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Abstract

In this paper, we consider the linear Boltzmann equation subject to uncertainties in the initial
conditions and matter parameters (cross-sections/opacities). In order to solve the underlying un-
certain systems, we rely on moment theory and the construction of hierarchical moment models
in the framework of parametric polynomial approximations. Such model is commonly called a
generalised Polynomial Chaos (gPC) reduced model. In this paper, we prove the spectral conver-
gence of the hierarchy of reduced model parametered by P (polynomial order) obtained from the
uncertain linear Boltzmann equation.

1 Introduction

In this paper, we are interested in the linear Boltzmann equation recalled below ∂tu(x, t,v) + v · ∇xu(x, t,v) = −vσt(x, t,v)u(x, t,v) +

∫
vσs(x, t,v,v

′)u(x, t,v′) dv′,

u(x, 0,v) = u0(x,v).
(1)

It models the time-dependent problem of particle transport in a collisional media. We suppose trans-
port to be driven by the linear Boltzmann equation (1) for particles having position x ∈ D ⊂ R3,
velocity v ∈ V ⊂ R3, at time t ∈ [0, T ] ⊂ R+ and where the quantity u(x, t,v) ∈ Ω ⊂ R+ is the
density of presence of the particles at (x, t,v). In (1), we introduced the notation |v| = v to denote
the norm of the velocity v. Later on, we may also use ω = v

v , the unitary vector for the direction of
the particles. Equation (1) must come with proper boundary conditions for wellposedness [35] but we
omit them for the sake of conciseness. In other words, the Cauchy problem (1) is valid in an infinite
medium and regular solutions can be expected [27, 9]. The left hand side of (1) will be hinted at as the
streaming counterpart of (1) whereas its right hand side will be called the collisional one. The above
equation is linear and can be used to model the behaviour of particles interacting with a background
media. A solution of (1) is called a deterministic solution. The interaction of particles with matter is
described through the macroscopic total σt(x, t,v) and scattering σs(x, t,v,v

′) cross-sections. They
express the probability for a particle to interact with the medium (to be absorbed, scattered, to en-
counter a particular reaction etc.). The cross-sections, in a sense, contain all the physics (which is kind
of hidden in this paper): they can be related to other coupled physics such as reactive flows, isotopic
depletion [17] in neutronics, temperature dependence for photonics [51] or media subject to material
motion [64] (neutronics, photonics, plasma physics). Those physics may communicate uncertainties to
the particle transport via the cross-sections. Taking into account uncertainties in the cross-sections
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is also of importance in biology or economy [48, 11] for the study of population dynamics. Random
cross-sections are also intensively used for modeling: amongst the relevant key-words are random media
[53, 46, 51, 36] or neutronic noise [9, 52]. As a consequence, being able to efficiently take into account
stochastic fluctuations in the cross-sections is a key step in many physical applications. The objective
of this paper is to deepen the study of the gPC based reduced model aiming at approximating the
uncertain linear Boltzmann equation.

Let us assume that the initial condition and the cross-sections are uncertain. It means that we
would like to solve (1) for many different values X of the initial condition and cross-sections. It is
common to make the dependence with respect to X explicit so that

u0 = u0(x,X) ∈ Ω and σα = σα(·, X) for α ∈ {s, t} and with X ∈ Θ ⊂ RQ. (2)

The variable X ∈ Θ characterizes what is called the uncertainty, where the set Θ = (Θ,A,P) is
a probability space where Θ is the sample space, A is a σ-algebra and P a probability measure.
We assume X comes with its probability measure dPX . Note that without loss of generality in
the following sections, we consider that X is a vector X = (X1, ..., XQ)t of Q independent random

variables of probability measure dPX =
∏Q
i=1 dPXi

: in theory, it is always possible to come back to
such framework1. Note also that dPX sums up to one, i.e.

∫
dPX = 1. Furthermore, without loss

of generality, X can be mapped into a vector of uniform random variables U = (U1, ...,UQ) on [0, 1]Q.
Wherever one is willing to integrate any function2 f ∈ L1(Θ) with respect to measure dPX , one can
perform the change of variable∫

f(X) dPX =

∫
f(X(U)) dPU =

∫
f(X(u))1[0,1](u) du. (3)

As a consequence, it is not restrictive in the following to consider X is uniformly distributed as this is
always true up to a change of variable.
In some sense if one solves (1) for all different initial condition and cross-sections that correspond to
different X, then one exactly propagates the uncertainties. To fix the notations, system

∂tu(x, t,v, X) + v · ∇xu(x, t,v, X) = −vσt(x, t,v, X)u(x, t,v, X)

+

∫
vσs(x, t,v,v

′, X)u(x, t,v′, X) dv′,

u(x, 0,v, X) = u0(x,v, X),

(4)

for x ∈ D ⊂ R3,v ∈ V ⊂ R3, t ∈ [0, T ] ⊂ R+, X ∈ Θ ⊂ RQ will be called a uncertain problem. One
notices that different values of X correspond to different fully decoupled deterministic equations, so
in principle there is no difficulty in solving such uncertain problems. The whole problem comes from
the fact that exact propagation of uncertainties is very expensive from the computational point of
view: equation (1) is often solved thanks to a Monte-Carlo scheme [35, 8, 1, 43, 17]. This resolution
method is known to be efficient for high (3(x) + 1(t) + 3(v) = 7) dimensional problems but costly.
This is emphasized, detailed and illustrated in [50]. In [50], a P -truncated gPC reduced model has
been introduced in order to solve (4). It is solved thanks to an astute Monte-Carlo resolution of the
gPC reduced model. Note that a similar approach has been developed for the Fokker-Planck equation
in [11]. In [50], fast convergence has been practically observed with respect to the truncation order
P . The aim of this paper is to explain this fast convergence and for this, in the following sections, we
prove the spectral convergence of the P−truncated gPC based reduced models obtained from (4).

The paper is organized as follows. In section 2, we present the P -truncated gPC reduced model of
interest here (and solved in [50]). In section 3, we prove the spectral convergence of the built reduced
model. In section 4, we present few numerical results confirming the theoretical results of section 3.
Some are obtained with the resolution schemes presented in [50]. We finally conclude in section 5 with
emphasis on the remaining open questions.

1At the cost of more or less tedious pretreatments leading to a controled approximation [57, 45] and decorrelation
[38, 39].

2See (5) for the definition of L1(Θ).
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2 The gPC reduced model obtained from the uncertain linear
Boltzmann equation (4)

The standard method to construct a gPC based reduced model is the following. We first define the
set of k integrable uncertain functions

LkΘ =

{
measurable functions X 7→ f(X) such that

∫
Θ

|f(ξ)|k dPX(ξ) <∞
}
. (5)

In particular, we focus on functions of L2(Θ). Under very general conditions [19, 21], there exists
a countable family of polynomials (φq)q∈N which are orthonormal with respect to the scalar product
defined by dPX . In other words, we have∫

Θ

φp(ξ)φq(ξ) dPX(ξ) =

∫
φpφq dPX = δpq,∀(p, q) ∈ N2.

In practice, in the above expression, the basis must be truncated up to certain orders (pi)i∈{1,...,Q}
which may depend on the directions (Xi)i∈{1,...,Q}. Assume that ∀i ∈ {1, .., Q}, pi = p1D, then
the total number of polynomial coefficients, abusively called the polynomial order later on, is P =
P (p1D, Q) = (p1D + 1)Q. It exhibits an exponential growth with both p1D and Q. This is commonly
called the curse of dimensionality [5, 13]. As a consequence, the reduced models described in this
paper, in practice, can only be applied to a moderate number of uncertain parameters (Q ∼ 10). The
multivariate polynomial basis is built by tensorization of one-dimensional polynomial basis in every
stochastic direction (Xi)i∈{1,...,Q}. In the following sections, for conciseness in the notations, we map3

the set of polynomial indices Ap1D,Q = {(k1, ...kQ)|∀i ∈ {1, ..., Q}, ki ≤ p1D} into {0, ..., P} to build

the tensorized basis (φk(X) =
∏Q
i=1 φ

Xi

ki
(Xi))k∈{0,...,P}. In the previous expression, ∀i ∈ {1, ..., Q},

the basis (φXi

k )k∈{0,...,p1D} is a one-dimensional polynomial basis orthonormal with respect to dPXi .
When P grows, we assume it grows because the one-dimensional polynomial orders p1D grow.

At fixed t ∈ [0, T ] ⊂ R+,x ∈ D ⊂ R3 and v ∈ V ⊂ R3, it is natural to look for an approximation of
the solution u in the subspace (φk)k∈{0,...,P} generated by the first P + 1 polynomials of (φk)k∈N. It
is immediate to show that

uP =

P∑
q=0

uqφq with uq =

∫
uφq dPX , (6)

is such that ∫
Θ

(
u− uP

)2
dPX ≤

∫
Θ

(
u− vP

)2
dPX , ∀vP ∈ (φk)k∈{0,...,P}.

In other words, expansion (6) is the best one among all possible trials in (φk)k∈{0,...,P} with respect
to the L2

Θ norm. In order to compute the coefficients (uq)q∈{0,...,P}, one can use the fact that u
is the solution of an integro-differential equation with operators applying to t, x and v. The gPC
methodology consists in developing the unknown u of (4) on the polynomial basis

uP (x, t,v, X) =

P∑
q=0

uq(x, t,v)φq(X), (7)

and look for compatibility conditions on the coefficients (uk)k∈{0,...,P} for uP to be a good approxi-
mation of u. This is usually done by plugging (7) into (4) and by taking the moments of (4) against
each orthonormal components (φq)q∈{0,...,P}. The reader interested in efficient resolutions for different
physical applications is refered to [41, 42, 47, 37, 56, 14, 24, 31, 25, 44, 26, 29, 5, 7, 20, 65, 55, 23, 58,

3It is only a renumerotation.
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32, 33, 34, 18]. One finally obtains the moment model

∀q such that 0 ≤ q ≤ P,

∂tuq(x, t,v) + v · ∇xuq(x, t,v) = −v
∫ σt(x, t,v, X)

∑
k≤p

uk(x, t,v)φk(X)

φq(X) dPX

+

∫∫
v

σs(x, t,v,v′, X)
∑
k≤p

uk(x, t,v)φk(X)

φq(X) dPX

 dv′,

uq(x, 0,v) = u0,q(x,v).

(8)

Since u is scalar, system (8) is a system of (P + 1) equations. It is a closed system in the sense that
it has exactly (P + 1) equations and (P + 1) unknowns. In the following sections, system (8) will also
be refered as the P−truncated gPC reduced model of (1) with standard closure (7).

It is reasonable to expect that (8) is an accurate approximation of the uncertain initial problem for
large P � 1 (cf. Cameron-Martin’s Theorem [10] or some generalization [19]). In fact, for this system,
fast convergence rate have been practically observed in [50]. This paper is complementary to [50] in
the sense that we here demonstrate the fast convergence of the P−truncated reduced models instead
of only observing it via numerical experiments. We will indeed prove spectral accuracy under very
general hypothesis in the next section 3.

3 Proof of spectral accuracy of the gPC reduced model

In this section we prove a result of spectral accuracy for the P -truncated gPC reduced models of the
uncertain linear Boltzmann equation (8). We use a comparison method between a general approxi-
mated solution and a smooth exact solution to establish this result. The idea is similar to what has
been proved in [15] for the scalar uncertain Burgers’ equation for early times except it is applied to
the uncertain linear Boltzmann equation which admits smoother solutions [27, 28, 3].

Let us assume the exact solution is smooth with respect to all variables

u ∈ L∞ (D × [0, T ]× V ×Θ) ∩ L∞
(
Dper × [0, T ]× Vb : Hk(Θ)

)
. (9)

In the above definition, Dper denotes a periodic spatial domain. Periodic boundary conditions are
considered only for convenience, without loss of generality. Furthermore, V is the space of velocities
and Vb recalls it is bounded (dealing with physical applications, the particles can not go beyond the
speed of light for example). More generally, as we are interested in dealing with physical applications, it
is reasonable considering the density of particle u(x, t,v, X) is bounded ∀(x, t,v, X) ∈ D×[0, T ]×V×Θ.

Finally, for all k ∈ N we have

Hk(Θ) =

{
u ∈ L2

Θ|
∫ k∑

l=0

(u(l))2 dPX <∞
}
,

where u(l) denotes the lth derivative of u with respect to the uncertain variable. In other words, for
solution u(x, t,v, X), we have u(l)(x, t,v, ξ) = ∂lξu(x, t,v, ξ).
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The gPC reduced model of (1) of size P + 1 is (we drop the dependencies for convenience)

∂tu0 + v · ∇xu0 = −v
∫ σt ∑

k≤P

ukφk

φ0 dPX + v

∫∫ σs ∑
k≤P

ukφk

φ0 dPX

 dv′,

. . . . . .

∂tuP + v · ∇xuP = −v
∫ σt ∑

k≤P

ukφk

φP dPX + v

∫∫ σs ∑
k≤P

ukφk

φP dPX

 dv′.

(10)
It is then possible to perform the scalar product (u0, ..., uP )t∂t(u0, ..., uP ) to obtain an additional
equation. Let us consider a smooth solution of (10), we get

∂t
∑P

r=0 u
2
r

2 + v · ∇x

∑P
r=0 u

2
r

2 =

−v
∫ P∑

q=0

(
σt

P∑
k=0

ukφk

)
uqφq dPX + v

∫∫ P∑
q=0

((
σs

P∑
k=0

ukφk

)
uqφq dPX

)
dv′.

(11)

After rearrangement of the collisional counterpart, it yields

∂t

P∑
r=0

u2
r

2
+ v · ∇x

P∑
r=0

u2
r

2
= −v

∑
0≤k,q≤P

∫
σtukφkuqφq dPX +

∑
0≤k,q≤P

v

∫∫
σsukφkuqφq dPX dv′. (12)

Let us introduce

σs(x, t,v, X) =

∫
σs(x, t,v,v

′, X) dv′ and define Ps(x, t,v,v
′, X) =

σs(x, t,v,v
′, X)

σs(x, t,v, X)
.

We have

Ps(x, t,v,v
′, X) > 0, ∀(x, t,v,v′, X) ∈ D × [0, T ]× V2 ×Θ,∫

Ps(x, t,v,v
′, X) dv′ = 1, ∀(x, t,v, X) ∈ D × [0, T ]× V ×Θ.

(13)

The difference σa(x, t,v, X) = σt(x, t,v, X)− σs(x, t,v, X) corresponds to an absorption rate if posi-
tive, or a multiplication rate, if negative. We now suggested making few assumptions on the background
media in which the particles are evolving.

Hypothesis 1 ∀t ∈ [0, T ], ∀x ∈ Dper, ∀v ∈ Vb ⊂ R3, ∀X ∈ Θ

|vσt(x, t,v, X)| < Σt, |vσs(x, t,v, X)| < Σs.

In other words, we have

||vσt||L∞(I×Θ) = Σt <∞, ||vσs||L∞(I×Θ) = Σs <∞. (14)

The above hypothesis expresses the fact we consider a background media leading to a finite number of
collisions (term vσt) for every interval of times [0, T ] together with a finite multiplication rate (term
relative to vσs) in [0, T ].

Remark 3.1 Note that the above boundedness hypothesis 1 forbids modeling σt, σs by unbounded (for
example gaussian) random variables. The same remark applies to condition (9) and u0. This comes
from a will to ensure positivity and finiteness of those quantities which are primary data and are always
positive and finite (not only positive and finite with probability one). Of course, nothing prevents
from using unbounded random variables X to model u0, σs, σt if the transformed random variables
X → u0(x, t,v, X), X → σt(x, t,v, X) and X → σs(x, t,v,v

′, X) remain bounded ∀(x, t,v,v′) ∈
D × [0, T ]× V2.
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Now, let us integrate (12) with respect to x, t,v on Dper×[0, T ]×Vb, and use the above majorations.
Let us define for convenience (we here introduce equivalent notations which will be useful later on)

||uP (t)||2L2(Dper×Vb×Θ) = ||uP (t)||2L2(I×Θ),

=

∫∫ P∑
r=0

u2
r(x, t,v) dx dv,

=

∫∫∫ P∑
r=0

(ur(x, t,v)φr(ξ))
2

dx dv dPX(ξ),

=

∫∫∫ (
uP (x, t,v, X)

)2
dx dv dPX .

(15)

Integrating (12) with respect to x ∈ Dper and v ∈ Vb leads to

d

dt
||uP (t)||2L2(I×Θ)

≤ 2Σt

∫∫∫ P∑
k=0

u2
k + 2Σs

∑
0≤k,q≤P

∫∫ ∫∫
(uk(x, t,v′)φkuq(x, t,v)φq) dPX dv′ dv dx,

≤ 2Σt||uP (t)||2L2(I×Θ)

+2Σs
∑

0≤k,q≤P

∫ [∫ (∫
uk(x, t,v′) dv′

∫
uq(x, t,v) dv

)
dx

]
φkφq dPX ,

≤ 2Σt||uP (t)||2L2(I×Θ) + 2Σs

P∑
k=0

∫ (∫
uk(x, t,v) dv

)2

dx.

(16)

Finally, Jensen’s inequality ensures we have

∂t||uP (t)||2L2(I×Θ) ≤ 2(Σt + Σs)||uP (t)||2L2(I×Θ) (17)

Gronwall’s theorem allows obtaining the a priori bound∥∥uP (t)
∥∥
L2(I×Θ)

≤ e2(Σt+Σs)t
∥∥uP0 ∥∥L2(I×Θ)

. (18)

It is therefore natural to seek solutions of the uncertain linear Boltzmann equation in the space
L∞([0, T ] : L2(I ×Θ)). Here is the main result of this paper.

Theorem 1 (Convergence of the P−truncated gPC reduced model approximation) Spectral
accuracy holds in the following sense: for all k ∈ N with k > 0 such that u ∈ Hk(Θ), there exists a
constant Dk such that ∀t ∈ [0, T ]

∥∥u(t)− uP (t)
∥∥2

L2(I×Θ)
≤ e2(Σt+Σs)t

(∥∥u0 − uP0
∥∥2

L2(I×Θ)
+ 2(Σs + Σt)t||u2

0||L2(I×Θ)
Dk

pk1D

)
, (19)

in which we recall P and p1D are related via P = P (p1D, Q) = (p1D + 1)Q.

Before prooving the above result, we would like to comment on it. First, for different pi per direction,
spectral convergence only holds with respect to the coarser polynomial approximation amongst the
directions {1, ..., Q} (this will be illustrated in section 4.3.1). Besides, with hypothesis 1, we have
Σs + Σt ≥ 0. As a consequence, the term e2(Σt+Σs)t may be a fast increasing factor. So, first,

the term depending on the error on the initial condition, i.e. e2(Σt+Σs)t
∥∥u0 − uP0

∥∥2

L2(I×Θ)
, shows

that any small error on the initial condition can be exponentially amplified. In other words, care
must be taken to make sure the P -truncated approximation of the initial condition is accurate. The
gPC framework [60, 66, 19], in opposition to the PC one [63, 10, 26], has been introduced precisely
to this purpose: the initial polynomial basis must at least be able to fit accurately to the initial
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uncertain condition to ensure a converging behaviour and avoid stagnation4. Second, the remaining
term, i.e. 2(Σs + Σt)te

2(Σt+Σs)t||u2
0||L2(I×Θ)

Dk

pk1D
, shows that even if care has been taken to make sure∥∥u0 − uP0

∥∥2

L2(I×Θ)
= 0, the error can still grow quickly with time. It can be theoretically compensated

with an increasing polynomial order P . The smoother the solution, the more efficient the increase of
P . The fact the gPC reduced models present some difficulties with long-term integration is also well-
known in the literature [61, 22]: it is here theoretically recovered (it will also be numerically recovered
in section 4.1). Of course, in practice, increasing P is not straightforward as the reduced models will
be harder and harder to solve as P grows. Still, in practice, with the following numerical example,
we will show that the above bounds, even if enough to prove the fast convergence of the gPC reduced
models for the uncertain linear Boltzmann equation, may be pessimistic and non-optimal. But before
tackling numerical example, let us proove theorem 1.

Proof Assume u is a continuous solution of (4) and uP =
∑P
k=0 ukφk of the form (6) whose coefficients

(uq)q∈{0,...,P} solve (8). Then we suggest building an estimate of (we drop the dependencies for
conciseness)

∂t

∫
Θ

(uP − u)2

2
dPX =

∫
Θ

(
∂t

(uP )2

2
− uP∂tu− u∂tuP + ∂t

u2

2

)
dPX .

Unknowns u and (u0, ..., uP )t being strong solutions of (4) and (8), we have

∂t

∫
Θ

(uP − u)2

2
= −

∫
Θ

v · ∇x
u2

2
−
∫

Θ

vσtu
2 + v

∫
Θ

σsu

∫
u

+

∫
Θ

uPv · ∇xu+ v

∫
Θ

σtu
Pu− v

∫
Θ

σsu
P

∫
u

+

∫
Θ

uv · ∇xu
P + v

∫
Θ

σtu
Pu− v

∫
Θ

σsu

∫
uP

−
∫

Θ

v · ∇x
(uP )2

2
− v

∫
Θ

σt(u
P )2 + v

∫
Θ

σsu
P

∫
uP .

Integration with respect to x ∈ Dper,v ∈ Vb yields

d

dt

∫∫∫
Θ

(uP − u)2

2
= −

�������∫∫∫
Θ

v · ∇x
u2

2
−
∫∫∫

Θ

vσtu
2 + v

∫∫∫
Θ

σsu

∫
u

+

∫∫∫
Θ

uPv · ∇xu+

∫∫∫
Θ

vσtu
Pu− v

∫∫∫
Θ

σsu
P

∫
u

+

∫∫∫
Θ

uv · ∇xu
P +

∫∫∫
Θ

vσtu
Pu− v

∫∫∫
Θ

σsu

∫
uP

−
���������∫∫∫

Θ

v · ∇x
(uP )2

2
−
∫∫∫

Θ

vσt(u
P )2 + v

∫∫∫
Θ

σsu
P

∫
uP .

The terms in the above expression cancel due to the hypothesis of having periodic boundary conditions.

For the same reason we have

∫
Dper

uP∇xudx =
���������
∫
∂Dper

(uPu) · ndσ −
∫
Dper

u∇xu
P dx so that the

previous expression becomes

d

dt

∫∫∫
Θ

(uP − u)2

2
= −

∫∫∫
Θ

vσtu
2 +

∫∫∫
Θ

vσsu

∫
u

+

∫∫∫
Θ

vσtu
Pu−

∫∫∫
Θ

vσsu
P

∫
u

+

∫∫∫
Θ

vσtu
Pu−

∫∫∫
Θ

vσsu

∫
uP

−
∫∫∫

Θ

vσt(u
P )2 +

∫∫∫
Θ

vσsu
P

∫
uP .

4Indeed, if
∥∥u0 − uP0

∥∥2

L2(I×Θ)
= C0 6= 0, then

∥∥u(t)− uP (t)
∥∥2

L2(I×Θ)
−→

P→∞
C0e2(Σs+Σt)t for fixed time t.
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Let us now define πPu the orthogonal projector of u solution to (4) in L2(Θ) onto the space (φk)k∈{0,...,P}.
The previous expression can be equivalently rewritten

d

dt

∫∫∫
Θ

(uP − u)2

2
= −

∫∫∫
Θ

vσtu
2 +

∫∫∫
Θ

vσsu

∫
u

+

∫∫∫
Θ

vσtu
PπPu −

∫∫∫
Θ

vσsu
P

∫
πPu

+

∫∫∫
Θ

vσtu
PπPu −

∫∫∫
Θ

vσsπPu

∫
uP

−
∫∫∫

Θ

vσt(u
P )2 +

∫∫∫
Θ

vσsu
P

∫
uP .

Let us now rearrange the terms as

d

dt

∫∫∫
Θ

(uP − u)2

2
=

+

∫∫∫
Θ

vσt
(
2uP (πPu− u)− (uP − u)2

)
+

∫∫∫
Θ

vσs

(
(u− uP )

[∫
u−

∫
uP
])

+

∫∫∫
Θ

vσs

(
−uP

∫
(πPu− u)− (πPu− u)

∫
uP
)
.

From hypothesis (1), we obtain

d

dt

∫∫∫
Θ

(uP − u)2

2
≤ +2Σt

∣∣∣∣∫∫∫
Θ

uP (πPu− u)

∣∣∣∣ +Σs

∫∫
Θ

(∫
(u− uP )

)2

+Σt

∫∫∫
Θ

(uP − u)2 +2Σs

∣∣∣∣∫∫
Θ

(∫
uP
∫

(πPu− u)

)∣∣∣∣ .
From Jensen’s inequality, we have

d

dt

∫∫∫
Θ

(uP − u)2

2
≤ +2(Σt + Σs)

∫∫∫
Θ

(u− uP )2

2
+2Σt

∣∣∣∣∫∫∫
Θ

uP (πPu− u)

∣∣∣∣
+2Σs

∣∣∣∣∫∫
Θ

(∫
uP
∫

(πPu− u)

)∣∣∣∣ ,
to finally get (Hölder inequality)

d

dt

∥∥(u− uP )(t)
∥∥2

L2(I×Θ)
≤ +2(Σt + Σs)||(u− uP )(t)||2L2(I×Θ)

+2(Σt + Σs)||uP (t)||L2(I×Θ) × ||(πPu− u)(t)||L∞(I×Θ).

Let us now work on the last term of the previous expression. Thanks to (18), we are able to bound

d

dt

∥∥(u− uP )(t)
∥∥2

L2(I×Θ)
≤ +2(Σt + Σs)||(u− uP )(t)||2L2(I×Θ)

+2(Σt + Σs)e
2(Σs+Σt)t||uP0 ||L2(I×Θ) × ||πPu− u||L∞(I×Θ).

(20)

This means it only remains to be able to deal with the L∞-norm of πPu− u to conclude.
In the following for simplicity of notations, without loss of generality, we carry out the calculations

with X ∈ RQ=1. Now, the truncation of the expansion gives

u(x, t,v, X)− πp1Du(x, t,v, X) =

∞∑
n=p1D+1

φn(X)

∫
u(x, t,v, X)φn(X) dPX ,

Furthermore, orthonormal polynomials (φk)k∈{0,...,p1D} are known to be the eigenvectors of the eigen-
problem (see [2]) (

Q(ξ)
d2

dξ2
+ L(ξ)

d

dξ

)
φ(ξ) = λφ(ξ), (21)
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where Q and L are respectively second and first order polynomials and λk = −k(k−1
2 Q′′ + L′),∀k ∈

N. For example, for Legendre polynomials, Q(ξ) = 1 − ξ2, L(ξ) = −2ξ and the eigenvalues are
k(k+1),∀k ∈ N. For Hermite polynomials (related to the gaussian distribution), Q(ξ) = 1, L(ξ) = −2ξ
and λk = 2k,∀k ∈ N. As a consequence, we have(
Q(ξ)

d2

dξ2
+ L(ξ)

d

dξ

)
[u(x, t,v, ξ)− πp1Du(x, t,v, ξ)] =

∞∑
k=p1D+1

λkφk(ξ)

∫
u(x, t,v, X)φk(X) dPX .

Since the derivative of u with respect to ξ are bounded in L2
Θ up to order k by hypothesis (9), we have

∞∑
j=p1D+1

[∫
u(x, t,v, X)φk(X) dPX

]2

λ2m
j <∞, ∀m ∈ {0, ..., bk

2
c}, ∀t ∈ [0, T ], (x,v) ∈ I. (22)

Finally, one has the bound for all t ∈ [0, T ], (x,v) ∈ I and ∀m ∈ {0, ..., bk2 c}

‖u(x, t,v, ·)− πp1Du(x, t,v, ·)‖L∞(Θ)

≤
∞∑

n=p1D+1

∣∣∣∣∫ u(x, t,v, X)φk(X) dPX
∣∣∣∣ ‖φn‖L∞(Θ)

≤
( ∞∑
n=p1D+1

[∫
u(x, t,v, X)φk(X) dPX

]2

λ2m
n

) 1
2
( ∞∑
n=p1D+1

‖φn‖2L∞(Θ)

λ2m
n

) 1
2

.

(23)

The first sum is bounded, cf. (22). The second term deserves some more attention.

Hypothesis 2 Without loss of generality (see (3) and the relative discussion), we can always consider
that, up to change of variable (3), X is uniformly distributed and (φLk )k∈N are the Legendre polynomials.

Under the previous condition, we have the bound [2] ∀n ∈ N

‖φLn‖L∞(Θ) ≤ C(n+ 1)
1
2 . (24)

Remark 3.2 Note that in the above lines, care has been taken to have resort to hypothesis 2 the later
possible. In practice, avoiding this change of variable is complex, especially if X is an unbounded
random variable. In other words, we intensively used the fact that any unbounded random variable
X (such that hypothesis 1 and condition (9) are fulfilled) can be mapped into an uniform one U . The
theorem supposes performing, even in the gaussian case for X for example, a gPC development on
the Legendre basis with respect to U = F−1

G (X) where X → FG(X) is the cumulative density function
of the gaussian distribution. Theorem 1 does not really predict the behaviour of a Hermite-gPC based
reduced model with X gaussian (even if they are known to perform well for many applications, see
[26]). To be able to conclude for an arbitrary random variable X5, we would both need to show that
‖φXn ‖L∞(Θ) is bounded and, more than bounded, grows with n less quickly than λkn. In [40], the authors

study conditions on dPX to obtain bounds of ‖φXn (ξ) dPX

dξ (ξ)‖L∞(Θ) defined on an unbounded space.

Note that those bounds does not grow too fast with n, see [40]. In other words, the equivalent of (24)
for arbitrary weighted polynomials (φXk

dPX

dξ )k∈N may be at hand. But the crucial step remains to be

able to go from (23) to an inequality involving ‖φXn (ξ) dPX

dξ (ξ)‖L∞(Θ). To our knowledge, this point is
not straightforward but would stand for the last step to conclude of the spectral convergence of the gPC
based reduced models without having resort to hypothesis 2. Avoiding it may lead to finer bounds for
an arbitrary random vector X.

5together with its associated polynomial basis (φXk )k∈N, orthonormal with respect to the scalar product defined by
dPX .
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As a consequence, with the above (uniform/Legendre) hypothesis and (24), there exists a constantCk
such that

‖u(x, t,v, ·)− πPu(x, t,v, ·)‖L∞(Θ) ≤
Ck
pk1D

(25)

Finally, putting together (20)–(25) and invoking Gronwall’s theorem allows ending the proof of theorem
1. �

In the following section, we present some numerical results. Most of them confirm the result of
theorem 1. Some of them aim at going beyond it and tackle perspectives and open problems.

4 Numerical application

In this last section, we present some numerical results obtained from the resolution of P−truncated gPC
reduced models. In sections 4.1 and 4.3, we consider simple (1D physical, 1D stochastic or 2D physical,
3D stochastic) configurations for which analytical solutions are available. With the construction of
analytical solutions (sections 4.1 and 4.3), we aim at showing we can numerically recover the results
of theorem 1 (spectral convergence, long-term behaviour, independently of the considered dimension).
Due to this constraint6, the test-cases may appear physically simple. The reader interested in more
complex test-problems with some high dimensional resolutions of (4) can refer to [50].
In section 4.2, we consider a (2D physical, 1D stochastic) test-case for which, to our knowledge, no
analytical solution is available. It shows that complex (non-analytical) configurations can be handled
and that the fast convergence rate of the gPC reduced models can still be numerically observed.
Finally, in the next sections, several numerical methods are used: analytical ODE resolution and
explicit Euler scheme in sections 4.1 and 4.3, an MC scheme [50] in sections 4.2 and 4.3.1, an Sn-like
resolution (see [4, 16, 12]) in section 4.3.2. The diversity of numerical schemes aims at showing that
the results of theorem 1 are independent of the resolution methods for system (10).

4.1 A first simple homogeneous uncertain configuration

In this first numerical section, we compare the results obtained from P−truncated gPC reduced models
to an analytical solution. We aim at numerically recovering the fast convergence rate demonstrated
in theorem 1. The test-problem has already been introduced in [50] but we tackle it from a different
point of view (convergence with respect to P here).

Let us consider a monokinetic (i.e. v = 1) homogeneous (i.e. u(x, t,v, X) = u(t, ω,X)) configura-
tion. We assume the uncertainty, one-dimensional here for the sake of simplicity, affects the scattering
cross-sections σs = σs + σ̂sX, where X ∼ U [−1, 1]. Of course, σ̂s is closely related to the variance of
the uncertain scattering cross-section. Let us introduce U(t,X) =

∫
u(t, ω,X) dω. In the previously

described configuration, the uncertain linear Boltzmann equation resumes to the following stochastic
ordinary differential equation (ODE){

∂tU(t,X) + vσtU(t,X) = vσs(X)U(t,X),
U(0) = U0.

(26)

Introduce σa = σt − σs, then the solution is given by

U(t,X) = U0e
−vσa(X)t = U0e

−v(σt−σs−σ̂sX)t = U0e
−v(σa−σ̂sX)t. (27)

6i.e. being able to build an analytical solution.
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Figure 1: Convergence study with respect to P obtained with numerically computed solution of the
gPC reduced model. The plot also displays the function P −→ exp(−(0.19 1

P 2 + 1
P + 1)).

The quantity U(t,X) is a random variable indexed by time t, i.e. it is a stochastic process. In this
case, mean and variance of the stochastic process (27) can be computed analytically and are given by

MU
1 (t) = E[U(t,X)] = 1

2U0e
−vσat

evσ̂st − e−vσ̂st

σ̂stv
,

MU
2 (t) = E[U2(t,X)] = 1

4U
2
0 e
−2vσat

e2vσ̂st − e−2vσ̂st

σ̂stv
,

V[U ](t) = MU
2 (t)− (MU

1 (t))2.

(28)

Of course, higher order moments, probability of failure, complete characterisation of the probability
density function of the stochastic process can be calculated but in figure 1 we focus on the variance
V[U ](t) to perform the convergence studies.
Our aim now is to compare the results obtained from a P−truncated gPC based reduced model and
the analytical ones. In this particular configuration, the reduced model (10) resumes to a system of
coupled ODEs

∂t

 U0(t)
. . .
UP (t)

 = Σa

 U0(t)
. . .
UP (t)

 , (29)

with

Σa =



P∑
k=0

∫
σaφ0φ0 dPX

P∑
k=0

∫
σaφ0φP dPX

. . .

P∑
k=0

∫
σaφiφj dPX . . .

P∑
k=0

∫
σaφPφ0 dPX

P∑
k=0

∫
σaφPφP dPX


.

The solution of the above system is the exponential of matrix Σa with initial condition (U0
0 , ...., U

0
P )t.

It can be computed analytically with any algebraic computation software for arbitrary order P . Note
that we also verified that the use of fine non intrusive resolution (with Gauss-Legendre points) gives
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equivalent results. The results presented in figure 1 compare the variance obtained from the analytical
solution (28) and the variance obtained from the analytical solution of (29). Figure 1 displays three
curves:

– the first one corresponds to a convergence study with respect to P of the L2-norm of the error
of U solution of (26) and UP =

∑P
k=0 Ukφk where (U0, ..., UP )t is solution of (29).

– The second one corresponds to a plot of function P −→ exp(−(0.19 1
P 2 + 1

P + 1)).

– The last curve corresponds to the same convergence study except (U0, ..., UP )t, solution of (29),
is obtained numerically. We use an explicit Euler scheme of time step ∆t = 10−7.

Note that in practice, we take v = 1, U0 = 1, σt = 1, σs = 0.8, σ̂s = 0.3. The first curve, the
convergence study comparing the analytical solutions of (26) and (29), testifies of a fast converging
behaviour of UP toward U as P increases. Machine accuracy is reached as soon as P = 10. The curve
P −→ exp(−(0.19 1

P 2 + 1
P + 1)) perfectly fits the latter, up to order P = 10. It means the convergence

rate observed here is even faster than the one predicted by theorem 1. Of course, theorem 1 has been
proved in more general conditions. But the latter numerical result also probably shows the bounds
of theorem 1 are not optimal, at least for homogeneous problems. The convergence study obtained
from a numerically solved system (29) (figure 1 right) presents the same behaviour as the analytical
convergence curve up to order P = 6: for higher truncation order, the solution is O(∆t) ≈ 10−6 and
P is not anymore the constraining parameter.

σt = 1, σs = 0.8, σ̂s = 0.3 σt = 1, σs = 0.5, σ̂s = 0.3
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Figure 2: Left: convergence study with respect to P obtained with an analytical gPC reduced model
and a numerically obtained one for parameters σt = 1, σs = 0.8, σ̂s = 0.3 for several final times
T = 1, 5, 10, 20. Right convergence study with respect to P obtained with an analytical gPC reduced
model and a numerically obtained one for parameters σt = 1, σs = 0.5, σ̂s = 0.3 for several final times
T = 1, 5, 10, 20.

Figure 2 presents the same kind of convergence studies for different final times T = 1, 5, 10, 20 and
for different values of σs controling the variability of the uncertainty in the scattering cross-section.
(σs = 0.8 for the left picture, σs = 0.5 for the right one). Let us begin with figure 2 (left). It
corresponds to the case σt = 1, σs = 0.8, σ̂s = 0.3: for these values of cross-sections, there exists some
realizations X such that σs + σ̂sX > σt with P(σs + σ̂sX > σt) > 0. In other words, the medium can
be multiplicative with a non-negligible probability. Figure 2 (left) presents the convergence studies
obtained with the previous parameters for different final times T . Once again, we recover the behaviour
predicted by theorem 1: first, spectral convergence is ensured independently of the final time T . Second,
the later the final time T , the higher the error on the variance. Indeed, as ∀P ∈ {0, ..., 14}, the error
for early times is lower than the error for later times: this puts forward the fact that the long-term
behaviour (i.e. fast increase of the error with time) hinted at in the comments on theorem 1 in section 3
can occur in practice. Still, acceptable error remains reachable as, for example, P = 10 still ensures an
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accuracy below 10−8 (which is two digits below the numerical error O(∆t) = 10−6 for example). Figure
2 (right) presents the same convergence studies but with σt = 1, σs = 0.5, σ̂s = 0.3: for these values
of cross-sections, the set {X ∈ [−1, 1]|σs + σ̂sX > σt} is such that P(σs + σ̂sX > σt) = 0. In other
words, the medium can never be multiplicative, it is absorbing with probability 1. The convergence
studies of figure 2 (right) tend to put forward the fact the coefficient in the exponential in (19) is
negative whereas this possibility is not predicted by theorem 1. As a consequence, the error, in this
case, decreases with time: for example, an accuracy of 10−8 is reached as soon as P = 4 for T ≤ 20.
In this simple uncertain configuration, the reduced models behave even better than predicted by (19)
in theorem 1: in other words, this test-case puts forward the fact that the bounds in theorem 1 are
certainly not optimal in absorbing media.

reference
gPC P=3
gPC P=6
gPC P=11
gPC P=15

-0.5
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0.5

1

1.5

2

2.5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

X
→

u
(T

,X
)

X

Figure 3: Reference solution X → U(T,X) = U0e
−v(σt−σs−σ̂sX)T for final time T = 20 together with

four gPC approximations for P = 3, 6, 11, 15.

Figure 3 presents another kind of convergence study. It displays the reference solutionX → U(X,T )

for final time T = 20 together with four gPC approximations X → UP (T,X) =
∑P
k=0 Uk(T )φk(X)

obtained for P = 3, 6, 11, 15. Once again, the fast convergence is observed as only the coarser gPC
approximation (P = 3) is discernable from the analytical solution. Above all, this study puts forward
the fact that the gPC approximations do not necessarily preserve the positivity of the solution X →
U(T,X): indeed, for P = 3, the gPC approximation goes under zero predicting a non-zero probability
of having a negative density of particles. But thanks to the fast converging behaviour of UP with
respect to P , positivity is recovered for higher orders (for this test-problem, as soon as P = 9). Of
course, nothing ensures that P = 9 will be enough for later times t > T (cf. the remark on the long-
term behaviour of gPC tackled in the previous paragraphs). It is difficult having an a priori idea of the
necessary order to preserve positiveness but in practice, accurate results remain available for relatively
small polynomial orders P on relevant statistical quantities (see [50] for complementary studies). Note
that several interesting methods have been introduced in order to preserve certain properties of the
system of interest (hyperbolicity, positiveness, maximum principle see [15, 54, 18, 32]) and may be
combined to the material of this paper.

In the next section, we consider a test-case for which, to our knowledge, no analytical solution is
available. We will have resort to the numerical scheme described in [50].
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4.2 Taking into account uncertainties in the scattering cross-section

Let us now tackle a new test-problem for which an analytical solution is not available despite the
relative simplicity of the configuration. Note that care has been taken to consider a configuration
different from the ones of [50]. We aim at making this paper and [50] complementary.

Let us present the detail of the next study:

– let us consider x = x ∈ D = [0, 1].

– We assume the particles are monokinetic with v = 1.

– Besides, we assume that the medium is only diffusive (no absorption, i.e. σt = σs) and the
cross-sections are deterministic. We choose σs = σt = 1.

– We here want to take into account uncertainties in the distribution of the scattering angle P , see
expression (13). Let us consider a monodimensional uncertain parameter (i.e. Q = 1) and assume
it is uniformly distributed in [−1, 1], i.e. X ∼ U([−1, 1]). The uncertain parameter X affects
the outer angular distribution. With the above hypothesis (monodimensional and monokinetic)
we have Ps(x, t,v,v

′, X) = Ps(ω
′, X). Furthermore in this test-problem, we assume Ps is not

isotropic and uncertain. We assume we have

Ps(ω
′, X) dω′ = 1[0,U(X)](ω

′),

where X −→ U(X) = 0.8 (X+1)
2 maps X in [−1, 1] into a uniformly distributed random variable

U(X) in [0, 0.8]. As a consequence, the scattering is always anisotropic and depending on the
realizations of X, the scattering angle can be sampled in a narrower band than [0, 0.8]. Note that
ω′ −→ Ps(ω

′, X) is positive and sums up to 1, ∀X ∈ [−1, 1]: it is always a probability density
function and the scattering angle always has sense. The expression of the scattering angle
distribution may appear singular for the reader familiar with the linear Boltzmann equation
(neutronics or photonics for example). At this stage of the discussion, we can already explain it
has been chosen simple (for ease of reproduction of the numerical results)..

– The initial condition is a Heaviside between 0 and 1
50 , i.e. we have a deterministic initial condition

given by u0(x, ω) = 1[0, 1
50 ](x).

In this particular case, (4) resumes to ∂tu(x, t, ω,X) + vω∂xu(x, t, ω,X) = −vσsu(x, t, ω,X) + vσs

∫
Ps(ω

′, X)u(x, t, ω′, X) dω′,

u(x, 0, ω) = u0(x) = 1[0, 1
50 ](x).

(30)

Note that in the next study, we take specular boundary condition on both sides of domain D = [0, 1].
In other words, the particles hit walls with perfect reflection at x = 0 and x = 1. The computation has
been made by the Monte-Carlo scheme described in [50]. It has Nx = 50 cells, but they are only used
for visualisation. The most important numerical parameter for such a numerical solver is the number
of MC particles NMC = 2.8× 107 (see [50] for more details on the resolution scheme).

Figure 4 presents the numerical results obtained in this configuration. Let us introduce notation
U(x, t,X) =

∫
u(x, t, ω,X) dω. Let us furthermore introduce ∀k ∈ {0, ..., P}

Uk(x, t) =

∫
uk(x, t, ω) dω =

∫∫
u(x, t, ω,X)φk(X) dPX dω. (31)

Then UP (x, t) =
∑P
k=0 Uk(x, t)φk(X) is an approximation of U(x, t) obtained from the numerical

resolution of reduced model (8). Approximations of the mean and variance are easily obtained from
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E[U ](x, t),V[U ](x, t) and realisations of
U(x, t,X) for P = 7

V[U ](x, t),∀P ∈ {2, ..., 7}
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Figure 4: All the results of this figure have been obtained applying the gPC-i-MC scheme of [50]. Left:
time evolution of the mean and variance profiles together with 200 realisations recovered thanks to
the use of P = 7-truncated gPC reduced model. Right: convergence studies on the variance of U with
respect to P in the same condition as for the left column (time evolution of the profiles of the variance
for P ∈ {2, ..., 7}.

UP as we have

E[U ](x, t) ≈ E[UP ](x, t) = U0(x, t),

V[U ](x, t) ≈ V[UP ](x, t) =

P∑
k=1

U2
k (x, t).

(32)
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Many other classical statistical quantities can be obtained from post-treatments of the gPC coefficients,
see [6]. Some examples (Sobol indices) are given in [50].

Figure 4 (left) displays E[UP=7](x, t), V[UP=7](x, t) and N realizations of UP=7(x, t,X) for N =
100 uniformly distributed (Xi)i∈{1,...,N} ∼ U([−1, 1]) for several times t ∈ {0.1, 0.5, 1.0, 2.0}. Note that
on figure 4 (left), the left axis corresponds to the scale for the mean and the realizations whereas the
right axis corresponds to the scale for the variance. Figure 4 (right) presents a convergence study with
respect to P for the spatial profiles of the variance.

Let us first focus on figure 4 (left) and on a description of the test-case. The initial condition is
deterministic and consists in a Heaviside of particles along the left wall. We begin by the description
of the average behaviour, the mean E[UP=7](x, t). At time t = 0.1 (figure 4 top left), particles are
evolving in the random medium. The bulk is propagating toward the right hand side but some particles
remain in the vicinity of the wall due to the scattering they encounter. As time passes, the average
population of particles goes toward the right wall and are reflected toward the center of the domain.
From a variance point of view, uncertainties are affecting the particles as soon as t > 0. The area
of highest variance remains in the vicinity of the left boundary but grows as the flow of particles
propagates to the right hand side of domain D. This is all the more emphasized by the realisations
of UP (x, t) on the same pictures: for the three earliest times t = 0.1, 0.5, 1.0, the front of the particle
propagation has a zero variance. The positive variance is only in the wake of the particle flow. After
the reshock on the right boundary, the whole domain is affected by a positive variance. The right
column of figure 4 presents the variance of UP for P ∈ {2, ..., 7} for the same times. Once again, for
early times, the convergence is fast: P ∈ {3, ..., 7} gives almost the same results, only the solution
obtained from the P = 2-truncated reduced model presents a coarse behaviour at this time. As time
increases, the differences between the several reduced model results become more and more visible.
At time t = 2.0, the need for higher truncation orders P is visible. On this same picture, the fast
convergence is noticeable, even without having access to an analytical solution, as the gaps between
the solutions obtained with P and P + 1 are decreasing quickly with P .

4.3 Two multidimensional 5D (2D physical and 3D stochastic) test-case

In this section, we consider two multidimensional test-cases for which we can build analytical solutions.
The configurations remain simple, despite the quite important number of dimensions and are probably
not enough representative of physical applications (we refer to [50] for more relevant ones). But having
access to analytical solutions allow verifying the results of theorem 1 are valid in higher dimensions.

4.3.1 A smooth 5D analytical problem

Let us begin by a smooth 5D (2D physical and 3D stochastic) problem and its description: we consider
x = x ∈ D = [0, 2]. We assume the particles are monokinetic with v = 1. Besides, we assume that the
scattering particles do not change directions: the medium can be absorbing or even multiplicative but
we assume (13) is given by Ps(ω, ω

′) dω′ = δω′(ω). In other words, a particle encountering a scattering
event, (absorbing or multiplicative) does not change its direction. The uncertainty, in 3D stochastic
dimension, affects the cross-sections as

– σt(X) = σt(X1, X2) = (σt + σ̂tX2) (η + η̂X1) ,

– σs(X) = σs(X1, X3) = (σs + σ̂sX3) (η + η̂X1) .

– In the expressions above, η(X) = η+ η̂(X1) acts like an unknown density of matter for example.

– We assume X = (X1, X2, X3)t is a vector of independent uniform random variables on [−1, 1].

The initial condition is a Dirac at x0 = 1, i.e. we have a deterministic initial condition given by
u0(x, ω) = δx0

(x). The cross-sections and the initial condition are such that (respectively) condition
(9) and hypothesis 1 are fulfilled.
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Figure 5: Mean and realisation comparisons between the analytical reference solution and a gPC
reduced model (p1D = 10, P = 1000) for time t = 0.50 for a semi-analytical resolution (left) and for an
MC resolution (solver of [50]) (right) for the multidimensional test-problem of section 4.3.1.

The main trick in order to build an analytical solution comes from the fact we have Ps(ω, ω
′) dω′ =

δω(ω′): in this particular case u solution of (4) verifies7 u(x, t, ω,X) = u0(x − vωt, ω)e−vσa(X)t =
δx0

(x− vωt)e−vσa(X)t, with σa(X) = σt(X)− σs(X). As a consequence,

U(x, t,X) =

∫
u(x, t, ω,X) dω =

1[x0−vt,x0+vt](x)

vt
e−vσa(X)t. (33)

In practice, we choose

– σt = 1.0, σ̂t = 1.1 so that there is a non-zero probability of having a multiplicative medium,

– σs = 0.0, σ̂s = 0.0 so that the scattering cross-section is deterministic and X2 has no influence,

– ηs = 1.0, η̂s = 0.5 so that the density of matter is also uncertain.

With the above choice for σs, the test-case is in fact only 2D stochastic (as X2 is in fact multiplied by
zero). But still, we solve it in 3D stochastic dimension, on purpose, as if not knowing that parameter
X2 is not influent. We will come back to the reason why we do this when commenting on figure 7.

Figure 5 presents, at time T = 0.50, for several (randomly chosen) values of X:

(left) the reference solution x → U(x, t∗, X) (given by (33)) together with its gPC approximations
x→ UP (x, t∗, X) which, in the particular configuration of this section, is given by

UP (x, t,X) =
1[x0−vt,x0+vt](x)

vt

P∑
k=0

Uk(t)φk(X), (34)

where (Uk(t))k∈{0,...,P} solves (29). System (29) is solved by applying the same methodology as
in section 4.1.

(right) the reference solution x→ U(x, t∗, X) together with its MC-i-gPC approximations x→ UPMC(x, t,X),
obtained by solving directly (10) with an MC scheme (cf. [50]) with NMC = 8×107 MC particles.

The solutions x → U(x, t,X) and approximations x → UP (x, t,X) have Heaviside shapes with fluc-
tuating plateaus. As times passes, the plateaus’ levels are lower but the Heaviside shapes are wider.

7It is built applying the characteristic method and intensively uses the fact that
∫
Ps(ω, ω′)u(x, t, ω′) dω′ =∫

δω(ω′)u(x, t, ω′) dω′ = u(x, t, ω).
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The analytical and gPC curves (figure 5 left) present a very good agreement8. This may appear as-
tonishing for the reader familiar with the approximation of uncertain discontinuous solutions (and the
appearance of Gibbs phenomenon for gPC, see [41, 62, 34, 18, 15]). The gPC approximations of figure
5 do not seem to suffer the appearance of spurious modes: this is because the solution is discontinuous
only with respect to the physical variable x, see (33). the smoothness hypothesis (9) is in fact always
fulfilled: theorem 1 should apply. This will be verified numerically with the convergence study of figure
6. Before switching to figure 6, let us focus on figure 5 (right): it presents MC approximations of the
gPC reduced model for p1D = 6 in the same configuration: the MC noise dominates the gPC error
(see the fluctuations around the plateaus) testifying of a gPC convergence rate faster than the MC
numerical resolution one (see [50] for more details).
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Figure 6: Left: convergence study with respect to p1D obtained with the analytical solution (33),
some gPC reduced models obtained from (34) and some MC approximations of (10), for several final
times T = 0.25, 0.50, 0.75. Right: convergence study with respect to P = (p1D + 1)Q=3 obtained with
the analytical solution (33) and some gPC reduced models obtained from (34) for several final times
T = 0.25, 0.50, 0.75.

Figure 6 presents some convergence curves for the logarithm of the norm (15) of the error with
respect to p1D and with respect to P = (p1D + 1)Q on this same problem for different times t =
0.25, 0.50, 0.75. The curves of figure 6 (left) allow numerically recovering the spectral convergence
of the gPC approximation as predicted by theorem 1 (but in a multidimensional context): indeed,

we have a linear curve p1D → log
(
||u(p1D+1)Q(t)− u(t)||2L2(I×Θ)

)
. Second, we recover the fact that

as t increases, the error of the gPC reduced model deteriorates9 as for a fixed p1D, the error is
bigger and bigger as time increases. On this same figure 6 (left) are displayed the same convergence
study comparing the analytical solution (33) to the MC approximations of the gPC reduced model
(10): the error stagnates around ≈ 0.005 which typically corresponds to the MC discretisation error
(O( 1√

NMC
≈ 0.005), with NMC = 8×107). For such MC discretisation, P = 3 is already below the MC

numerical error. This fast gPC convergence is precious in an MC context, see [50]. The right picture
of figure 6 presents the same study but with respect to P instead of p1D. This picture attests that,
in a multidimensional context, spectral convergence only holds with respect to p1D and not P : the

curves P → log
(
||uP (t)− u(t)||2L2(I×Θ)

)
are sublinear. With this type of representation, it is easier

having an idea of the increase in complexity of the gPC reduced model for a given accuracy (curse of
dimensionality). Still, very good levels of accuracies can be reached for low polynomial orders in this
case (errors below 10−4 as soon as p1D ≥ 4 and P ≥ (4 + 1)3 = 125).

8In a sense, this shows that the convergence is probably also pointwise in the random space for such smooth solutions.
This fact has already been proven in [19] in a non-intrusive context.

9This echoes the previous discussions concerning the long-term behaviour of gPC but in a multidimensional context.
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Let us finish this section by assuming that we would like to perform a sensitivity analysis: we
would like to identify which of X1, X2 or X3 is the most influent on the total variability of the
uncertain problem. For this, relative variance and Sobol indices are amongst the most relevant (but
also costly) statistical tools, cf. [30]. In a gPC framework, the variance and the relative variances of
each parameters, denoted respectively by V[U ](x, t)] and (Vi[U ](x, t)])i∈{1,2,3,(1,2),(1,3),(2,3),(1,2,3)}, can
easily be approximated thanks to the gPC coefficients as

V[U ](x, t)] ≈ V[UP ](x, t)] =

P∑
k=1

U2
k (x, t) =

∑
s∈Ap1D,Q\{0}

U2
s (x, t),

Vi[U ](x, t)] ≈ Vi[UP ](x, t) =
∑
s∈Si

U2
s (x, t),

where Si is a subset of Ap1D,Q (see [6] for more details). So for all combinations i of the set {1, ..., Q},
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Figure 7: Left: variance and amount of variance explained by X1, X2, X3 with respect to time for
the multidimensional test-problem of section 4.3.1. Right: Sobol indices for X1, X2 and the couple
(X1, X2) with respect to time for the multidimensional test-problem of section 4.3.1.

Si ⊂ Ap1D,Q. This means that from the spectral convergence10 of V[UP ] toward V[U ], we can expect
spectral convergence of every Vi[UP ] toward Vi[U ]. Figure 7 (left) presents the time evolutions of the
relative variances at x = 1, i.e. t→ Vi[Up1D=7](x = 1, t), for i ∈ {1, 2, 3}. We can immediately recover
the fact that X3 is not influent during the whole time period: its relative variance is zero for all times
t ∈ [0, 1]. This means we can reduce the dimensionality of our problem and neglect X3

11: having
access to such powerful statistical tools with a fast convergence is precious in industrial applications
(more examples of this type can be found in [50]). On another hand, the same picture also allows
identifying X2 as the main parameter. Figure 7 (left) presents the time evolutions of the Sobol indices
at x = 1. The Sobol indices and their respective gPC approximations are defined as follows: for all
combinations i of the set {1, ..., Q}, we have

Si[U ](x, t) =
Vi[U ](x, t)

Vi[U ](x, t)
≈ Si[UP ](x, t) =

Vi[UP ](x, t)

Vi[UP ](x, t)
.

Figure 7 (right) presents three areas corresponding to the relative importance of parameters X1, X2

and their interactions (X1, X2). Parameter X2, for early times t ∼ 0, explains almost 79% of the
variance. Parameter X1 explains a little bit more than 14% of this same variance and the interactions
of X1, X2 explains the remaining 6%. As time passes, X1 and its interactions with X2 are less and
less influent.

10The L2-norm (15) ensures the convergence of the mean and the variance.
11i.e. fix X3 to its mean for example.
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In the next subsection, we slightly revisit this same test-case and show that a small change in the
uncertain set-up can lead to completely different behaviours.

4.3.2 A discontinuous 5D problem

In this section, we consider a modification of the previous multidimensional test-problem. The only
difference with section 4.3.1 comes from the fact that X3 now models some uncertainty in the initial
condition rather than in the scattering cross-section. The initial condition is now a Dirac at x0(X) =
x0(X3) = x0 + x̂0X3 so that u0 is given by u0(x, ω,X) = δx0(X)(x) = δ0(x − x0(X)). In practice, we
choose

– σt = 1.0, σ̂t = 1.1 as in section 4.3.1.

– σs = 0.0, σ̂s = 0.0 as in section 4.3.1 except that we now assume we know the scattering cross-
section is zero whereas it was unknown in section 4.3.1.

– x0 = 1.0, x̂0 = 0.1 so that the uncertain initial condition is a Dirac translated along the x-axis.

We assume X = (X1, X2, X3)t is a vector of independent uniform random variables on [−1, 1]. Once
again, an analytical solution can be built and is given by u(x, t, ω,X) = u0(x− vωt, ω,X)e−vσa(X)t =
δx0(X)(x− vωt)e−vσa(X)t, with σa(X) = σt(X)− σs(X). As a consequence,

U(x, t,X) =
1[x0(X)−vt,x0(X)+vt](x)

vt
e−vσa(X)t. (35)

From the above expression, we can see that for this test-problem, both x → U(x, t,X) and X →
U(x, t,X) can be discontinuous for (respectively) some values of (t,X) and of (x, t).
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Figure 8: Mean and realisation comparisons between the analytical reference solution and a gPC
reduced model (p1D = 10, hence P = 1331) for times t = 0.50 (left), t = 0.75 (right) for the multidi-
mensional test-problem of section 4.3.2.

Before commenting the figures of this section, let us briefly describe the numerical strategy to solve
the gPC reduced model of this paragraph. For this, we intensively rely on the analogy between Sn
models12 and the gPC reduced model (10). In the particular case of this section, (10) resumes to

∂t

 u0(x, t, ω)
...
uP (x, t, ω)

+ v∂xω

 u0(x, t, ω)
...
uP (x, t, ω)

+ vΣa

 u0(x, t, ω)
...
uP (x, t, ω)

 = 0,

12Note that this analogy between uncertainty quantification and kinetic theory is not original here, it has been
highlighted in several works, see [33, 15, 49].
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with Σa as in (29). We can apply the characteristic method to rewrite the previous system as

∂s

 u0(x+ vωs, s, ω)
...
uP (x+ vωs, s, ω)

+ vΣa

 u0(x+ vωs, s, ω)
...
uP (x+ vωs, s, ω)

 = 0,

which, once multiplied by the exponential of matrix evΣas, resumes to

∂s

evΣas

 u0(x+ vωs, s, ω)
...
uP (x+ vωs, s, ω)

 = 0.

If we now integrate the above expression on time step [0, t] and introduce the vector of initial condition
(u0(x, t = 0, ω), ..., uP (x, t = 0, ω)t = (u0

0(x, ω), ..., u0
P (x, ω))t, we get u0(x, t, ω)

...
uP (x, t, ω)

 = e−vΣat

 u0
0(x− vωt, ω)
...
u0
P (x− vωt, ω)

 .

If we now are interested, as in the previous section, in vector U(x, t) = (U0(x, t), ..., UP (x, t))t, where
∀k ∈ {1, ..., P}, Uk(x, t) =

∫
uk(x, t, ω) dω, then we have

 U0(x, t)
...
UP (x, t)

 = e−vΣat


∫
u0

0(x− vωt, ω) dω

...∫
u0
P (x− vωt, ω) dω

 .

The exponential of matrix is equivalent to solving (29) with x, ω, t as parameters and is solved as in
section 4.1. The integration of the initial condition (u0

0(x− vωt, ω), .., u0
P (x− vωt, ω))t with respect to

ω for the positions of interest x is performed with a fine (100 points) Gauss-Legendre quadrature rule
(close to an Sn model for a simple transport equation, see [4, 16, 12]).

Convergence study Sensitivity analysis
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Figure 9: Right: convergence study with respect to p1D obtained with the analytical solution (35) and
some gPC reduced model for several final times T = 0.25, 0.50, 0.75. Right: sensitivity analysis, Sobol
indices at x = 1 with respect to time.

Figure 8 presents spatial profiles of the reference solution x→ U(x, t,X) and the gPC approxima-
tions x → UP (x, t,X) obtained for p1D = 10 (hence P = 1331) at two different times t = 0.50, 0.75
for 5 random realisations of X. The mean is also displayed. If we compare figure 8 and figure 5, the
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profiles are similar except that the Heaviside shapes are now also translated along the x-axis. For
this new test-problem, the gPC approximations do not anymore present the same levels of accuracy as
encountered in section 4.3.1: the plateaus are well captured but some spurious oscillations are visible
in the vicinities of the steep propagation fronts. Those spurious oscillations even lead to negative13

gPC reconstructions of the particle density U (see for example x around 0.5 in figure 8 (left)).
From (35), we can check that X → U(x, t,X) is only in14 H0, ∀x ∈ [0, 2],∀t > 0. We are not in

the condition of theorem 1. Figure 9 (left) presents some convergence studies for the logarithm of the
L2-norm (given by (15)) of the error with respect to p1D. In this case, the convergence is sublinear.
One may notice that the curves present an improvement with respect to time: the curve for the earliest
times are above the curves for the later ones. This is mainly due to the fact that with time, the spatial
vicinities in which X → U(x, t,X) is discontinuous have less and less weight (remember norm (15)
is integrated on the whole spatial domain) relatively to the vicinities presenting a smooth behaviour.
This is confirmed by the sensitivity analysis of figure 9 (right): initially, the most influent parameter at
x = 1 is X3: the green area takes the whole volume [0, 0.1]× [0, 1]. But its importance suddenly drops
after t = 0.1: after t = 0.1, the uncertainty in the propagation fronts do not have anymore impact at
location x = 1 (remember that x̂0 = 0.1 and [0, vt] = [0, 0.1] for t ∈ [0, 0.1]). After time t = 0.1, X2

suddenly becomes the most influent parameter (blue area) at location x = 1, followed by X1 (yellow
area) and their global interactions (purple area). We insist that in practice, gPC based reduced model
remain usable in such non-smooth context: care must only be taken to focus on smooth observables
to obtain fast convergence rates.

5 Conclusion and open problems

In this paper, we considered the linear Boltzmann equation subject to uncertainties in the initial
conditions and model parameters. In order to solve the underlying uncertain problem, we relied on
moment theory and the construction of gPC based reduced models. The main result of this paper is the
proof of the spectral convergence of the gPC based reduced models of the uncertain linear Boltzmann
equation. The long-term behaviour of gPC reduced models have been theoretically put forward. The
fast convergence of the approximations has also been recovered numerically. The numerical test-
problems have been built to allow emphasizing the limitations of the theoretical result proved in
this paper: some bounds are probably not optimal and theorem 1 may be pessimistic, especially for
absorbing media. Still, this is encouraging as it implies the numerical convergence is even faster than
the expected one (if, of course, care is taken to focus on smooth observables).

We finally would like to finish on few questions related to the ones discussed in this paper which we
think may be of importance: first, despite the fast convergence rate of the reduced models, no positivity
results on the uncertain density of particles is ensured. In practice, we did not encounter any problems
as our computations are accurate enough and the robustness of our algorithm, see [50], does not rely
on such condition. But this does not ensure positivity in future computations and may be problematic
for some applications. The second problem is the curse of dimensionality and the fact the bigger
the dimension Q of the uncertain vector X, the more coefficients are to be estimated. This point is
addressed in [50]: the curse of dimensionality is partly compensated by an astute use of a Monte-Carlo
scheme (less sensitive to the dimension) together with the ingredient of this paper. The last point
we suggest to tackle is closely related to remark 3.2. There is a lack of theory for non uniform input
random variables with respect to spectral convergence. In practice, spectral convergence is observed in
many physical domains with respect to any input distribution. But the problem of having polynomials
on unbounded domains (typically, we can not use a majoration such as (24) on an unbounded domain)
makes the understanding more complex. Still, some results exists for L∞ bounds in weighted spaces
[40] and future effort will probably be carried on in this direction.

13cf. the previous discussions about the loss of positiveness on the fist test-problem of section 4.1.
14Remember that theorem 1 demands u ∈ Hk with k > 0 for the results to apply.
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