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In this paper for the Mittag-Leer function E α (z) we dene E α (t α A), when A is the generator of an uniformly bounded (C 0 ) semigroup. For the Hamiltonian H = -2m ∆ + V (x) we express E α (t α H) by subordination principle of the Feynmann path integral and we retrieve the corresponding Green function.

Introduction

In quantum mechanics, the state of a particle in the Euclidian space R d is described by an element ψ of the complex Hilbert space H = L 2 (R d ) with unit norm. In H by choosing an adequate potential V the Hamiltonian

H = - 2 2m ∆ + V (x) (1.1)
where is Planck constant, generates an unitary (C 0 ) group {e itH } t∈R .

For any initial data ψ 0 with ∥ψ 0 ∥ = 1 the wave function ψ(t) = e itH ψ 0 satises ∥ψ(t)∥ = ∥ψ 0 ∥ = 1 and is the solution of the Schrödinger equation

i ∂ψ ∂t = - 2 2m ∆ψ + V (x)ψ, ψ(x, 0) = ψ 0 (x).
(1.2)

Historically there is two approaches to study the Schrödinger equation via Feynmann path integral, either we take the denition of Feynmann path integral as it is presented in [F-H] and deduce the Schrödinger picture from that, or starting from Schrödinger equation and try to end up at Feynmann path integral (see [Fuj, Gol, J-L]). In [NYH] we can nd the rst approach and see how one can drive the Schrödinger equation from the Feynmann path integral. For the reverse approach, let us denote by Ω x the set of all paths (continuous function) ω : R + → R d such that ω(0) = x. An outline of the Feynman path integral method is dening the wave function ψ(x, t) by the probability amplitude C ∫ Ωx e i S(ω,t) ψ 0 (ω)δω, (1.3) where S(ω, t) is the action of the Lagrangian

L(ω, ω) = m 2 | ω| 2 -V (ω),
that is

S(ω, t) = ∫ t 0 [ m 2 | ω(s)| 2 -V (ω(s))
] ds.

(1.4)

Despite the fact that the physicists are very at ease with this formula but there are many diculties to interpreting (1.3) rigorously. First the function ω can be non-dierentiable which makes none sense for Lagrangian. Next δω = lim n→∞ Π n j=1 ds j , which has no meaning and as we will see the constant C is not nite. For removing these diculties G.W. Johnson and M. L. Lapidus use in [J-L] the concept of the Weiner measure. However the Trotter product formula can be very helpful for interpreting this formula.

In fact if rewrite the equation (1.2) as

∂u ∂t = (A + B)u, u(0, x) = f (x).
(1.5)

where A := i 2m ∆ and B is the multiplication operator Bf (x) := -i V (x)f (x). Each of them are skew-adjoint operators hence they generate the unitary groups

S(t)f (x) = ( m 2πi t ) d/2 ∫ R d exp ( im|x -y| 2 2 t ) f (y)dy
(1.6) and

V (t)f (x) = exp(-i t V (x))f (x).
(1.7)

In (1.6), for f ∈ H it is not clear that S(t)f ∈ H . In fact in this case the integral should be interpreted "in the mean" (see [J-L, Section 10.2] for details).

One can impose some appropriate conditions on the potential V in order that the closure C = A + B became also skew-adjoint and the Trotter product formula

lim n→∞ [ S ( t n ) V ( t n )] n f = e tC f
(1.8) can be applied. Here e tC designates the unitary group generated by C and for any f ∈ L 2 (R d ) the convergence is uniform for t in any compact of R + .

Let us introduce the operator

U n (t) := [ S ( t n ) V ( t n )] n .
(1.9)

This operator can be expressed as

U n (t)f (x) = ( nm 2πi t ) nd/2 ∫ R nd exp{ i S(x 0 , • • • , x n ; t)}f (x n )dx 1 • • • dx n .
(1.10) where

x 0 = x ∈ R d and S(x 0 , • • • , x n ; t) = n ∑ j=1 [ m 2 x j -x j-1 t/n 2 -V (x j ) ] ( t n
) .

(1.11) 

Putting x j = ω(tj/n),
i α D α t ψ α (x, t) -Hψ α (x, t) = 0, ψ α (x, 0) = ψ 0 (x).
(1.12)

In his second option Naber replaces i α D α t by (i ) α ∂ ∂t which gives

D α t ψ α (x, t) -(i ) -α Hψ α (x, t) = 0, ψ α (x, 0) = ψ 0 (x).
(1.13)

In [E-R3] we have proved that the solutions of (1.12) and (1.13) have completely dierent behavior. Indeed, (1.12) is dissipative and has a regularizing eect, whereas (1.13) possesses some kind of asymptotic conservation law (see Example 4.6]) and do not regularize. In [E-R4] by taking t = -∞ as the lower bound of the integral in the definition of fractional derivative we recover the group property of (1.13) as in the standard Schrödinger equation (see Section 4]) In the sequel we emphasize on the solution of (1.12). Our aim in this paper is to investigate the fractional Feynmann path integral of the solution of the problem (1.12). In order to give a functional calculi representation of the solution of (1.12), rst, in the next section we introduce the Mittag-Leer function E α (z). In fractional dierential problems, Mittag-Leer functions play the role of exponential functions in dierential equations. One the most signicant application of the Mittag-Leer function in the fractional calculus is representation of the solution of fractional dierential equation

{ D α t u = λu u(0) = z 0 ∈ C.
(1.14) which depend on λ and z 0 by

u(t) = E α (λt α )z 0 .
(1.15) For a closed linear operator A densely dened in a Banach space X, consider the following Cauchy problem with time fractional derivative

{ D α t u = Au u(0) = f ∈ X.
(1.16)

The rst conjecture that comes to mind is according (1.15) to write the solution of (1.16) as

u(t) = u A,f (t) := E α (At α )f . It is well-known that if the operator A is sectorial of an angle θ ∈]π/2π[
and ϕ a holomorphic function on the resolvent set ρ(A) then there exist some functional calculus to dene the operator ϕ(A). But this procedure fails for hamiltonian H which is not sectorial. The section 3 is devoted to the M-functional calculus for the generator of a semi-contractive semigroup. This material was introduced by the authors in [E-R1] which permits to dene E α (t α A) as the family of solution operators. In Section 4 we show that the solution of fractional Schrödinger equation can be expressed by E α (-it α H) which can be obtained by using the subordination principal in the fractional path integral.

Unfortunately the operator

t → E α (-it α H) is not a semigroup. In fact E α (s α A)E α (t α A) = E α ((s + t) α A) which is not true, as it is shown in the counterexample of [P-L] ( for a = 1 and t = s = 1, E 1 2 (s 1 2 a)E1 2 (t 1 2 a) ̸ = E1 2 ((s + t) 1 2 a)).
Hence a Trotter product type formula for fractional Schrödinger equation cannot be constructed, in fact according to the following result of P. Cherno (see [Che]) Theorem 1.1. Let {F (t) : t ∈ R + } be a family of the bounded operators of contractions on the Banach space X. We require that F (0) = I, the identity. Suppose that the strong derivative F ′ (0) dened by

F ′ (0)x = lim t→0 (F (t)x -x) t
for all x ∈ X exists. Assume furthermore that

lim n→∞ F (t/n) n = S(t)
exists in strong operator topology. Then S(t) is a (C 0 ) contraction semigroup. The innitesimal generator of S(t) is an extension of F ′ (0).

If one can nd an operator F (t) such that

lim n→∞ F (t/n) n = E α (-it α H) then t → E α (-it α H)
should be a semigroup which contradicts the above statement. Despite non-constructibility of the product formula we can express E α (-it α H) by subordination principle of the standard Feynman path integral. Finally in Section 5 we present the Green function for the family of solution operator {E α (-it α H)} t≥0 in one dimentional case.

Preliminaries

Denition 2.1. Let X be a Banach space. Let g be a function of

L 1 loc (0, ∞) and f be an element of L 1 loc ((0, ∞), X).
Then the convolution of g and f is the function of L 1 loc ((0, ∞), X) dened by

g * f (t) = ∫ t 0 g(t -y)f (y)dy, a.e. t ∈ [0, ∞).
Denition 2.2. For β ∈ (0, ∞), let us denote by g β the function of

L 1 loc (0, ∞) dened for a.e. t > 0 by g β (t) = 1 Γ(β) t β-1 .
It is not hard to verify that for each α, β ∈ (0, ∞), the following identity holds.

g α * g β = g α+β .
(2.1) With this notation we can dene the Riemann-Liouville integral

I α f (t) := 1 Γ(α) ∫ t 0 (t -s) α-1 f (s)ds = g α * f (t).
(2.2) Let us notice that, for any α, β ∈ R, we have

I α I β = I α+β . (2.3) Denition 2.3. Let α ∈ (0, 1) and f ∈ C([0, ∞), X).
Let also I be any sub-interval of [0, ∞). We say that f admits a fractional derivative of order α in the sense of Caputo in C(I, X) if

g 1-α * ( f -f (0) ) ∈ C 1 (I, X).
and we denote

D α t f := d dt { g 1-α * (f -f (0)) } .
(2.4)

For α = 1, D α t coincide with standard derivation and we denote D t :=

D 1 t .
If the function f is dierentiable, the we can use the Riemann-Liouville integral and represent the fractional derivative of order α ∈ [0, 1) in the sense of Caputo by

D α τ,t f := 1 Γ(1 -α) ∫ t 0 D s f (s) (t -s) α ds = I 1-α D t f (t).
(2.5) Denition 2.4. For α > 0 and β ∈ R, we dene the generalised Mittag-Leer function, E α,β by

E α,β (z) = ∞ ∑ k=0 z k Γ(kα + β) , z ∈ C.
If β = 1 then we put E α := E α,1 and E α is called the Mittag-Leer function of order α.

Following [Prü], we introduce the denition of strong solution of (1.16) Denition 2.5. Let α ∈ (0, 1] and f be in D(A). We say that a

function u is a strong solution of (1.16) on [0, ∞) if (i) u belongs to C([0, ∞), D(A)) and u(0) = f ; (ii) u admits a derivative of order α in C([0, ∞), X); (iii) D α t u = Au in C([0, ∞), X).
Denition 2.6. A family {S α (t)} t≥0 belonging to the Banach algebra of the bounded operators is called the family of solution operators for (1.16) if (a) S α (0) = I for all α > 0;

(b) S α (t) is strongly continuous for t > 0;

(c) S α (t)D(A) ⊂ D(A) and AS α (t)f = S α (t)Af for all f ∈ D(A), t ≥ 0;

(d) For any f ∈ D(A), u = S α (t)f is a strong solution of (1.16).

According to the denition of Caputo's fractional derivative it is not hard to verify that the solution operator of (1.16) for α ∈ (0, 1] satises in a unique manner the following Volterra integral equation (see [Prü])

S α (t)f = f + ∫ t 0 g α (t -s)Au(s)ds.
Denition 2.7. The solution operator S α (t) is called exponentially bounded if there exist two constants M ≥ 1 and ω ≥ 0 such that ∥S α (t)∥ ≤ M e ωt , t ≥ 0.

(2.6) An operator A is said to belong to class C α (M, ω), if the problem (1.16) admits a solution operator S α (t) satisfying (2.6).

If α = 1 and the operator A generates a (C 0 ) semigroup of operators {e tA } t≥0 these operators are noting but {S 1 (t)} t≥0 . For two dierent reals 0 < α < β ≤ 2 there is a relationship between S α (t) and S β (t) which is called the subordination principle and is proved in [START_REF] Bajlekova | Fractional Evolution Equations in Banach Spaces[END_REF]Theorem 3.1]. For announcing this theorem we need to dene the Wright function.

Denition 2.8. For 0 < α < 1 the following function is called Wright function,

Φ α (z) = ∞ ∑ k=0 (-z) k k!Γ(-kα + 1 -α) , ∀z ∈ C.
The following relationship between the Wright function and Mittag-Leer function is of interest,

E α (z) = ∫ ∞ 0 Φ α (s)e zs ds, z ∈ C.
(2.7) Furthermore Φ α can be considered as a probability density function, in fact Φ α (t) ≥ 0, t > 0 and

∫ ∞ 0 Φ α (s)ds = 1.
(2.8)

Theorem 2.1. (see [START_REF] Bajlekova | Fractional Evolution Equations in Banach Spaces[END_REF]Theorem 3

.1]) Let 0 < α < β ≤ 2, γ = α/β, ω ≤ 0. If A ∈ C β (M, ω), then there exists a constant C > 0 such that A ∈ C α (M C, ω 1/γ
) and the following formula holds

S α (t)f = ∫ ∞ 0 t -γ Φ γ (st -γ )S β (s)f ds, f ∈ X, t > 0.
(2.9)

Whenever S α (t) is dened by the above formula we say that S α (t) is a subordinate solution operator from S β (t). This formula for β = 1 implies that if A is a generator of a (C 0 ) semigroup of operators {e tA } t≥0 , then

S α (t)f = ∫ ∞ 0 t -α Φ α (st -α )e sA f ds, f ∈ X, t > 0.
(2.10) By introducing the M-functional calculus we give a short prove of (2.9) in which we represent S α (t) within the Mittag-Leer function.

M-functional calculus

In [E-R1] the authors have introduced the M-functional calculus as follows. Let

M + := {f ∈ C(R) : F (f ) ∈ L 1 (R), supp F (f ) ⊂ [0, ∞)}
where F (f ) is the one dimensional Fourier transform of f , i.e.

F (f )(s) = ∫ ∞ -∞ e -ixs f (x)dx, s ∈ R.
If A is the generator of an uniformly bounded (C 0 ) semigroup of operators {e tA } t≥0 , satisfying

sup t≥0 ∥e tA ∥ ≤ M, then for any f ∈ M + we can dene f (-iA) = 1 2π ∫ ∞ 0 F (f )(s)e sA ds.
(3.1)

This denes a bounded linear operator f (-iA) satisfying

∥f (-iA)∥ ≤ M 2π ∥F f ∥ 1 . Theorem 3.1. Let 0 < α < 1.
If A is the generator of an uniformly bounded (C 0 ) semigroup of operators {e tA } t≥0 , then there exists a constant C > 0 such that A ∈ C α (M C, 0) and the following formula holds

E α (t α A)f = ∫ ∞ 0 t -α Φ α (st -α )e tA f ds, f ∈ X, t > 0. (3.2) 
Proof.

Let us dene the function

f (x) = F -1 H(s) (t -α Φ α (st -α ))
, where H(s) is the Heaviside function. This function belongs to M + . In fact the denition of the Heaviside function implies that supp F f ⊂ [0, ∞). Furthermore since F f = H(s) (t -α Φ α (st -α )), (2.8) implies that this function belongs to L 1 (R). According to (2.7)

f (x) = 1 2π ∫ ∞ 0 t -α Φ α (st -α )e ixs ds = 1 2π ∫ ∞ 0 Φ α (τ )e ixt α τ dτ = 1 2π E α (ixt α ).
Hence by replacing f (-iA) by 1 2π E α (t α A) in (3.1) we get (3.2). As a consequence we can replace in the subordination relationship (2.9), S α (t) and S β (s) by E α (t α A) and E α (s α A) which gives Corollary 3.1. Under the assumptions of Theorem 2.1 we have

S α (t) = E α (t α A) and E α (t α A)f = ∫ ∞ 0 t -γ Φ γ (st -γ )E β (s β A)f ds, f ∈ X, t > 0. (3.3)
where E α (t α A) is dened by M-functional calculus and S α (t) is the family ofsolution operators for (1.16).

Fractional Feynman path integral

Theorem 3.1 allows us to go back to Feynman path integral and taking the subordinate solution operator of U n (t) dened in (1.9) in the Hilbert space H and by passing to the limit obtain E α (-it α H) for which the following Theorem holds Theorem 4.1. The solution of (1.12) can be written by ψ α (t, x) = E α (-it α H)ψ 0 and can be expressed as

E α (-it α H)ψ 0 = lim n→∞ ∫ ∞ 0 t -α Φ α (st -α )U n (s)ψ 0 ds, ψ 0 ∈ H , t > 0.
(4.1) where U n (t) is dened in (1.9).

Proof.

Let us leave aside the index α. Since {S(t)} t∈R , {V (t)} t∈R and {e -itH } t∈R are all the unitary groups in H ,

[ S ( t n ) V ( t n )] n -e -itH ≤ 2
and thanks to Trotter product formula (1.8)

lim n→∞ [ S ( t n ) V ( t n )] n f = e -itH f
uniformly in any compact [0, T ]. Hence for any ε > 0 there exists an n large enough such that for any T > 0 and any t ∈ [0, T ],

[ S

( t n ) V ( t n )] n f -e -itH f < ε 2 ∥f ∥,
Consequently, since

∫ ∞ 0 t -α Φ α (st -α )ds = 1, one can take T large enough such that ∫ ∞ T t -α Φ α (st -α )ds ≤ ε 4 and ∥ ∫ ∞ 0 t -α Φ α (st -α )[U n (s)f -e -isH f ]ds∥ ≤ ∫ T 0 t -α Φ α (st -α )∥U n (s)f -e -isH f ∥ds + ∫ ∞ T t -α Φ α (st -α )∥U n (s)f -e -isH f ∥ds ≤ ( ε 2 + 2ε 4 
) ∥f ∥ = ε∥f ∥.
Noting that by Theorem 3.1,

E α (-it α H)f = ∫ ∞ 0 t -α Φ α (st -α )e -isH f ds,
we deduce (4.1).

Green function for fractional Schrödinger equation

As we have noticed in Introduction to get a Lie-Kato-Trotter type formula is unworkable for fractional Schrödinger equation, but despite that we can obtain a version of the Green function for fractional Schrödinger equation. For the standard version Schrödinger equation (α = 1) the density kernel is

k(x, y, t) = ( m 2πi t ) d/2 exp ( im|x -y| 2 2 t
) ,

(5.1)

since the solution is u(x, t) = ∫ R d k(x, y, t)f (y)dy = G * f the Green function would be G(x, t) = ( m 2πi t ) d/2 exp ( im|x| 2 2 t ) ,
(5.2) (see (1.6)). For the fractional version of (5.2), we take d = 1 and 0 < α < 1. Then the Fourier transform of

D α t u = i 2m ∆u, u(x, 0) = f (x) (5.3) gives D α t u(ξ, t) = - i 2m |ξ| 2 u, u(ξ, 0) = f (ξ)
which according to (1.14) its solution introduces the Mittag-Leer function

; u(ξ, t) = E α (-i 2m |ξ| 2 t α ) f (ξ). Hence u(x, t) = F -1 (E α (- i 2m |ξ| 2 t α )) * f (x)
(5.4) and the Green function for the fractional Schrödinger equation would be

G α (x, t) = F -1 (E α (- i 2m |ξ| 2 t α )).
(5.5)

According to Lemma 3.6] taking R) and (5.5) is well-dened.

P (ξ) = -i 2m |ξ| 2 , since | arg(P (ξ))| = π 2 there exists a constant C > 0 such that |E α (- i 2m |ξ| 2 t α )| ≤ C(1 + t α |ξ| 2 ) -1 , for all t ≥ 0 and all ξ ∈ R. Thus E α (-i 2m | • | 2 t α ) ∈ L 1 (
In order to calculate G α (x, t) we use (2.7) and write (5.5) as

G α (x, t) = F -1 (∫ ∞ 0 Φ α (s) exp(- i 2m |ξ| 2 t α s)ds ) . = ∫ ∞ 0 t -α Φ α (st -α )F -1 ( exp(- i 2m |ξ| 2 s) ) ds = ∫ ∞ 0 t -α Φ α (st -α ) ( m 2πi s ) 1/2 exp ( -im|x| 2 2 s ) ds = ∫ ∞ 0 t -α Φ α (st -α )G(x, s)ds.
This is exactly the subordinate formula for Green function. Hence in one-dimensional case we can go one step further and we take the Laplace transform [L f ](λ) = ∫ ∞ 0 e -λx f (x)dx of (5.5). Knowing that (see [MLP]) the Laplace transform and Fourier transform pairs for Mittag-Leer function is given by

E α (zt α ) L ←→ λ α-1 λ α -z
for Re(λ) > |z| 1/α with z ∈ C. We get

G α (x, t) = L -1 ( F -1 λ α-1 λ α + i 2m |ξ| 2
) .

Since for any z ∈ C,

1 2 √ z λ α/2-1 exp ( - |x|λ α/2 √ z ) F ←→ λ α-1 λ α + z|ξ| 2 thus F -1 ( λ α-1 λ α + i 2m |ξ| 2 ) = √ m 2i λ α 2 -1 exp ( - √ 2m i λ α 2 |x|
) and the Laplace transform pair for Wright function is

1 t β Φ β ( z t β ) L ←→ λ β-1 exp ( -zλ β ) ,
thus we obtain the following Theorem Theorem 5.1. The Green function of the fractional free Schrödinger equation (5.3) is given by

G α (x, t) = ( m 2i t α ) 1/2 Φ α/2 ( √ 2m|x| √ i t α
) .

(5.6) This is announced in [NYH] without proof and the justication is given by taking the limit α → 1, since Φ 1/2 is nothing but the Gaussian (see [MLP]), hence by replacing α = 1 in (5.6), we obtain (5.2).