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Spectral convergence of the generalized Polynomial Chaos reduced model obtained from the uncertain linear Boltzmann equation

In this paper, we consider the linear Boltzmann equation subject to uncertainties in the initial conditions and matter parameters (cross-sections/opacities). In order to solve the underlying uncertain systems, we rely on moment theory and the construction of hierarchical moment models in the framework of parametric polynomial approximations. Such model is commonly called a generalised Polynomial Chaos (gPC) reduced model. In this paper, we prove the spectral convergence of the hierarchy of reduced model parametered by P (polynomial order) obtained from the uncertain linear Boltzmann equation.

Introduction

In this paper, we are interested in the linear Boltzmann equation recalled below    ∂ t u(x, t, v) + v • ∇ x u(x, t, v) = -vσ t (x, t, v)u(x, t, v) + vσ s (x, t, v, v )u(x, t, v ) dv , u(x, 0, v) = u 0 (x, v).

(1)

It models the time-dependent problem of particle transport in a collisional media. We suppose transport to be driven by the linear Boltzmann equation [START_REF] Brunner | An efficient, robust, domain-decomposition algorithm for particle Monte Carlo[END_REF] for particles having position x ∈ D ⊂ R 3 , velocity v ∈ V ⊂ R 3 , at time t ∈ [0, T ] ⊂ R + and where the quantity u(x, t, v) ∈ Ω ⊂ R + is the density of presence of the particles at (x, t, v). In [START_REF] Brunner | An efficient, robust, domain-decomposition algorithm for particle Monte Carlo[END_REF], we introduced the notation |v| = v to denote the norm of the velocity v. Later on, we may also use ω = v v , the unitary vector for the direction of the particles. Equation (1) must come with proper boundary conditions for wellposedness [START_REF] Lapeyre | Méthodes de Monte Carlo pour les équations de transport et de diffusion[END_REF] but we omit them for the sake of conciseness. In other words, the Cauchy problem [START_REF] Brunner | An efficient, robust, domain-decomposition algorithm for particle Monte Carlo[END_REF] is valid in an infinite medium and regular solutions can be expected [START_REF] Golse | Transport et Diffusion[END_REF][START_REF] Cacucci | Handbook of Nuclear Engineering[END_REF]. The left hand side of (1) will be hinted at as the streaming counterpart of (1) whereas its right hand side will be called the collisional one. The above equation is linear and can be used to model the behaviour of particles interacting with a background media. A solution of ( 1) is called a deterministic solution. The interaction of particles with matter is described through the macroscopic total σ t (x, t, v) and scattering σ s (x, t, v, v ) cross-sections. They express the probability for a particle to interact with the medium (to be absorbed, scattered, to encounter a particular reaction etc.). The cross-sections, in a sense, contain all the physics (which is kind of hidden in this paper): they can be related to other coupled physics such as reactive flows, isotopic depletion [START_REF] Dufek | Stochastic approximation for Monte-Carlo Calculation of Steady-State Conditions in Thermal Reactors[END_REF] in neutronics, temperature dependence for photonics [START_REF] Pomraning | The equations of radiation hydrodynamics[END_REF] or media subject to material motion [START_REF] Wienke | Transport equations in moving material part i: Neutrons and photons[END_REF] (neutronics, photonics, plasma physics). Those physics may communicate uncertainties to the particle transport via the cross-sections. Taking into account uncertainties in the cross-sections is also of importance in biology or economy [START_REF] Perthame | Transport Equations in Biology[END_REF][START_REF] Antonio | Monte Carlo gPC methods for diffusive kinetic flocking models with uncertainties[END_REF] for the study of population dynamics. Random cross-sections are also intensively used for modeling: amongst the relevant key-words are random media [START_REF] Anil | Transport in random media with inhomogeneous mixing statistics[END_REF][START_REF] Olson | Reduced-order monte carlo modeling of radiation transport in random media[END_REF][START_REF] Pomraning | The equations of radiation hydrodynamics[END_REF][START_REF] Larmier | Monte carlo particle transport in random media: The effects of mixing statistics[END_REF] or neutronic noise [START_REF] Cacucci | Handbook of Nuclear Engineering[END_REF][START_REF] Anil | Notes on the lumped backward master equation for the neutron extinction/survival probability[END_REF]. As a consequence, being able to efficiently take into account stochastic fluctuations in the cross-sections is a key step in many physical applications. The objective of this paper is to deepen the study of the gPC based reduced model aiming at approximating the uncertain linear Boltzmann equation.

Let us assume that the initial condition and the cross-sections are uncertain. It means that we would like to solve [START_REF] Brunner | An efficient, robust, domain-decomposition algorithm for particle Monte Carlo[END_REF] for many different values X of the initial condition and cross-sections. It is common to make the dependence with respect to X explicit so that u 0 = u 0 (x, X) ∈ Ω and σ α = σ α (•, X) for α ∈ {s, t} and with X ∈ Θ ⊂ R Q .

(

) 2 
The variable X ∈ Θ characterizes what is called the uncertainty, where the set Θ = (Θ, A, P) is a probability space where Θ is the sample space, A is a σ-algebra and P a probability measure.

We assume X comes with its probability measure dP X . Note that without loss of generality in the following sections, we consider that X is a vector X = (X 1 , ..., X Q ) t of Q independent random variables of probability measure dP X = Q i=1 dP Xi : in theory, it is always possible to come back to such framework 1 . Note also that dP X sums up to one, i.e. dP X = 1. Furthermore, without loss of generality, X can be mapped into a vector of uniform random variables U = (U 1 , ..., U Q ) on [0, 1] Q . Wherever one is willing to integrate any function2 f ∈ L 1 (Θ) with respect to measure dP X , one can perform the change of variable f (X) dP X = f (X(U)) dP U = f (X(u))1 [0,1] (u) du.

(

As a consequence, it is not restrictive in the following to consider X is uniformly distributed as this is always true up to a change of variable.

In some sense if one solves [START_REF] Brunner | An efficient, robust, domain-decomposition algorithm for particle Monte Carlo[END_REF] for all different initial condition and cross-sections that correspond to different X, then one exactly propagates the uncertainties. To fix the notations, system      ∂ t u(x, t, v, X) + v • ∇ x u(x, t, v, X) = -vσ t (x, t, v, X)u(x, t, v, X)

+ vσ s (x, t, v, v , X)u(x, t, v , X) dv , u(x, 0, v, X) = u 0 (x, v, X),

for x ∈ D ⊂ R 3 , v ∈ V ⊂ R 3 , t ∈ [0, T ] ⊂ R + , X ∈ Θ ⊂ R Q (4) 
will be called a uncertain problem. One notices that different values of X correspond to different fully decoupled deterministic equations, so in principle there is no difficulty in solving such uncertain problems. The whole problem comes from the fact that exact propagation of uncertainties is very expensive from the computational point of view: equation ( 1) is often solved thanks to a Monte-Carlo scheme [START_REF] Lapeyre | Méthodes de Monte Carlo pour les équations de transport et de diffusion[END_REF][START_REF] Brun | Patmos: A prototype monte carlo transport code to test high performance architectures[END_REF][START_REF] Brunner | An efficient, robust, domain-decomposition algorithm for particle Monte Carlo[END_REF][START_REF]Monte carlo photon transport on shared memory and distributed memory parallel processors[END_REF][START_REF] Dufek | Stochastic approximation for Monte-Carlo Calculation of Steady-State Conditions in Thermal Reactors[END_REF]. This resolution method is known to be efficient for high (3(x) + 1(t) + 3(v) = 7) dimensional problems but costly. This is emphasized, detailed and illustrated in [START_REF] Poëtte | A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation[END_REF]. In [START_REF] Poëtte | A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation[END_REF], a P -truncated gPC reduced model has been introduced in order to solve [START_REF] Aussourd | Styx: a multidimensional AMR S N scheme[END_REF]. It is solved thanks to an astute Monte-Carlo resolution of the gPC reduced model. Note that a similar approach has been developed for the Fokker-Planck equation in [START_REF] Antonio | Monte Carlo gPC methods for diffusive kinetic flocking models with uncertainties[END_REF]. In [START_REF] Poëtte | A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation[END_REF], fast convergence has been practically observed with respect to the truncation order P . The aim of this paper is to explain this fast convergence and for this, in the following sections, we prove the spectral convergence of the P -truncated gPC based reduced models obtained from (4). The paper is organized as follows. In section 2, we present the P -truncated gPC reduced model of interest here (and solved in [START_REF] Poëtte | A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation[END_REF]). In section 3, we prove the spectral convergence of the built reduced model. In section 4, we present few numerical results confirming the theoretical results of section 3. Some are obtained with the resolution schemes presented in [START_REF] Poëtte | A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation[END_REF]. We finally conclude in section 5 with emphasis on the remaining open questions.

2 The gPC reduced model obtained from the uncertain linear Boltzmann equation (4)

The standard method to construct a gPC based reduced model is the following. We first define the set of k integrable uncertain functions

L k Θ = measurable functions X → f (X) such that Θ |f (ξ)| k dP X (ξ) < ∞ . (5) 
In particular, we focus on functions of L 2 (Θ). Under very general conditions [START_REF] Ernst | On the convergence of generalized polynomial chaos expansions[END_REF][START_REF] Gautschi | Orthogonal polynomials: applications and computation[END_REF], there exists a countable family of polynomials (φ q ) q∈N which are orthonormal with respect to the scalar product defined by dP X . In other words, we have

Θ φ p (ξ)φ q (ξ) dP X (ξ) = φ p φ q dP X = δ pq , ∀(p, q) ∈ N 2 .
In practice, in the above expression, the basis must be truncated up to certain orders (p i ) i∈{1,...,Q} which may depend on the directions (X i ) i∈{1,...,Q} . Assume that ∀i ∈ {1, .., Q}, p i = p 1D , then the total number of polynomial coefficients, abusively called the polynomial order later on, is

P = P (p 1D , Q) = (p 1D + 1) Q .
It exhibits an exponential growth with both p 1D and Q. This is commonly called the curse of dimensionality [START_REF] Blatman | Sparse Polynomial Chaos Expansions and Adaptive Stochastic Finite Elements using a Regression Approach[END_REF][START_REF] Crestaux | Polynômes de Chaos pour la Propagation et la Quantification d'Incertitudes[END_REF]. As a consequence, the reduced models described in this paper, in practice, can only be applied to a moderate number of uncertain parameters (Q ∼ 10). The multivariate polynomial basis is built by tensorization of one-dimensional polynomial basis in every stochastic direction (X i ) i∈{1,...,Q} . In the following sections, for conciseness in the notations, we map3 the set of polynomial indices

A p1D,Q = {(k 1 , ...k Q )|∀i ∈ {1, ..., Q}, k i ≤ p 1D } into {0, ..., P } to build the tensorized basis (φ k (X) = Q i=1 φ Xi ki (X i )) k∈{0,.
..,P } . In the previous expression, ∀i ∈ {1, ..., Q}, the basis (φ Xi k ) k∈{0,...,p1D} is a one-dimensional polynomial basis orthonormal with respect to dP Xi . When P grows, we assume it grows because the one-dimensional polynomial orders p 1D grow.

At fixed t ∈ [0, T ] ⊂ R + , x ∈ D ⊂ R 3 and v ∈ V ⊂ R 3
, it is natural to look for an approximation of the solution u in the subspace (φ k ) k∈{0,...,P } generated by the first P + 1 polynomials of (φ k ) k∈N . It is immediate to show that

u P = P q=0 u q φ q with u q = uφ q dP X , (6) 
is such that

Θ u -u P 2 dP X ≤ Θ u -v P 2 dP X , ∀v P ∈ (φ k ) k∈{0,...,P } .
In other words, expansion ( 6) is the best one among all possible trials in (φ k ) k∈{0,...,P } with respect to the L 2 Θ norm. In order to compute the coefficients (u q ) q∈{0,...,P } , one can use the fact that u is the solution of an integro-differential equation with operators applying to t, x and v. The gPC methodology consists in developing the unknown u of (4) on the polynomial basis

u P (x, t, v, X) = P q=0 u q (x, t, v)φ q (X), (7) 
and look for compatibility conditions on the coefficients (u k ) k∈{0,...,P } for u P to be a good approximation of u. This is usually done by plugging (7) into (4) and by taking the moments of (4) against each orthonormal components (φ q ) q∈{0,...,P } . The reader interested in efficient resolutions for different physical applications is refered to [START_REF] Le Maître | Uncertainty Propagation using Wiener-Haar Expansions[END_REF][START_REF] Le Maître | A Stochastic Particle-Mesh Scheme for Uncertainty Propagation in Vortical Flows[END_REF][START_REF] Najm | A Stochastic Projection Method for Fluid Flow I: Basic Formulation[END_REF][START_REF] Le Maitre | Multi-Resolution Analysis of Wiener-Type Uncertainty Propagation Schemes[END_REF][START_REF] Sudret | Stochastic Finite Element Methods and Reliability -A State of the Art Report[END_REF][START_REF] Deb | Solution of Stochastic Partial Differential Equations using Galerkin Finite Element Techniques[END_REF][START_REF] Ghanem | Ingredients for a General Purpose Stochastic Finite Element Formulation[END_REF][START_REF] Keese | A General Purpose Framework for Stochastic Finite Elements[END_REF][START_REF] Ghanem | Stochastic Finite Elements: a Spectral Approach[END_REF][START_REF] Mathelin | A Posteriori Error Analysis for Stochastic Finite Element Solutions of Fluid Flows with Parametric Uncertainties[END_REF][START_REF] Ghanem | Stochastic Finite Elements: a Spectral Approach[END_REF][START_REF] Hien | Stochastic Finite Element Modeling in Linear Transient Heat Transfer[END_REF][START_REF] Blatman | Sparse Polynomial Chaos Expansions and Adaptive Stochastic Finite Elements using a Regression Approach[END_REF][START_REF] Blatman | Quasi-Random Numbers in Stochastic Finite Element Analysis[END_REF][START_REF] Frauenfelder | Finite Element for Elliptic Problems with Stochastic Coefficients[END_REF][START_REF] Witteveen | An Unsteady Adaptive Stochastic Finite Elements Formulation for Rigid-Body Fluid-Structure Interaction[END_REF][START_REF] Spanos | Stochastic Finite Element Expansion for Random Media[END_REF][START_REF] Ghanem | Propagation of Uncertainty in Complex Physical Systems using a Stochastic Finite Elements Approach[END_REF][START_REF] Tryoen | Adaptive Anisotropic Stochastic Discretization Schemes for Uncertain Conservation Laws[END_REF][START_REF] Kusch | Maximum-principle-satisfying second-order intrusive poly-nomial moment scheme[END_REF][START_REF] Kusch | Intrusive methods in uncertainty quantification and their connection to kinetic theory[END_REF][START_REF] Kusch | Filtered stochastic galerkin methods for hyperbolic equations[END_REF][START_REF] Dürrwächter | A hyperbolicity-preserving discontinuous stochastic galerkin scheme for uncertain hyperbolic systems of equations[END_REF]. One finally obtains the moment model

                       ∀q such that 0 ≤ q ≤ P, ∂ t u q (x, t, v) + v • ∇ x u q (x, t, v) = -v   σ t (x, t, v, X) k≤p u k (x, t, v)φ k (X)   φ q (X) dP X + v     σ s (x, t, v, v , X) k≤p u k (x, t, v)φ k (X)   φ q (X) dP X   dv , u q (x, 0, v) = u 0,q (x, v). ( 8 
)
Since u is scalar, system (8) is a system of (P + 1) equations. It is a closed system in the sense that it has exactly (P + 1) equations and (P + 1) unknowns. In the following sections, system (8) will also be refered as the P -truncated gPC reduced model of (1) with standard closure [START_REF] Blatman | Quasi-Random Numbers in Stochastic Finite Element Analysis[END_REF].

It is reasonable to expect that ( 8) is an accurate approximation of the uncertain initial problem for large P 1 (cf. Cameron-Martin's Theorem [START_REF] Cameron | The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals[END_REF] or some generalization [START_REF] Ernst | On the convergence of generalized polynomial chaos expansions[END_REF]). In fact, for this system, fast convergence rate have been practically observed in [START_REF] Poëtte | A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation[END_REF]. This paper is complementary to [START_REF] Poëtte | A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation[END_REF] in the sense that we here demonstrate the fast convergence of the P -truncated reduced models instead of only observing it via numerical experiments. We will indeed prove spectral accuracy under very general hypothesis in the next section 3.

Proof of spectral accuracy of the gPC reduced model

In this section we prove a result of spectral accuracy for the P -truncated gPC reduced models of the uncertain linear Boltzmann equation [START_REF] Brun | Patmos: A prototype monte carlo transport code to test high performance architectures[END_REF]. We use a comparison method between a general approximated solution and a smooth exact solution to establish this result. The idea is similar to what has been proved in [START_REF] Després | Robust Uncertainty Propagation in Systems of Conservation Laws with the Entropy Closure Method[END_REF] for the scalar uncertain Burgers' equation for early times except it is applied to the uncertain linear Boltzmann equation which admits smoother solutions [START_REF] Golse | Transport et Diffusion[END_REF][START_REF] Guillaume | Couplage d'equations et homogeneisation en transport neutronique[END_REF][START_REF] Dautray | Analyse mathématique et calcul numérique pour les sciences et les techniques[END_REF].

Let us assume the exact solution is smooth with respect to all variables

u ∈ L ∞ (D × [0, T ] × V × Θ) ∩ L ∞ D per × [0, T ] × V b : H k (Θ) . (9) 
In the above definition, D per denotes a periodic spatial domain. Periodic boundary conditions are considered only for convenience, without loss of generality. Furthermore, V is the space of velocities and V b recalls it is bounded (dealing with physical applications, the particles can not go beyond the speed of light for example). More generally, as we are interested in dealing with physical applications, it is reasonable considering the density of particle u

(x, t, v, X) is bounded ∀(x, t, v, X) ∈ D×[0, T ]×V ×Θ.
Finally, for all k ∈ N we have

H k (Θ) = u ∈ L 2 Θ | k l=0 (u (l) ) 2 dP X < ∞ ,
where u (l) denotes the l th derivative of u with respect to the uncertain variable. In other words, for solution u(x, t, v, X), we have

u (l) (x, t, v, ξ) = ∂ l ξ u(x, t, v, ξ).
The gPC reduced model of (1) of size P + 1 is (we drop the dependencies for convenience)

                   ∂ t u 0 + v • ∇ x u 0 = -v   σ t k≤P u k φ k   φ 0 dP X + v     σ s k≤P u k φ k   φ 0 dP X   dv , . . . . . . ∂ t u P + v • ∇ x u P = -v   σ t k≤P u k φ k   φ P dP X + v     σ s k≤P u k φ k   φ P dP X   dv .
(10) It is then possible to perform the scalar product (u 0 , ..., u P ) t ∂ t (u 0 , ..., u P ) to obtain an additional equation. Let us consider a smooth solution of (10), we get

∂ t P r=0 u 2 r 2 + v • ∇ x P r=0 u 2 r 2 = -v P q=0 σ t P k=0 u k φ k u q φ q dP X + v P q=0 σ s P k=0 u k φ k u q φ q dP X dv . ( 11 
)
After rearrangement of the collisional counterpart, it yields

∂ t P r=0 u 2 r 2 + v • ∇ x P r=0 u 2 r 2 = -v 0≤k,q≤P σ t u k φ k u q φ q dP X + 0≤k,q≤P v σ s u k φ k u q φ q dP X dv . ( 12 
)
Let us introduce

σ s (x, t, v, X) = σ s (x, t, v, v , X) dv and define P s (x, t, v, v , X) = σ s (x, t, v, v , X) σ s (x, t, v, X) .
We have

P s (x, t, v, v , X) > 0, ∀(x, t, v, v , X) ∈ D × [0, T ] × V 2 × Θ, P s (x, t, v, v , X) dv = 1, ∀(x, t, v, X) ∈ D × [0, T ] × V × Θ. ( 13 
)
The difference σ a (x, t, v, X) = σ t (x, t, v, X)σ s (x, t, v, X) corresponds to an absorption rate if positive, or a multiplication rate, if negative. We now suggested making few assumptions on the background media in which the particles are evolving.

Hypothesis 1 ∀t ∈ [0, T ], ∀x ∈ D per , ∀v ∈ V b ⊂ R 3 , ∀X ∈ Θ |vσ t (x, t, v, X)| < Σ t , |vσ s (x, t, v, X)| < Σ s .
In other words, we have

||vσ t || L ∞ (I×Θ) = Σ t < ∞, ||vσ s || L ∞ (I×Θ) = Σ s < ∞. ( 14 
)
The above hypothesis expresses the fact we consider a background media leading to a finite number of collisions (term vσ t ) for every interval of times [0, T ] together with a finite multiplication rate (term relative to vσ s ) in [0, T ].

Remark 3.1 Note that the above boundedness hypothesis 1 forbids modeling σ t , σ s by unbounded (for example gaussian) random variables. The same remark applies to condition (9) and u 0 . This comes from a will to ensure positivity and finiteness of those quantities which are primary data and are always positive and finite (not only positive and finite with probability one). Of course, nothing prevents from using unbounded random variables X to model u 0 , σ s , σ t if the transformed random variables

X → u 0 (x, t, v, X), X → σ t (x, t, v, X) and X → σ s (x, t, v, v , X) remain bounded ∀(x, t, v, v ) ∈ D × [0, T ] × V 2 .
Now, let us integrate [START_REF] Chaland | Discrete ordinates method for the transport equation preserving onedimensional spherical symmetry in two-dimensional cylindrical geometry[END_REF] with respect to x, t, v on D per ×[0, T ]×V b , and use the above majorations. Let us define for convenience (we here introduce equivalent notations which will be useful later on)

||u P (t)|| 2 L 2 (Dper×V b ×Θ) = ||u P (t)|| 2 L 2 (I×Θ) , = P r=0 u 2 r (x, t, v) dx dv, = P r=0 (u r (x, t, v)φ r (ξ)) 2 dx dv dP X (ξ), = u P (x, t, v, X) 2 dx dv dP X . (15) 
Integrating [START_REF] Chaland | Discrete ordinates method for the transport equation preserving onedimensional spherical symmetry in two-dimensional cylindrical geometry[END_REF] with respect to x ∈ D per and v ∈ V b leads to

d dt ||u P (t)|| 2 L 2 (I×Θ) ≤ 2Σ t P k=0 u 2 k + 2Σ s 0≤k,q≤P (u k (x, t, v )φ k u q (x, t, v)φ q ) dP X dv dv dx, ≤ 2Σ t ||u P (t)|| 2 L 2 (I×Θ) +2Σ s 0≤k,q≤P u k (x, t, v ) dv u q (x, t, v) dv dx φ k φ q dP X , ≤ 2Σ t ||u P (t)|| 2 L 2 (I×Θ) + 2Σ s P k=0 u k (x, t, v) dv 2 dx. (16) 
Finally, Jensen's inequality ensures we have

∂ t ||u P (t)|| 2 L 2 (I×Θ) ≤ 2(Σ t + Σ s )||u P (t)|| 2 L 2 (I×Θ) (17) 
Gronwall's theorem allows obtaining the a priori bound

u P (t) L 2 (I×Θ) ≤ e 2(Σt+Σs)t u P 0 L 2 (I×Θ) . (18) 
It is therefore natural to seek solutions of the uncertain linear Boltzmann equation in the space

L ∞ ([0, T ] : L 2 (I × Θ)).
Here is the main result of this paper.

Theorem 1 (Convergence of the P -truncated gPC reduced model approximation) Spectral accuracy holds in the following sense: for all k ∈ N with k > 0 such that u ∈ H k (Θ), there exists a constant

D k such that ∀t ∈ [0, T ] u(t) -u P (t) 2 L 2 (I×Θ) ≤ e 2(Σt+Σs)t u 0 -u P 0 2 L 2 (I×Θ) + 2(Σ s + Σ t )t||u 2 0 || L 2 (I×Θ) D k p k 1D , (19) 
in which we recall P and p 1D are related via

P = P (p 1D , Q) = (p 1D + 1) Q .
Before prooving the above result, we would like to comment on it. First, for different p i per direction, spectral convergence only holds with respect to the coarser polynomial approximation amongst the directions {1, ..., Q} (this will be illustrated in section 4.3.1). Besides, with hypothesis 1, we have Σ s + Σ t ≥ 0. As a consequence, the term e 2(Σt+Σs)t may be a fast increasing factor. So, first, the term depending on the error on the initial condition, i.e. e 2(Σt+Σs)t u 0u P 0 2 L 2 (I×Θ) , shows that any small error on the initial condition can be exponentially amplified. In other words, care must be taken to make sure the P -truncated approximation of the initial condition is accurate. The gPC framework [START_REF] Wan | Beyond Wiener-Askey Expansions: Handling Arbitrary PDFs[END_REF][START_REF] Xiu | Modeling Uncertainty in Flow Simulations via generalized Polynomial Chaos[END_REF][START_REF] Ernst | On the convergence of generalized polynomial chaos expansions[END_REF], in opposition to the PC one [START_REF] Wiener | The Homogeneous Chaos[END_REF][START_REF] Cameron | The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals[END_REF][START_REF] Ghanem | Stochastic Finite Elements: a Spectral Approach[END_REF], has been introduced precisely to this purpose: the initial polynomial basis must at least be able to fit accurately to the initial uncertain condition to ensure a converging behaviour and avoid stagnation 4 . Second, the remaining term, i.e. 2(Σ s + Σ t )te 2(Σt+Σs)t ||u 2 0 || L 2 (I×Θ)

D k p k 1D
, shows that even if care has been taken to make sure

u 0 -u P 0 2
L 2 (I×Θ) = 0, the error can still grow quickly with time. It can be theoretically compensated with an increasing polynomial order P . The smoother the solution, the more efficient the increase of P . The fact the gPC reduced models present some difficulties with long-term integration is also wellknown in the literature [START_REF] Wan | Long-Term Behavior of Polynomial Chaos in Stochastic Flow Simulations[END_REF][START_REF] Gerritsma | Time-dependent generalized polynomial chaos[END_REF]: it is here theoretically recovered (it will also be numerically recovered in section 4.1). Of course, in practice, increasing P is not straightforward as the reduced models will be harder and harder to solve as P grows. Still, in practice, with the following numerical example, we will show that the above bounds, even if enough to prove the fast convergence of the gPC reduced models for the uncertain linear Boltzmann equation, may be pessimistic and non-optimal. But before tackling numerical example, let us proove theorem 1.

Proof Assume u is a continuous solution of (4) and u P = P k=0 u k φ k of the form (6) whose coefficients (u q ) q∈{0,...,P } solve [START_REF] Brun | Patmos: A prototype monte carlo transport code to test high performance architectures[END_REF]. Then we suggest building an estimate of (we drop the dependencies for conciseness)

∂ t Θ (u P -u) 2 2 dP X = Θ ∂ t (u P ) 2 2 -u P ∂ t u -u∂ t u P + ∂ t u 2 2 dP X .
Unknowns u and (u 0 , ..., u P ) t being strong solutions of ( 4) and ( 8), we have

∂ t Θ (u P -u) 2 2 = - Θ v • ∇ x u 2 2 - Θ vσ t u 2 + v Θ σ s u u + Θ u P v • ∇ x u + v Θ σ t u P u -v Θ σ s u P u + Θ uv • ∇ x u P + v Θ σ t u P u -v Θ σ s u u P - Θ v • ∇ x (u P ) 2 2 -v Θ σ t (u P ) 2 + v Θ σ s u P u P . Integration with respect to x ∈ D per , v ∈ V b yields d dt Θ (u P -u) 2 2 = - Θ v • ∇ x u 2 2 - Θ vσ t u 2 + v Θ σ s u u + Θ u P v • ∇ x u + Θ vσ t u P u -v Θ σ s u P u + Θ uv • ∇ x u P + Θ vσ t u P u -v Θ σ s u u P - Θ v • ∇ x (u P ) 2 2 - Θ vσ t (u P ) 2 + v Θ σ s u P u P .
The terms in the above expression cancel due to the hypothesis of having periodic boundary conditions.

For the same reason we have

Dper u P ∇ x u dx = ∂Dper (u P u) • n dσ - Dper u∇ x u P dx so that the previous expression becomes d dt Θ (u P -u) 2 2 = - Θ vσ t u 2 + Θ vσ s u u + Θ vσ t u P u - Θ vσ s u P u + Θ vσ t u P u - Θ vσ s u u P - Θ vσ t (u P ) 2 + Θ vσ s u P u P . 4 Indeed, if u 0 -u P 0 2 L 2 (I×Θ) = C 0 = 0, then u(t) -u P (t) 2 L 2 (I×Θ) -→ P →∞
C 0 e 2(Σs+Σ t )t for fixed time t.

Let us now define π P u the orthogonal projector of u solution to (4) in L 2 (Θ) onto the space (φ k ) k∈{0,...,P } . The previous expression can be equivalently rewritten d dt

Θ (u P -u) 2 2 = - Θ vσ t u 2 + Θ vσ s u u + Θ vσ t u P π P u - Θ vσ s u P π P u + Θ vσ t u P π P u - Θ vσ s π P u u P - Θ vσ t (u P ) 2 + Θ vσ s u P u P .
Let us now rearrange the terms as

d dt Θ (u P -u) 2 2 = + Θ vσ t 2u P (π P u -u) -(u P -u) 2 + Θ vσ s (u -u P ) u -u P + Θ vσ s -u P (π P u -u) -(π P u -u) u P .
From hypothesis (1), we obtain

d dt Θ (u P -u) 2 2 ≤ +2Σ t Θ u P (π P u -u) +Σ s Θ (u -u P ) 2 +Σ t Θ (u P -u) 2 +2Σ s Θ u P (π P u -u) .
From Jensen's inequality, we have d dt

Θ (u P -u) 2 2 ≤ +2(Σ t + Σ s ) Θ (u -u P ) 2 2 +2Σ t Θ u P (π P u -u) +2Σ s Θ u P (π P u -u) ,
to finally get (Hölder inequality)

d dt (u -u P )(t) 2 L 2 (I×Θ) ≤ +2(Σ t + Σ s )||(u -u P )(t)|| 2 L 2 (I×Θ) +2(Σ t + Σ s )||u P (t)|| L 2 (I×Θ) × ||(π P u -u)(t)|| L ∞ (I×Θ) .
Let us now work on the last term of the previous expression. Thanks to [START_REF] Dürrwächter | A hyperbolicity-preserving discontinuous stochastic galerkin scheme for uncertain hyperbolic systems of equations[END_REF], we are able to bound

d dt (u -u P )(t) 2 L 2 (I×Θ) ≤ +2(Σ t + Σ s )||(u -u P )(t)|| 2 L 2 (I×Θ) +2(Σ t + Σ s )e 2(Σs+Σt)t ||u P 0 || L 2 (I×Θ) × ||π P u -u|| L ∞ (I×Θ) . (20) 
This means it only remains to be able to deal with the L ∞ -norm of π P uu to conclude.

In the following for simplicity of notations, without loss of generality, we carry out the calculations with X ∈ R Q=1 . Now, the truncation of the expansion gives

u(x, t, v, X) -π p1D u(x, t, v, X) = ∞ n=p1D+1 φ n (X) u(x, t, v, X)φ n (X) dP X ,
Furthermore, orthonormal polynomials (φ k ) k∈{0,...,p1D} are known to be the eigenvectors of the eigenproblem (see [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF])

Q(ξ) d 2 dξ 2 + L(ξ) d dξ φ(ξ) = λφ(ξ), (21) 
where Q and L are respectively second and first order polynomials and

λ k = -k( k-1 2 Q + L ), ∀k ∈ N.
For example, for Legendre polynomials, Q(ξ) = 1ξ 2 , L(ξ) = -2ξ and the eigenvalues are k(k+1), ∀k ∈ N. For Hermite polynomials (related to the gaussian distribution), Q(ξ) = 1, L(ξ) = -2ξ and λ k = 2k, ∀k ∈ N. As a consequence, we have

Q(ξ) d 2 dξ 2 + L(ξ) d dξ [u(x, t, v, ξ) -π p1D u(x, t, v, ξ)] = ∞ k=p1D+1 λ k φ k (ξ) u(x, t, v, X)φ k (X) dP X .
Since the derivative of u with respect to ξ are bounded in L 2 Θ up to order k by hypothesis (9), we have

∞ j=p1D+1 u(x, t, v, X)φ k (X) dP X 2 λ 2m j < ∞, ∀m ∈ {0, ..., k 2 }, ∀t ∈ [0, T ], (x, v) ∈ I. ( 22 
)
Finally, one has the bound for all t ∈ [0, T ], (x, v) ∈ I and ∀m ∈ {0, ...,

k 2 } u(x, t, v, •) -π p1D u(x, t, v, •) L ∞ (Θ) ≤ ∞ n=p1D+1 u(x, t, v, X)φ k (X) dP X φ n L ∞ (Θ) ≤ ∞ n=p1D+1 u(x, t, v, X)φ k (X) dP X 2 λ 2m n 1 2 ∞ n=p1D+1 φ n 2 L ∞ (Θ) λ 2m n 1 2 . ( 23 
)
The first sum is bounded, cf. [START_REF] Gerritsma | Time-dependent generalized polynomial chaos[END_REF]. The second term deserves some more attention.

Hypothesis 2 Without loss of generality (see (3) and the relative discussion), we can always consider that, up to change of variable (3), X is uniformly distributed and (φ L k ) k∈N are the Legendre polynomials. Under the previous condition, we have the bound [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF] 

∀n ∈ N φ L n L ∞ (Θ) ≤ C(n + 1) 1 2 . ( 24 
)
Remark 3.2 Note that in the above lines, care has been taken to have resort to hypothesis 2 the later possible. In practice, avoiding this change of variable is complex, especially if X is an unbounded random variable. In other words, we intensively used the fact that any unbounded random variable X (such that hypothesis 1 and condition (9) are fulfilled) can be mapped into an uniform one U. The theorem supposes performing, even in the gaussian case for X for example, a gPC development on the Legendre basis with respect to

U = F -1 G (X) where X → F G (X)
is the cumulative density function of the gaussian distribution. Theorem 1 does not really predict the behaviour of a Hermite-gPC based reduced model with X gaussian (even if they are known to perform well for many applications, see [START_REF] Ghanem | Stochastic Finite Elements: a Spectral Approach[END_REF]). To be able to conclude for an arbitrary random variable X5 , we would both need to show that φ X n L ∞ (Θ) is bounded and, more than bounded, grows with n less quickly than λ k n . In [START_REF] Levin | Bounds for orthogonal polynomials for exponential weights[END_REF], the authors study conditions on dP X to obtain bounds of φ X n (ξ) dP X dξ (ξ) L ∞ (Θ) defined on an unbounded space. Note that those bounds does not grow too fast with n, see [START_REF] Levin | Bounds for orthogonal polynomials for exponential weights[END_REF]. In other words, the equivalent of (24) for arbitrary weighted polynomials (φ X k dP X dξ ) k∈N may be at hand. But the crucial step remains to be able to go from [START_REF] Ghanem | Propagation of Uncertainty in Complex Physical Systems using a Stochastic Finite Elements Approach[END_REF] to an inequality involving φ X n (ξ) dP X dξ (ξ) L ∞ (Θ) . To our knowledge, this point is not straightforward but would stand for the last step to conclude of the spectral convergence of the gPC based reduced models without having resort to hypothesis 2. Avoiding it may lead to finer bounds for an arbitrary random vector X.

As a consequence, with the above (uniform/Legendre) hypothesis and ( 24), there exists a constantC k such that

u(x, t, v, •) -π P u(x, t, v, •) L ∞ (Θ) ≤ C k p k 1D (25) 
Finally, putting together ( 20)-( 25) and invoking Gronwall's theorem allows ending the proof of theorem 1.

In the following section, we present some numerical results. Most of them confirm the result of theorem 1. Some of them aim at going beyond it and tackle perspectives and open problems.

Numerical application

In this last section, we present some numerical results obtained from the resolution of P -truncated gPC reduced models. In sections 4.1 and 4.3, we consider simple (1D physical, 1D stochastic or 2D physical, 3D stochastic) configurations for which analytical solutions are available. With the construction of analytical solutions (sections 4.1 and 4.3), we aim at showing we can numerically recover the results of theorem 1 (spectral convergence, long-term behaviour, independently of the considered dimension). Due to this constraint6 , the test-cases may appear physically simple. The reader interested in more complex test-problems with some high dimensional resolutions of (4) can refer to [START_REF] Poëtte | A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation[END_REF]. In section 4.2, we consider a (2D physical, 1D stochastic) test-case for which, to our knowledge, no analytical solution is available. It shows that complex (non-analytical) configurations can be handled and that the fast convergence rate of the gPC reduced models can still be numerically observed. Finally, in the next sections, several numerical methods are used: analytical ODE resolution and explicit Euler scheme in sections 4.1 and 4.3, an MC scheme [START_REF] Poëtte | A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation[END_REF] in sections 4.2 and 4.3.1, an S n -like resolution (see [START_REF] Aussourd | Styx: a multidimensional AMR S N scheme[END_REF][START_REF] Du | Voronoi-based finite volume methods, optimal voronoi meshes, and pdes on the sphere[END_REF][START_REF] Chaland | Discrete ordinates method for the transport equation preserving onedimensional spherical symmetry in two-dimensional cylindrical geometry[END_REF]) in section 4.3.2. The diversity of numerical schemes aims at showing that the results of theorem 1 are independent of the resolution methods for system [START_REF] Cameron | The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals[END_REF].

A first simple homogeneous uncertain configuration

In this first numerical section, we compare the results obtained from P -truncated gPC reduced models to an analytical solution. We aim at numerically recovering the fast convergence rate demonstrated in theorem 1. The test-problem has already been introduced in [START_REF] Poëtte | A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation[END_REF] but we tackle it from a different point of view (convergence with respect to P here).

Let us consider a monokinetic (i.e. v = 1) homogeneous (i.e. u(x, t, v, X) = u(t, ω, X)) configuration. We assume the uncertainty, one-dimensional here for the sake of simplicity, affects the scattering cross-sections σ s = σ s + σs X, where X ∼ U[-1, 1]. Of course, σs is closely related to the variance of the uncertain scattering cross-section. Let us introduce U (t, X) = u(t, ω, X) dω. In the previously described configuration, the uncertain linear Boltzmann equation resumes to the following stochastic ordinary differential equation (ODE)

∂ t U (t, X) + vσ t U (t, X) = vσ s (X)U (t, X), U (0) = U 0 . ( 26 
)
Introduce σ a = σ tσ s , then the solution is given by The quantity U (t, X) is a random variable indexed by time t, i.e. it is a stochastic process. In this case, mean and variance of the stochastic process ( 27) can be computed analytically and are given by

U (t, X) = U 0 e -vσa(X)t = U 0 e -v(σt-σs-σsX)t = U 0 e -v(σa-σsX)t . ( 27 
M U 1 (t) = E[U (t, X)] = 1 2 U 0 e -vσat e v σst -e -v σst σs tv , M U 2 (t) = E[U 2 (t, X)] = 1 4 U 2 0 e -2vσat e 2v σst -e -2v σst σs tv , V[U ](t) = M U 2 (t) -(M U 1 (t)) 2 . (28) 
Of course, higher order moments, probability of failure, complete characterisation of the probability density function of the stochastic process can be calculated but in figure 1 we focus on the variance V[U ](t) to perform the convergence studies.

Our aim now is to compare the results obtained from a P -truncated gPC based reduced model and the analytical ones. In this particular configuration, the reduced model ( 10) resumes to a system of coupled ODEs

∂ t   U 0 (t) . . . U P (t)   = Σ a   U 0 (t) . . . U P (t)   , (29) 
with

Σ a =            P k=0 σ a φ 0 φ 0 dP X P k=0 σ a φ 0 φ P dP X . . . P k=0 σ a φ i φ j dP X . . . P k=0 σ a φ P φ 0 dP X P k=0 σ a φ P φ P dP X           
.

The solution of the above system is the exponential of matrix Σ a with initial condition (U 0 0 , ...., U 0 P ) t . It can be computed analytically with any algebraic computation software for arbitrary order P . Note that we also verified that the use of fine non intrusive resolution (with Gauss-Legendre points) gives equivalent results. The results presented in figure 1 compare the variance obtained from the analytical solution [START_REF] Guillaume | Couplage d'equations et homogeneisation en transport neutronique[END_REF] and the variance obtained from the analytical solution of (29). Figure 1 displays three curves:

-the first one corresponds to a convergence study with respect to P of the L 2 -norm of the error of U solution of ( 26) and U P = P k=0 U k φ k where (U 0 , ..., U P ) t is solution of [START_REF] Hien | Stochastic Finite Element Modeling in Linear Transient Heat Transfer[END_REF]. -The second one corresponds to a plot of function P -→ exp(-(0.19 1 P 2 + 1 P + 1)). -The last curve corresponds to the same convergence study except (U 0 , ..., U P ) t , solution of [START_REF] Hien | Stochastic Finite Element Modeling in Linear Transient Heat Transfer[END_REF], is obtained numerically. We use an explicit Euler scheme of time step ∆t = 10 -7 .

Note that in practice, we take v = 1, U 0 = 1, σ t = 1, σ s = 0.8, σs = 0.3. The first curve, the convergence study comparing the analytical solutions of ( 26) and ( 29), testifies of a fast converging behaviour of U P toward U as P increases. Machine accuracy is reached as soon as P = 10. The curve P -→ exp(-(0.19 1 P 2 + 1 P + 1)) perfectly fits the latter, up to order P = 10. It means the convergence rate observed here is even faster than the one predicted by theorem 1. Of course, theorem 1 has been proved in more general conditions. But the latter numerical result also probably shows the bounds of theorem 1 are not optimal, at least for homogeneous problems. The convergence study obtained from a numerically solved system (29) (figure 1 right) presents the same behaviour as the analytical convergence curve up to order P = 6: for higher truncation order, the solution is O(∆t) ≈ 10 -6 and P is not anymore the constraining parameter. Figure 2 presents the same kind of convergence studies for different final times T = 1, 5, 10, 20 and for different values of σ s controling the variability of the uncertainty in the scattering cross-section. (σ s = 0.8 for the left picture, σ s = 0.5 for the right one). Let us begin with figure 2 (left). It corresponds to the case σ t = 1, σ s = 0.8, σs = 0.3: for these values of cross-sections, there exists some realizations X such that σ s + σs X > σ t with P(σ s + σs X > σ t ) > 0. In other words, the medium can be multiplicative with a non-negligible probability. Figure 2 (left) presents the convergence studies obtained with the previous parameters for different final times T . Once again, we recover the behaviour predicted by theorem 1: first, spectral convergence is ensured independently of the final time T . Second, the later the final time T , the higher the error on the variance. Indeed, as ∀P ∈ {0, ..., 14}, the error for early times is lower than the error for later times: this puts forward the fact that the long-term behaviour (i.e. fast increase of the error with time) hinted at in the comments on theorem 1 in section 3 can occur in practice. Still, acceptable error remains reachable as, for example, P = 10 still ensures an accuracy below 10 -8 (which is two digits below the numerical error O(∆t) = 10 -6 for example). Figure 2 (right) presents the same convergence studies but with σ t = 1, σ s = 0.5, σs = 0.3: for these values of cross-sections, the set {X ∈ [-1, 1]|σ s + σs X > σ t } is such that P(σ s + σs X > σ t ) = 0. In other words, the medium can never be multiplicative, it is absorbing with probability 1. The convergence studies of figure 2 (right) tend to put forward the fact the coefficient in the exponential in ( 19) is negative whereas this possibility is not predicted by theorem 1. As a consequence, the error, in this case, decreases with time: for example, an accuracy of 10 -8 is reached as soon as P = 4 for T ≤ 20. In this simple uncertain configuration, the reduced models behave even better than predicted by [START_REF] Ernst | On the convergence of generalized polynomial chaos expansions[END_REF] in theorem 1: in other words, this test-case puts forward the fact that the bounds in theorem 1 are certainly not optimal in absorbing media. Figure 3 presents another kind of convergence study. It displays the reference solution X → U (X, T ) for final time T = 20 together with four gPC approximations X → U P (T, X) = P k=0 U k (T )φ k (X) obtained for P = 3, 6, 11, 15. Once again, the fast convergence is observed as only the coarser gPC approximation (P = 3) is discernable from the analytical solution. Above all, this study puts forward the fact that the gPC approximations do not necessarily preserve the positivity of the solution X → U (T, X): indeed, for P = 3, the gPC approximation goes under zero predicting a non-zero probability of having a negative density of particles. But thanks to the fast converging behaviour of U P with respect to P , positivity is recovered for higher orders (for this test-problem, as soon as P = 9). Of course, nothing ensures that P = 9 will be enough for later times t > T (cf. the remark on the longterm behaviour of gPC tackled in the previous paragraphs). It is difficult having an a priori idea of the necessary order to preserve positiveness but in practice, accurate results remain available for relatively small polynomial orders P on relevant statistical quantities (see [START_REF] Poëtte | A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation[END_REF] for complementary studies). Note that several interesting methods have been introduced in order to preserve certain properties of the system of interest (hyperbolicity, positiveness, maximum principle see [START_REF] Després | Robust Uncertainty Propagation in Systems of Conservation Laws with the Entropy Closure Method[END_REF][START_REF] Schlachter | A hyperbolicity-preserving stochastic galerkin approximation for uncertain hyperbolic systems of equations[END_REF][START_REF] Dürrwächter | A hyperbolicity-preserving discontinuous stochastic galerkin scheme for uncertain hyperbolic systems of equations[END_REF][START_REF] Kusch | Maximum-principle-satisfying second-order intrusive poly-nomial moment scheme[END_REF]) and may be combined to the material of this paper.

In the next section, we consider a test-case for which, to our knowledge, no analytical solution is available. We will have resort to the numerical scheme described in [START_REF] Poëtte | A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation[END_REF].

Taking into account uncertainties in the scattering cross-section

Let us now tackle a new test-problem for which an analytical solution is not available despite the relative simplicity of the configuration. Note that care has been taken to consider a configuration different from the ones of [START_REF] Poëtte | A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation[END_REF]. We aim at making this paper and [START_REF] Poëtte | A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation[END_REF] -We assume the particles are monokinetic with v = 1.

-Besides, we assume that the medium is only diffusive (no absorption, i.e. σ t = σ s ) and the cross-sections are deterministic. We choose σ s = σ t = 1.

-We here want to take into account uncertainties in the distribution of the scattering angle P , see expression [START_REF] Crestaux | Polynômes de Chaos pour la Propagation et la Quantification d'Incertitudes[END_REF]. Let us consider a monodimensional uncertain parameter (i.e. Q = 1) and assume it is uniformly distributed in [-1, 1], i.e. X ∼ U([-1, 1]). The uncertain parameter X affects the outer angular distribution. With the above hypothesis (monodimensional and monokinetic) we have P s (x, t, v, v , X) = P s (ω , X). Furthermore in this test-problem, we assume P s is not isotropic and uncertain. We assume we have

P s (ω , X) dω = 1 [0,U (X)] (ω ), where X -→ U (X) = 0.8 (X+1) 2 maps X in [-1, 1] into a uniformly distributed random variable U (X) in [0, 0.8].
As a consequence, the scattering is always anisotropic and depending on the realizations of X, the scattering angle can be sampled in a narrower band than [0, 0.8]. Note that ω -→ P s (ω , X) is positive and sums up to 1, ∀X ∈ [-1, 1]: it is always a probability density function and the scattering angle always has sense. The expression of the scattering angle distribution may appear singular for the reader familiar with the linear Boltzmann equation (neutronics or photonics for example). At this stage of the discussion, we can already explain it has been chosen simple (for ease of reproduction of the numerical results)..

-The initial condition is a Heaviside between 0 and 1 50 , i.e. we have a deterministic initial condition given by u 0 (x, ω) = 1 [0, 1 50 ] (x). In this particular case, (4) resumes to

   ∂ t u(x, t, ω, X) + vω∂ x u(x, t, ω, X) = -vσ s u(x, t, ω, X) + vσ s P s (ω , X)u(x, t, ω , X) dω , u(x, 0, ω) = u 0 (x) = 1 [0, 1 50 ] (x). ( 30 
)
Note that in the next study, we take specular boundary condition on both sides of domain D = [0, 1]. In other words, the particles hit walls with perfect reflection at x = 0 and x = 1. The computation has been made by the Monte-Carlo scheme described in [START_REF] Poëtte | A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation[END_REF]. It has N x = 50 cells, but they are only used for visualisation. The most important numerical parameter for such a numerical solver is the number of MC particles N M C = 2.8 × 10 7 (see [START_REF] Poëtte | A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation[END_REF] for more details on the resolution scheme). Figure 4 presents the numerical results obtained in this configuration. Let us introduce notation U (x, t, X) = u(x, t, ω, X) dω. Let us furthermore introduce ∀k ∈ {0, ..., P }

U k (x, t) = u k (x, t, ω) dω = u(x, t, ω, X)φ k (X) dP X dω. ( 31 
)
Then U P (x, t) = P k=0 U k (x, t)φ k (X) is an approximation of U (x, t) obtained from the numerical resolution of reduced model [START_REF] Brun | Patmos: A prototype monte carlo transport code to test high performance architectures[END_REF]. Approximations of the mean and variance are easily obtained from U P as we have

E[U ](x, t), V[U ](x,
E[U ](x, t) ≈ E[U P ](x, t) = U 0 (x, t), V[U ](x, t) ≈ V[U P ](x, t) = P k=1 U 2 k (x, t). (32) 
Many other classical statistical quantities can be obtained from post-treatments of the gPC coefficients, see [START_REF] Blatman | Efficient computation of global sensitivity indices using sparse polynomial chaos expansions[END_REF]. Some examples (Sobol indices) are given in [START_REF] Poëtte | A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation[END_REF]. Figure 4 (left) displays E[U P =7 ](x, t), V[U P =7 ](x, t) and N realizations of U P =7 (x, t, X) for N = 100 uniformly distributed (X i ) i∈{1,...,N } ∼ U([-1, 1]) for several times t ∈ {0.1, 0.5, 1.0, 2.0}. Note that on figure 4 (left), the left axis corresponds to the scale for the mean and the realizations whereas the right axis corresponds to the scale for the variance. Figure 4 (right) presents a convergence study with respect to P for the spatial profiles of the variance.

Let us first focus on figure 4 (left) and on a description of the test-case. The initial condition is deterministic and consists in a Heaviside of particles along the left wall. We begin by the description of the average behaviour, the mean E[U P =7 ](x, t). At time t = 0.1 (figure 4 top left), particles are evolving in the random medium. The bulk is propagating toward the right hand side but some particles remain in the vicinity of the wall due to the scattering they encounter. As time passes, the average population of particles goes toward the right wall and are reflected toward the center of the domain. From a variance point of view, uncertainties are affecting the particles as soon as t > 0. The area of highest variance remains in the vicinity of the left boundary but grows as the flow of particles propagates to the right hand side of domain D. This is all the more emphasized by the realisations of U P (x, t) on the same pictures: for the three earliest times t = 0.1, 0.5, 1.0, the front of the particle propagation has a zero variance. The positive variance is only in the wake of the particle flow. After the reshock on the right boundary, the whole domain is affected by a positive variance. The right column of figure 4 presents the variance of U P for P ∈ {2, ..., 7} for the same times. Once again, for early times, the convergence is fast: P ∈ {3, ..., 7} gives almost the same results, only the solution obtained from the P = 2-truncated reduced model presents a coarse behaviour at this time. As time increases, the differences between the several reduced model results become more and more visible. At time t = 2.0, the need for higher truncation orders P is visible. On this same picture, the fast convergence is noticeable, even without having access to an analytical solution, as the gaps between the solutions obtained with P and P + 1 are decreasing quickly with P .

Two multidimensional 5D (2D physical and 3D stochastic) test-case

In this section, we consider two multidimensional test-cases for which we can build analytical solutions. The configurations remain simple, despite the quite important number of dimensions and are probably not enough representative of physical applications (we refer to [START_REF] Poëtte | A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation[END_REF] for more relevant ones). But having access to analytical solutions allow verifying the results of theorem 1 are valid in higher dimensions.

A smooth 5D analytical problem

Let us begin by a smooth 5D (2D physical and 3D stochastic) problem and its description: we consider x = x ∈ D = [0, 2]. We assume the particles are monokinetic with v = 1. Besides, we assume that the scattering particles do not change directions: the medium can be absorbing or even multiplicative but we assume ( 13) is given by P s (ω, ω ) dω = δ ω (ω). In other words, a particle encountering a scattering event, (absorbing or multiplicative) does not change its direction. The uncertainty, in 3D stochastic dimension, affects the cross-sections as

-σ t (X) = σ t (X 1 , X 2 ) = (σ t + σt X 2 ) (η + ηX 1 ) , -σ s (X) = σ s (X 1 , X 3 ) = (σ s + σs X 3 ) (η + ηX 1 ) .
-In the expressions above, η(X) = η + η(X 1 ) acts like an unknown density of matter for example.

-We assume X = (X 1 , X 2 , X 3 ) t is a vector of independent uniform random variables on [-1, 1].

The initial condition is a Dirac at x 0 = 1, i.e. we have a deterministic initial condition given by u 0 (x, ω) = δ x0 (x). The cross-sections and the initial condition are such that (respectively) condition ( 9) and hypothesis 1 are fulfilled. The main trick in order to build an analytical solution comes from the fact we have P s (ω, ω ) dω = δ ω (ω ): in this particular case u solution of (4) verifies7 u(x, t, ω, X) = u 0 (xvωt, ω)e -vσa(X)t = δ x0 (xvωt)e -vσa(X)t , with σ a (X) = σ t (X)σ s (X). As a consequence,

U (x, t, X) = u(x, t, ω, X) dω = 1 [x0-vt,x0+vt] (x) vt e -vσa(X)t . (33) 
In practice, we choose -σ t = 1.0, σt = 1.1 so that there is a non-zero probability of having a multiplicative medium, -σ s = 0.0, σs = 0.0 so that the scattering cross-section is deterministic and X 2 has no influence, -η s = 1.0, ηs = 0.5 so that the density of matter is also uncertain.

With the above choice for σ s , the test-case is in fact only 2D stochastic (as X 2 is in fact multiplied by zero). But still, we solve it in 3D stochastic dimension, on purpose, as if not knowing that parameter X 2 is not influent. We will come back to the reason why we do this when commenting on figure 7. Figure 5 presents, at time T = 0.50, for several (randomly chosen) values of X:

(left) the reference solution x → U (x, t * , X) (given by ( 33)) together with its gPC approximations x → U P (x, t * , X) which, in the particular configuration of this section, is given by

U P (x, t, X) = 1 [x0-vt,x0+vt] (x) vt P k=0 U k (t)φ k (X), (34) 
where (U k (t)) k∈{0,...,P } solves [START_REF] Hien | Stochastic Finite Element Modeling in Linear Transient Heat Transfer[END_REF]. System ( 29) is solved by applying the same methodology as in section 4.1.

(right) the reference solution x → U (x, t * , X) together with its MC-i-gPC approximations x → U P M C (x, t, X), obtained by solving directly [START_REF] Cameron | The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals[END_REF] with an MC scheme (cf. [START_REF] Poëtte | A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation[END_REF]) with N M C = 8×10 7 MC particles.

The solutions x → U (x, t, X) and approximations x → U P (x, t, X) have Heaviside shapes with fluctuating plateaus. As times passes, the plateaus' levels are lower but the Heaviside shapes are wider. The analytical and gPC curves (figure 5 left) present a very good agreement 8 . This may appear astonishing for the reader familiar with the approximation of uncertain discontinuous solutions (and the appearance of Gibbs phenomenon for gPC, see [START_REF] Le Maître | Uncertainty Propagation using Wiener-Haar Expansions[END_REF][START_REF] Wan | Multi-Element generalized Polynomial Chaos for Arbitrary Probability Measures[END_REF][START_REF] Kusch | Filtered stochastic galerkin methods for hyperbolic equations[END_REF][START_REF] Dürrwächter | A hyperbolicity-preserving discontinuous stochastic galerkin scheme for uncertain hyperbolic systems of equations[END_REF][START_REF] Després | Robust Uncertainty Propagation in Systems of Conservation Laws with the Entropy Closure Method[END_REF]). The gPC approximations of figure 5 do not seem to suffer the appearance of spurious modes: this is because the solution is discontinuous only with respect to the physical variable x, see [START_REF] Kusch | Intrusive methods in uncertainty quantification and their connection to kinetic theory[END_REF]. the smoothness hypothesis ( 9) is in fact always fulfilled: theorem 1 should apply. This will be verified numerically with the convergence study of figure 6. Before switching to figure 6, let us focus on figure 5 (right): it presents MC approximations of the gPC reduced model for p 1D = 6 in the same configuration: the MC noise dominates the gPC error (see the fluctuations around the plateaus) testifying of a gPC convergence rate faster than the MC numerical resolution one (see [START_REF] Poëtte | A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation[END_REF] for more details). [START_REF] Kusch | Intrusive methods in uncertainty quantification and their connection to kinetic theory[END_REF], some gPC reduced models obtained from [START_REF] Kusch | Filtered stochastic galerkin methods for hyperbolic equations[END_REF] and some MC approximations of [START_REF] Cameron | The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals[END_REF], for several final times T = 0.25, 0.50, 0.75. Right: convergence study with respect to P = (p 1D + 1) Q=3 obtained with the analytical solution [START_REF] Kusch | Intrusive methods in uncertainty quantification and their connection to kinetic theory[END_REF] and some gPC reduced models obtained from [START_REF] Kusch | Filtered stochastic galerkin methods for hyperbolic equations[END_REF] for several final times T = 0.25, 0.50, 0.75. Figure 6 presents some convergence curves for the logarithm of the norm (15) of the error with respect to p 1D and with respect to P = (p 1D + 1) Q on this same problem for different times t = 0.25, 0.50, 0.75. The curves of figure 6 (left) allow numerically recovering the spectral convergence of the gPC approximation as predicted by theorem 1 (but in a multidimensional context): indeed, we have a linear curve p 1D → log ||u (p1D+1) Q (t)u(t)|| 2 L 2 (I×Θ) . Second, we recover the fact that as t increases, the error of the gPC reduced model deteriorates 9 as for a fixed p 1D , the error is bigger and bigger as time increases. On this same figure 6 (left) are displayed the same convergence study comparing the analytical solution [START_REF] Kusch | Intrusive methods in uncertainty quantification and their connection to kinetic theory[END_REF] to the MC approximations of the gPC reduced model [START_REF] Cameron | The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals[END_REF]: the error stagnates around ≈ 0.005 which typically corresponds to the MC discretisation error (O( 1

√ N M C ≈ 0.005), with N M C = 8×10 7
). For such MC discretisation, P = 3 is already below the MC numerical error. This fast gPC convergence is precious in an MC context, see [START_REF] Poëtte | A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation[END_REF]. The right picture of figure 6 presents the same study but with respect to P instead of p 1D . This picture attests that, in a multidimensional context, spectral convergence only holds with respect to p 1D and not P : the curves P → log ||u P (t)u(t)|| 2 L 2 (I×Θ) are sublinear. With this type of representation, it is easier having an idea of the increase in complexity of the gPC reduced model for a given accuracy (curse of dimensionality). Still, very good levels of accuracies can be reached for low polynomial orders in this case (errors below 10 -4 as soon as p 1D ≥ 4 and P ≥ (4 + 1) 3 = 125).

Let us finish this section by assuming that we would like to perform a sensitivity analysis: we would like to identify which of X 1 , X 2 or X 3 is the most influent on the total variability of the uncertain problem. For this, relative variance and Sobol indices are amongst the most relevant (but also costly) statistical tools, cf. [START_REF] Iooss | A Review on Global Sensitivity Analysis Methods[END_REF]. In a gPC framework, the variance and the relative variances of each parameters, denoted respectively by V[U ](x, t)] and (V i [U ](x, t)]) i∈{1,2,3,(1,2),(1,3),(2,3),(1,2,3)} , can easily be approximated thanks to the gPC coefficients as

V[U ](x, t)] ≈ V[U P ](x, t)] = P k=1 U 2 k (x, t) = s∈A p 1D ,Q \{0} U 2 s (x, t), V i [U ](x, t)] ≈ V i [U P ](x, t) = s∈Si U 2 s (x, t),
where S i is a subset of A p1D,Q (see [START_REF] Blatman | Efficient computation of global sensitivity indices using sparse polynomial chaos expansions[END_REF] for more details). So for all combinations i of the set {1, ..., Q}, t = 0.50 t = 0.75 S i ⊂ A p1D,Q . This means that from the spectral convergence10 of V[U P ] toward V[U ], we can expect spectral convergence of every V i [U P ] toward V i [U ]. Figure 7 (left) presents the time evolutions of the relative variances at x = 1, i.e. t → V i [U p1D=7 ](x = 1, t), for i ∈ {1, 2, 3}. We can immediately recover the fact that X 3 is not influent during the whole time period: its relative variance is zero for all times t ∈ [0, 1]. This means we can reduce the dimensionality of our problem and neglect X 3 11 : having access to such powerful statistical tools with a fast convergence is precious in industrial applications (more examples of this type can be found in [START_REF] Poëtte | A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation[END_REF]). On another hand, the same picture also allows identifying X 2 as the main parameter. Figure 7 (left) presents the time evolutions of the Sobol indices at x = 1. The Sobol indices and their respective gPC approximations are defined as follows: for all combinations i of the set {1, ..., Q}, we have

t → V[U](x = 1, t) t → V 1 [U](x = 1, t) t → V 2 [U](x = 1, t) t → V 3 [U](x = 1, t)
t → S 1,2 [U](x = 1, t) t → S 1 [U](x = 1, t) t → S 2 [U](x = 1, t) 0 
S i [U ](x, t) = V i [U ](x, t) V i [U ](x, t) ≈ S i [U P ](x, t) = V i [U P ](x, t) V i [U P ](x, t) .
Figure 7 (right) presents three areas corresponding to the relative importance of parameters X 1 , X 2 and their interactions (X 1 , X 2 ). Parameter X 2 , for early times t ∼ 0, explains almost 79% of the variance. Parameter X 1 explains a little bit more than 14% of this same variance and the interactions of X 1 , X 2 explains the remaining 6%. As time passes, X 1 and its interactions with X 2 are less and less influent.

In the next subsection, we slightly revisit this same test-case and show that a small change in the uncertain set-up can lead to completely different behaviours.

A discontinuous 5D problem

In this section, we consider a modification of the previous multidimensional test-problem. The only difference with section 4.3.1 comes from the fact that X 3 now models some uncertainty in the initial condition rather than in the scattering cross-section. The initial condition is now a Dirac at x 0 (X) = x 0 (X 3 ) = x 0 + x0 X 3 so that u 0 is given by u 0 (x, ω, X) = δ x0(X) (x) = δ 0 (xx 0 (X)). In practice, we choose -σ t = 1.0, σt = 1.1 as in section 4.3.1.

-σ s = 0.0, σs = 0.0 as in section 4.3.1 except that we now assume we know the scattering crosssection is zero whereas it was unknown in section 4.3.1.

-x 0 = 1.0, x0 = 0.1 so that the uncertain initial condition is a Dirac translated along the x-axis.

We assume X = (X 1 , X 2 , X 3 ) t is a vector of independent uniform random variables on [-1, 1]. Once again, an analytical solution can be built and is given by u(x, t, ω, X) = u 0 (xvωt, ω, X)e -vσa(X)t = δ x0(X) (xvωt)e -vσa(X)t , with σ a (X) = σ t (X)σ s (X). As a consequence,

U (x, t, X) = 1 [x0(X)-vt,x0(X)+vt] (x) vt e -vσa(X)t . (35) 
From the above expression, we can see that for this test-problem, both x → U (x, t, X) and X → U (x, t, X) can be discontinuous for (respectively) some values of (t, X) and of (x, t). Before commenting the figures of this section, let us briefly describe the numerical strategy to solve the gPC reduced model of this paragraph. For this, we intensively rely on the analogy between S n models 12 and the gPC reduced model [START_REF] Cameron | The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals[END_REF]. In the particular case of this section, [START_REF] Cameron | The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals[END_REF] 

  = 0,
profiles are similar except that the Heaviside shapes are now also translated along the x-axis. For this new test-problem, the gPC approximations do not anymore present the same levels of accuracy as encountered in section 4.3.1: the plateaus are well captured but some spurious oscillations are visible in the vicinities of the steep propagation fronts. Those spurious oscillations even lead to negative13 gPC reconstructions of the particle density U (see for example x around 0.5 in figure 8 (left)).

From [START_REF] Lapeyre | Méthodes de Monte Carlo pour les équations de transport et de diffusion[END_REF], we can check that X → U (x, t, X) is only in14 H 0 , ∀x ∈ [0, 2], ∀t > 0. We are not in the condition of theorem 1. Figure 9 (left) presents some convergence studies for the logarithm of the L 2 -norm (given by ( 15)) of the error with respect to p 1D . In this case, the convergence is sublinear. One may notice that the curves present an improvement with respect to time: the curve for the earliest times are above the curves for the later ones. This is mainly due to the fact that with time, the spatial vicinities in which X → U (x, t, X) is discontinuous have less and less weight (remember norm [START_REF] Després | Robust Uncertainty Propagation in Systems of Conservation Laws with the Entropy Closure Method[END_REF] is integrated on the whole spatial domain) relatively to the vicinities presenting a smooth behaviour. This is confirmed by the sensitivity analysis of figure 9 (right): initially, the most influent parameter at x = 1 is X 3 : the green area takes the whole volume [0, 0.1] × [0, 1]. But its importance suddenly drops after t = 0.1: after t = 0.1, the uncertainty in the propagation fronts do not have anymore impact at location x = 1 (remember that x0 = 0.1 and [0, vt] = [0, 0.1] for t ∈ [0, 0.1]). After time t = 0.1, X 2 suddenly becomes the most influent parameter (blue area) at location x = 1, followed by X 1 (yellow area) and their global interactions (purple area). We insist that in practice, gPC based reduced model remain usable in such non-smooth context: care must only be taken to focus on smooth observables to obtain fast convergence rates.

Conclusion and open problems

In this paper, we considered the linear Boltzmann equation subject to uncertainties in the initial conditions and model parameters. In order to solve the underlying uncertain problem, we relied on moment theory and the construction of gPC based reduced models. The main result of this paper is the proof of the spectral convergence of the gPC based reduced models of the uncertain linear Boltzmann equation. The long-term behaviour of gPC reduced models have been theoretically put forward. The fast convergence of the approximations has also been recovered numerically. The numerical testproblems have been built to allow emphasizing the limitations of the theoretical result proved in this paper: some bounds are probably not optimal and theorem 1 may be pessimistic, especially for absorbing media. Still, this is encouraging as it implies the numerical convergence is even faster than the expected one (if, of course, care is taken to focus on smooth observables).

We finally would like to finish on few questions related to the ones discussed in this paper which we think may be of importance: first, despite the fast convergence rate of the reduced models, no positivity results on the uncertain density of particles is ensured. In practice, we did not encounter any problems as our computations are accurate enough and the robustness of our algorithm, see [START_REF] Poëtte | A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation[END_REF], does not rely on such condition. But this does not ensure positivity in future computations and may be problematic for some applications. The second problem is the curse of dimensionality and the fact the bigger the dimension Q of the uncertain vector X, the more coefficients are to be estimated. This point is addressed in [START_REF] Poëtte | A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation[END_REF]: the curse of dimensionality is partly compensated by an astute use of a Monte-Carlo scheme (less sensitive to the dimension) together with the ingredient of this paper. The last point we suggest to tackle is closely related to remark 3.2. There is a lack of theory for non uniform input random variables with respect to spectral convergence. In practice, spectral convergence is observed in many physical domains with respect to any input distribution. But the problem of having polynomials on unbounded domains (typically, we can not use a majoration such as [START_REF] Ghanem | Ingredients for a General Purpose Stochastic Finite Element Formulation[END_REF] on an unbounded domain) makes the understanding more complex. Still, some results exists for L ∞ bounds in weighted spaces [START_REF] Levin | Bounds for orthogonal polynomials for exponential weights[END_REF] and future effort will probably be carried on in this direction.
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 12 Figure2: Left: convergence study with respect to P obtained with an analytical gPC reduced model and a numerically obtained one for parameters σ t = 1, σ s = 0.8, σs = 0.3 for several final times T = 1, 5, 10, 20. Right convergence study with respect to P obtained with an analytical gPC reduced model and a numerically obtained one for parameters σ t = 1, σ s = 0.5, σs = 0.3 for several final times T = 1, 5, 10, 20.

Figure 3 :

 3 Figure 3: Reference solution X → U (T, X) = U 0 e -v(σt-σs-σsX)T for final time T = 20 together with four gPC approximations for P = 3, 6, 11, 15.

  complementary. Let us present the detail of the next study: -let us consider x = x ∈ D = [0, 1].

Figure 4 :

 4 Figure4: All the results of this figure have been obtained applying the gPC-i-MC scheme of[START_REF] Poëtte | A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation[END_REF]. Left: time evolution of the mean and variance profiles together with 200 realisations recovered thanks to the use of P = 7-truncated gPC reduced model. Right: convergence studies on the variance of U with respect to P in the same condition as for the left column (time evolution of the profiles of the variance for P ∈ {2, ..., 7}.
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 5 Figure 5: Mean and realisation comparisons between the analytical reference solution and a gPC reduced model (p 1D = 10, P = 1000) for time t = 0.50 for a semi-analytical resolution (left) and for an MC resolution (solver of [50]) (right) for the multidimensional test-problem of section 4.3.1.
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 6 Figure6: Left: convergence study with respect to p 1D obtained with the analytical solution[START_REF] Kusch | Intrusive methods in uncertainty quantification and their connection to kinetic theory[END_REF], some gPC reduced models obtained from[START_REF] Kusch | Filtered stochastic galerkin methods for hyperbolic equations[END_REF] and some MC approximations of[START_REF] Cameron | The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals[END_REF], for several final times T = 0.25, 0.50, 0.75. Right: convergence study with respect to P = (p 1D + 1) Q=3 obtained with the analytical solution[START_REF] Kusch | Intrusive methods in uncertainty quantification and their connection to kinetic theory[END_REF] and some gPC reduced models obtained from[START_REF] Kusch | Filtered stochastic galerkin methods for hyperbolic equations[END_REF] for several final times T = 0.25, 0.50, 0.75.
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 7 Figure 7: Left: variance and amount of variance explained by X 1 , X 2 , X 3 with respect to time for the multidimensional test-problem of section 4.3.1. Right: Sobol indices for X 1 , X 2 and the couple (X 1 , X 2 ) with respect to time for the multidimensional test-problem of section 4.3.1.

Figure 8 :

 8 Figure 8: Mean and realisation comparisons between the analytical reference solution and a gPC reduced model (p 1D = 10, hence P = 1331) for times t = 0.50 (left), t = 0.75 (right) for the multidimensional test-problem of section 4.3.2.

At the cost of more or less tedious pretreatments leading to a controled approximation[START_REF] Todor | Karhunen-Loève approximation of random fields by generalized fast multipole methods[END_REF][START_REF] Meyer | Efficient model reduction in non-linear dynamics using the Karhunen-Loève expansion and dual-weighted-residual methods[END_REF] and decorrelation[START_REF] Lebrun | A Generalization of the Nataf Transformation to Distributions with Elliptical Copula[END_REF][START_REF] Lebrun | An Innovating Analysis of the Nataf Transformation from the Copula viewpoint[END_REF].

See (5) for the definition of L 1 (Θ).

It is only a renumerotation.

together with its associated polynomial basis (φ X k ) k∈N , orthonormal with respect to the scalar product defined by dP X .

i.e. being able to build an analytical solution.

It is built applying the characteristic method and intensively uses the fact that Ps(ω, ω )u(x, t, ω ) dω = δω(ω )u(x, t, ω ) dω = u(x, t, ω).

In a sense, this shows that the convergence is probably also pointwise in the random space for such smooth solutions. This fact has already been proven in[START_REF] Ernst | On the convergence of generalized polynomial chaos expansions[END_REF] in a non-intrusive context.

This echoes the previous discussions concerning the long-term behaviour of gPC but in a multidimensional context.

The L 2 -norm[START_REF] Després | Robust Uncertainty Propagation in Systems of Conservation Laws with the Entropy Closure Method[END_REF] ensures the convergence of the mean and the variance.

i.e. fix X 3 to its mean for example.

Note that this analogy between uncertainty quantification and kinetic theory is not original here, it has been highlighted in several works, see[START_REF] Kusch | Intrusive methods in uncertainty quantification and their connection to kinetic theory[END_REF][START_REF] Després | Robust Uncertainty Propagation in Systems of Conservation Laws with the Entropy Closure Method[END_REF][START_REF] Poëtte | Contribution to the mathematical and numerical analysis of uncertain systems of conservation laws and of the linear and nonlinear Boltzmann equation[END_REF].

cf. the previous discussions about the loss of positiveness on the fist test-problem of section 4.1.

Remember that theorem 1 demands u ∈ H k with k > 0 for the results to apply.

with Σ a as in [START_REF] Hien | Stochastic Finite Element Modeling in Linear Transient Heat Transfer[END_REF]. We can apply the characteristic method to rewrite the previous system as If we now integrate the above expression on time step [0, t] and introduce the vector of initial condition (u 0 (x, t = 0, ω), ..., u P (x, t = 0, ω) t = (u 0 0 (x, ω), ..., u 0 P (x, ω)) t , we get

If we now are interested, as in the previous section, in vector U (x, t) = (U 0 (x, t), ..., U P (x, t)) t , where ∀k ∈ {1, ..., P }, U k (x, t) = u k (x, t, ω) dω, then we have

.

The exponential of matrix is equivalent to solving (29) with x, ω, t as parameters and is solved as in section 4.1. The integration of the initial condition (u 0 0 (xvωt, ω), .., u 0 P (xvωt, ω)) t with respect to ω for the positions of interest x is performed with a fine (100 points) Gauss-Legendre quadrature rule (close to an S n model for a simple transport equation, see [START_REF] Aussourd | Styx: a multidimensional AMR S N scheme[END_REF][START_REF] Du | Voronoi-based finite volume methods, optimal voronoi meshes, and pdes on the sphere[END_REF][START_REF] Chaland | Discrete ordinates method for the transport equation preserving onedimensional spherical symmetry in two-dimensional cylindrical geometry[END_REF]).

Convergence study

Sensitivity analysis Figure 8 presents spatial profiles of the reference solution x → U (x, t, X) and the gPC approximations x → U P (x, t, X) obtained for p 1D = 10 (hence P = 1331) at two different times t = 0.50, 0.75 for 5 random realisations of X. The mean is also displayed. If we compare figure 8 and figure 5, the