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Abstract

The flow around a rigid rectangular pitching plate immersed in a free stream

is numerically investigated, addressing the force and drag generated by the

oscillatory motion. Several aspect ratios (plate’s span to plate’s length) lower

than 0.5 are considered, for a Reynolds number based on the plate’s length and

the incoming flow velocity of 2000. The validity of the scaling law for viscous

drag production, previously established for finite-span plates in uniform flapping

motion, is investigated for the pitching motion, which is more representative in

the context of propulsion modeling. The time averaged pressure force is shown

to decompose into a propulsive part, scaling linearly with the aspect ratio and

induced by the plate’s movement, and an opposite pressure force deficit, often

interpreted as vortex induced drag and generally associated with the pair of

longitudinal vortices at the plate’s lateral edges. A scaling for the time averaged

pressure deficit is proposed, by analyzing the pressure drop along the span in

terms of a Bernoulli-type effect induced by the transverse flow velocity. It is

shown, that the pressure thrust is reduced, compared to what would be predicted

by the elongated body theory, by more than 30% for the aspect ratios considered.
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1. Introduction

There has been an considerable amount of studies on the energetics of swim-

ming over the past decades, parts of which having recently been reviewed in

[1]. It appears that Lighthill’s celebrated elongated-body theory [2] remains the

key model for thrust prediction when addressing swimming or flying bodies,5

or when considering artificial systems for locomotion like oscillating foils, with

relatively low aspect ratios (span to chord). The pressure field over the moving

body or object characterizes the inertial fluid effects and for oscillatory motions,

the tail-beat frequency as well as its amplitude has been widely used to charac-

terize aquatic locomotion (see for instance [3, 4, 5] and references therein). For10

a freely swimming body, the thrust force is balanced by the resistive drag. Form

drag depends on the swimming body’s shape and at the same time the body’s

surface induces significant viscous forces, unless the Reynolds number range is

sufficiently high such that viscous forces can be neglected.

The importance of viscous drag has been a matter of discussion and it has15

been recognized that the motion of finite-aspect swimming bodies or objects may

induce a drag increase, due to what is known as the “Bone-Lighthill boundary-

layer thinning hypothesis” [6]. This hypothesis has recently been readdressed

for flapping plates and a longitudinal drag formula depending on the plate’s

aspect ratio, the wall-normal velocity induced by the plate’s movement and20

of course the Reynolds number has been proposed [7, 8]. This friction law

and in particular the finite-size scaling ∼ 1/
√
s with s the span of the foil is

retrieved when modeling an actuated elastic swimmer [9]. Some discussion on

the interaction between the surface of the body of swimming fishes and the

induced boundary-layer flow is provided in [10]. Other observations however,25

for instance the measurements for the boundary layer on the body surface of

trout swimming at high turbulent Reynolds numbers [11], do not support the

boundary-layer thinning hypothesis, which is attributed to an energy-efficient

swimming strategy in a turbulent environment.

The influence of the swimming object’s aspect ratio on the inertial pressure30
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force is still not entirely elucidated. Scaling laws for propulsion for archetype

geometries and motions, such as heaving, pitching or undulatory foils, often

consider added-mass forces per unit span, which apply to rather large aspect

ratio geometries, assuming a quasi two-dimensional setting along the foil’s cen-

terline. On the contrary, when addressing elongated bodies, the reactive term35

during the swimming motion is known to be proportional to the (small) width

of the body. Reliable scaling laws have for instance been reported in [12], for

a large aspect ratio (plate’s span s to plate’s length L) of AR = s/L = 3.5.

The thrust-performance and the wake structure for rigid rectangular pitching

plates have been reported in [13], providing evidence for quasi two-dimensional40

structures when AR > 0.54, whereas the aspect ratio affects the propulsive

performance for narrower plates. Whatever aspect ratio is considered for three-

dimensional oscillating foils or bodies in longitudinal motion, flow structures

will evolve through the span, the manifestation being the generation of a pair of

counter-rotating streamwise vortices at the lateral edges. These kind of struc-45

tures are known as trailing vortices in wing theory, being responsible for what

is often called induced drag. A vortex-induced drag model taking into account

these streamwise vortex structures in undulatory swimming has been proposed

in [14]. This model based on the vortex circulation is similar to the vortex drag

analysis in [15]. Quite interesting, in this latter investigation it is mentioned,50

that an alternative interpretation would be to consider the pressure deficit due

to the high transverse velocity between the vortex cores as responsible for the

drag.

The aim of the present work is to characterize the influence of finite-size

effects on the forces and drag for an oscillating archetype geometry, by com-55

puting the three-dimensional flow field induced by the motion. The numerical

investigation is performed for a rigid pitching plate, considering different aspect

ratios in the range of 1/8 ≤ AR ≤ 1/2. The plate has vanishing thickness in

this numerical solution procedure and hence form drag due to body shape is

absent. The flow structure along the plate as well as in its the very vicinity is60

numerically captured and the instantaneous as well as time-averaged propulsive
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and resistive forces can reliably be computed. The paper is organized as fol-

lows. In section 2, the numerical solution procedure is briefly outlined and the

flow configuration and pitching parameters are addressed in section 3, together

with some illustration of the three-dimensional flow structure. The forces and65

drag analysis is provided in section 4. The validity of the finite-aspect ratio

viscous drag formula, derived for uniform motions, is examined for the pitching

motion. The pressure force across the plate’s span is analyzed and a scaling is

derived for the pressure deficit. Finally, a scaling, function of the aspect ratio

AR, is proposed for the pressure force, which takes into account the pressure70

deficit associated with the transverse flow. Some final discussion of the results

is provides in section 5.

2. Numerical solution procedure

A multi-domain approach has been used for the solution of the Navier-Stokes

system75

∂u
∂t

+ (u · ∇)u = −1
ρ
∇p+ ν∇2u, (1)

∇ · u = 0, (2)

for the velocity field u = (u, v, w) and the pressure p in the presence of the pitch-

ing plate. This approach has been already used for flapping plate computations

in [8]. Also, the numerical approach, which will be briefly outlined hereafter, has

been validated in [16] through comparisons with experimental measurements,

for a pitching plate configuration in a quasi two-dimensional setting. A plate80

with vanishing thickness is considered and the domain partition is designed

such that the edges of the plate coincide with contour lines of interfaces be-

tween subdomains. The mesh points associated with the singular plate’s edges

are hence shunned in the solution procedure, but they will nevertheless induce

locally some noise in the gradients of the flow field. As the results will show,85

this noise is however smoothed out within small distances from the edges. The
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flow domain in the three-dimensional coordinate system is

xin ≤ x ≤ xin + Lx, −Ly ≤ y ≤ Ly, −Lz ≤ z ≤ Lz. (3)

In the numerical approach, motions of the plate are considered which can be

described by a function η(x, t) such that

y = η(x, t), xl ≤ x ≤ xt,−s/2 ≤ z ≤ s/2, (4)

where x is the streamwise coordinate with xl and xt the plate’s leading and90

trailing edge, respectively, y is the space coordinate normal to the incoming

flow velocity (the plate is located at y = 0 in the absence of motion), s being

the plate’s width in the spanwise direction z. The pitching function used is

η(x, t) = (x− x0)α0 sin(2πft), xl ≤ x ≤ xt, (5)

where the pitch-pivot point x0 has been chosen at the distance L/3 from the

leading edge with L = xt− xl the plate’s length. For the motion (4) considered95

here the plate’s leading and trailing edge x-coordinates are hold constant. This

approximation with regard to the pitching motion is reasonable only for small

pitching angles α0 and the value α0 = 10◦ has been considered, that is α0 =

π/18 = 0.175. Note that although small, this pitching angle is within the

range of investigations for pitching foils, for instance in [13] or very recently in100

[12]. The approximation of fixed leading and trailing edge x-coordinates may

be interpreted as a small numerical stretching of the plate’s length, which in the

plate’s maximal peak position takes the value L
√

1 + tan2(α0) ≈ 1.015 L (that

is a stretching of 1.5 percent).

The procedure uses a coordinate transformation which maps the physical105

coordinates into the computational ones. Denoting the computational variables

with (x̄, ȳ, z̄), the coordinate transformation writes, according to the motion (4),

ȳ =
(

y − η(x, t)
(±Ly)− η(x, t)

)
(±Ly), xl ≤ x̄ = x ≤ xt, (6)

for the domains η < y < Ly and −Ly < y < η respectively above and below

the plate. Upstream the plate’s edges the transformation writes similarly, by
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replacing in (6) the function η(x, t) with its values η(xl, t) and η(xt, t) at the110

leading edge and trailing edge, respectively.

In the transformed variables the plate is fixed at ȳ = 0 and according to

the transformation (6), the differential operators with respect to time t and the

streamwise coordinate x can be decomposed, with

∂

∂t
=

∂

∂t̄
+

∂η/∂t

(±Ly)− η
(ȳ − (±Ly))

∂

∂ȳ
,
∂

∂x
=

∂

∂x̄
+

∂η/∂x

(±Ly)− η
(ȳ − (±Ly))

∂

∂ȳ
,

(7)

whereas the wall normal coordinate transforms as115

∂

∂y
=

∂

∂ȳ
+

η

(±Ly)− η
∂

∂ȳ
. (8)

The spanwise coordinate is of course unchanged for the motions such as (4). The

Figure 1: Sketch of the multidomain partition of the computational domain with the inserted

plate (black). The dashed interior lines illustrate the subdomains’ contours.

second order derivative operators are obtained accordingly and they are written

as a sum of a Cartesian operator (in the computational variables) and the time-

dependent contributions due to the metric terms. A semi-implicit second-order

backward-Euler time integration is used, the metric term contributions of the120

differential operators as well as the nonlinear terms being evaluated explicitly

through a Adams-Bashforth scheme. A projection method is considered, that is

a fractional-step method by solving at each time step an intermediate pressure

and velocity field followed by a pressure correction to ensure incompressibility,

known as the Kim-Moin scheme (for a review on projection methods see [17]).125
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Hence, at each time step a series of Helmholtz-type problems

∇̄2Φ− σΦ = f (9)

for the velocity components and the pressure (with σ = 0 in the latter case)

have to be solved. The domain Ω = ∪Ωk is partitioned into subdomains Ωk

with interfaces Γij = Ωi ∩ Ωj (see the sketch in figure 1) and the Helmholtz

problems in each subdomain are130

∇̄2Φk − σΦk = fk, in Ωk, Φk = g on ∂Ωk ∩ ∂Ω, (10)

where g is either an imposed boundary condition on the exterior of the whole

computational domain, or a kinematic condition on the plate in the interior,

depending on the specific subdomain considered. It is again emphasized that

in this procedure ∇̄ is the Cartesian gradient operator, whereas the right-hand

sides in (9), (10) contain the second order (in time) explicit evaluation of the135

nonlinear terms as well as the time-dependent metric terms.

High-order (8th order) compact finite differences schemes are considered for

the discretization of the first and second order derivatives of the flow variables

in the three computational space variables (x̄, ȳ, z̄). The schemes are derived for

non-uniform meshes and in particular, as shown in [18], a clustering of the points140

near the boundary is appropriate for the eighth-order scheme considered here,

to avoid oscillations and which enables a boundary closure scheme of the same

order as the interior. Continuity of the solution as well as of its normal derivative

is required at the domain interfaces Γij . In [8] the algebraic formulation of this

problem is outlined and it is explained, how the numerical algorithm involves145

the Schur complement matrix [19], also called influence matrix, its internal block

structure being determined consistently with the subdomain partition in a pre-

processing stage. A parallel MPI algorithm has been designed using the Cluster

IBM x3750 of the French computer center IDRIS, a process being assigned to

each subdomain. The Schur complement system is solved iteratively using the150

Portable, Extensible Toolkit for Scientific Computing (PETSc) computational

environment [20] and more specifically the Krylov subspace package (KSP), using
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hierarchical GMRES options and Block Jocobi preconditioning [20].

In all the computations, 384 subdomains have been considered, with ndx =

12, ndy = 8, ndz = 4 and in each subdomain Ωk a 30 × 30 × 30 mesh has been155

used. For a plate with length L, the inflow xin of the computational domain

has been set at a distance L/2 from the plate’s leading edge and the domain’s

length in the streamwise direction is Lx = 3L (that is the distance from the

plate’s trailing edge to the domain’s outflow boundary is 3L/2). The numerical

approach has been used in [16], for similar flow conditions and equivalent plate160

motions, in however a quasi two-dimensional setting. In [16] the upper and lower

flow domain boundaries have been varied from ±Ly = ±2L/3 to ±Ly = ±L and

the overall computational domain’s height could be shown to have only a weak

influence on the stress tensor quantities along the plate. Here the upper and

lower flow domain boundaries have been chosen at a distance ±Ly = ±3L/4165

and the results reported in [16], even though for two-dimensional flow, indicate

that these boundaries are far enough from the pitching plate to minimize finite

size effects. Free-surface flow boundary conditions are applied at the upper

and lower boundaries ±Ly (that is zero Neumann boundary conditions for the

steamwise u and spanwise w velocity components and a zero Dirichlet condition170

for the normal component v). In the spanwise direction ±Lz = ±s, that is the

computational domain in z is twice as large as the plate. Periodic flow conditions

have been considered at the domain’s lateral boundaries in z. To assess the

influence of the computational domain’s width, a larger domain has also been

considered for one of the plate’s aspect ratios, by choosing ±Lz = ±3s/2 and by175

imposing Dirichlet boundary conditions at the lateral boundaries of the enlarged

computational domain. A brief comparison of the resulting flow field with that

for the narrower domain will be provided in the next section. At inflow xin the

uniform incoming flow (U‖, 0, 0) is imposed and at the outflow x = xin+Lx non

reflective advective outflow conditions have been used.180

According to the plate’s motion (4) with (5), the wall velocity is only in the

y-direction and during the time-marching the kinematic boundary condition

u = 0, w = 0, v = ∂η/∂t is applied for xl ≤ x̄ ≤ xt,−s/2 ≤ z̄ ≤ s/2, at the
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moving plate located at ȳ = 0 in the transformed coordinate system (x̄, ȳ, z̄). It

is recalled that the x-displacement during the pitching motion has indeed been185

discarded, which allows of the coordinate transformation (6). (As discussed

above, this simplification may be interpreted as a small numerical stretching of

the plate during its motion.) Note that for a perfect pitching motion, defining

θ = α0 sin(2πft), the u-convection along the plate would approximately be

−(x−x0) sin(θ) dθ/dt. This yields a highest u-convection amplitude in time, at190

the trailing edge and making dimensionless with U‖, of approximately 2L
3U‖

α2
0πf .

The frequencies considered here are such that 4L
3U‖

α0f ≤ 0.39 (see next section)

and the neglected u convection is hence smaller than 0.1 at the pitching angle

of 10◦ considered. This has to be compared with the v-velocity at the plate, the

highest dimensionless value (at the trailing edge) being approximately 4L
3U‖

α0πf ,195

that is 2/α0 ≈ 11.5 higher than the highest u convection value.

3. Flow configuration and pitching parameters

All the following computations have been performed for a Reynolds number

ReL =
U‖L

ν
= 2000, (11)

U‖, the incoming uniform flow velocity, and L the pate’s length being the refer-

ence velocity and the reference length, respectively. The motion of the pitching200

plate with vanishing thickness is given by (4) with the pitching function (5)

and for convenience, we set in the following xl = 0 and hence the trailing edge

xt = L. It is recalled that the pitch-pivot point is at the distance L/3 from the

leading edge, that is x0 = L/3. The wall-normal velocity is according to (5)

U⊥(x) = ny
∂η

∂t
= ny2π (x− x0) f α0 cos(2πft), (12)

where ny is the y-component of the normal unit vector at the plate, that is205

n =
±1√

1 + (∂η/∂x)2
(−∂η
∂x
, 1) = (nx, ny). (13)

Note that given the relatively small pitching angle, |ny| is close to 1. The

configuration is sketched in figure 2. Computations have been performed for
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Figure 2: Sketch of the pitching plate with span s and length L in a uniform flow U‖ moving

at the normal velocity U⊥.

different aspect ratios AR = s/L, with L the plate’s length and s the plate’s

span, and various frequencies. In the following, the dimensionless variables are

written with an asterisk ∗ ( the plate’s length L being the characteristic length210

and the incoming flow U‖ the reference velocity). In the literature, the reduced

frequency defined as f∗ = πfL/U‖ is often considered as the dimensionless

frequency (sometimes without the factor π). Alternatively, the Strouhal number

St = Af/U‖ using the trailing edge peak-to-peak amplitude of motion A may

be considered, which has been used widely to characterize in particular aquatic215

locomotion (see for instance [3] and more recently [5, 12]). Given the plate’s

motion (5), A = (4/3)α0L and hence f∗ = 0.75St π/α0. The Strouhal number

will be used throughout the paper and computations have been performed for

St = 0.23, 0.3, 0.39 (or equivalently f∗ = 3.1, 4, 5.2) and considering plates with

different aspect ratios. Note that this range of Strouhal numbers is within the220

range of frequencies which is often associated with optimal thrust production

(see [5] and references therein).

One has to be aware that the three-dimensional computations are rather

time-consuming and that the simulations have to be performed beyond the

transition regime in order to recover reliable mean quantities. Plate configura-225

tions with five different aspect ratios AR = 1/8, 1/6, 1/4, 1/3, 1/2 have been

considered, for the two higher Strouhal numbers St = 0.3, 0.39, whereas for the

lower Strouhal number St = 0.23 only the aspect ratios AR = 1/6, 1/4 have

been considered. Note, that the lower the frequency, the longer the time in-
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Figure 3: The instantaneous spanwise component ω∗z of the vorticity in the plane (x, y) along

the plate and in the wake, at the plate’s center z = 0. Four positions during one period are

shown: at the maximum lower pitching angle (upper left), close to the horizontal position in

the upstroke movement (upper right), at the maximum higher pitching angle (lower left) and

near the horizontal position in the downstroke movement (lower right). The pitching Strouhal

number is St = 0.3 and the aspect ration AR = 1/6.

tegration has of course to be performed. An example of the flow dynamics is230

given in figure 3 which shows the spanwise component ω∗z of the vorticity at the

center of the plate z = 0. Four instantaneous flow fields are shown during one

pitching period, for the Strouhal number St = 0.3 and the plate with the aspect

ratio AR = 1/6. Note some spurious noise in the vorticity near the leading edge

where the flow necessarily exhibits a singular behavior. The streamwise com-235

ponent ω∗x of the vorticity in the plane (z, y) normal to the plate at x = 0.75L

is shown in figure 4, at the same instants in time during a pitching period as

in figure 4. (Again, some noise in the vicinity of the singular lateral edges is

visible.) The longitudinal vortices present at the lateral edges of the plate are

similar to the so-called trailing vortices in the context of wing theory and have240

for instance been shown to contribute significantly to drag in bluff body theory

[15]. It is seen that for the counter-rotating vortices, the vorticity magnitude (in
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Figure 4: The instantaneous streamwise component ω∗x of the vorticity in the plane (z, y) at

a position x = 0.75L on the plate, at the same instants in time during one pitching period as

in figure 3, that is, from left to the right, the maximum lower position, close to the horizontal

position in the upstroke movement, at the maximum higher pitching angle and near the

horizontal position in the downstroke movement. The pitching Strouhal number is St = 0.3

and the aspect ratio of the plate is AR = 1/6. The different positions of the plate are those

shown in figure 5 as the black horizontal line. Note that the domain area shown has been

rescaled when comparing with figure 3 in order to emphasize the flow structure.

absolute values) is maximal when the plate is approximately in the horizontal

position, which corresponds to the moment where the wall-normal velocity |U⊥|

has its maximum. Note that the edge lines of the plate (recall that it has zero245

thickness), where the vorticity has a singular peak, are not explicitly resolved

in the multi-domain solution procedure summarized in section 2.

As mentioned in the previous section, the computational domain in the span-

wise direction z has been chosen twice as large as the plate and periodic bound-

ary conditions have been applied at the spanwise boundaries of the computa-250

tional domain. Periodic boundary conditions in the free-stream region at some

distance of the plate are expected to put a minimum of constraints on the flow

quantities along the plate. For one flow case, a spanwise domain three times as

large as the immersed plate has been considered, with Dirichlet boundary con-

ditions at the spanwise boundaries. The spanwise component w∗ of the velocity255

field induced by the plate’s motion in the plane (z, y) at x = 0.75L for both the
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Figure 5: The instantaneous spanwise component w∗ of the velocity field in the plane (z, y)

at a position x = 0.75L on the plate. Computational domain’s width equal to 2s and with

Neumann boundary conditions at the lateral boundaries (upper row), domain’s width equal to

3s and with Dirichlet boundary conditions at the lateral boundaries (lower row). For each row,

from left to right, at the plate’s lowest position, close to the horizontal position in the upstroke

movement, at the highest pitching angle and near the horizontal position in the downstroke

movement. The different plate’s positions are shown by the black line. The parameters are

St = 0.3 and AR = 1/8.

computational domains is shown in figure 5 (for this comparison the aspect ratio

AR = 1/8 has been considered). The snapshots shown in the upper row are

those with the computational domain −s ≤ z ≤ z and periodic boundary con-

ditions, whereas the lower row are those with −3s/2 ≤ z ≤ 3s/2 and Dirichlet260

boundary conditions. The spanwise velocity structure in the very vicinity of the

plate (the position of which being marked as the black lines) looks very similar

for both computational geometries. One observes that at the highest deviations

from the horizontal position, where the wall-normal velocity tends to zero, the

13



Figure 6: The time averaged spanwise velocity < w∗
y/S

> at position x = 0.75L and at

constant distances y/s from the plate, as function of z/s along the computational domain’s

width. Profile at the distance y/s = 0.013 with the large computational domain −1.5 ≤ z/s ≤

1.5 and Dirichlet boundary conditions ( ) and with the narrower domain −1 ≤ z/s ≤

−1 and Neumann boundary conditions ( ). Profile at the distance y/s = 0.1 with the

large computational domain ( ) and the narrower computational domain ( ). The

parameters are St = 0.3 and AR = 1/8 (the plate’s lateral edges are at z/s = ±0.5).

spanwise velocity along the plate’s windward-side approaches zero as well, as it265

can be inferred from the first and third snapshot (from the left) shown in figure

5. On the second and fourth snapshot, that is during the upward and downward

motion respectively, spanwise velocity acceleration towards the lateral edges can

be seen on the side to which the plate is moving. Also, the separation at the

leeward-side of the plate is evidenced in the snapshots. A further comparison270

for both the computational domains is provided in figure 6, where the time av-

eraged dimensionless spanwise velocity < w∗y/s > at two constant distances y/s

relative to the moving plate are shown, as function of z/s. It is seen that the

curves almost superimpose in the range −0.5 ≤ z/s ≤ 0.5 corresponding to the

plate’s span. For the larger computational domain, the spanwise velocity tends275

to zero with a vanishing gradient at the lateral boundaries z/s ± 1.5. For the
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narrower domain the periodic boundary condition applies and it is seen that

w∗ is close to zero at z/s± 1. The computational domain boundary constraint

hence appears to have only a small influence on the spanwise velocity profile.

4. Forces and drag induced by the pitching plate280

Before addressing the forces and drag computations, the main parameters

which enter into the analysis are briefly summarized and a brief nomenclature

of the drag force quantities is provided.

As mentioned before, the aspect ratio and the Strouhal number are

AR = s/L, St = Af/U‖ with A =
4
3
α0L. (14)

In the forthcoming analysis, the dimensionless time-averaged wall-normal veloc-285

ity is one of the key quantities, that is according to (12)) (taking ny = 1)

〈|U∗⊥|〉 (x∗) =
3π
2
St|x∗ − 1/3| 1

T

∫ T

0

| cos(2πft)|dt = 3St|x∗ − 1/3|, (15)

where x∗ = x/L and the dimensionless coordinate x∗ = 0 corresponds to the

plate’s leading edge. The time-averaged thrust and drag forces are made di-

mensionless with ρU2
‖Ls and the dimensionless quantities are written with an

asterisk ∗. The nomenclature used for the force quantities is (those with capital290

letter are time-averaged):
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〈
f∗µ
〉

(x) = spanwise integrated, time-averaged viscous stress,

F ∗µ = total viscous drag,

F ∗µ,th = theoretical prediction for F ∗µ ,〈
f∗p
〉

(z) = streamwise integrated, time-averaged pressure stress,

f∗pot(z) = potential model for
〈
f∗p
〉

(z),

F ∗p (0) = pressure force based on centerline pressure,

F ∗p,th(0) = prediction for F ∗p (0) using elongated-body theory,

DF ∗p = pressure force deficit due to finite span,

DF ∗pot = potential model for DF ∗p ,

F ∗p = F ∗p (0) +DF ∗p = total pressure force,

F ∗p,scale = scaling for F ∗p ,

F ∗tot = F ∗p + F ∗µ = total force.

4.1. Skin friction formula revisited

Skin friction drag is likely to be considerably modified, with respect to the

classical steady boundary-layer law, due to the compression of the boundary-295

layer when a finite-aspect ratio structure undergoes a flapping motion. This has

been put forward by the ’Bone-Lighthill boundary layer thinning’ hypothesis [6],

which has recently been readdressed [7, 8] for a plate of width s in an external

incoming stream velocity U‖ moving perpendicularly to itself at a (constant)

velocity Up. We briefly outline how the skin friction enhancement in such a flow300

configuration can be understood. In the mid-plane z = 0 of the plate one finds,

that the y component of the outer potential flow scales as Ve ≈ Up(1 − y/H)

with H = s/2 (see for instance [22] for potential flow calculations) for y � s.

The fluid particles hence experience an acceleration dUe/dx ≈ Up/H, with Ue

the x component of the potential flow close to the wall. The resulting local305

viscous stress can be estimated (cf. [21]) and τ ≈ µU‖/δ with δ ∼
√
νs/Up

the ’frictional boundary layer thickness’ defined in [6]. Under the simplified

hypothesis that this skin fiction enhancement is uniform along the span, one

gets a theoretical scaling for the viscous drag induced by the plate’s motion (L

being the plate’s length) sLτ ∼ µU‖L
√
Res

√
Up/U‖, with Res the Reynolds310
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number formed with the plate’s width s and U‖. In [7] the complete three-

dimensional problem in this configuration for a plate (of length L, span s and

moving at a constant velocity Up perpendicularly to itself) has been solved using

the approximation of the momentum equations and taking also into account the

acceleration of the fluid particles as they move around the plate. The resulting315

formula for the viscous drag is

Fµ,th = C3D µU‖L
√
Res

√
Up
U‖

(16)

and when made dimensionless one gets

F ∗µ,th =
1

ρLU2
‖ s

Fµ,th = C3D
1√
ReL

1√
AR

√
U∗p (17)

with U∗p the dimensionless wall-normal velocity (constant in the theoretical

model), AR the plate’s aspect ratio, ReL being the Reynolds number using the

plate’s length L as reference length. The proportionality coefficient could be320

estimated in [8] as C3D ≈ 1.8.

For the present pitching plate, the wall-normal velocity is not constant any

more along the chord of the plate. One may nevertheless hypothesize, that the

skin friction induced by the plate’s motion is somehow function of the velocity

U⊥(x) given by (12). An example for the dimensionless local viscous stress for325

the Strouhal number St = 0.3 and the aspect ratio AR = 1/6

τ∗ =
µ

ρU2
‖

∂u|y=η

∂y
(18)

is depicted in figure 7, at the fixed position x = 0.75L on the plate. The value at

the upper face of the plate over two periods of pitching is shown. Two quantities

are shown, that is the viscous stress at the plate’s center z = 0 as well as the

value averaged over the plate’s span (integrating over the upper side of the plate)330

1
s

∫ s/2
−s/S τ

∗ dz. The (scaled) wall displacement is depicted as well. It is seen,

that the periodic undulations of the centerline skin friction and of the spanwise-

averaged quantity are similar, with however a shift in amplitude. The time-

periodic skin friction evolution is seen to be more complex than a mere sinusoidal

17



Figure 7: Local skin friction τ∗ at z = 0 ( ) as well as the spanwise averaged viscous

stress 1
s

R s/2
−s/S τ

∗ dz ( ) over two pitching periods (for St = 0.3 and AR = 1/6), at

x = 0.75L on the upper the face of the plate. The scaled dimensionless wall displacement

(η∗(x = 0.75L, t))/10) is shown as well ( ).

oscillation. According to the theoretical formula (17), although strictly speaking335

valid for a constant velocity U∗p , the time-dependent skin friction is expected to

be reminiscent of the magnitude of the time-dependent wall-normal velocity. For

instance, the plate’s minimum positions after a downward movement (where the

wall-normal velocity tends to zero) would than correspond to minimum values

of the skin friction. A phase-shift is however observed, which can be attributed340

to the nonlinearities or more generally to a delay in the flow response to the

wall movement.

As discussed in [7], the skin-friction enhancement is due to a compression of

the boundary-layer, which however is not homogeneous in the spanwise direc-

tion, due to the acceleration of the fluid particles as they move around the plate.345

Four snapshots within one time period (at instants in time corresponding to fig-

ure 7 and at the same fixed x = 0.75L location on the plate) of the skin friction

along the span of the plate are shown in figure 8. The result for the steady state
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Figure 8: Instantaneous skin friction τ∗ along the span −AR/2 < z/L < AR/2 (with AR =

1/6 and for pitching frequency St = 0.3) at x = 0.75L on the plate, at t/T = 0.065 ( ),

t/T = 0.29 ( ), t/T = 0.68 ( ), t/T = 0.9 (( )(cf. figure 7). ( ) : result for

the motionless plate.

along the motionless plate is also shown as the solid line and it is seen to be sig-

nificantly smaller at z = 0 than the result for the pitching plate. Note that the350

Blasius formula τ∗ = 0.332/
√
ReL(x/L) (cf. [21]) predicts at this streamwise

location x = 0.75L a value τ∗ ≈ 0.0086 which is indeed close to the computed

value (at z = 0). Near the plate’s lateral edges at z/L = ±AR/2 = ±1/12, all

curves exhibit a stiff increase in the very vicinity of this singular points. For

the pitching plate, the skin friction more or less, depending on the instant in355

time, increases along the span which illustrates the friction enhancement when

approaching the lateral edges at z = ±s/2.

The stress tensor term along the plate has been computed, the x-component

being

σx = σp + σµ, σp = −p nx, σµ = 2µ
∂u

∂x
nx + µ

(
∂u

∂y
+
∂v

∂x

)
ny, (19)

nx and ny being the x-component and the y-component of the normal-vector360
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(13). Here we consider the stress acting on the fluid by the plate, which means

that the minus-sign is to be taken in (13) at the upper face of the plate and

the plus-sign at the lower face. With this convention, a drag force on the plate

is negative, which means that in the coordinate system sketched in figure 2,

a positive total force corresponds in fact to thrust on the plate (which is the365

convention generally used). The skin-friction term at the wall τ = µ
∂u|y=η
∂y is

of course by far the dominant contribution to the viscous stress term σµ, for

the pitching movement with a relatively small angle considered here. The time

average of the dimensionless spanwise integrated viscous stress

< f∗µ > (x) >=
1

sρU2
‖

1
T

∫ t0+T

t0

(∮
σµ(x, z, t)dz

)
dt (20)

has been computed, integrating at each position x the viscous stress along z370

on each side of the plate, using a simple trapezoidal rule in space and time,

once a strictly periodic regime achieved. The results for three different aspect

ratios AR = 1/6, 1/4, 1/3 and for the Strouhal number St = 0.3 are shown in

figure 9. The portions of the plate near the leading and trailing edges, which are

singular points in the solution procedure, have been omitted. Indeed, as already375

mentioned, near the plate’s edges spurious oscillations of the mean quantities

can hardly be avoided which however, as can be seen in the figure, do not

affect the results along the major part of the plate. It is seen, that the lower

the aspect ratio, the higher the viscous drag (its absolute value). The viscous

drag for a higher Strouhal number St = 0.39 and AR = 1/6 is shown as well,380

which illustrates the increase of viscous drag with the pitching frequency. This

appears to be in line with the theoretical friction force prediction (17), which

however can only be derived rationally for a plate moving with constant and

uniform velocity U∗p . In the present pitching plate, the wall-normal velocity is

periodic and depends on the streamwise location x. When trying to connect385

the computed time-averaged friction force to the theoretical formula, it seems

natural to consider the time-average (15) of the wall-normal velocity, taking its

absolute value, given that the upstroke and downstroke motion are equivalent

for the overall drag production. Integrating this expression (17) along both the
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Figure 9: Dimensionless spanwise integrated and time averaged viscous stress < f∗µ > (x)

along the pitching plate oscillating at Strouhal number St = 0.3, for different aspect ratios

AR = 1/6 ( ), AR = 1/4 ( ), AR = 1/3 ( ). ( ): < f∗µ > (x) for St = 0.39

and AR = 1/6.

plate’s sides, one gets 5 St/3 and it is hence supposed that390

U∗p ∼
5
3
St (21)

(the sign ∼ indicating a factor of proportionality).

Taking this value in (17), the theory predicts

F ∗µ,th = −C 1√
ReL

√
St

AR
(22)

(with the minus sign, according to the convention that drag is negative), where

C is supposed to be more or less close to C3D

√
5/3 ≈ 2.3 according to (17) (with

C3D ≈ 1.8). For the different aspect ratios and frequencies, the dimensionless395

mean friction drag force

F ∗µ =
1
L

∫ L

0

< f∗µ > (x) > dx (23)

has been computed, by integrating < f∗µ > (x) > given by (20) along the plate

from the leading edge to the trailing edge. Some simple trial and error for fixing
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Figure 10: Dimensionless friction drag force F ∗µ for three Strouhal numbers St = 0.23, 0.3, 0.39

for the plate with aspect ratio AR = 1/6 (�) and the aspect ratio AR = 1/4 (N). The straight

lines correspond to the theoretical prediction F ∗µ,th = −2.1 1√
AR

1√
ReL

St1/2 with AR = 1/6

( ) and AR = 1/4 ( ).

the factor C in the theoretical prediction (22) proved, that the value C = 2.1

fitted the best with the computed mean friction drag and the comparison is400

shown in figure 10. The friction drag force is depicted as function of
√
St, for the

Strouhal numbers St = 0.23, 0.3, 0.39 and for two aspect ratios AR = 1/6, 1/4

as well as the theoretical prediction (22).

It is seen, that there is an almost linear dependence with respect to
√
St

for the three frequencies considered and the prediction (22) fits reasonably405

well for the the two aspect ratios considered. For the two higher frequen-

cies St = 0.3, 0.39, simulations have been performed for different aspect ratios

AR = 1/8, 1/6, 1/4, 1/3 and for the lower Strouhal number St = 0.23 for plates

with AR = 1/6, 1/4. The resulting friction forces are shown by the square,

triangle and dot symbols in figure 11, as function of 1/
√
AR. Again, the lines410

corresponding to the theoretic value (22) are plotted as well. It is seen, that for

AR = 1/2 (the largest aspect ratio considered) there is roughly a 30% difference
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Figure 11: Dimensionless friction drag force F ∗µ as function of AR−1/2 for aspect ra-

tios AR = 1/6, 1/4 and Strouhal number St1 = 0.23 (•) as well as aspect ratios AR =

1/8, 1/6, 1/4, 1/3, 1/2, Strouhal number St2 = 0.3 (�), and Strouhal number St3 = 0.39 (N).

The lines are the theoretical prediction F ∗µ,th = −2.1
√
Sti

1√
ReL

AR−1/2 for St1 ( ), St2

( ), St3 ( ).

between the prediction and the computed friction forces, whereas for the lower

aspect ratios AR ≤ 1/4 the prediction and the computations are close. In-

deed, the theoretical formula exploits the boundary-layer thinning phenomenon415

which is the dominant friction enhancement mechanism, only when the plate’s

span does not exceed some bound with respect to the plate’s chord and for

sufficiently high wall-normal velocities. Indeed, the total friction drag for a mo-

tionless plate is predicted by the Blasius formula (cf. [21]), the dimensionless

value being −1.33/
√
ReL ≈ −0.03 (for ReL = 2000). In figure 8 the computed420

value of the skin friction for the motionless plate with AR = 1/6 has also been

shown. For this case the dimensionless total drag along the plate has been com-

puted, yielding a value ≈ −0.036, that is a little higher drag than the theoretical

Blasius prediction (which can mainly be attributed to the stiff increase of the

local skin friction in the very vicinity of the lateral edges). Therefore, one can425

estimate according to the formula (22), that the wall-normal motion is certainly
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the dominant drag production mechanism, as long as C
√
St/AR is greater than

1.33. We have seen that C ≈ 2 and
√
St/AR is hence to be quite larger than

roughly 0.5. For the Strouhal numbers considered here, this is the case for the

aspect ratios AR ≤ 1/4. Therefore, besides the case of small aspect ratios and430

high Strouhal numbers, where the theoretical prediction (22) is seen to be reli-

able, some combination between this formula and the classical flat-plate friction

formula is to be taken (what is not attempted here, the paper rather focusing

on small-aspect ratio aspects and relatively high pitching frequencies).

4.2. Pressure force across the plate’s span435

The dimensionless pressure p∗ = p/(ρU2
‖ ) has been computed along the

plate and has been normalized such that p∗ = 0 at inflow , where the pressure

is expected to be almost uniform and it has been checked, that this is verified

in the simulation results up to the order of 10−4 . The time evolution over two

periods at a fixed location x = 0.75L at the upper face is shown in figure (12).440

The scaled wall displacement is shown as well and again one observes a phase

shift between the maximum and minimum values of p∗ and those of the wall

motion. The pressure value at the center z = 0 as well as the span averaged

value 1
s

∫ s/2
−s/2 p

∗dz are shown, and it is seen that they reach their maximum and

minimum during the upstroke motion and downstroke motion, respectively, at445

instants a little shifted from the moments, where the plate is horizontal and the

wall normal velocity is maximal. The gap between both curves indicates, that

there is an overall loss of pressure along the span coordinate z.

Instantaneous pressure curves along the span at the upper surface at the

position xp = 0.75L on the plate are shown in figure 13 during the upstroke450

motion, and in figure 14 during the downstroke motion. It is seen that during

the upstroke motion the pressure variation along the span is rather strong, at

least when the plate is not at its maximum position (which is equal to xpα0).

During the downstroke motion however the pressure at the upper face varies

far less along the plate’s span. Note that, according to the symmetry of the455

motion, the pressure at the lower face exhibits the inverse behavior (not shown
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Figure 12: Dimensionless wall pressure p∗ at z = 0 ( ) as well as the spanwise averaged

pressure 1
s

R s/2
−s/S p

∗ dz ( ) over two pitching periods (for St = 0.3 and AR = 1/6),

at x = 0.75L at the upper face of the plate. The scaled dimensionless wall displacement

(2η∗(x = 0.75L, t)) is shown as well ( ).

here), that is a strong variation along the span during the downstroke and a weak

variation during the upstroke motion. The upstroke movement (respectively the

downstroke movement) appears hence to be mainly responsible for the pressure

variation along the span at the upper surface (respectively the lower surface).460

The pressure evolution in z on the surface of the plate is certainly connected

with the vortex structures at the plate’s lateral edges. These vortex struc-

tures are intimately associated with the spanwise velocity w induced by the

finite-width plate, which means that the pressure evolution and in particular

its time-averaged value is also connected to the spanwise velocity. The velocity465

component is of course zero on the plate due to no slip. One may however

assume that at some (small) distance from the plate, the computed spanwise

velocity is reminiscent of a theoretical potential flow at the surface of a plate

segment −s/2 ≤ z ≤ s/2 moving at a normal velocity Up which is to be es-

timated. Supposing for the moment that this normal velocity is independent470
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Figure 13: Instantaneous pressure distribution along the span −AR/2 < z/L < AR/2 (with

AR = 1/6 and for pitching frequency St = 0.3) at xp = 0.75L on the upper face of the plate

during the upstroke movement for the plate’s position (the peak positions being η = ±xpα0)

at η = −0.95 xpα0 ( ), η = −0.6 xpα0 ( ), η = 0 ( ), η = 0.56 xpα0 ( ),

η = 0.93 xpα0 ( ).

of x and considering the plane (y, z), the potential velocity (vpot, wpot) can be

found by use of the complex potential around a circle of radius s/2 together

with the Joukowski transformation, which transforms the exterior of the circle

into the exterior of the segment. This calculation can be found for instance in

the textbook [22] and it has also been briefly recalled in [7]. This calculation475

yields

w∗pot =
U∗p z√

(s/2)2 − z2
, (24)

for the theoretical spanwise potential velocity (made dimensionless with U‖)

component at the plate induced by a wall-normal velocity U∗p .

The time averaged spanwise component < w∗|y∗c
> has been computed at

distances y∗c (made dimensionless with L) from the plate hold constant during480

the plate’s oscillations, the result for St = 0.3 and AR = 1/6 being shown in

figure 15. It can be seen, that at a small distance y∗c = 0.0016, the velocity
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Figure 14: Instantaneous pressure distribution along the span −AR/2 < z/L < AR/2 (with

AR = 1/6 and for pitching frequency St = 0.3) at xp = 0.75L on the upper face of the plate

during the downstroke movement for the plate’s position (the peak positions being η = ±xpα0)

at η = 0.97 xpα0 ( ), η = 0.66 xpα0 ( ), η = 0 ( ), η = −0.64 xpα0 ( ),

η = −0.96xpα0 ( ).

profile is rather flat due to the very vicinity of the plate (where no slip applies).

However, at the three other distances y∗c = 0.0057, 0.013, 0.024 the shapes of

the velocity profiles are close.485

Making a kind of locally parallel flow assumption in x, it is tempting to

compare the spanwise velocity profile with the theoretical potential profile w∗pot,

considering the dimensionless wall-normal velocity U∗p in (24) as to be propor-

tional to the time averaged quantity (15), that is U∗p ∼ 3St|x∗ − 1/3|. The

solid curve in figure 15 corresponds to the dimensionless potential profile (24),490

avoiding of course the region near the edges where the potential velocity becomes

singular, a proportional factor of 0.75 providing the best fit, that is U∗p = 0.94St

(note that x∗ = 3/4). Indeed, it is seen that, besides at y∗c = 0.0016, that is very

close to the wall where the no-slip condition is still reminiscent, the theoretical

potential spanwise velocity fits well with the computed profiles.495
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Figure 15: Mean spanwise velocity < w∗|y∗c
> along the span −AR/2 < z/L < AR/2 and

at position x = 0.75L, at constant distances y∗c from the plate (with AR = 1/6) during

the motion (with pitching Strouhal number St = 0.3), with y∗c = 0.0016 ( ), y∗c = 0.0057

( ), y∗c = 0.013 ( ), y∗c = 0.024 ( ). The potential velocity (24) with U∗p = 0.94St

is depicted as well as the solid line ( ).

For the pitching motion with a relatively small pitching angle as considered

in the present analysis, a reasonable hypothesis is to consider the pressure vari-

ation along the plate’s span to be to some extent decorrelated from the (slower)

streamwise evolution. One may hence assume a local (in x) Bernoulli-type as-

sumption for the time-averaged pressure < p∗ >= 1
T

∫ t0+T
t0

p∗ dt, that is500

< p∗ > (z) ≈< p∗ > (z = 0)− 0.5 < (w∗)2 > (z) = pBern, at y = y0, (25)

with y0 a fixed (small) distance from the plate.

Fixing y∗0 = 0.013 as the small distance from the plate during the motion,

the time averaged pressure and the Bernoulli assumption have been compared,

with < (w∗)2 > the computed time-average of the square of the spanwise veloc-

ity component. An example of the computations is shown in figure 16, for the505

Strouhal number St = 0.3 and at the position x = 0.75L, for two aspect ratios

AR = 1/6, 1/3. Even though the pressure distribution is not exactly repro-
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Figure 16: Mean pressure < p∗ > along the span at the distance y∗c = 0.013 (hold constant

during the plate’s movement) from the plate and at the (dimensionless) position x∗ = 3/4

from the leading edges, for the plate with AR = 1/6 ( ) and AR = 1/3 ( ). The

corresponding theoretical Bernoulli predictions pBern =< p∗ > (z = 0) − 0.5 < (w∗)2 > (z)

are superimposed ( ). The plate pitches at St = 0.3.

duced by the Bernoulli-type formula (25), the overall curvature of the pressure

distribution is however captured, indicating the connection between the pres-

sure deficit across the span and the spanwise velocity acceleration (here at a510

small distance from the plate).

4.3. Modeling of the pressure force deficit

The question is now, whether a Bernoulli principle is retrieved, when con-

sidering the streamwise pressure stress component σp = −p nx responsible for

a possible thrust production, with nx the x-component of the normal vector515

(13) on the plate. It is recalled that by convention, the vector n in (13) on

the upper surface has the minus sign and the plus sign on the lower surface, in

which case thrust on the plate corresponds to a positive pressure force in the

present coordinate system. The pressure stress has been integrated in x along
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the plate and the time average520

< f∗p > (z) =
1
T

∫ t0+T

t0

1
L

∫ L

0

(−p∗)(x, z, t)nx dx dt (26)

has been computed. The result for the Strouhal number St = 0.3 and for the

plate with different aspect ratios AR = 1/8, 1/6, 1/4, 1/3 is shown in figure

17. The integration in x has been performed at the plate’s upper face, the

same integration along the lower face providing of course identical results for

the pitching motion. The spanwise bell-type shape of the pressure force seems525

indeed to be reminiscent of a Bernoulli effect, the pressure force decreasing from

the center to a negative value close to −0.005 for the 4 aspect ratios considered.

To model this pressure force distribution along the plate’s span, a decompo-

sition

< f∗p > (z) ≈ f∗pot(z) =< f∗p > (z = 0)− 0.5 (w∗2)pot(z). (27)

is sought and owing to the theoretical spanwise potential velocity (24) it is530

assumed that

(w∗2)pot(z) =
(U∗2)pz2

(s/2)2a− z2
. (28)

The quantity (U∗2)p is supposed to be proportional to the time and streamwise

average of the square of the plate’s normal velocity. According to (12) and

taking ny = 1, one gets the time-averaged quantity

〈
U∗2⊥

〉
(x∗) =

9π2

8
St2(x∗ − 1/3)2 (29)

and integrating in x∗ yields the value535

(U∗2)p = C
π2

8
St2. (30)

for a proportionality factor C. Also, a parameter a has been introduced in the

expression (28), in the aim of fitting the pressure stress evolution along the

span shown in figure and its value has been chosen as follows. Suppose that the

< f∗p > (z = 0) at the center scales (for a fixed Strouhal number) roughly as the

aspect ratio AR. This will be discussed later, but the figure already provides540

some evidence that the drop in the pressure force from the center to the edge
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Figure 17: Mean pressure force distribution < f∗p > (z) along the plate’s width z for different

aspect ratios AR = 1/8 ( ), AR = 1/6 ( ), AR = 1/4 ( ) and AR = 1/3

( ), for the pitching frequency St = 0.3. The potential model f∗pot(z) =< f∗p > (z =

0)−0.5 (w∗2)pot(z) ((w∗2)pot given by (28) with (U∗2)p = 0.7π
2

8
St2) is superimposed ( )

to the simulation results for the 4 aspect ratios.

is indeed roughly proportional to AR. If (27) holds, the parameter a in (28) is

to be chosen such that at the plate’s edges ±s/2

0.5 (w∗2)pot(±s/2) ∼ AR (31)

and according to (28), a is chosen such that 0.5 (s/2)2

(s/2)2a−(s/2)2 = AR and hence

a =
1 + 2AR

2AR
. (32)

The potential model f∗pot(z) according to (27) with this value for a, by consid-545

ering C = 0.7 in (30) as the proportionality factor, is superimposed in figure

17 as the dotted lines for the four aspect ratios. It is seen that the numerical

simulation results and the potential model correspond surprisingly well.

The total pressure force F ∗p is now written as the sum of the centerline

contribution, and the pressure force deficit due to the finite plate’s width, that550
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is

F ∗p =
1
s

∮
< f∗p > (z) dz = F ∗p (0) +DF ∗p , (33)

(
∮

meaning the integral over both plate faces), where F ∗p (0) = 2 < f∗p (z = 0) >

is the streamwise integrated dimensionless time averaged pressure force (26) at

the centerline z = 0 of the plate (with the factor 2 for taking into account both

plate’s faces). According to (27)-(30), a potential model for the pressure force555

deficit DF ∗p can be derived, that is

DF ∗pot = −0.5
∮

(w∗2)pot(z) dz = −Cπ
2

8
St2

1
s

∫ s/2

−s/2

z2

(s/2)2a− z2
dz. (34)

The integration in (34) can easily be performed and

1
s

∫ s/2

−s/2

z2

(s/2)2a− z2
dz =

√
a

2

∫ 1/
√
a

−1/
√
a

r2

1− r2
dr

=
√
a

2
(
ln
(
1 + 1/

√
a
)
− ln

(
1− 1/

√
a
)
− 2/
√
a
)

=
1
3
γ +

1
5
γ2 + · · · (35)

with

γ =
1
a

=
2AR

2AR+ 1
. (36)

Expecting that the potential model mimics the general pressure force distri-

bution, a scaling has been attempted keeping only the leading term 1
3γ in the560

expansion (35). Note that for the aspect ratios 1/8 ≤ AR ≤ 1/2 considered, the

parameter γ ranges from 0.2 to 0.5. Using the leading term of (35) in (34), the

pressure force deficit resulting from the potential model is therefore estimated

as

DF ∗pot = −Cπ
2

24
St2γ (37)

with again a coefficient C to be determined (which is expected to be of order of565

1). For the different aspect ratios and frequencies considered, DF ∗p according to

the decomposition (33) has been computed and the results are shown in figure

18 as function of γ. Again, simple trial and error for the proportionality factor

C in (37) was performed and the coefficient C = 0.8 proved to be appropriate
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Figure 18: The pressure force deficit DF ∗p according to (33) as function of γ = 2AR
2AR+1

, for the

Strouhal number St1 = 0.23 and the aspect ratios AR = 1/6, 1/4 (•), as well as for St2 = 0.3

(�) and St3 = 0.39 (N) and aspect ratios AR = 1/8, 1/6, 1/4, 1/3, 1/2. The lines are the

theoretical prediction DF ∗pot = −0.8π
2

24
St2 γ, for St1 ( ), St2 ( ), St3 ( ).

for the prediction, as can be seen in figure 18, which provides indeed an evidence570

for the scaling (37).

Finally, a scaling for the thrust contribution due to the centerline pressure

is to be undertaken. In the framework of elongated body theory (note that here

the aspect ratio is relatively small), in [23] it has been pointed out, that thrust

can be estimated by merely considering the motion of the swimming body’s575

trailing edge, as long as the body cross section or lateral motion at the leading

edge vanishes. As shown for instance in [9], the whole streamwise extension of

the moving plate has however to be considered, when the added mass coefficient

does not vanish at the leading edge, which is the case in the present pitching

plate configuration with a pitch-pivot point at some distance from the leading580

edge. For thin oscillating plates and for purely potential flow, formulas for the

reaction of the fluid accelerated by the body motion have been reviewed in [24]
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and the formula

pth(x, t) = ρs
π

4

(
∂

∂t
+ U‖

∂

∂x

)2

η(x, t), (38)

is used, equivalent expressions having for instance been derived for added mass

mechanisms in undulatory swimming in [25, 26]. For relatively small aspect585

ratios, the added mass is supposed to depend linearly on the plate’s span (see

for instance [27]) and according to the results in literature ([28]) the added mass

coefficient ρsπ4 is used here. By taking into account the plate’s movement (5)

Figure 19: Centerline thrust F ∗p (0) for aspect ratios AR = 1/6, 1/4 and Strouhal number

St1 = 0.23 (•) as well as aspect ratios AR = 1/8, 1/6, 1/4, 1/3, 1/2, Strouhal number St2 = 0.3

(�), and Strouhal number St3 = 0.39 (N). The lines are the theoretical prediction F ∗p,th(0) =

AR
“
C1

3π3

16
St2i − C2

3π2

2
Stiα0

”
with C1 = 0.44 and C2 = 0.18 for St1 ( ), St2 ( ),

St3 ( ).

and the definition of the Strouhal number, one gets the following expression for

the dimensionless streamwise integrated pressure model590

P ∗th(t) =
1
ρU2
‖

1
L

∫ L

0

pth dx = AR

(
−3π3

32
St2

α0
sin(2πft) +

3π2

4
St cos(2πft)

)
.

(39)

For the plate’s pitching motion (5), the x-component of the wall’s normal vector
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nx ≈ ∂η/∂x = α0 sin(2πft) and one gets the scaling for the time averaged pres-

sure force in the framework of elongated-body theory (considering the plate’s

upper and lower side)

F ∗p,th(0) = 2 < −P ∗th(t)nx >= AR

(
C1

3π3

16
St2 − C2

3π2

2
Stα0

)
(40)

where C1 and C2 are the time-averages between the products of the trigono-595

metric functions. It is expected that C1 is close to 0.5, being the time-average

of the square of the sinus function. The coefficient C2 is the time-average of the

product between a sine and a cosine function and is zero in theory, the functions

being π/2 out of phase. As noted however for instance in [12], the fluid-plate

dynamics will alter the phase differences between displacement and velocity or600

velocity and acceleration and terms which are expected to be π/2 out of phase

may in fact develop in-phase components and C2 is assumed to be nonzero. An

Figure 20: Thrust force F ∗p for aspect ratios AR = 1/6, 1/4 and Strouhal number St1 = 0.23

(•) as well as aspect ratios AR = 1/8, 1/6, 1/4, 1/3, 1/2, Strouhal number St2 = 0.3 (�),

and Strouhal number St3 = 0.39 (N). The lines are the theoretical prediction F ∗p,scale =

AR
“
C1

3π3

16
St2i − C2

3π2

2
Stiα0

”
− 2AR

2AR+1
C3

π2

24
St2i with C1 = 0.44, C2 = 0.18 and C3 = 0.8,

for St1 ( ), St2 ( ), St3 ( ). The centerline thrust prediction of figure 19 are

depicted as the empty symbols.
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equivalent scaling as in (40) has been proposed recently in [12] and propulsive

pressure force scaling in the presence of undulating elastic plates, within the

elongated-body theory of Lighthill [6], are discussed in [9].

Figure 21: The total force F ∗tot = F ∗p +F ∗µ as function of AR, for aspect ratios AR = 1/6, 1/4

and Strouhal number St1 = 0.23 (•) as well as aspect ratios AR = 1/8, 1/6, 1/4, 1/3, 1/2,

Strouhal number St2 = 0.3 (�), and Strouhal number St3 = 0.39 (N). The pressure thrust

force values F ∗p of figure 20 are depicted as the empty symbols.

.
605

The centerline mean dimensionless pressure force F ∗p (0) according to the

decomposition (33) has been computed and has been compared with the theo-

retical prediction (40), for appropriately chosen coefficients C1 and C2, which

again are found by simple trial and error fitting (starting with the theoretical

value C1 = 0.5 and small C2), yielding C1 = 0.44 and C2 = 0.18. The results are610

shown in figure 19, again for the Strouhal numbers St = 0.3, 0.39 and the aspect

ratios AR = 1/8, 1/6, 1/4, 1/3, 1/2 and also for St = 0.23 (and AR = 1/6, 1/4).

The simulation results are shown as the symbols in figure 19. The theoretical

expression F ∗p,th(0) in (40) is plotted as well for the three Strouhal numbers.
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It is seen, that the curves fit quite nicely with the computed values, those for615

AR = 0.5 and St = 0.39 being however a little off. This is not surprising,

given that the theoretical loading (depending linearly on AR) is only reliable

for rather low aspect ratios (see for instance [26]).

The total pressure force F ∗p according to the decomposition (33) is depicted

in figure 20 for the different aspect ratios and Strouhal numbers as the black620

symbols (the centerline thrust values of figure 19 are depicted as the empty

symbols to illustrate the loss in thrust). The total thrust force scaling taking

into account the approximation (37) for the pressure force deficit is

F ∗p,scale = AR

(
C1

3π3

16
St2 − C2

3π2

2
Stα0

)
− 2AR

2AR+ 1
C3
π2

24
St2 (41)

with C1 = 0.44, C2 = 0.18, C3 = 0.8 and this function is depicted as well.

It is seen, that this formula represents fairly well the computed values. It is625

important to note, that the Bernoulli type effect diminishes the pressure thrust

force, as predicted by the elongated body theory with a scaling ∼ AR, by about

40%, for AR = 1/8 and by roughly 30% for AR = 0.5, for the highest Strouhal

number St = 0.39 considered.

The total force F ∗tot = F ∗p + F ∗µ , that is the sum of the pressure thrust force630

and the friction drag force, is shown in figure 21. The pressure thrust force F ∗p

results of figure 20 are also shown as the empty symbols to emphasize the loss

of performance due to the viscous drag. Indeed, for the range of aspect ratios

and for the Reynolds number ReL = 2000 considered, only the pitching plate

with the highest Strouhal number St = 0.39 produces net thrust for AR > 1/3.635

5. Concluding discussion

The precise force balance for a pitching plate has been extracted from three-

dimensional numerical simulation results, for plates with different and relatively

small aspect ratios (span to length) AR = s/L and for different Strouhal number

St = Af/U‖ (with f the frequency, A the maximum trailing edge amplitude640

and U‖ the incoming flow velocity). The Strouhal numbers considered are in
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the range 0.2 < St < 0.4 which for instance is typical for a large number of fish

[29].

A theoretical skin friction model, which had been derived for uniform finite-

span plate motions, has been shown to provide also a satisfactory friction scaling645

(for a given Reynolds number) F ∗µ ∼
√
St/AR, even though the wall normal ve-

locity evolves along the streamwise direction of the plate, the moderate pitching

angle considered limiting the streamwise gradients.

The lateral edge vortices (or trailing vortices) inevitably appear during the

propulsion of a finite-span object. Attempts have been made to quantify the650

resulting vortex induced drag (for a very recent discussion, see [1]). Making how-

ever in the present work the assumption that the key-quantity for this pressure

force deficit is the more or less high transverse velocity between the counter-

rotating trailing vortices, it has been attempted to interpret the time-averaged

pressure deficit in terms of a Bernoulli-type effect. The potential model for the655

spanwise velocity of an oscillating finite-span plate could be tuned to reproduce

the averaged pressure force distribution along the span and a scaling of the

pressure force deficit ∼ −St2 2AR/(2AR+ 1) has been shown to be reliable for

the different aspect ratios and Strouhal numbers considered. The scaling (41)

proved to fit the computed non-dimensional pressure force F ∗p = Fp/(ρU2
‖Ls),660

the classical mean propulsive force scaling for slender-body swimmers propor-

tional to AR being corrected by the pressure drag. According to this composite

scaling, the pressure-induced thrust force is significantly lower than the predic-

tion based on mere slender-body theory, and to achieve net thrust, one has also

to overcome the viscous drag scaling as 1/
√
AR for small aspect ratios.665
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