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Spectral convergence of the generalized Polynomial Chaos

reduced model obtained from the uncertain linear Boltzmann

equation

Gaël Poëtte∗

April 4, 2019

Abstract

In this paper, we consider the linear Boltzmann equation subject to uncertainties in the initial
conditions and matter parameters (cross-sections/opacities). In order to solve the underlying un-
certain systems, we rely on moment theory and the construction of hierarchical moment models
in the framework of parametric polynomial approximations. Such model is commonly called a
generalised Polynomial Chaos (gPC) reduced model. In this paper, we prove the spectral conver-
gence of the hierarchy of reduced model parametered by P (polynomial order) obtained from the
uncertain linear Boltzmann equation.

1 Introduction

In this paper, we are interested in the linear Boltzmann equation recalled below ∂tu(x, t,v) + v · ∇xu(x, t,v) = −vσt(x, t,v)u(x, t,v) +

∫
vσs(x, t,v,v

′)u(x, t,v′) dv′,

u(x, 0,v) = u0(x,v).
(1)

It models the time-dependent problem of particle transport in a collisional media. We suppose trans-
port to be driven by the linear Boltzmann equation (1) for particles having position x ∈ D ⊂ R3,
velocity v ∈ V ⊂ R3, at time t ∈ [0, T ] ⊂ R+ and where the quantity u(x, t,v) ∈ Ω ⊂ R+ is the density
of presence of the particles at (x, t,v). In (1), we introduced the notation |v| = v to denote the norm
of the velocity v. Later on, we may also use ω = v

v , the unitary vector for the direction of the particles.
Equation (1) must come with proper boundary conditions for wellposedness [33, 25] but we omit them
for the sake of conciseness. In other words, the Cauchy problem (1) is valid in an infinite medium and
regular solutions can be expected [25, 9, 38, 48]. The left hand side of (1) will be hinted at as the
streaming counterpart of (1) whereas its right hand side will be called the collisional one. The above
equation is linear and can be used to model the behaviour of particles interacting with a background
media. The interaction of particles with matter is described through the macroscopic total interaction
probability of particles with media σt(x, t,v) and the scattering one σs(x, t,v,v

′). A solution of (1)
is called a deterministic solution.

Let us assume that the initial condition and the cross-sections are uncertain. It means that we
would like to solve (1) for many different values X of the initial condition and cross-sections. It is
common to make the dependence with respect to X explicit so that

u0 = u0(x,X) ∈ Ω and σα = σα(·, X) for α ∈ {s, t} and with X ∈ Θ ⊂ RQ. (2)
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The variable X ∈ Θ characterizes what is called the uncertainty, where the set Θ = (Θ,A,P) is
a probability space where Θ is the sample space, A is a σ-algebra and P a probability measure.
We assume X comes with its probability measure dPX . Note that without loss of generality in
the following sections, we consider that X is a vector X = (X1, ..., XQ)t of Q independent random

variables of probability measure dPX =
∏Q
i=1 dPXi : in theory, it is always possible to come back to

such framework1. Note also that dPX sums up to one, i.e.
∫

dPX = 1. Furthermore, without loss of
generality, X can be mapped into a vector of uniform random variables U = (U1, ...,UQ) on [0, 1]Q. As
a consequence, wherever one is willing to integrate any function2 f ∈ L1(Θ) with respect to measure
dPX , one can perform the change of variable∫

f(X) dPX =

∫
f(X(U)) dPU =

∫
f(X(u))1[0,1](u) du. (3)

As a consequence, it is not restrictive in the following to consider X is uniformly distributed as this is
always true up to a change of variable.
In some sense if one solves (1) for all different initial condition and cross-sections that correspond to
different X, then one exactly propagates the uncertainties. To fix the notations, system

∂tu(x, t,v, X) + v · ∇xu(x, t,v, X) = −vσt(x, t,v, X)u(x, t,v, X)

+

∫
vσs(x, t,v,v

′, X)u(x, t,v′, X) dv′,

u(x, 0,v, X) = u0(x,v, X),

(4)

for x ∈ D ⊂ R3,v ∈ V ⊂ R3, t ∈ [0, T ] ⊂ R+, X ∈ Θ ⊂ RQ will be called a uncertain problem. One
notices that different values of X correspond to different fully decoupled deterministic equations, so
in principle there is no difficulty in solving such uncertain problems. The whole problem comes from
the fact that exact propagation of uncertainties is very expensive from the computational point of
view: equation (1) is often solved thanks to a Monte-Carlo scheme [33, 48, 38, 8, 1, 41, 15, 46]. This
resolution method is known to be efficient for high (3(x) + 1(t) + 3(v) = 7) dimensional problems but
costly. This is emphasized, detailed and illustrated in [47]. In [47], a P -truncated gPC reduced model
has been introduced in order to solve (4). It is solved thanks to a astute Monte-Carlo resolution of the
gPC reduced model. Note that a similar approach has been developed for the Fokker-Planck equation
in [11]. In [47], fast convergence has been practically observed with respect to the truncation order
P . The aim of this paper is to explain this fast convergence and for this, in the following sections, we
prove the spectral convergence of the P−truncated gPC based reduced models obtained from (4).

The paper is organized as follows. In section 2, we present the P -truncated gPC reduced model of
interest here (and solved in [47]). In section 3, we prove the spectral convergence of the built reduced
model. In section 4, we present few numerical results confirming the theoretical results of section 3.
They are obtained with the resolution schemes presented in [47]. We finally conclude in section 5 with
emphasis on the remaining open questions.

2 The gPC reduced model obtained from the uncertain linear
Boltzmann equation (4)

The standard method to construct a gPC based reduced model is the following. We first define the
set of k integrable uncertain functions

LkΘ =

{
measurable functions X 7→ f(X) such that

∫
Θ

|f(ξ)|k dPX(ξ) <∞
}
. (5)

1At the cost of more or less tedious pretreatments leading to a controled approximation [51, 44, 49, 43] and decorre-
lation [35, 36].

2See (5) for the definition of L1(Θ).
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In particular, we focus on functions of L2(Θ). Under very general conditions [17, 19], there exists
a countable family of polynomials (φq)q∈N which are orthonormal with respect to the scalar product
defined by dPX . In other words, we have∫

Θ

φp(ξ)φq(ξ) dPX(ξ) =

∫
φpφq dPX = δpq,∀(p, q) ∈ N2.

At fixed t ∈ [0, T ] ⊂ R+,x ∈ D ⊂ R3 and v ∈ V ⊂ R3, it is natural to look for an approximation of
the solution u in the subspace (φk)k∈{0,...,P} generated by the first P + 1 polynomials of (φk)k∈N. It
is immediate to show that

uP =

P∑
q=0

uqφq with uq =

∫
uφq dPX , (6)

is such that ∫
Θ

(
u− uP

)2
dPX ≤

∫
Θ

(
u− vP

)2
dPX , ∀vP ∈ (φk)k∈{0,...,P}.

In other words, expansion (6) is the best one among all possible trials in (φk)k∈{0,...,P} with respect
to the L2

Θ norm. In order to compute the coefficients (uq)q∈{0,...,P}, one can use the fact that u
is the solution of an integro-differential equation with operators applying to t, x and v. The gPC
methodology consists in developing the unknown u of (4) on the polynomial basis

uP (x, t,v, X) =

P∑
q=0

uq(x, t,v)φq(X), (7)

and look for compatibility conditions on the coefficients (uk)k∈{0,...,P} for uP to be a good approxi-
mation of u. This is usually done by plugging (7) into (4) and by taking the moments of (4) against
each orthonormal components (φq)q∈{0,...,P}. The reader interested in efficient resolutions for different
physical applications is refered to [39, 40, 45, 34, 50, 13, 22, 29, 23, 42, 24, 27, 5, 7, 18, 58, 49, 21, 28,
52, 30, 31, 32, 16]. One finally obtains the moment model

∀q such that 0 ≤ q ≤ P,

∂tuq(x, t,v) + v · ∇xuq(x, t,v) = −v
∫ σt(x, t,v, X)

∑
k≤p

uk(x, t,v)φk(X)

φq(X) dPX

+

∫∫
v

σs(x, t,v,v′, X)
∑
k≤p

uk(x, t,v)φk(X)

φq(X) dPX

 dv′,

uq(x, 0,v) = u0,q(x,v).

(8)

Since u is scalar, system (8) is a system of (P + 1) equations. It is a closed system in the sense that it
has exactly (P + 1) equations and (P + 1) unknowns. In the following, system (8) will also be refered
as the P−truncated gPC reduced model of (1) with standard closure (7).

It is reasonable to expect that (8) is an accurate approximation of the uncertain initial problem for
large P � 1 (cf. Cameron-Martin’s Theorem [10] or some generalization [17]). In fact, for this system,
fast convergence rate have been practically observed in [47]. This paper is complementary to [47] in
the sense that we here demonstrate the fast convergence of the P−truncated reduced models instead
of only observing it via numerical experiments. We will indeed prove spectral accuracy under very
general hypothesis in the next section 3.
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3 Proof of spectral accuracy of the gPC reduced model

In this section we prove a result of spectral accuracy for the P -truncated gPC reduced models of the
uncertain linear Boltzmann equation (8). We use a comparison method between a general approxi-
mated solution and a smooth exact solution to establish this result. The idea is similar to what has
been proved in [14] for the scalar uncertain Burgers’ equation for early times except it is applied to
the uncertain linear Boltzmann equation which admits smoother solutions [25, 26, 3].

Let us assume the exact solution is smooth with respect to all variables

u ∈ L∞ (D × [0, T ]× V ×Θ) ∩ L∞
(
Dper × [0, T ]× Vb : Hk(Θ)

)
. (9)

In the above definition, Dper denotes a periodic spatial domain. Periodic boundary conditions are
considered only for convenience, without loss of generality. Furthermore, V is the space of velocities
and Vb recalls it is bounded (dealing with physical applications, the particles can not go beyond the
speed of light for example). Finally, for all k ∈ N we have

Hk(Θ) =

{
u ∈ L2

Θ|
∫ k∑

l=0

(u(l))2 dPX <∞
}
,

where u(l) denotes the lth derivative of u with respect to the uncertain variable. In other words, for
solution u(x, t,v, X), we have u(l)(x, t,v, ξ) = ∂lξu(x, t,v, ξ). The gPC reduced model of (1) of size
P + 1 is (we drop the dependencies for convenience)

∂tu0 + v · ∇xu0 = −v
∫ σt∑

k≤p

ukφk

φ0 dPX + v

∫∫ σs∑
k≤p

ukφk

φ0 dPX

 dv′,

. . . . . .

∂tuP + v · ∇xuP = −v
∫ σt∑

k≤p

ukφk

φP dPX + v

∫∫ σs∑
k≤p

ukφk

φP dPX

 dv′.

(10)
It is then possible to perform the scalar product (u0, ..., uP )t∂t(u0, ..., uP ) to obtain an additional
equation. Let us consider a smooth solution of (10), we get

∂t
∑P

r=0 u
2
r

2 + v · ∇x

∑P
r=0 u

2
r

2 =

−v
∫ P∑

q=0

(
σt

P∑
k=0

ukφk

)
uqφq dPX + v

∫∫ P∑
q=0

((
σs

P∑
k=0

ukφk

)
uqφq dPX

)
dv′.

(11)

After rearrangement of the collisional counterpart, it yields

∂t

P∑
r=0

u2
r

2
+ v · ∇x

P∑
r=0

u2
r

2
= −v

∑
0≤k,q≤P

∫
σtukφkuqφq dPX +

∑
0≤k,q≤P

v

∫∫
σsukφkuqφq dPX dv′. (12)

Let us introduce

σs(x, t,v, X) =

∫
σs(x, t,v,v

′, X) dv′ and define Ps(x, t,v,v
′, X) =

σs(x, t,v,v
′, X)

σs(x, t,v, X)
.

We have

Ps(x, t,v,v
′, X) > 0, ∀(x, t,v,v′, X) ∈ D × [0, T ]× V2 ×Θ,∫

Ps(x, t,v,v
′, X) dv′ = 1, ∀(x, t,v, X) ∈ D × [0, T ]× V ×Θ.

(13)
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The difference σa(x, t,v, X) = σt(x, t,v, X)− σs(x, t,v, X) corresponds to an absorption rate if posi-
tive, or a multiplication rate, if negative. We now suggested making few assumptions on the background
media in which the particles are evolving.

Hypothesis 1 ∀t ∈ [0, T ], ∀x ∈ Dper, ∀v ∈ Vb ⊂ R3, ∀X ∈ Θ

|vσt(x, t,v, X)| < Σt, |vσs(x, t,v, X)| < Σs.

In other words, we have

||vσt||L∞(I×Θ) = Σt <∞, ||vσt||L∞(I×Θ) = Σs <∞. (14)

The above hypothesis expresses the fact we consider a background media leading to a finite number of
collisions (term vσt) for every interval of times [0, T ] together with a finite multiplication rate (term
relative to vσs) in [0, T ]. Now, let us integrate (12) with respect to x, t,v on Dper× [0, T ]×Vb, and use
the above majorations. Let us define for convenience (we here introduce equivalent notations which
will be useful later on)

||uP (t)||2L2(Dper×Vb×Θ) = ||uP (t)||2L2(I×Θ),

=

∫∫ P∑
r=0

u2
r(x, t,v) dx dv,

=

∫∫∫ P∑
r=0

(ur(x, t,v)φr(ξ))
2

dx dv dPX(ξ),

=

∫∫∫ (
uP (x, t,v, X)

)2
dx dv dPX .

Integrating (12) with respect to x ∈ Dper and v ∈ Vb leads to

d

dt
||uP (t)||2L2(I×Θ)

≤ 2Σt

∫∫∫ P∑
k=0

u2
k + 2Σs

∑
0≤k,q≤P

∫∫ ∫∫
(uk(x, t,v′)φkuq(x, t,v)φq) dPX dv′ dv dx,

≤ 2Σt||uP (t)||2L2(I×Θ)

+2Σs
∑

0≤k,q≤P

∫ [∫ (∫
uk(x, t,v′) dv′

∫
uq(x, t,v) dv

)
dx

]
φkφq dPX ,

≤ 2Σt||uP (t)||2L2(I×Θ) + 2Σs

P∑
k=0

∫ (∫
uk(x, t,v) dv

)2

dx.

(15)

Finally, Jensen’s inequality ensures we have

∂t||uP (t)||2L2(I×Θ) ≤ 2(Σt + Σs)||uP (t)||2L2(I×Θ) (16)

Gronwall’s theorem allows obtaining the a priori bound∥∥uP (t)
∥∥
L2(I×Θ)

≤ e2(Σt+Σs)t
∥∥uP0 ∥∥L2(I×Θ)

. (17)

It is therefore natural to seek solutions of the uncertain linear Boltzmann equation in the space
L∞([0, T ] : L2(I ×Θ)). Here is the main result of this paper.

Theorem 1 (Convergence of the P−truncated gPC reduced model approximation) Spectral
accuracy holds in the following sense: for all k ∈ N such that u ∈ Hk(Θ), there exists a constant Dk

such that ∀t ∈ [0, T ]∥∥u(t)− uP (t)
∥∥2

L2(I×Θ)
≤ e2(Σt+Σs)t

(∥∥u0 − uP0
∥∥2

L2(I×Θ)
+ 2(Σs + Σt)t||u2

0||L2(I×Θ)
Dk

P k

)
. (18)
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Before prooving the above result, we would like to comment on it. Obviously, with hypothesis 1, we
have Σs + Σt ≥ 0. As a consequence, the term e2(Σt+Σs)t may be a fast increasing factor. So, first,

the term depending on the error on the initial condition, i.e. e2(Σt+Σs)t
∥∥u0 − uP0

∥∥2

L2(I×Θ)
, shows that

any small error on the initial condition can be exponentially amplified. On other words, care must
be taken to make sure the P -truncated approximation of the initial condition is accurate. The gPC
framework [54, 56, 60, 59, 17], in opposition to the PC one [57, 10, 24], has been introduced precisely
to this purpose: the initial polynomial basis must at least be able to fit accurately to the initial
uncertain condition to ensure a converging behaviour and avoid stagnation3. Second, the remaining
term, i.e. 2(Σs + Σt)te

2(Σt+Σs)t||u2
0||L2(I×Θ)

Dk

Pk , shows that even if care has been taken to make sure∥∥u0 − uP0
∥∥2

L2(I×Θ)
= 0, the error can still grow quickly with time. It can be theoretically compensated

with an increasing polynomial order P . The smoother the solution, the more efficient the increase of
P . The fact the gPC reduced models presents some difficulties with long term integration is also well-
known in the literature [55, 53, 20]: it is here theoretically recovered. Of course, in practice, increasing
P is not straightforward as the reduced models will be harder and harder to solve as P grows, especially
in high stochastic dimensions (this is commonly called the curse of dimensionality) [4, 5, 12]. Still, in
practice, with the following numerical example, we will show that the above bounds, even if enough
to prove the fast convergence of the gPC reduced models for the uncertain linear Boltzmann equation,
may be pessimistic and non-optimal. But before tackling numerical example, let us proove theorem 1.

Proof Assume u is a continuous solution of (4) and uP =
∑P
k=0 ukφk of the form (6) whose coefficients

(uq)q∈{0,...,P} solve (8). Then we suggest building an estimate of (we drop the dependencies for
conciseness)

∂t

∫
Θ

(uP − u)2

2
dPX =

∫
Θ

(
∂t

(uP )2

2
− uP∂tu− u∂tuP + ∂t

u2

2

)
dPX .

Unknowns u and (u0, ..., uP )t being strong solutions of (4) and (8), we have

∂t

∫
Θ

(uP − u)2

2
= −

∫
Θ

v · ∇x
u2

2
−
∫

Θ

vσtu
2 + v

∫
Θ

σsu

∫
u

+

∫
Θ

uPv · ∇xu+ v

∫
Θ

σtu
Pu− v

∫
Θ

σsu
P

∫
u

+

∫
Θ

uv · ∇xu
P + v

∫
Θ

σtu
Pu− v

∫
Θ

σsu

∫
uP

−
∫

Θ

v · ∇x
(uP )2

2
− v

∫
Θ

σt(u
P )2 + v

∫
Θ

σsu
P

∫
uP .

Integration with respect to x ∈ Dper,v ∈ Vb yields

d

dt

∫∫∫
Θ

(uP − u)2

2
= −

�������∫∫∫
Θ

v · ∇x
u2

2
−
∫∫∫

Θ

vσtu
2 + v

∫∫∫
Θ

σsu

∫
u

+

∫∫∫
Θ

uPv · ∇xu+

∫∫∫
Θ

vσtu
Pu− v

∫∫∫
Θ

σsu
P

∫
u

+

∫∫∫
Θ

uv · ∇xu
P +

∫∫∫
Θ

vσtu
Pu− v

∫∫∫
Θ

σsu

∫
uP

−
���������∫∫∫

Θ

v · ∇x
(uP )2

2
−
∫∫∫

Θ

vσt(u
P )2 + v

∫∫∫
Θ

σsu
P

∫
uP .

The terms in the above expression cancel due to the hypothesis of having periodic boundary conditions.

For the same reason we have

∫
Dper

uP∇xudx =
���������
∫
∂Dper

(uPu) · ndσ −
∫
Dper

u∇xu
P dx so that the

3Indeed, if
∥∥u0 − uP0

∥∥2

L2(I×Θ)
= C0 6= 0, then

∥∥u(t)− uP (t)
∥∥2

L2(I×Θ)
−→

P→∞
C0e2(Σs+Σt)t for fixed time t.
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previous expression becomes

d

dt

∫∫∫
Θ

(uP − u)2

2
= −

∫∫∫
Θ

vσtu
2 +

∫∫∫
Θ

vσsu

∫
u

+

∫∫∫
Θ

vσtu
Pu−

∫∫∫
Θ

vσsu
P

∫
u

+

∫∫∫
Θ

vσtu
Pu−

∫∫∫
Θ

vσsu

∫
uP

−
∫∫∫

Θ

vσt(u
P )2 +

∫∫∫
Θ

vσsu
P

∫
uP .

Let us now define πPu the orthogonal projector of u solution to (4) in L2(Θ) onto the space (φk)k∈{0,...,P}.
The previous expression can be equivalently rewritten

d

dt

∫∫∫
Θ

(uP − u)2

2
= −

∫∫∫
Θ

vσtu
2 +

∫∫∫
Θ

vσsu

∫
u

+

∫∫∫
Θ

vσtu
PπPu −

∫∫∫
Θ

vσsu
P

∫
πPu

+

∫∫∫
Θ

vσtu
PπPu −

∫∫∫
Θ

vσsπPu

∫
uP

−
∫∫∫

Θ

vσt(u
P )2 +

∫∫∫
Θ

vσsu
P

∫
uP .

Let us now rearrange the terms as

d

dt

∫∫∫
Θ

(uP − u)2

2
=

+

∫∫∫
Θ

vσt
(
2uP (πPu− u)− (uP − u)2

)
+

∫∫∫
Θ

vσs

(
(u− uP )

[∫
u−

∫
uP
])

+

∫∫∫
Θ

vσs

(
−uP

∫
(πPu− u)− (πPu− u)

∫
uP
)
.

From hypothesis (1), we obtain

d

dt

∫∫∫
Θ

(uP − u)2

2
≤ +2Σt

∣∣∣∣∫∫∫
Θ

uP (πPu− u)

∣∣∣∣ +Σs

∫∫
Θ

(∫
(u− uP )

)2

+Σt

∫∫∫
Θ

(uP − u)2 +2Σs

∣∣∣∣∫∫
Θ

(∫
uP
∫

(πPu− u)

)∣∣∣∣ .
From Jensen’s inequality, we have

d

dt

∫∫∫
Θ

(uP − u)2

2
≤ +2(Σt + Σs)

∫∫∫
Θ

(u− uP )2

2
+2Σt

∣∣∣∣∫∫∫
Θ

uP (πPu− u)

∣∣∣∣
+2Σs

∣∣∣∣∫∫
Θ

(∫
uP
∫

(πPu− u)

)∣∣∣∣ ,
to finally get (Hölder inequality)

d

dt

∥∥(u− uP )(t)
∥∥2

L2(I×Θ)
≤ +2(Σt + Σs)||(u− uP )(t)||2L2(I×Θ)

+2(Σt + Σs)||uP (t)||L2(I×Θ) × ||(πPu− u)(t)||L∞(I×Θ).

Let us now work on the last term of the previous expression. Thanks to (17), we are able to bound

d

dt

∥∥(u− uP )(t)
∥∥2

L2(I×Θ)
≤ +2(Σt + Σs)||(u− uP )(t)||2L2(I×Θ)

+2(Σt + Σs)e
2(Σs+Σt)t||uP0 ||L2(I×Θ) × ||πPu− u||L∞(I×Θ).

(19)
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This means it only remains to be able to deal with the L∞-norm the πPu− u to conclude.
In the following for simplicity of notations, we assume that X ∈ RQ=1, but the reasoning can be

carried on in any dimension at the price of more tedious calculations. Now, the truncation of the
expansion gives

u(x, t,v, X)− πPu(x, t,v, X) =

∞∑
n=P+1

φn(X)

∫
u(x, t,v, X)φn(X) dPX ,

Furthermore, orthonormal polynomials (φk)k∈{0,...,P} are known to be the eigenvectors of the eigen-
problem (see [2]) (

Q(ξ)
d2

dξ2
+ L(ξ)

d

dξ

)
φ(ξ) = λφ(ξ), (20)

where Q and L are respectively second and first order polynomials and λk = −k(k−1
2 Q′′ + L′),∀k ∈

N. For example, for Legendre polynomials, Q(ξ) = 1 − ξ2, L(ξ) = −2ξ and the eigenvalues are
k(k+1),∀k ∈ N. For Hermite polynomials (related to the gaussian distribution), Q(ξ) = 1, L(ξ) = −2ξ
and λk = 2k,∀k ∈ N. As a consequence, we have(

Q(ξ)
d2

dξ2
+ L(ξ)

d

dξ

)
[u(x, t,v, ξ)− πPu(x, t,v, ξ)] =

∞∑
k=P+1

λkφk(ξ)

∫
u(x, t,v, X)φk(X) dPX .

Since the derivative of u with respect to ξ are bounded in L2
Θ up to order k by hypothesis (9), we have

∞∑
j=P+1

[∫
u(x, t,v, X)φk(X) dPX

]2

λ2m
j <∞, ∀m ∈ {0, ..., bk

2
c}, ∀t ∈ [0, T ], (x,v) ∈ I. (21)

Finally, one has the bound for all t ∈ [0, T ], (x,v) ∈ I and ∀m ∈ {0, ..., bk2 c}

‖u(x, t,v, ·)− πPu(x, t,v, ·)‖L∞(Θ)

≤
∞∑

n=P+1

∣∣∣∣∫ u(x, t,v, X)φk(X) dPX
∣∣∣∣ ‖φn‖L∞(Θ)

≤
( ∞∑
n=P+1

[∫
u(x, t,v, X)φk(X) dPX

]2

λ2m
n

) 1
2
( ∞∑
n=P+1

‖φn‖2L∞(Θ)

λ2m
n

) 1
2

.

(22)

The first sum is bounded, cf. (21). The second term deserves some more attention. Without loss of
generality (see (3) and the relative discussion), we can always consider that, up to change of variable (3),
X is uniformly distributed and (φLk )k∈N are the Legendre polynomials. Under the previous condition,
we have the bound [2] ∀n ∈ N

‖φLn‖L∞(Θ) ≤ C(n+ 1)
1
2 . (23)

Remark 3.1 Note that in the above lines, care has been taken to have resort to the change of vari-
able (3) and Legendre polynomials the later possible. In practice, avoiding this change of variable is
complex, especially if X is an unbounded random variable. To be able to conclude for an arbitrary
random variable X4, we would both need to show that ‖φXn ‖L∞(Θ) is bounded and, more than bounded,

grows with n less quickly than λkn. In [37], the authors study conditions on dPX to obtain bounds of
‖φXn (ξ) dPX

dξ (ξ)‖L∞(Θ) defined on an unbounded space. Note that those bounds does not grow too fast

4together with its associated polynomial basis (φXk )k∈N, orthonormal with respect to the scalar product defined by
dPX .
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with n, see [37]. In other words, the equivalent of (23) for arbitrary weighted polynomials (φXk
dPX

dξ )k∈N
may be at hand. But the crucial step remains to be able to go from (22) to and inequality involving
‖φXn (ξ) dPX

dξ (ξ)‖L∞(Θ). To our knowledge, this point is not straightforwar but would stand for the last
step to conclude of the spectral convergence of the gPC based reduced models without having resort to
uniform random variable/Legendre polynomials. Avoiding having resort to change of variable (3) may
lead to finer bounds for an arbitrary random vector X.

As a consequence, with the above (uniform/Legendre) hypothesis and (23), there exists a constant Ck
such that

‖u(x, t,v, ·)− πPu(x, t,v, ·)‖L∞(Θ) ≤
Ck
P k

(24)

Finally, putting together (19)–(24) and invoking Gronwall’s theorem allows ending the proof of theorem
1. �

In the following section, we present few numerical results. Most of them confirms the result of
theorem 1. Some of them aim at going beyond it and tackle perspectives and open problems.

4 Numerical application

In this last section, we present few numerical results obtained from the resolution of P−truncated
gPC reduced models. In section 4.1, we consider a homogeneous configuration for which an analytical
solution is available. In section 4.2, we consider a test-case for which, to our knowledge, no analytical
solutions are available. The results are obtained thanks to the numerical scheme presented in [47].
Note that we here aim at emphasizing the fast convergence of the gPC based reduced models as
proved in theorem 1. For this, it enough considering monodimensional uncertain problems (i.e. Q =
1) and simple statistical observables such as the mean and the variance. The reader interested a
high dimensional resolution of (4) together with more exotic statistical observables (Sobol indices for
example, for sensitivity analysis) can refer to [47].

4.1 A first simple homogeneous uncertain configuration

In this first numerical section, we compare the results obtained from P−truncated gPC reduced models
to an analytical solution. We aim at numerically recovering the fast convergence rate demonstrated
in theorem 1. The test-problem has already been introduced in [47] but we tackle it from a different
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gPC
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Figure 1: Left: convergence study with respect to P obtained with an analytical solutiion of the gPC
reduced model. The plot also display the function P −→ exp(−(0.19 1

P 2 + 1
P + 1)). Right: convergence

study with respect to P obtained with numerically computed solution of the gPC reduced model.

point of view (convergence with respect to P here).
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Let us consider a monokinetic (i.e. v = 1) homogeneous (i.e. u(x, t,v, X) = u(t, ω,X)) configura-
tion. We assume the uncertainty, one-dimensional here for the sake of simplicity, affects the scattering
cross-sections σs = σs + σ̂sX, where X ∼ U [−1, 1]. Of course, σ̂s is closely related to the variance of
the uncertain scattering cross-section. Let us introduce U(t,X) =

∫
u(t, ω,X) dω. In the previously

described configuration, the uncertain linear Boltzmann equation resumes to the following stochastic
ordinary differential equation (ODE){

∂tU(t,X) + vσtU(t,X) = vσs(X)U(t,X),
U(0) = U0.

(25)

Introduce σa = σt − σs, then the solution is given by

U(t,X) = U0e
−vσa(X)t = U0e

−v(σt−σs−σ̂sX)t = U0e
−v(σa−σ̂sX)t. (26)

The quantity U(t,X) is a random variable indexed by time t, i.e. it is a stochastic process. In this
case, mean and variance of the stochastic process (26) can be computed analytically and are given by

MU
1 (t) = E[U(t,X)] = 1

2U0e
−vσat

evσ̂st − e−vσ̂st

σ̂stv
,

MU
2 (t) = E[U2(t,X)] = 1

4U
2
0 e
−2vσat

e2vσ̂st − e−2vσ̂st

σ̂stv
,

V[U ](t) = MU
2 (t)− (MU

1 (t))2.

(27)

Of course, higher order moments, probability of failure, complete characterisation of the probability
density function of the stochastic process can be calculated but in figure 1 we focus on the variance
V[U ](t) to perform the convergence studies.
Our aim now is to compare the results obtained from a P−truncated gPC based reduced model and
the analytical ones. In this particular configuration, the reduced model (10) resumes to a system of
coupled ODEs

∂t

 U0(t)
. . .
UP (t)

 = Σa

 U0(t)
. . .
UP (t)

 , (28)

with

Σa =



P∑
k=0

∫
σaφ0φ0 dPX

P∑
k=0

∫
σaφ0φP dPX

. . .

P∑
k=0

∫
σaφiφj dPX . . .

P∑
k=0

∫
σaφPφ0 dPX

P∑
k=0

∫
σaφPφP dPX


.

The solution of the above system is the exponential of matrix Σa with initial condition (U0
0 , ...., U

0
P )t.

It can be computed analytically with any algebraic computation software for arbitrary order P . Note
that we also verified that the use of fine non intrusive resolution (with Gauss-Legendre points) gives
equivalent results. The results presented in figure 1 compare the variance obtained from the analytical
solution (27) and the variance obtained from the analytical solution of (28). Figure 1 displays three
curves:

– the first one (on both figure 1 left and right) corresponds to a convergence study with respect to

P of the L2-norm of the error of U solution of (25) and UP =
∑P
k=0 Ukφk where (U0, ..., UP )t is

solution of (28).
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– The second one (on both figure 1 left and right) corresponds to a plot of function P −→
exp(−(0.19 1

P 2 + 1
P + 1)).

– The last curve (only on figure 1 right) corresponds to the same convergence study except
(U0, ..., UP )t, solution of (28), is obtained numerically. We use an explicit Euler scheme of
time step ∆t = 10−7.

Note that in practice, we take v = 1, U0 = 1, σt = 1, σs = 0.8, σ̂s = 0.3. The first curve, the
convergence study comparing the analytical solutions of (25) and (28), testifies of a fast converging
behaviour of UP toward U as P increases. Machine accuracy is reached as soon as P = 10. The curve
P −→ exp(−(0.19 1

P 2 + 1
P + 1)) perfectly fits the latter, up to order P = 10. It means the convergence

rate observed here is even faster than the one predicted by theorem 1. Of course, theorem 1 has been
proved in more general conditions. But the latter numerical result also probably shows the bounds
of theorem 1 are not optimal, at least for homogeneous problems. The convergence study obtained
from a numerically solved system (28) (figure 1 right) presents the same behaviour as the analytical
convergence curve up to order P = 6: for higher truncation order, the solution is O(∆t) ≈ 10−6 and
P is not anymore the constraining parameter.

σt = 1, σs = 0.8, σ̂s = 0.3 σt = 1, σs = 0.5, σ̂s = 0.3
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Figure 2: Left: convergence study with respect to P obtained with an analytical gPC reduced model
and a numerically obtained one for parameters σt = 1, σs = 0.8, σ̂s = 0.3 for several final times
T = 1, 5, 10, 20. Right convergence study with respect to P obtained with an analytical gPC reduced
model and a numerically obtained one for parameters σt = 1, σs = 0.5, σ̂s = 0.3 for several final times
T = 1, 5, 10, 20.

Figure 2 presents the same kind of convergence studies for different final times T = 1, 5, 10, 20
and for different values of σs controling the variability of the uncertainty in the scattering cross-
section. (σs = 0.8 for the left picture, σs = 0.5 for the right one). Let us begin with figure 2
(left). It corresponds to the case σt = 1, σs = 0.8, σ̂s = 0.3: for these values of cross-sections, there
exists some realizations X such that σs + σ̂sX > σt with P(σs + σ̂sX > σt) > 0. In other words, the
medium can be multiplicative with a non-negligible probability. Figure 2 (left) presents the convergence
studies obtained with the previous parameters for different final times T . Once again, we recover the
behaviour predicted by theorem 1: first, spectral convergence is ensured independently of the final
time T . Second, the later the final time T , the higher the error on the variance: ∀P ∈ {0, ..., 14}, the
error for early times is lower than the error for later times. Still, acceptable error remains reachable as,
for example, P = 10 still ensures an accuracy below 10−8 (which is two decades below the numerical
error O(∆t) = 10−6 for example). Figure 2 (right) presents the same convergence studies but with
σt = 1, σs = 0.5, σ̂s = 0.3: for these values of cross-sections, the set {X ∈ [−1, 1]|σs + σ̂sX > σt}
is such that P(σs + σ̂sX > σt) = 0. In other words, the medium can never be multiplicative, it is
absorbing with probability 1. The convergence studies of figure 2 (right) tend to put forward the fact
the coefficient in the exponential in (18) is negative whereas this possibility is not predicted by theorem
1. As a consequence, the error, in this case, decreases with time: for example, an accuracy of 10−8
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is reached as soon as P = 4 for T ≤ 20. In this simple uncertain configuration, the reduced models
behave even better than predicted by (18) in theorem 1.

In the next section, we consider a test-case for which, to our knowledge, no analytical solution is
available. We will have resort to the numerical scheme described in [47].

4.2 Taking into account uncertainties in the scattering cross-section

Let us now tackle a new test-problem for which an analytical solution is not available despite the
relative simplicity of the configuration. Note that care has been taken to consider a configuration
different from the ones of [47]. We aim at making this paper and [47] complementary.

Let us present the detail of the next study:

– let us consider x = x ∈ D = [0, 1].

– We assume the particles are monokinetic with v = 1.

– Besides, we assume that the medium is only diffusive (no absorption, i.e. σt = σs) and the
cross-sections are deterministic. We choose σs = σt = 1.

– We here want to take into account uncertainties in the distribution of the scattering angle P , see
expression (13). Let us consider a monodimensional uncertain parameter (i.e. Q = 1) and assume
it is uniformly distributed in [−1, 1], i.e. X ∼ U([−1, 1]). The uncertain parameter X affects
the outer angular distribution. With the above hypothesis (monodimensional and monokinetic)
we have Ps(x, t,v,v

′, X) = Ps(ω
′, X). Furthermore in this test-problem, we assume Ps is not

isotropic and uncertain. We assume we have

Ps(ω
′, X) dω′ = 1[0,U(X)](ω

′),

where X −→ U(X) = 0.8 (X+1)
2 maps X in [−1, 1] into a uniformly distributed random variable

U(X) in [0, 0.8]. As a consequence, the scattering is always anisotropic and depending on the
realizations of X, the scattering angle can be sampled in a narrower band than [0, 0.8]. Note that
ω′ −→ Ps(ω

′, X) is positive and sums up to 1, ∀X ∈ [−1, 1]: it is always a probability density
function and the scattering angle always has sense. The expression of the scattering angle
distribution may appear singular for the reader familiar with the linear Boltzmann equation
(neutronics or photonics for example). At this stage of the discussion, we can already explain
it has been chosen simple (for ease of reproduction of the numerical results) and so that the
convergence behaviour (this will be emphasized later on) is not too fast (see remark 4.1).

– The initial condition is a Heaviside between 0 and 1
50 , i.e. we have a deterministic initial condition

given by u0(x, ω) = 1[0, 1
50 ](x).

In this particular case, (4) resumes to ∂tu(x, t, ω,X) + vω∂xu(x, t, ω,X) = −vσsu(x, t, ω,X) + vσs

∫
Ps(ω

′, X)u(x, t, ω′, X) dω′,

u(x, 0, ω) = u0(x) = 1[0, 1
50 ](x).

(29)

Note that in the next study, we take specular boundary condition on both sides of domain D = [0, 1].
In other words, the particles hit walls with perfect reflection at x = 0 and x = 1. The computation has
been made by the Monte-Carlo scheme described in [47]. It has Nx = 50 cells, but they are only used
for visualisation. The most important numerical parameter for such a numerical solver is the number
of MC particles NMC = 2.8× 107 (see [47] for more details on the resolution scheme).
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Figure 3 presents the numerical results obtained in this configuration. Let us introduce notation
U(x, t,X) =

∫
u(x, t, ω,X) dω. Let us furthermore introduce ∀k ∈ {0, ..., P}

Uk(x, t) =

∫
uk(x, t, ω) dω =

∫∫
u(x, t, ω,X)φk(X) dPX dω. (30)

Then UP (x, t) =
∑P
k=0 Uk(x, t)φk(X) is an approximation of U(x, t) obtained from the numerical

resolution of reduced model (8). Approximations of the mean and variance are easily obtained from
UP as we have

E[U ](x, t) ≈ E[UP ](x, t) = U0(x, t),

V[U ](x, t) ≈ V[UP ](x, t) =

P∑
k=1

U2
k (x, t).

(31)

Many other classical statistical quantities can be obtained from post-treatments of the gPC coefficients,
see [6]. Some examples (Sobol indices) are given in [47].

Figure 3 (left) displays E[UP=7](x, t), V[UP=7](x, t) and N realizations of UP=7(x, t,X) for N =
100 uniformly distributed (Xi)i∈{1,...,N} ∼ U([−1, 1]) for several times t ∈ {0.1, 0.5, 1.0, 2.0}. Note that
on figure 3 (left), the left axis corresponds to the scale for the mean and the realizations whereas the
right axis corresponds to the scale for the variance. Figure 3 (right) presents a convergence study with
respect to P for the spatial profiles of the variance.

Let us first focus on figure 3 (left) and on a description of the test-case. The initial condition is
deterministic and consists in a Heaviside of particles along the left wall. We begin by the description
of the average behaviour, the mean E[UP=7](x, t). At time t = 0.1 (figure 3 top left), particles are
evolving in the random medium. The bulk is propagating toward the right hand side but some particles
remain in the vicinity of the wall due to the scattering they encounter. As time passes, the average
population of particles goes toward the right wall and are reflected toward the center of the domain.
From a variance point of view, uncertainties are affecting the particles as soon as t > 0. The area
of highest variance remains in the vicinity of the left boundary but grows as the flow of particles
propagates to the right hand side of domain D. This is all the more emphasized by the realisations
of UP (x, t) on the same pictures: for the three earliest times t = 0.1, 0.5, 1.0, the front of the particle
propagation has a zero variance. The positive variance is only in the wake of the particle flow. After
the reshock on the right boundary, the whole domain is affected by a positive variance. The right
column of figure 3 presents the variance of UP for P ∈ {2, ..., 7} for the same times. Once again, for
early times, the convergence is fast: P ∈ {3, ..., 7} gives almost the same results, only the solution
obtained from the P = 2-truncated reduced model presents a coarse behaviour at this time. As time
increases, the differences between the several reduced model results become more and more visible.
At time t = 2.0, the need for higher truncation orders P is visible. On this same picture, the fast
convergence is noticeable, even without having access to an analytical solution, as the gaps between
the solutions obtained with P and P + 1 are decreasing quickly with P .

Remark 4.1 Note that this test-case, with uncertainties affecting the angular scattering, has been
introduced to be able to observe a gain with respect to increasing orders P : in the test-cases of [47],
the convergence is so fast that all truncation orders are converged for small values of P .

5 Conclusion and open problems

In this paper, we considered the linear Boltzmann equation subject to uncertainties in the initial
conditions and model parameters. In order to solve the underlying uncertain problem, we relied on
moment theory and the construction of gPC based reduced models. The main result of this paper is the
proof of the spectral convergence of the gPC based reduced models of the uncertain linear Boltzmann
equation. The long-term behaviour of gPC reduced models have been theoretically put forward. The
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E[U ](x, t),V[U ](x, t) and realisations of
U(x, t,X) for P = 7

V[U ](x, t),∀P ∈ {2, ..., 7}
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Figure 3: All the results of this figure have been obtained applying the gPC-i-MC scheme of [47]. Left:
time evolution of the mean and variance profiles together with 200 realisations recovered thanks to
the use of P = 7-truncated gPC reduced model. Right: convergence studies on the variance of U with
respect to P in the same condition as for the left column (time evolution of the profiles of the variance
for P ∈ {2, ..., 7}.

fast convergence of the approximations has also been recovered numerically. The numerical test-
problems have been built to allow emphasizing the limitations of the theoretical result proved in
this paper: some bounds are probably not optimal and theorem 1 may be pessimistic, especially for
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absorbing media. Still, this is encouraging as it implies the numerical convergence is even faster than
the expected one.

We finally would like to finish on few questions related to the ones discussed in this paper which we
think may be of importance: first, despite the fast convergence rate of the reduced models, no positivity
results on the uncertain density of particles is ensured. In practice, we did not encounter any problems
as our computations are accurate enough and the robustness of our algorithm, see [47], does not rely
on such condition. But this does not ensure positivity in future computations and may be problematic
for some applications. The second problem is the curse of dimensionality and the fact the bigger
the dimension Q of the uncertain vector X, the more coefficients are to be estimated. This point is
addressed in [47]: the curse of dimensionality is partly compensated by an astute use of a Monte-Carlo
scheme (less sensitive to the dimension) together with the ingredient of this paper. The last point
we suggest to tackle is closely related to remark 3.1. There is a lack of theory for non uniform input
random variables with respect to spectral convergence. In practice, spectral convergence is observed in
many physical domains with respect to any input distribution. But the problem of having polynomials
on unbounded domains (typically, we can not use a majoration such as (23) on an unbounded domain)
makes the understanding more complex. Still, some results exists for L∞ bounds in weighted spaces
[37] and future effort will probably be carried on in this direction.
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