t ) influences A P on one hand via x and on the other hand via a . As both influences are increasing ones, and as both x and a exert decreasing influences on A P , the total influence of R L (resp. S t ) on A P is decreasing.

• 0 v influences x et a in a decreasing way, so that it will exert a twofold positive influence on A P .

These properties make up points (ii) and (iii) in Proposition 7.

Proof of Proposition 8 on the rate ratio

A A / P P ′ ≡ ϕ . As ) ( 1 1 x a K - Ψ + = ϕ
, it involves the basic factors via a or x . Let us identify x , 0 t and S t as intermediary variables for sensitivity analysis. We have that:

) ( 1 x a x K - Ψ = ∂ ϕ ∂ & 0 1 S ) ( t x t K - Ψ = ∂ ϕ ∂ ) ( 1 0 0 x t a t K - Ψ - = ∂ ϕ ∂ Yet factors 0
t and S t influence ϕ not just directly but also via x . Their total influence is respectively:

S 1 0 1 S S S ) ( ) ( d d t x x a t x t x x t t K K ∂ ∂ Ψ + Ψ = ∂ ∂ ∂ ϕ ∂ + ∂ ϕ ∂ = ϕ - - & which is positive since 0 S ≥ ∂ ∂ t x . ) ) ( ) ( 1 ).( ( ) ( ) ( d d 0 0 1 1 1 0 0 1 1 0 0 0 0 t x t x x x t a t x x a x t a t x x t t K K K K K ∂ ∂ Ψ Ψ - Ψ - = ∂ ∂ Ψ + Ψ - = ∂ ∂ ∂ ϕ ∂ + ∂ ϕ ∂ = ϕ - - - - - & & We have established previously that ) ( ) ( 0 0 x x x t x t K K Ψ Ψ = ρ ∂ ∂ ρ = ∂ ∂ & So we obtain that ) ) ( ) ( ) ( ) ( .( ) ( ) ( ) ( ) ) ( ) ( ) ( ) ( 1 ).( ( d d 1 1 1 2 0 S 1 1 1 0 0 x x x x x x x t t x x x x x t a t K K K K K K K K K K K K Ψ Ψ - Ψ Ψ Ψ Ψ Ψ = Ψ Ψ Ψ Ψ - Ψ - = ϕ - - - Version 0c, 2nd April 2019 37/43
The bracketed term is the derivative of function )

( ) ( ln 1 x x K K Ψ Ψ - , knowing that 2 1 X X . X ) ( a x
is decreasing (cf. § A.7): so is its logarithm, implying that the derivative function is negative: thus the bracketed term is negative, and in turn, 0 /d d 0 ≤ ϕ t .

We are now in position to assert the sensitivities of ratio 

A.4. Sensitivity of Access Length

Proof of Proposition 9 on the sensitivities of the access length.

(i) Factor N exerts a twofold influence: first a direct influence as an increase in N (under fixed A P ) makes A L decrease, and second an indirect influence via A P : from Proposition 7, an increase in N increases A P . Thus, the product A .P N increases with N , so that A L decreases with N .

(ii) Factors Q , 0 v , R L and S t each influence A L in a simple way via A P , hence each in the opposite direction of its own influence onto A P that is indicated in Proposition 7.

(iii) Being proportional to circumference C (and radius R ), A L varies with it in an increasing, linear way.

A.5. Sensitivities of the service speed and of the commercial speed

Proof of Proposition 10 on the sensitivities of the service speed. As for factors Q , H and N , each of them influences C P via y only: Q exerts an increasing influence on y while N (resp. H ) exerts a decreasing influence on it, so that Q will have C P to decrease while N and H will have C P to increase. 

- Ψ + Ψ = ∂ ρ ∂ ρ ∂ ∂ Ψ + - Ψ Ψ + - = ∂ ∂ Ψ + ∂ ∂ Ψ Ψ + - = ∂ ∂ - - - - - - - - - -

,

Which is non-negative since the bracketed expression is non-negative, cf. the proof of Proposition 8. (ii) Let us calculate the partial derivatives with respect to the intermediary variables a and x . We have that: (iii) Factors Q , H and N exert their respective influence onto η via x only: as Q increases x , it decreases η. As H and N each decreases x , each of them increases η.

Proof of Proposition 12 on the sensitivities of the

2 1 2 1 1 ) 1 ( ) 1 ( ) 1 ( ) ( 1 ) ( K K K K K K K K a a a x a x a Ψ + Ψ - Ψ = Ψ + Ψ + Ψ - Ψ + Ψ = ∂ η ∂ - - - ) 1 ( ) 1 ( )) ( 1 ( )) ( 1 ( ) ( ) ( 1 ) ( 1 2 1 2 1 1 K K K K K K K K K K a a
As for S t , it increases both a and x : thus its twofold influence on η is decreasing in both ways.

As for 0 t , its influences onto η via a and x have opposite directions: overall, ))

∂ Ψ ρ + ∂ η ∂ - = ∂ ∂ ∂ η ∂ + ∂ ∂ ∂ η ∂ = η & 0 0 0 0 0 d d since K t x t t x t x Ψ ρ = ρ ∂ ∂ ρ = ∂ ρ ∂ ρ ∂ ∂ = ∂ ∂ & 0 0 0 0 ) ) 1 (( ) 1 ( ) ) 1 ( ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) ( d d 1 1 2 0 1 1 2 0 1 2 1 0 2 0 1 0 K K K K K K K K K K K K K K K K a a t
X X ( X ( ) X X . X ( 2 1 2 & & & & & & & K x x x x f x K - ∂ ∂ = - ∂ ∂ = ∂ ∂ - : It holds that ! )! 1 ( 1 1 1 K x K K x x K K K - - - = - = and ∑ - = - = - 1 0 ) 1 ( X X K n n x K n K x & & & . Thus ) ! ! ) ( X ( 1 0 1 2 ∑ - = - + - - - ∂ ∂ = ∂ ∂ K n K n K n x n K x f x & .
By differentiating each term, we get that All in all, we have demonstrated that in all cases the sum m S is non-negative.

) ! ! ) ( X 2 ! ! ) 1 )( ( X ( X 1 0 1 1 0 2 3 ∑ ∑ - = - + - = - + - - - - + - = ∂ ∂ K n K n K n K n K n x n K K n x K n n K f x & & & & ∑ ∑ ∑ - = - = - + + - = - + + - - - + - = ∂ ∂ 1 0 2 0 1 1 0 , 2 3 ! ! ) ( 2 ! ! ) 1 )( ( X ! K n K K n K n K n n x n K n x K n n K f x K l l l l l l & ∑ ∑ - = - + + - = - + + - - - + - = ∂ ∂ 1 0 , 2 1 0 , 2 3 ! ! ) ( 2 ! ! ) 1 )( ( X ! K n K n K n K n x n n K x n K n n K f x K
= i K k m i K i K k i K k m i K m i K m k i K i K p i K i K p k m i K k i K p p
- = - = - - + - = - - - - + ≥ 1 0 2 2 1 2 1 1 0 2 2 1 4 1 ) ( * ) ( 6 ) 1 2 )( 1 2 ( ) ) ( 3 ) 1 2 )( 1 2 ( ( 2 2 ! i i j m k m m i i i j i i i p S m l l . Or + ≥ i i i i i i i i i i i i i i i i i i i i i i i i p S m

QED.

This implies that 0 / ≥ ∂ ∂ x f

, hence that f is an increasing function.
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  parameter is on average assuming that each position on the ring can "catch the ring extends in two dimensions of space not only as a circuit but more broa : traffic physics & service quality

Figure 2

 2 Figure 2 describes the typical states and the transitions.

Fig. 2 .

 2 Fig. 2. Topology of states and transitions in CAB Markov chain.

Figure 4

 4 Figure 4 depicts several KΨ graphs for different values of K .

Fig. 5 .

 5 Fig. 5. Effective rate (left part) and True rate (right part) as functions of load factor.

Fig. 6 :

 6 Fig. 6: Mean access length with respect to load factor.

Figure

  varies according to x . Cab capacity is set to 4 = K . Base ride time and stop times are set up as previously.

Fig

  Fig. 7. Speed ratios

Fig. 8 .

 8 Fig. 8. Average ride time and access time with respect to demand volume.

Fig. 9 .

 9 Fig. 9. Causal sequence.

  t and y influence A P′ not just directly but also via x . Their total influence is respectively:

  (i) Probability of being on the move, C P , decreases with respect to y as well as S

  negative value for the bracketed expression.

  , the transition occurs with rate equal to n times µ since any of the n riders may end his or her ride. Rate µ. n is the rate of ending of the ride of minimal residual length among the n ones. Indeed, among n independent exponential variables, the minimum is still an exponential variable, its parameter being the sum of those of its arguments, hence µ. n if they are identically distributed of parameter µ .

	This rate applies on average at any instant. Yet in the model only the system states n . C with
	K supportive states, the effective arrival rate λ′ satisfies that n < can support customer arrivals. So, defining ∑ -= ≡ ′ 1 0 A K P n	} n . P = { Pr C ′ λ′ A .	the probability of such y instead of y P = λ A . ,
	hence								
				λ′	≡	A P y ′	=	A H P N Q ′	.	(4.2)
	We call A P′ the pseudo-rate of availability.			
	Rate λ′ applies for any transition from n . C with	K n < , to	1 n . . B +
	Let us now consider a transition from n . B to n . C . As a boarding stop has average duration of
	+ S t , we model its duration by an exponential random variable of identical mean, hence with
	parameter	+ S 1 t . Thus, the transition from n / . B to n . C occurs at time rate	+ S 1 t , which is the /
	time rate at which that kind of random variable comes to its end.
	Arrival of 1 more user Similarly, let us consider a transition from n . A where has average duration of -S t , we model its duration by an exponential random variable of 1 ≥ n , to 1 . n . As an alighting stop C -End of Board stop identical mean, hence with parameter -S / 1 t . Thus, the transition from n . A to 1 . C -n occurs at B,n+1 time rate -S / 1 t .
	… Lastly, a transition from n C,n . C with on-board passenger. As a ride requests an average run time of … C,n+1 1 n , to n . A corresponds to the ending of a ride for one ≥ 0 R 0 / v L t ≡ , we model the
	Ride of 1 user ends up duration as an exponential random variable of identical mean, hence with parameter End of A,n+1 The transitions from 1 . C to 1 . A will occur at time rate µ of ride ending. From n µ . C to n / 1 t ≡ . 0 . A Alight stop with 1 ≥ n To sum up, denoting by m n z . . τ σ the transition rate from n . σ to m . τ , we have:
					each time the vehicle stops to pick up a new customer:
	per traffic direction, the total flow of customers has rate	Q	/(	2	H)	and it is split into	N	A 2 P
	cabs. Then, per cab the customers arrive according to the following rate:
		λ	≡	A P y	, wherein	y	≡	N Q H	.	(4.1)
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  In which the composite parameter ρ can be recognized. This establishes ρ as a cab occupancy index that must be lower than cab capacity K .

	18 ∂ t S ρ ∂	=	0 2 ρ t									
	8 10 12 14 16 ∂ ρ y ∂ All of them are nonnegative under the blanket assumption. Thus ρ is an increasing function ) 1 ( 0 S y t t y + ρ = Psi_20 Psi_12 of 0 t and in turn it increases with R L and decreases with 0 v since 0 R 0 / v L t ≡ . Furthermore, Psi_8 Psi_4 ρ is an increasing function of S t , and in turn of + S t and -S t since -+ + ≡ S S S t t t
	6		Psi_1									
	4											
	2											
	0											
	0		5		10						15	20
													K places per cab,	. 0 t Q ≤	K	.	N	.	H	,
	yielding a vehicle time requirement of	. 0 t Q	/	K	≤	N	.	H	.
	As the dwell times and the base ride times are disjoint, it must hold that
			.( t S Q	+	1 K	t	0	)	≤	N	.	H	, or equivalently
							.( t S y	1 + t K	0	)	≤	1	.
	Recombining, we get the following condition that
					1	t -S y t y 0	≤	K	,	(5.7)
	Proposition 2: Sensitivity of cab load index ρ . Provided that	y	≥	0	,	t	0 ≥	0	and	. S < t y	1	,
	index ρ is an increasing function of Q , R L , + S t and -S t , and a decreasing function of H , N
	and 0 v .										
	Proof. The sensitivities of ρ to its immediate factors are as follows:
	0 ρ t ∂ ∂	=	0 ρ t									
	Version 0c, 2nd April 2019								16/43

Sensitivities of FEST solution to exogenous factors.

  Put in other words, ρ x solves the FEST equation associated to ρ and it is the unique solution to it.

	Proposition 5: (i) The solution	x	) 1 ≡ -( Ψ K	) ρ (	is an increasing function of Q , R L , + S t and -S t , and a
	decreasing function of H , N and 0 v .
						and is the
	unique value such that	Ψ ) (x	=	ρ
	Version 0c, 2nd April 2019			17/43

K

.

  Factors Q , H and N influence A P only via x : Q influences x in an increasing way and in turn A P in a decreasing way. N (resp. H ) influences x in a decreasing way and in turn A

	The sensitivity of A P to the basic exogenous factors:	Q	,	R L	,	H,	N	,	S t	,	0 v	depend on the
	influences of the said factors on ρ hence on x , and also on	a	=	S t . µ	=	S t	R L	/	0 v	:
	•											
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A. Appendix

A.1. Short Lemmas

Proof. Let us develop

(ii) Function X X X a x is negative.

Proof. (i) As

The same property holds for the sign of function 2 X X that follows an analogous formula if X is replaced by X & , which amounts to decrementing K .

Let us differentiate this formula with respect to x :

Proof of Proposition 11 on the sensitivities of the commercial speed.

Let us remark the formal analogy between X X X

P for a collective cab service with one less place per cab, since

(i) The influences of x and a on ratio 0 u / v v are decreasing since an increase in any of them makes the denominator increase in

(ii) Q (resp. H , N ) has an increasing (resp. decreasing) influence on x hence a decreasing (resp. increasing) influence on

An increase in S t makes both x and a increase, hence it reduces 0 u / v v and in turn u v .

As for 0 t , its respective influences on x and a have opposite directions. We calculate:

, the bracketed expression is negative, so that 0 d

Thus, 0 t exerts a decreasing influence on η : so does R L , whereas 0 v has an increasing influence. QED.

A.6. Sensitivities of user times

Proof of Proposition 13 on the sensitivities of the ride time

(i) All factors except for R L influence R t only through u v , and they do so in an inversely proportional way. Thus their respective influence on R t is opposite to that on u v . From Proposition 11, it follows that R t in a decreasing function of N , H , K and 0 v , while it is an increasing function of Q and S t .

As for (ii), the influence of R L on R t is twofold: the direct one is an increasing one, and so is the indirect one via u v , so that the overall influence is twofold increasing.

Proof of Proposition 14 on the sensitivities of the access time

.

(i) The sensitivity of A t to C , or equivalently to R is obvious as R does not influence the other variables in the model: it is an increasing and linear influence.

(ii) Formula (8.7a) reveals the influence of factors other than 

A.7. Long Lemma

We already know that function

: is positive. Let us show that it is an increasing function, by demonstrating that its derivative is non-negative, In this sum, let us consider the terms with a certain power 

By allocating the total between the two indices l and n in a balanced way, we obtain a "symmetrical" term

The selection of the indices that meet condition

constitutes an extraction from a binomial law with number m and proportion 2 / 1 :

Furthermore, for every index l there is also the symmetrical index

This mean is identical to that of the binomial random variable l of parameters m and 2 1 .

Each term

independent of l hence called fixed, and a variable part that is zero at m 2 1 (hence only if m is even).

On average, the fixed part yields a contribution

. Also on average, the variable part can be interpreted as -3 times the variance of the indices l such that

, Whereas, by the properties of the binomial law,

By we obtain the inequality

, we differentiate two cases depending on whether m is even -thus denoted as

-or odd and thus denoted as

In the even case, with