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Control Induced Time-Scale Separation for
Multi-Terminal High Voltage Direct Current

Systems Using Droop Control
Yijing Chen, Miguel Jiménez Carrizosa, Gilney Damm, Françoise Lamnabhi-Lagarrigue, Ming Li and Yan Li

Abstract—This paper introduces a control induced time-scale
separation scheme for a multi-terminal high voltage direct
current system, used for large scale integration of renewable
energy sources. The main idea is to provide a detailed theoretical
analysis, to the long stand practice that consists of empirical
design of two control loops for the terminals. Experience has
shown that such loops, i.e. current and voltage control loop,
when heuristically tuned, often display very different dynamics.
In the present paper, singular perturbation theory is applied
to give explanation and fundamental analysis on why and how
the two control loops work, and how to achieve the timescale
separation between various state variables. Mathematical analysis
is also carried out to illustrate a clear trade-off between system
performance (actuator constraint) and the size of the region
of attraction of the controller. Numerical simulations for a
system with four terminals are presented to evaluate the system
performance and illustrate the theoretical analysis.

Index Terms—Droop control, power systems stability, singular
perturbation, multi-terminal VSC-HVDC systems.

I. INTRODUCTION

W ITH the rapid development of semiconductor devices,
multi-terminal high voltage direct current (MTDC)

systems based on voltage source converter (VSC) technology
have become more and more attractive. Due to their flexibility
and controllability, such systems are particularly applicable to
the integration of scattered renewable energy sources, such
as offshore wind farms, solar plants etc, to the mainland
grids [1], [2], [3], [4], [5]. Taking physical considerations into
account, the operation range of MTDC systems is limited by
the DC voltage which must be kept within a narrow domain
of operation [6], [7].

Various DC voltage control strategies are reported in the
literature [8], [9], [10], [11], [12], [13], [14]. This paper mainly
focus on droop control method [9], [12], [14], [15], [16], [17],
[18], which is usually characterized by power vs DC voltage
(P vs U ) or current vs DC voltage (I vs U ) curves. In a DC
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voltage droop control scheme, more than one terminal is used
to regulate the DC voltage where the droop gains specify the
system operation in steady-state condition and have a great
effect on the system transient performance.

Different methodologies of choosing droop gains have
been investigated. In [19], a criterion for tuning the droop
gains based on the performance specifications is proposed.
Reference [15] develops an adaptive droop control scheme
according to each terminal’s available spare capacity. However,
prior studies are usually under the unproven assertion that the
dynamics of the inductor currents are much faster than the
dynamics of the DC network. Therefore, the currents through
the converters are assumed to equal their references and then,
the dynamic interaction between AC and DC sides of the
converters can be neglected. Unfortunately, this assertion, is
rarely verified in detail. Acknowledging this fact, the present
paper will explore and explain the conditions and limitations
of this assertion. To achieve this goal, a full theoretical analysis
of the time-scale separation between the system state variables
is carried out based on singular perturbation theory [20], which
is widely used in the context of the dynamic analysis of
power systems [21], [22], [23], [24]. Furthermore, sufficient
conditions on the control gains are derived to ensure the
locally asymptotic system stability by using Lyapunov theory.
Moreover, a trade-off between the system performance and the
region of attraction is also presented in the analysis.

The remainder of this paper is outlined as follows. An
MTDC system with a generic DC grid topology is modeled
in Section II. In Section III, we define the control operation
and introduce the control scheme. The main contribution of
this paper is presented in Section IV. A detailed theoretical
analysis is carried out by means of singular perturbation and
Lyapunov theories, from which the system in steady-state
condition is discussed and the sufficient conditions on the
control gains for stability and time-scale separation are also
established. In Section V, numerical simulations for an MTDC
system with four terminals are presented to illustrate the
theoretical analysis. Conclusions and future work are drawn
in Section VI.

Notation: For a matrix A ∈ Rn×m, Aij is the element
of A in the ith row and the jth column. A(:, i) and A(j, :)
denote the ith column and the jth row of A, respectively. A
diagonal matrix A ∈ Rn×n is represented by A = diag(ai),
i = 1, · · · , n. A(l : s, k : h) is a submatrix of A where A(l :
s, k : h)ij = A(l+i−1)(k+j−1). Given a set of matrix Ak ∈
Rmk×mk , k = 1, · · · , n and N =

∑n
k=1mk, A = diag(Ak)
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Fig. 1. A simplified configuration of the ith GVSC terminal.

represents A ∈ RN×N where A(1 : m1, 1 : m1) = A1 and
A(
∑k−1
j=1 mj+1 :

∑k
j=1mj ,

∑k−1
j=1 mj+1 :

∑k
j=1mj) = Ak,

for k = 2, · · · , n, and the other elements of A are zero. The
transpose of A is denoted by AT . rank(A) means the rank
of A. 0n×m ∈ Rn×m represents the zero matrix, with all its
elements equal zero. The zero vector is denoted by 0n ∈ Rn.
For x = [x1 · · · xn]T ∈ Rn, ||x|| =

√
x21 + · · ·+ x2n.

For A ∈ Rn×n, ||A|| =
√
λmax(AHA) where AH is the

conjugate transpose of A and λmax(·) represents the maximum
eigenvalue of matrix (·). Dx ⊂ Rn denotes the safe operating
domain of variable x ∈ Rn, which is convex. We define the
sets N = {1, · · · , N}, M = {1, · · · ,M}, L = {1, · · · , L},
P = {1, · · · , P}, MN = {1 + N, · · · ,M + N} and
T = {1, · · · , N + M + P}. Unless otherwise noted, i, j,
k and h denote “∀ i ∈ N ”, “∀ j ∈ M”, “∀ k ∈ L” and “∀
h ∈ P”, respectively. x̄ represents the value of x in steady-
state condition and the initial value of x is denoted by x(t0).
The prescribed value of the variable x is denoted as xo. Any
complex matrix A can be expressed as A = H(A) + S(A)
where H(A) = 1/2(A + AH) is a hermitian matrix and
S(A) = 1/2(A − AH) is an anti-hermitian matrix. R(A)l
is a reduced matrix by deleting the lth row of matrix A.

II. MODELING OF AN MTDC SYSTEM

In this paper, we consider an MTDC system composed
of N grid connected VSC (GVSC) terminals, M wind farm
connected VSC (WVSC) terminals and a generic DC grid
topology. The AC side of all converters connected to the
MTDC system is modeled in a synchronously rotating ref-
erence dq frame. By convention, the active power on the AC
side and the current through the phase reactor are positive if
they flow from the AC side to the DC side via the VSC.

A. GVSC terminal modeling

A similar method as in [25] for modeling the GVSC
terminal in a dq reference frame is briefly described in this
section. The configuration of the ith GVSC is shown in Fig.
1 where the currents igi,dq flow through the phase reactor
made up of an aggregated resistance Rgi and an aggregated
inductance Lgi . The AC network is modeled by an ideal three-
phase AC source represented by vsgi,dq at the frequency fgi .
According to Kirchhoff’s circuit laws, the dynamics of igi,dq
can be expressed by:

digid
dt = −Rgi

Lgi
igid + ωgiigiq +

vsgid
Lgi
− ucgi

2Lgi
Mgid

digiq
dt = −Rgi

Lgi
ilq − ωgiigid +

vsgiq
Lgi
− ucgi

2Lgi
Mgiq

(1)

Fig. 2. A simplified configuration of the jth WVSC terminal.

where Mgi,dq are the modulation indices for the converter
control [26] and ωgi = 2πfgi . For the sake of simplicity, the
rotating angle of Park’s transformation is usually chosen such
that the d-axis is aligned to the phase a of AC voltage, which
results in vsgid = Vgi.rms and vsgiq = 0 where Vgi.rms is the
root mean square value of AC network voltage. In addition,
the active and reactive power flows at the

Pgi =
3

2
vsgidigid, Qgi = −3

2
vsgidigiq (2)

B. WVSC terminal modeling

Figure 2 depicts a simplified configuration of the jth WVSC
terminal where the wind farm is modeled as a controlled
current source represented by Iwj ,dq [25], [27]. A simple
capacitor Cfwj

operates as a high frequency AC filter, used
to eliminate unacceptable harmonics.

Similar to the modeling of GVSC, the dynamics of the dq
current iwj ,dq flowing into the phase reactor represented by a
resistance Rwj

and an inductance Lwj
are given by:

diwjd

dt = −Rwj

Lwj
iwjd + ωwj iwjq +

vswjd

Lwj
− ucwj

2Lwj
Mwjd

diwjq

dt = −Rwj

Lwj
iwjq − ωwj

iwjd +
vswjq

Lwj
− ucwj

2Lwj
Mwjq

(3)

The AC voltages at the PCC, vswj ,dq , are modeled by:

dvswjd

dt = ωwj
vswjq + 1

Cfwj
(Iwjd − iwjd)

dvswjq

dt = −ωwj
vswjd + 1

Cfwj
(Iwjq − iwjq)

(4)

with ωwj
= 2πfwj

. In addition, the frequency fwj
can be

freely set since there is no need to synchronize the rotor
frequency with the general grid frequency.

The active and the reactive power at the PCC are expressed
as:

Pwj
= 3

2 (vswjdiwjd + vswjqiwjq)
Qwj= 3

2 (vswjqiwjd − vswjdiwjq)
(5)

Remark 1: Taking physical considerations into account, all
the modulation indices Mdq are limited by M2

d +M2
q ≤ 1. In

addition, the active power of the wind farm Pwj are always
non-negative, i.e. Pwj ≥ 0.

C. DC grid modeling

We consider a generic DC network topology formed by
N GVSC nodes, M WVSC nodes, P intermediate nodes
and L transmission branches [19]. Each node is characterized
by its corresponding DC voltage (ucgi , ucwj , ucth ) and DC
capacitor (Cgi , Cwj

, Cth ). The transmission line lk is modeled
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Fig. 3. An example of the DC grid.

by a lumped π-equivalent circuit consisting of an aggregated
resistance and an aggregated inductance (Rck + jLck ). The
branch current of lk is denoted as ick . Every branch is used to
connect two adjacent nodes and every node can be connected
to a number of transmission lines. An example of such DC grid
with two GVSC nodes (ucg1,2 ), two WVSC nodes (ucw1,2

),
three intermediate nodes (uct1,2,3 ) and seven branches (ick ,
k = 1, · · · , 7) is depicted in Fig. 3 .

To better understand the properties of the DC network, we
analyze its topology with the help of graph theory. In this pa-
per, we study a class of DC networks which can be represented
by a weakly connected directed graph G without self-loops.
This graph is labeled by G = (V,E). V = {V1, V2, V3}
is the set of the vertices where V1 = {v1, · · · , vN}, V2 =
{vN+1, · · · , vN+M} and V3 = {vN+M+1, · · · , vN+M+P }
correspond to the N GVSC nodes, the M WVSC nodes and
the P intermediate nodes, respectively. E = {e1, · · · , eL} is
the set of the edges mapped to the L circuit branches. The inci-
dence matrix of G = (V,E) is denoted by H ∈ R(N+M+P )×L

and its element in the lth row and the kth column, i.e. Hlk,
satisfies

Hlk =



1 if the branch current of ek flows
into the node vl,

− 1 if the branch current of ek flows
from the node vl,

0 otherwise.

(6)

In general, the incidence matrix H of the weakly connected
directed graph G without self-loops has the following features:

• Since the directed graph G is weakly connected, the
numbers of the vertices and the edges must satisfy
L ≥ (N +M + P )− 1.

• Every edge (transmission line) can only connect two
vertices (nodes) and hence, each column of H has only
two non-zero elements, 1 and −1.

Based on the above characteristics, we have the following
results whose proofs are referred in [28], [29].

Lemma 1: The vectors H(1, :), H(2, :), ..., H(N+M+P, :)
are linearly dependent and the rank of H is N +M +P − 1.
In addition,

∑N+M+P
i=1 H(i, :) = 0TL .

Lemma 2: If any one row is removed from H , for example,
H(l, :), l ∈ T , we obtain a reduced incidence matrix R(H)l
whose rank is still N+M+P−1. It means that the remaining
(N +M + P − 1) row vectors are linearly independent.

Considering the lumped π-circuit model [30], the dynamics
of the DC grid can be written in matrix expression form:

ż = Az + ϑ (7)

where z, ϑ ∈ RN+M+P+L are given by:

z = [ucg1 · · ·ucgN ucw1
· · ·ucwM

uct1 · · ·uctP ic1 · · · icL ]T

ϑ = [
icg1
Cg1
· · · icgN

CgN

icw1

Cw1

· · · icwM

CwM

0T(P+L)]
T

The matrix A is of the form:

A =

[
0(N+M+P )×(N+M+P ) C−1H

−L−1HT −L−1R

]
(8)

where C ∈ R(N+M+P )×(N+M+P ) and L,R ∈ RL×L are
the capacitor, inductance and resistance matrices respectively,
which are given by:

C = diag(Cg1 · · ·CgN Cw1
· · ·CwM

Cp1 · · ·CpP )

L = diag(Lc1 · · ·LcL), R = diag(Rc1 · · ·RcL)

Due to the power balance on both sides of the converters, icgi
and icwj can be deduced as:

icgi =
Pg,i
ucgi

=
3(vsgidigid + vsgiqigiq)

2ucgi
=

3vsgidigid
2ucgi

(9)

icwj
=
Pw,j
ucwj

=
3(vswjdiwjd + vswjqiwjq)

2ucwj

(10)

while the losses of the phase reactor and the semiconductors
are neglected [31], [32].

Remark 2: In [26], it is indicated that the operation of the
converter is only valid in a limited region. If the operation is
beyond the safe operating region, it will damage the device
(for example, the DC voltage exceeds a maximum value).
Therefore, we restrict the next theoretical analysis to a finite
safe operating region where igi,dq ∈ Digi,dq , iwj ,dq ∈ Diwj,dq

,
ucgi ∈ Ducgi

, ucwj
∈ Ducwj

, ucth ∈ Ducth
and ick ∈ Dick .

III. VSC OPERATION AND CONTROL STRUCTURE

A. VSC operation

To ensure the normal operation of windfarm connections
via the DC grid, all of the WVSCs are required to keep their
AC voltage magnitudes and frequencies constant at the PCCs.
This can be achieved by regulating vswj ,dq at their setpoints
voswj ,dq

[27]. Since the semiconductor devices in VSC are
very sensitive to overvoltage, it is very important to restrict
the DC voltage to an acceptable band. To control the DC
voltage, the present work uses a droop strategy [33], which
is widely applied in the context of control of MTDC systems.
This control method has the advantage of sharing the duty
of eliminating the power imbalance of the DC grid between
several terminals. Additionally, it takes actions only based on
local information without remote communication. In our case,
we consider that every GVSC terminal is equipped with the
DC droop controller. Moreover, the reactive powers of all
the GVSCs at the PCCs, i.e. Qgi , are required to track the
reference values Qogi .
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B. Control structure
The proposed control structure is inspried on the so called

vector control method [27], [34]. This control strategy widely
used in industry is commonly applied to the VSCs and has the
advantage of a simple design procedure. The control design
consists of two loops, i.e. a fast and a slow control loop. The
reference sent to the fast control loop is derived from the slow
control loop. It is assumed that the dynamics of state variables
in the fast control loop are much faster than the dynamics of
the state variables in the slow control loop. Because of this
dynamic separation in different time scales, the two loops can
be designed separately. We have a similar approach as in [19],
[27] for building the control structure.

1) Design of the fast control loop: As described in (1) and
(3), the control inputs M(·),dq are directly collocated with the
dq currents i(·),dq . Hence, a sub-controller can be developed
such that i(·),dq quickly converge to their reference trajectories
i∗(·),dq yet to be designed.

We first define the dq current tracking errors by:

eigi,dq = igi,dq − i∗gi,dq
eiwj,dq

= iwj ,dq − i∗wj ,dq

With the introduction of the integral tracking errors eIigi,dq and
eIiwj,dq

, an augmented dq current subsystem is then generated
by:

deIigid
dt = eigid

deigid
dt = −Rgi

Lgi
igid + ωgiigiq +

vsgid
Lgi

−Mgid
ucgi

2Lgi
− di∗gid

dt
deIigiq
dt = eigiq

deigiq
dt = −Rgi

Lgi
igiq − ωgiigid +

vsgiq
Lgi

−Mgiq
ucgi

2Lgi
− di∗giq

dt
deIiwjd

dt = eiwjd

deiwjd

dt = −Rwj

Lwj
iwjd + ωwj iwjq +

vswjd

Lwj

−mwjd
ucwj

2Lwj
−

di∗wjd

dt
deIiwjq

dt = eiwjq

deiwjq

dt = −Rwj

Lwj
iwjq − ωwj iwjd +

vswjq

Lwj

−Mwjq
ucwj

2Lwj
−

di∗wjq

dt

(11)

In practice, the dynamics of i∗gi,dq and i∗wj ,dq
are usually

neglected and considered as slow compared to igi,dq and
iwj ,dq . Thus, the modulation indices can then be designed as:

Mgid =
2Lgi

ucgi
(−Rgi

Lgi
igid + ωgiigiq +

vsgid
Lgi

+k1gideigid + k2gideIigid)

Mgiq =
2Lgi

ucgi
(−Rgi

Lgi
igiq − ωgiigid +

vsgiq
Lgi

+k1giqeigiq + k2giqeIigiq )

Mwjd =
2Lwj

ucwj
(−Rwj

Lwj
iwjd + ωwj

iwjq +
vswjd

Lwj

+k1wjdeiwjd
+ k2wjdeIiwjd

)

Mwjq =
2Lwj

ucwj
(−Rwj

Lwj
iwjq − ωwj

iwjd +
vswjq

Lwj

+k1wjqeiwjq
+ k2wjqeIiwjq

)

(12)

with positive control gains k1,2gi,dq and k1,2wj ,dq .
Remark 3: It is clear that the equilibrium (the origin) of

the augmented dq current subsystem (11) is exponentially
stable under the sub-controller (12) when i∗gi,dq and i∗wj ,dq

are constant or slowly varying.
2) Design of slow control loop: The main task of the

slow control loop is to provide the slowly varying dq current
references to the fast control loop. Most importantly, the dq
current references need to be designed such that all control
objectives are achieved. Since the operations of GVSCs and
WVSCs are different, the design principles of i∗gi,dq and i∗wj ,dq

are also different. Assuming that iwj ,dq quickly converge to
their reference trajectories i∗wjdq

under the sub-controller (12),
the AC voltage dynamics (4) of the wind farm at the PCC
become:

dvswjd

dt = ωwjvswjq + 1
Cfwj

(Iwjd − i∗wjd
)

dvswjq

dt = −ωwj
vswjd + 1

Cfwj
(Iwjq − i∗wjq)

(13)

where i∗wjdq
can be viewed as the control inputs. We call

(13) the reduced model of (4) since the dynamics of iwj ,dq

are neglected and iwj ,dq are replaced by i∗wj ,dq
. The control

objective of WVSCs is to keep vswj ,dq at their reference values
voswj ,dq

in spite of variations in the power productions of the
wind farms. We then want to develop i∗wj ,dq

in such a way
that vswj ,dq in (13) can be controlled at voswj ,dq

. Similar to
the design procedure of the fast control loop, we define the
output tracking errors of voltage at the PCC as:

evswj,dq
= vswj ,dq − voswj ,dq (14)

We then augment (13) by taking the integral tracking errors
into account:
deIvswjd

dt = evswjd

devswjd

dt = 1
Cfwj

(Iwjd + Cfwj
ωwj

vswjq − i∗wjd
)−

dvoswjd

dt
deIvswjq

dt = evswjq

devswjdq

dt = 1
Cfwj

(Iwjq − Cfwjωwjvswjd − i∗wjq)−
dvoswjq

dt

(15)
Since the prescribed values voswj ,dq

are constant, we have
dvoswj,dq

dt = 0. Finally, i∗wj ,dq
can be designed as:

i∗wjd
= Iwjd + Cfwj (k1djevswjd

+ k2djeIvswjd
+ ωwjvswjq)

i∗wjq= Iwjq + Cfwj
(k1qjevswjq

+ k2qjeIvswjq
− ωwj

vswjd)
(16)

with positive k1,dqj and k2,dqj such that the equilibrium of the
augmented model (15) is exponentially stable.

As mentioned in the foregoing part, in order to protect the
components of the VSCs, the DC voltage must be maintained
within a narrow safe operating region during the power
transmission process. This can be achieved in the case that
each GVSC terminal is equipped with a droop controller.
Therefore, all GVSC terminals participate in the regulation
of the DC voltage in case of power imbalance. The droop
control is usually expressed by DC voltage versus active power
characteristic [33]:

Pgi = P ogi +Kdi(u
o
cgi − ucgi) (17)
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where uocgi and P ogi refer to the reference values of DC voltage
and active power respectively. The droop gain Kdi is the
ratio of the change in DC voltage to the change in active
power. According to (17), the varying reference for igid can
be expressed by:

i∗gid = iogid − kdi(ucgi − u
o
cgi) (18)

where iogid is obtained from (2) and expressed as:

iogid =
2P ogi

3vsgid

In addition, the relation between Kdi and kdi is given by:

kdi =
2

3

1

vsgid
Kdi

Considering Qgi in (2), the reactive power can be directly
regulated by igiq . Hence, i∗giq can be designed as:

i∗giq = −2

3

Qogi
vsgid

, iogiq (19)

Remark 4: All of the setpoints, i.e. uocgi , P
o
gi Qogi and

voswj ,dq
, are provided by a higher level controller. Their choice

should consider several factors [33], [35]. It is still an open
issue to set the proper values for these setpoints so that the
power flow of the MTDC system in steady-state condition
corresponds to the predetermined one from the power flow
dispatch. This problem is out of scope of this paper but can
be referred in [7]. In this paper, these setpoints are considered
as known constants and hence,

dvoswj,dq

dt in (15) are equal to
zero.

Remark 5: In Remark 3, when i∗(·),dq are slowly varying,
i(·),dq can quickly converge to the quasi-steady states i∗(·),dq .
As seen in (16), (18) and (19), in order to obtain slowly
varying i∗(·),dq , the dynamics of vswj ,dq and z should be slow
enough comparing to i(·),dq . It is obvious that the dynamics
of vswj ,dq and z strongly relay on k1,dqj , k2,dqj and kdi . We
infer that vswj ,dq and z could be slowly varying by properly
tuning k1,dqj , k2,dqj and kdi . This will be verified in Section
IV.

IV. THEORETICAL ANALYSIS

The control design concept presented in the previous section
is mainly based on the assumption that a dynamic separation
in time scales is possible to be imposed between the fast and
slow control loops. As a consequence, z and vswj ,dq can be
considered as constant in the fast control loop, while the dq
currents can be replaced by their references in the slow control
loop.

In this section, we give a detailed theoretical analysis to
demonstrate the validity of the time-scale separation assump-
tion by means of singular perturbation theory. Furthermore,
sufficient conditions on the control gains for ensuring the
system stability are also derived based on Lyapunov theory.

A. Equilibrium Analysis

Before going further, we give a brief analysis of the equi-
libruim point. Substituting the controller composed by (12),
(16) , (18) and (19) into the plant model described by (1),
(3), (4) and (7) leads to the following augmented closed-loop
system:

deIigid
dt = eigid
digid
dt = −k1gideigid − k2gideIigid

deIigiq
dt = eigiq
digiq
dt = −k1giqeigiq − k2giqeIigiq

deIiwjd

dt = eiwjd

diwjd

dt = −k1wjdeiwjd
− k2wjdeIiwjd

deIiwjq

dt = eiwjq

diwjq

dt = −k1wjqeiwjq
− k2wjqeIiwjq

deIvswjd

dt = evswjd

dvswjd

dt = −k1djevswjd
− k2djeIvswjd

−
eiwjd

Cfwj
deIvswjq

dt = evswjq

dvswjq

dt = −k1qjevswjq
− k2qjeIvswjq

−
eiwjq

Cfwj

ż= Az + ϑ

(20)

It will be more convenient in the following analysis to divide
ϑ into two parts as:

ϑ = ϑg + ϑw

Recalling icgi in (9), icwj in (10), i∗wj ,dq
in (16) and i∗gi,dq in

(18), (19), the new variables ϑg and ϑw are given by:

ϑg = ϑg1 + ϑg2 + ϑg3

ϑw = ϑw1
+ ϑw2

+ ϑw3
+ ϑw4

with

ϑg1(i)=


3

2Cgi

vsgidi
o
gid

+ vsgiqi
o
giq

ucgi
, i ∈ N

0. otherwise

ϑg2(i)=

 −
3

2Cgi
vsgidkdi

ucgi − uocgi
ucgi

, i ∈ N

0. otherwise

ϑg3(i)=


3

2Cgi

vsgideigid + vsgiqeigiq
ucgi

, i ∈ N

0. otherwise

and

ϑw1
(j +N)=


3

2Cwj

voswjd
Iwjd + voswjqIwjq

ucwj

, j ∈M

0. otherwise

ϑw2(j +N)=



3

2Cwj

[
voswjd

Cfwjωwjevswjq
+ evswjd

Iwjd

ucwj

+
evswjq

Iwjq − voswjqCfwjωwjevswjd

ucwj

]
,

j ∈M
0. otherwise
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ϑw3
(j +N)=



3

2Cwj

[
vswjd(k1djevswjd

+ k2djeIvswjd
)

ucwj

+
vswjq(k1qjevswjq

+ k2qjeIvswjq
)

ucwj

]
,

j ∈M
0. otherwise

ϑw4(j +N)=


3

2Cwj

vswjdeiwjd
+ vswjqeiwjq

ucwj

, j ∈M

0. otherwise

Remark 6: It is obvious that, if the dq currents quickly enter
their respective manifolds, i.e. eigi,dq → 0 and eiwj,dq

→ 0,
ϑg3 and ϑw4

converge to zero. Moreover, ϑw2
and ϑw3

also
go to zero as evswj,dq

→ 0. These results are helpful for the
theoretical analysis in the next part.

When the closed-loop system (20) is in the steady-state
condition, the following algebraic equations

Az̄ + ϑ̄g + ϑ̄w = 0 (21)

must hold where the notation (̄·) denotes the steady-state value
of the variable or vector (·).

Since P ogi = 3/2(vsgidi
o
gid

+ vsgiqi
o
giq), ϑ̄g and ϑ̄w can be

then expressed as:

ϑ̄g(i)=


P 0
gi + 3

2kdivsgidu
o
cgi

Cgi ūgi
− 3vsgid

2Cgi
kdi , i ∈ N

0. otherwise

ϑ̄w(j +N)=


P owj

Cwj
ucwj

, j ∈M

0. otherwise
(22)

where we introduce the new variable:

P owj
= 3/2(voswjdIwjd + voswjqIwjq)

Remark 7: From the algebraic equation (21), it can be
seen that: a) Prescribed setpoints (·)o; b) DC grid topology;
c) Droop gains kdi , determine the steady-state values of the
system variables and the distribution of efforts for the power
sharing in case of power imbalance. The control gains k1gi,dq ,
k2gi,dq , k1wj ,dq , k2wj ,dq , k1,dqj and k2,dqj have no effect on
the steady state of the system. However, solving equation (21)
is not easy and is not considered in this paper. More details
about this issue can be referred in [9], [33].

To ensure the operating feasibility of the MTDC system,
we assume that īgidq , īwjdq , ūcgi , ūcwj

, ūcth and īck exist
and belong to their respective safe operating domains. The
equilibrium of the closed-loop system is denoted by S̄.

Remark 8: In stead-state condition, From the droop law (17),
we have:

P̄gi = P ogi +Kdi(u
o
cgi − ūcgi) (23)

Consider that the MTDC system initially (t = t0) operates in
a steady-state condition, if the production of the wind farms
increases at the instant t1, this makes the GVSCs absorb more
power from the DC grid. When the MTDC system achieves
a new steady state at t2, we have P̄gi(t2) < P̄gi(t0) (for

example, P̄gi(t0) = −100 MW and P̄gi(t2) = −200 MW).
According to (23), we can deduce that the DC voltage also
rises to a new level and that ūgi(t2) > ūgi(t0). It can be
summarized that ucgi will rise if more power is injected into
the DC grid, and vice versa. This statement will be illustrated
by numerical simulations in Section V.

B. Multi-time-scale dynamics

In this part, a theoretical analysis to describe the dynamic
separation in time-scales is carried out. We present that
two different dynamics are created by the designed control
algorithm in Section III. In particular, the two time-scales are
quantified by the fast control gains k1gi,dq , k2gi,dq , k1wj ,dq

and k2wj ,dq .
In order to make the analysis convenient, we perform a

change of variables. Then, the first eight equations of the
closed-loop system (20) can be rewritten as:

deIigid
dt = eigid

deigid
dt = −k1gideigid − k2gideIigid −

di∗gid
dt

deIigiq
dt = eigiq

deigiq
dt = −k1giqeigiq − k2giqeIigiq −

di∗giq
dt

deIiwjd

dt = eiwjd

deiwjd

dt = −k1wjdeiwjd
− k2wjdeIiwjd

−
di∗wjd

dt
deIiwjq

dt = eiwjq

deiwjq

dt = −k1wjqeiwjq
− k2wjqeIiwjq

−
di∗wjq

dt

(24)

This shifts the quasi-steady states of the dq currents to the
origin.

Denote k1 = min(k1gid, k1giq, k1wjd, k1wjq) and then in-
troduce a new variable ε satisfying:

εk1 = 1

The subsystem (24) can be rewritten as:
deIigid
dt = eigid

ε
deigid
dt = −k̄1gideigid − εk2gideIigid − ε

di∗gid
dt

deIigiq
dt = eigiq

ε
deigiq
dt = −k̄1giqeigiq − εk2giqeIigiq − ε

di∗giq
dt

deIiwjd

dt = eiwjd

ε
deiwjd

dt = −k̄1wjdeiwjd
− εk2wjdeIiwjd

− ε
di∗wjd

dt
deIiwjq

dt = eiwjq

ε
deiwjq

dt = −k̄1wjqeiwjq
− εk2wjqeIiwjq

− ε
di∗wjq

dt

(25)

where

k̄1gid = εk1gid ≥ 1; k̄1giq = εk1giq ≥ 1

k̄1wjd = εk1wjd ≥ 1; k̄1wjq = εk1wjq ≥ 1

We define a new time variable τ as:

ε
dy

dt
=
dy

dτ
(26)
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Substituting (26) into (25) and then setting ε = 0, we obtain
the following autonomous system:

deigid
dτ = −k̄1gideigid

deigiq
dτ = −k̄1giqeigiq

deiwjd

dτ = −k̄1wjdeiwjd

deiwjq

dτ = −k̄1wjqeiwjq

(27)

which is called the boundary-layer model of the system (20).
When ε → 0, it seems that the time variable t and the
slow state variables are frozen at their initial values. By
using Lyapunov analysis, the origin of the boundary system
(27) is verified as exponentially stable. When the dq currents
quickly converge to their reference trajectories during the
initial interval, the full-scale system (20) is degenerated into
the following reduced model:

deIvswjd

dt = evswjd

dvswjd

dt = −k1djevswjd
− k2djeIvswjd

deIvswjq

dt = evswjq

dvswjq

dt = −k1qjevswjq
− k2qjeIvswjq

dz
dt= Az + ϑ′g + ϑ′w

(28)

where ϑ′g = ϑg1 +ϑg2 and ϑ′w = ϑw1
+ϑw2

+ϑw3
. In addition,

the solution of the reduced model (28) is denoted by (·)re.
Now, we can state the first result of this paper.

Theorem 1: Consider the system (20) where all state vari-
ables are restrict to their respective arbitrary operating domains
for t ∈ [t0, t1]. There exists a positive constant ε∗ such that
for all 0 < ε = 1/k1 < ε∗, the system (20) has a unique
solution on [t0, t1], and the trajectories of the state variables
can be approximated by:

igi,dq − i∗gi,dq(z
re)− êigi,dq= O(ε)

iwj ,dq − i∗wj ,dq
(zre, vreswj ,dq

)− êiwj,dq
= O(ε)

vswj ,dq − vreswj ,dq
= O(ε)

z − zre= O(ε)

(29)

held uniformly for t ∈ [t0, t1] where êigi,dq and êiwj,dq
are

the solution of the boundary-layer model (27)

êigi,dq= eigi,dq (t0) exp(−k̄1gi,dqτ)

êiwj,dq
= eiwj,dq

(t0) exp(−k̄1wj ,dqτ)
(30)

Proof: It is obvious that the origin of the boundary-
layer model (27) is globally exponentially stable. Besides,
the reduced model (28) has a unique solution. Therefore, the
approximations (29) can be obtained by direct application of
Theorem 11.1 in [36].

Remark 9: In terms of (29), the dq currents exhibit a two-
time-scale behavior by presenting a slow and a fast transients.
It is the dq current tracking errors, i.e. êigi,dq and êiwj,dq

,
that characterize the part of fast dynamics. It is shown that
i(·),dq start with a fast transient which exactly corresponds to
the solution of boundary-layer model (27) during the initial
interval. After the exponential decay of the fast transients
êigi,dq (êiwj,dq

), i(·),dq remain close to their respective man-
ifolds i∗(·),dq in the future time. Since the fast transient only

significantly appears on i(·),dq , we call the dq currents the fast
dynamic variables while vswj ,dq and z are the slow dynamic
variables.

Remark 10: As expressed in (30), the control gains k1gi,dq ,
k2gi,dq , k1wj ,dq and k2wj ,dq play a major role in regulating
the fast transient performance and hence we call them the fast
control gains. The control gains k1,dqj , k2,dqj and kdi , domi-
nate the slow transient performance, and they are consequently
called the slow control gains.

C. Stability analysis

For the sake of simplicity, we introduce a new variable

ez = z − z̄ (31)

Now, the closed-loop system (20) becomes:

deIigid
dt = eigid

deigid
dt = −k1gideigid − k2gideIigid −

di∗gid
dt

deIigiq
dt = eigiq

deigiq
dt = −k1giqeigiq − k2giqeIigiq −

di∗giq
dt

deIiwjd

dt = eiwjd

deiwjd

dt = −k1wjdeiwjd
− k2wjdeIiwjd

−
di∗wjd

dt
deIiwjq

dt = eiwjq

deiwjq

dt = −k1wjqeiwjq
− k2wjqeIiwjq

−
di∗wjq

dt
deIvswjd

dt = evswjd

devswjd

dt = −k1djevswjd
− k2djeIvswjd

−
eiwjd

Cfwj
deIvswjq

dt = evswjq

devswjq

dt = −k1qjevswjq
− k2qjeIvswjq

−
eiwjq

Cfwj
dez
dt = Aez +Az̄ + ϑg + ϑw

(32)

where the equilibrium of the original closed-loop system, S̄, is
shifted to the origin. Moreover, there exist operating domains
for these new state variables that correspond to the arbitrary
safe operating regions mentioned in Remark 2. We call (32)
the error system of the closed-loop system. In terms of those
tracking errors, the varying reference trajectories (16) can be
expressed by:

i∗wjd
=Cfwjωwj (voswjq + evswjq

) + Iwjd

+k1djevswjd
+ k2djeIvswjd

i∗wjq =−Cfwj
ωwj

(voswjd
+ evswjd

) + Iwjq

+k1qjevswjq
+ k2qjeIvswjq

(33)

Since Iwj ,dq are considered constant or slowly varying and

then we take
dIwj,dq

dt = 0, the derivatives of the dq references
can be expressed as:

di∗gid
dt = −kdi

deugi

dt ,
di∗giq
dt = 0

di∗wjd

dt = Cfwj
ωwj

devswjq

dt + k1dj
devswjd

dt + k2djevswjd

di∗wjq

dt = −Cfwj
ωwj

devswjd

dt + k1qj
devswjq

dt + k2qjevswjq

(34)
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Remark 11: Note that the asymptotic stability of the origin
of the error system (32) would imply the asymptotic stability
of the equilibrium S̄ of the original closed-loop system (20).
Hence, we investigate the stability of the error system (32)
instead of the original closed-loop system (20).

If eigidq and eiwjdq
converge to zero, a new reduced model

is deduced from the error system as:
deIvswjd

dt = evswjd

devswjd

dt = −k1djevswjd
− k2djeIvswjd

deIvswjq

dt = evswjq

devswjq

dt = −k1qjevswjq
− k2qjeIvswjq

dez
dt = Aez +Az̄ + ϑ′g + ϑ′w

(35)

where ϑ′g = ϑg1 + ϑg2 and ϑ′w = ϑw1
+ ϑw2

. The reduced
model (35) can be divided into two parts, the external dy-
namics represented by evswj,dq

and eIvswj,dq
and the internal

dynamics represented by ez . As the external variables converge
to zero, i.e. evswj,dq

→ 0 and eIvswj,dq
→ 0, the behavior of

the reduced model (35) is governed by the internal subsystem:

dez
dt

= Aez +Az̄ + ϑ′g + ϑ′w , fzero (36)

We call (36) the zero dynamics of the reduced model (35).
Remark 12: In the reduced model (35), we remark that the

dynamics of the external variables are controlled by k1,dqj and
k2,dqj while kdi have a great effect on the dynamics of the
internal variables (or the dynamics of the DC grid). Recalling
Remark 10, it can be summarized that the control gains have
different impacts on the system performance.

Lemma 3: Consider the reduced model (35). Fix positive
control gains k1,2dj and k1,2qj , ∀j ∈ M. Select the droop
gains kdi that satisfy the following conditions:
• ∀i ∈ N , kdi is chosen such that:

kdi ≥ kdimin (37)

where

P ogi +
3

2
vsgidkdiminu

o
cgi = 0

• There exists at least one GVSC terminal whose droop
gain satisfies:

kdq > kdq min
(38)

where q ∈ N .
Then, the origin of the reduced model (35) is locally asymp-
totically stable.

The following properties of complex matrix as referred in
[37] is applied to prove the lemma.

Definition 1: A matrix Ψ ∈ Cn×n is said to be positive
definite if Re(xHΨx) is positive for every non-zero column
vector x ∈ Cn×1. The set of positive definite matrix Ψ is
denoted as P+

C .
Lemma 4: Matrix Ψ ∈ Cn×n is positive definite if and only

if its Hermitian part H(Ψ) is positive definite.
Lemma 5: If Ψ ∈ P+

C , then Ψ is invertible and Ψ−1 ∈ P+
C .

We now can prove Lemma 3 as follows.

Proof: For the system described by (35), if the zero
dynamics (36) is locally asymptotically stable, then the ori-
gin of the system (35) is locally asymptotically stable [38].
Therefore, to establish the claim, we first study the stability
of the zero dynamics (36). This is done by linearizing the
zero dynamics (36) around the origin. The Jacobian matrix
[∂fzero∂ez

]|ez=0 is expressed by:

Φ , [
∂fzero
∂ez

]|ez=0 =

[
D C−1H

−L−1HT −L−1R

]
(39)

where D = diag(dk), k = 1, · · · , N + M + P , is a diagonal
matrix given by:

di =−
P ogi + 3

2vsgidkdiu
o
gi

Cgi ū
2
gi

, i ∈ N

d(j+N) =−
P owj

Cwj
ū2wj

, j ∈M

d(h+N+M) =0. h ∈ P

Let us assume that there exists a particular eigenvalue of Φ
denoted by λ = α+ jβ ∈ C, whose real part is non-negative,
i.e. α ≥ 0. Then, λ satisfies:

det(λI − Φ) = 0

Alternatively, it can be expressed as:

det(
[
λI −D −C−1H
L−1HT λI + L−1R

]
) = 0 (40)

We define Φ1 , λI + L−1R = Λ1 + jΛ2 where Λ1,2 are
expressed by:

Λ1 = diag(α+
Rc1
Lc1

, · · · , α+
RcL
LcL

) ∈ RL×L

Λ2 = diag(β, · · · , β) ∈ RL×L

Since the Hermitian part of Φ1 is equal to H(Φ1) = Λ1, which
is positive definite, the complex matrix Φ1 is also positive
definite (Lemma 4). Consequently, Φ1 must be invertible
(Lemma 5) and then, Eq. (40) becomes:

det(
[
λI −D −C−1H
L−1HT λI + L−1R

]
)

=det(λI −D + C−1HΦ−11 L−1HT )det(Φ1)

=det(λC − CD +H(λL+R)−1HT )det(Φ1)det(C−1)

Again, we define:

Φ2= λC − CD +H(λL+R)−1HT

λC − CD= Λ3 + jΛ4

(λL+R)−1= Λ5 + jΛ6
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with the notations:

Λ3 = αC − CD , diag(σ1, · · · , σN+M+P )
σi = Cgi(α+

P ogi + 3
2vsgidkdiu

o
gi

Cgi ū
2
gi

), i ∈ N

σ(j+N) = Cwj (α+
P owj

Cwj ū
2
wj

), j ∈M

σ(h+N+M) = Cphα. h ∈ P
Λ4 = βC

Λ5 = diag(
αLck

+Rck

(αLck
+Rck

)2+(βLck
)2 ) ∈ RL×L

Λ6 = diag(
−βLck

(αLck
+Rck

)2+(βLck
)2 ) ∈ RL×L

(41)
Due to (38), we assume that kdq > kdq,min, q ∈ N , where

P ogq +
3

2
vsgqdkdq.minu

o
gq = 0 (42)

Now, Φ2 can be rewritten as:

Φ2= Φ3 + j(Λ4 +HΛ6H
T )

Φ3= Λq3 + Λq
′

3 +HfH
T
f

(43)

where Λq3 is a diagonal matrix whose qth element on the main
diagonal is σq and other elements are zero. Λq

′

3 and Hf are
given by Λq

′

3 = Λ3 − Λq3 and Hf = HΛ
1
2
5 .

Let us define Φ4 , Λq3 +HfH
T
f and then the determinant

of Φ4 can be calculated as:

det(Φ4) = σq det(R(Hf )qR(Hf )Tq ) + det(HfH
T
f )

Since Λ
1
2
5 is a full rank matrix, i.e. rank(Λ

1
2
5 ) = L, then

rank(HfH
T
f ) = rank(Hf ) = rank(H) = N + M + P − 1

and as a result, det(HfH
T
f ) = 0. Similar to Lemma 2, by

removing any one row from Hf , such as Hf (j, :), j ∈ T ,
the rank of the reduced matrix R(Hf )j is N + M + P − 1.
Consequently, R(Hf )qR(Hf )Tq is invertible and positive def-
inite. Since kdq satisfies (42), we get σq > 0 and then,
det(Φ4) = σq det(R(Hf )qR(Hf )Tq ) > 0. On the other
hand, Φ4 and Λq3 are semi-positive definite because of (37)
and (38) and hence, Φ4 is positive definite. Recalling that
Φ3 = Φ4 + Λq

′

3 , it turns out that, Φ3 is also positive definite.
As presented in (43), we know that H(Φ2) = Φ3 and then,
according to Lemma 4 and Lemma 5, Φ2 is positive definite
and invertible. Therefore, the following result is obtained:

det(λI − Φ) = det(Φ2) det(Φ1) det(C−1) 6= 0

for α ≥ 0. This leads to a contradiction to (40). Thus, all
eigenvalues of the Jacobian matrix Φ must have negative
real part, i.e. α < 0. Hence, Φ is a Hurwitz matrix. As
a result, the origin of the zero dynamics (36) is locally
asymptotically stable. Thus, the reduced model (35) is also
locally asymptotically stable. The proof is completed.

Now, we can introduce another result of this paper.
Theorem 2: Consider the MTDC system modeled by (1),

(3), (4) and (7) with the control strategy (12), (16), (18) and
(19). Select the droop gains that satisfy the conditions (37) and
(38) in Lemma 3. Then, there exist control gains k1gid, k1giq ,
k1wjd, k1wjq , k1,2dj and k1,2qj such that the equilibrium S̄ of
the closed loop system (20) is locally asymptotically stable.

Thereby, the proposed control strategy can stabilize the MTDC
system.

Proof: As previously mentioned in Remark 11, to study
the stability of the origin of the error system (32) is equivalent
to investigate the stability of the equilibrium S̄ of the closed-
loop system (20). So we still focus on the stability property
of the error system (32).

We rewrite the last equation in (32) in the following special
form:

dez
dt

= fzero + ϑg3 + ϑw2 + ϑw3 + ϑw4 (44)

According to Taylor’s theorem, fzero can be expressed by:

fzero = Φ · ez + f̃zero · ez

where f̃zero satisfies:

lim
||ez||→0

||f̃zero|| = 0

It means that, for any given α0, there exist a region Bez such
that:

||f̃zero|| ≤ α0 (45)

for all ez ∈ Bez . In addition, since Φ is a Hurwitz matrix, for
any positive definite matrix Gez , there exists a positive definite
matrix Fez such that:

FezΦ + ΦTFez = −Gez

To simplify the notations, we introduce the following vari-
ables:

eig,dq,
[
eig1,dq

eIig1,dq
· · · eigN ,dq

eIigN ,dq

]T
eiw,dq

,
[
eiw1,dq

eIiw1,dq
· · · eiwM,dq

eIiwM,dq

]T
evw,dq

,
[
evsw1,dq

eIvsw1,dq
· · · evswM,dq

eIvswM,dq

]T
Consider a Lyapunov function W = dW1+(1−d)W2 where

d ∈ (0, 1). W1 and W2 are designed as:

W1 =
1

2
(eTigdFigdeigd + eTigqFigqeigq

+ eTiwd
Fiwd

eiwd
+ eTiwq

Fiwqeiwq )

and

W2 =
1

2
(eTvwd

Fvwd
evwd

+ eTvwq
Fvwqevwq + eTz Fezez)

where

Fig,dq= diag(F iig,dq ); F iig,dq =

[
1 0
0 k2gi,dq

]
Fiw,dq

= diag(F jiw,dq
); F jiw,dq

=

[
1 0
0 k2wj ,dq

]
Fvw,dq

= diag(F jvw,dq
)

F jvw,dq
=

1 + 1
k1,dqj

1

1 k1,dqj + k2,dqj +
k2,dqj
k1,dqj
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It is clear that Fig,dq , Fiw,dq
and Fvw,dq

are positive definite.
Then, the derivative of W along the trajectories (32) can be
calculated by dW

dt = D1 +D2 where:

D1 = Γ1 + Γ2

D2 = eTigdFigd
dηigd
dt + eTigqFigq

dηigq
dt + eTiwd

Fiwd

dηiwd

dt

+eTiwq
Fiwq

dηiwq

dt + eTvwq
Fvwq

ηvwq
+ eTvwd

Fvwd
ηvwd

+eTz Fez (f̃zero · ez + ϑg3 + ϑw2
+ ϑw3

+ ϑw4
)

with

ηig,dq,
[
i∗g1,dq 0 · · · i∗gN ,dq 0

]T
ηiw,dq

,
[
i∗w1,dq

0 · · · i∗wM ,dq 0
]T

ηvw,dq
,
[ eiw1,dq

Cfw1
0 · · ·

eiwN ,dq

CfwN
0
]T

and the other expressions are given by:

Γ1= −
∑M
j=1(k1dje

2
vswjd

+ k2dje
2
Ivwjd

+ k1qje
2
vswjq

+k2qje
2
Ivwjq

)− eTz Gezez
Γ2= −

∑N
i=1(k1gide

2
igid

+ k1giqe
2
igiq

)

−
∑M
j=1(k1wjde

2
iwjd

+ k1wjqe
2
iwjq

)

Gig,dq= diag(Giig,dq), G
i
ig,dq

=

[
k1gi,dq 0

0 0

]
Giw,dq

= diag(Gjiw,dq
), Gjiw,dq

=

[
k1wj ,dq 0

0 0

]
Gvw,dq

= diag(Gjvw,dq
), Gjvw,dq

=

[
k1,dqj 0

0 k2,dqj

]
Since the dq current reference trajectories only depend on the
slow dynamics state variables, we then have:

dηigd
dt =

dηigd
dez

dez
dt ,

dηigq
dt =

dηigq
dez

dez
dt

dηiwd

dt =
dηiwd

devwd

devwd

dt +
dηiwd

devwq

devwq

dt +
dηiwd

dez
dez
dt

dηiwq

dt =
dηiwq

devwd

devwd

dt +
dηiwq

devwq

devwq

dt +
dηiwq

dez
dez
dt

(46)

From the aforementioned sections, we know that:

||ϑg3 || → 0 as ||eigd || → 0 and ||eigq || → 0

||ϑw4
|| → 0 as ||eiwd

|| → 0 and ||eiwq
|| → 0

||ϑw2
|| → 0, ||ϑw3

|| → 0 as ||evwd
|| → 0 and ||evwq

|| → 0

and then there exist positive βk, k = 1, · · · , 8 and convex
regions Beig,dq , Beiw,dq

, Bevw,dq
such that:

||ϑg3 || ≤ β1||eigd ||+ β2||eigq ||
||ϑw4 || ≤ β3||eiwd

||+ β4||eiwq ||
||ϑw2 || ≤ β5||evwd

||+ β6||evwq ||
||ϑw3 || ≤ β7||evwd

||+ β8||evwq ||

for all eig,dq ∈ Beig,dq , eiw,dq
∈ Beiw,dq

and evw,dq
∈ Bevw,dq

.
Note that, in general, larger size of B(·) leads to larger values
of βk.

Applying the above inequalities and (45) to (44), we then
get that:

||dezdt ||≤ ||Φ|| · ||ez||+ α0||ez||+ β1||eigd ||+ β2||eigq ||
+β3||eiwd

||+ β4||eiwq ||+ β5||evwd
||+ β6||evwq ||

+β7||evwd
||+ β8||evwq

||
(47)

holds for all ez ∈ Bez , eig,dq ∈ Beig,dq , eiw,dq
∈ Beiw,dq

and
evw,dq

∈ Bevw,dq
.

Taking (34), (46) and (47) into account, it can be verified
that there exist positive parameters bik, for k = 1, · · · , L+ 3,
i ∈ N , and cjl , for l = 1, · · · , 8, j ∈M such that D2 satisfies
the inequality:

D2 ≤
∑N
i=1

[
|eigid |(b

i
1|eigid |+ bi2|eigiq |+ bi3|eucgi

|

+
∑L
t=1 b

i
t+3|eict |)

]
+
∑M
j=1

[
(cj1|eiwjd

|+ cj2|eiwjq
|)

·(cj3|evswjd
|+ cj4|eIvswjd

|+ cj5|evswjq
|+ cj6|eIvswjq

|

+cj7|eiwjd
|+ cj8|eiwjq

|)

]
(48)

for all ez ∈ Bez ⊂ Bez , eig,dq ∈ Beig,dq ⊂ Beig,dq , eiw,dq
∈

Beiw,dq
⊂ Beiw,dq

and evw,dq
∈ Bevw,dq

⊂ Bevw,dq
. These

positive coefficients (bik and cjl ) are determined by the size
of the domains B(·), the droop gains kdi , k1,2dj , k1,2qj , the
system parameters and the prescribed setpoints while they are
independent of k1gi,dq , k2gi,dq , k1wj ,dq and k2wj ,dq .

Using Young’s inequality :

||x|| · ||y|| ≤ 1

2µ
||x||2 +

µ

2
||y||2

for the cross terms in (48) where µ is a positive constant that
can be chosen arbitrarily, we obtain:

D2 ≤ Γ3 + Γ4 (49)

with

Γ3=
∑N
i=1

[
bi1
2 ν

i
1|eigid |

2 +
bi2
2νi

2
|eigiq |

2

]

+
∑M
j=1

[
dj1
2 κ

j
1|eiwjd

|2 +
dj2
2 κ

j
2|eiwjq

|2
(50)

and

Γ4=
∑N
i=1

[
bi3
2νi

3
|eucgi

|2 +
∑L
t=1

bit+3

2νi
t+3
|eict |

2

]

+
∑M
j=1

[
dj3
2κj

3

|evswjd
|2 +

dj4
2κj

4

|eIvswjd
|2

+
dj5
2κj

5

|evswjq
|2 +

dj6
2κj

6

|eIvswjq
|2
] (51)

where ν(·) and κ(·) have the same role as µ, that can be chosen
arbitrarily.

In order to make the derivative of W negative except at the
origin, we first determine the values of droop gains kdi , k1,2dj ,
k1,2qj and the size of region of attraction

Ratt = Beig,dq × Beiw,dq
× Bevw,dq

× Bez

Then, the values of bik and cjl can be estimated. Subsequently,
we choose large ν(·) and κ(·) such that Γ1 + Γ4 < 0. Once
kdi , k1,2dj , k1,2qj are set, the size of region of attraction Ratt,
ν(·) and κ(·) are determined, no matter what values of bi1

2 ν
i
1,
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bi2
2 ν

i
2, dj1

2 κ
j
1 and dj2

2 κ
j
d are, we can always find bi1

2 ν
i
1 < k1gid,

bi2
2 ν

i
2 < k1giq ,

dj1
2 κ

j
1 < k1wjd and dj2

2 κ
j
d < k1wjq and hence,

Γ2 + Γ3 < 0. Consequently, there exist k1gid, k2giq , k1wjd,
k2wjq , k1,2dj and k1,2qj such that the derivative of W is
non-negative. In addition, Ẇ = 0 contains no trajectory of
the system except the trivial trajectory. All solutions starting
from Ratt will converge to the origin. According to LaSalle
theorem, the origin of the error system described by (32) is
locally asymptotically stable. Thereby, the equilibrium S̄ of the
original closed-loop system (24) is also locally asymptotically
stable. Finally, we can say that the control strategy can ensure
the asymptotic stability of the MTDC system.

Remark 13: There is a trade-off between the size of Ratt
and the performance of system. If we want to get a large
region of attraction, then we will have large values of k1gi,dq
and k1wj ,dq . As seen in (12), large k1gi,dq and k1wj ,dq maybe
lead to large peak values of the control variables.

Remark 14: For the control algorithms described by (6),
(16), (18) and (19), the control gains can be divided into two
groups based on different control loops. It is clear that not
all arbitrary positive control gains can ensure the system’s
stability. According to the lemmas and theorems derived from
this section, the design guidelines for the control gains can be
summarized as follows to guarantee system’s stability.
• The control gains of fast control loop can be chosen as
k1,2gid,q , k1,2wjd,q ∈ Bgf = {k ∈ R | k < 1

εf
} where εf

is a small positive constant.
• The control gains of slow control loop can be chosen as
k1,2dj , k1,2qj ∈ Bgs = {k ∈ R | k < 1

εs
} where εs is a

small positive constant.
• εf and εs are chosen such that εf << εs.
• The droop gains are chosen such that (37) and (38) can

be satisfied.

V. SIMULATION STUDIES

In this section, the MTDC system as depicted in Fig. 3
consisting of two WVSCs and two GVSCs is simulated. The
values of the parameters are listed in Table I and Table II.
The AC voltage amplitude of the GVSCs is 415 V. The base
quantities of the per-unit system applied to the simulations
are presented in Table III. The base quantities of the AC and
DC currents are calculated as Iac,base = Sac,base/(

√
3Vac,base)

and Idc,base = Sdc,base/Vdc,base. As described in the previous
section, the wind farm is modeled as a controlled current
source and hence, Iw1,dq and Iw2,dq represent the power
productions of the wind farms. The setpoints and the initial
values of Iw1,2d are given by Table IV. Iw1q and Iw2q are set
to zero. Furthermore, some system variables’ initial values are
provided by Table V.

For all the simulations in this section, the integral parts of
the fast control gains are set to zero, i.e. k2gi,dq = k2wj ,dq = 0.
Three different sets of control gains as presented in Table VI
are chosen to verify the theoretical analysis.

A. Verification of two-time-scale behavior

The control gains in Set 1 are considered for the converters
in this part. The simulation results are displayed in Fig. 4.

TABLE I
PARAMETERS OF THE DC NETWORK.

Resistance Rc Inductance Lc

l1 0.01 Ω 6 mH
l2 0.02 Ω 12 mH
l3 0.15 Ω 9 mH
l4 0.14 Ω 8.4 mH
l5 0.16 Ω 9.6 mH
l6 0.18 Ω 10.8 mH
l7 0.19 Ω 11.4 mH

TABLE II
PARAMETERS OF THE VSC TERMINAL.

Rg (Rw) Lg (Lw) Cg (Cw)
SAC 1 9.9 mΩ 6 mH 68 µF
SAC 2 9.4 mΩ 12 mH 20 µF
WAC 1 8.4 mΩ 9 mH 27 µF
WAC 2 8.9 mΩ 8.4 mH 20 µF

The trajectory of ig1d in Fig. 4(a) clearly performs a two-
time-scale behavior. It starts with a fast transient during the
initial interval as shown in Fig. 4(b). After the decay of this
fast dynamic, ig1d is on or close to its manifold i∗g1d in all
future time. Figure 4(c) illustrates the error between ig1d and
i∗g1d. At the initial instant, |ig1d − i∗g1d| is nearly 0.29 p.u..
After t = 0.06 s, the discrepancy between the two trajectories
is less than 0.015 p.u.. It turns out that during the initial
interval [0, 0.06] s, the trajectory of ig1d approaches that of
i∗g1d. It is seen that, the exponential decay of the fast transient
during the initial interval corresponds to the solution of the
boundary-layer model. However, such two-time-scale behavior
is not significant in the DC voltage and the AC voltage, which
are considered to have slow dynamics. As depicted in Figs.
4(e)-4(g), there is no apparent fast transient that can be found
between the trajectories of ucg1 and urecg1 (vsw1d and vresw1d

).
It can be observed that ucg1 and vsw1d are well approximated
by the solution of the reduced model, i.e. urecg1 and vresw1d

.
Moreover, vsw1d asymptotically converges to its setpoins vosw1d

together with vresw1d
.

B. Evaluation of the system performance in case of distur-
bance

At t = 2 s, Iw1d is changed to 0.6 p.u. because of the
increase in the active power generated by the wind farms.

TABLE III
BASE QUANTITIES USED IN THE PER-UNIT SYSTEM.

AC side Sac,base = 4.5 kVA Vac,base = 415
√

3/2 V
DC side Sdc,base = 3 kVA Vdc,base = 700 V

TABLE IV
SETPOINTS AND INITIAL VALUES OF THE CURRENT SOURCE.

P o
gi

Qo
gi

uog1
SA 1 −0.4Sac,base 0 Vdc,base

SAC 2 −0.5Sac,base 0 Vdc,base

v0swjd
v0swjq

Iwjd

WAC 1 Vac,base 0 0.4Iac,base
WAC 2 Vac,base 0 0.5Iac,base
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TABLE V
INITIAL STATES OF THE MTDC SYSTEM.

ig1d ig2d iw1d iw2d

-0.2 p.u. -0.1 p.u. 0.3 p.u. 0.3 p.u.
vsw1d vsw1q vsw2d vsw2q

0.7 p.u. 0.01 p.u. 0.7 p.u. 0.01 p.u.
ucg1 ucg2 ucw1 ucw2

1.043 p.u. 1.043 p.u. 1.043 p.u. 1.043 p.u.

TABLE VI
CONTROL GAINS APPLIED TO THE MTDC SYSTEM.

kd1 kd2 k1gi,dq (k1wj ,dq)

Set 1 10·kd1min
10·kd2min

1000
Set 2 10·kd1min

10·kd2min
300

Set 3 1·kd1min
2·kd2min

1000

Consequently, GVSC 1 and GVSC 2 should share the duty
of eliminating the power unbalance caused by this increase of
the power production. The simulation results are presented in
Fig. 5. Since more power needs to be transmitted via the DC
grid, in order to make the MTDC system operate normally,
GVSC 1 and GVSC 2 should absorb more power from the
DC grid. As shown in Figs. 5(a) and 5(b), ig1d attains a new
steady value around −0.5 p.u. from −0.4 p.u. and īg2d is also
changed from −0.5 p.u. to −0.6 p.u.. As discussed in Remark
8, if more power is absorbed by the GVSCs, this forces the DC
voltages to rise and reach new steady levels. This phenomenon
is clearly presented in Figs. 5(e) - 5(g). The new DC voltage
transmission level now is about 1.05 p.u. which deviates from
the setpoints uocg1,2 = 1.0 p.u.. As seen in Fig. 5(c), iw1d

arrives around 0.6 p.u. to response to the change of Iw1d.
On the other hand, vsw1d is always well controlled around its
setpoint vosw1d

= 1.0 p.u. irrespective of the variation in Iw1d

after a short transient as depicted in Fig. 5(h).
By contrast to the increase in Iw1d, at t = 4 s, Iw2d

drops from 0.5 p.u. to 0.3 p.u.. The simulation results are
summarized in Fig. 6. Since the generated power from the
wind farm 2 decreases, iw2d starts to decrease and then
converges to a new steady state about 0.3 p.u. as shown in
Fig. 6(c). From Figs. 6(a) - 6(b), ig1d is changed from −0.5
p.u. to −0.4 p.u. and ig2d varies from −0.6 p.u. to −0.5 p.u.
This means less power is received by GVSC 1 and GVSC 2
because less power is injected into the DC grid. Additionally,
in order to comply with the droop law (17), the DC voltages
also drop and then get to a new steady state (∼ 1.0 p.u.) as
displayed in Figs. 6(d) - 6(f).

To evaluate the capability in terms of AC voltage regulation,
at t = 6 s, a new setpoint vosw1d

= 0.9 p.u. is sent to WVSC
1. Now vsw1d is required to be stabilized around this new
reference point. The transient response of vsw1d is illustrated
in Fig. 7(a). It is found that vsw1d and vresw1d

quickly converge
to the new setpoint with an acceptable undershoot. Since Iw1d

is unchanged during the interval [6, 7] s as depicted in Fig.
7(b), the change of vosw1d

has no effect on the steady state of
iw1d. According to (5), less power flows through WVSC 1 due
to the decrease of the AC voltage at the PCC, which implies
that the total transmitted power reduces. Therefore, GVSC 1
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Fig. 4. Simulation results with the control gains in Set 1.

and GVSC 2 get less power than before and then, ig1d and
ig2d start to decrease until converging to new steady states as
seen in Figs. 7(c) and 7(d). Similar to the results in Figs. 6(d)
- 6(f), the DC voltages start to drop and remain around 0.985
p.u. as shown in Figs. 7(e) and 7(f).

The responses of each terminal’s active power at the PCC
are plotted in Fig. 8. It is clear that GVSC 1 and GVSC 2
participate in balancing the active power of the DC grid. When
the power injection grows, both GVSCs share the incremental
power and then absorb more power from the grid. Conversely,
as the power injection reduces, both GVSCs decrease their
power absorption accordingly.
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Fig. 5. Simulation results with the variation in Iw1d.

C. Dynamics regulation

As stated in Remarks 10 and 12, we indicate that the control
gains play different roles in regulating the system dynamics.
This will be verified by the comparisons between different sets
of the control gains.

We point out that the fast transient of the dq currents
corresponds to the solution of the boundary-layer model and
then the fast dynamics can be regulated by the fast control
gains. To clarify this issue, the comparison between Set 1 and
Set 2 is carried out where k1gi,dq and k1wj ,dq in Set 1 are
larger than in Set 2. The simulation results are displayed in
Fig. 9. During the initial interval, the two trajectories in Fig.
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Fig. 6. Simulation results with the variation in Iw2d.

9(a) start from the same initial point around 0.285 p.u.. It is
evident that the blue one has a faster rate of decay than that
of the red one because of larger k1g1d in Set 1 than in Set
2. As seen in Fig .9(b), the blue curve enters the error band
[−0.005, 0.005] p.u. around t = 0.25 s and then remains
in this band in the future time, but in contrast, the red curve
reaches this error band after t = 0.41 s. A similar event occurs
in the response of the error between iw1d and i∗w1d

as plotted
in Figs. 9(c) and 9(d). Both curves in Fig. 9(c) have the same
initial value of 0.385 p.u.. Since k1w1d in Set 1 is larger than in
Set 2, the response of the error represented by the blue curve
drops faster than that described by the red one. Moreover, as
seen in Fig. 9(d), after t = 0.2 s, the blue curve stays in the
error band [−0.005, 0.005] p.u.. The red one needs 0.41 s to
get into this error band and then remains in it. The simulation
results clearly show that the fast control gains play a critical
role in the regulation of the fast transient of the dq currents.

As expressed in (35), the behavior of the reduced model
is regulated by the droop gains kdi , k1,dqj and k2,dqj . Fur-
thermore, the dynamics of vswj ,dq in (35) heavily depend on
k1,dqj and k2,dqj , while the zero dynamics (or the dynamics
of the DC network) strongly rely on the choice of the droop
gains kdi . To demonstrate the above points, two sets of control
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Fig. 7. Simulation results with AC voltage regulation.

Fig. 8. Responses of active power during the interval [0, 8] s.

gains, i.e. Set 1 and Set 3, are chosen for comparison. The only
difference between them is that kdi in Set 1 is larger than in
Set 3.

The simulation results in Fig. 10 illustrate the effect of the
droop gains on the system performance. From Figs. 10(a)
and 10(c), both ucg1 and ucw1

with Set 1 and Set 3 are
asymptotically stabilized around 1.0 p.u.. However, it can
be observed that the blue trajectories remain in the domain
[0.99, 1.01] p.u. after t = 0.05 s, whereas the red ones need
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Fig. 9. Comparison between Set 1 and Set 2.

nearly 1.9 s to stay in the same region. Moreover, as seen in
Figs. 10(b) and 10(d), the response of ucg1 (ucw1

) with Set 1
is much steeper than that with Set 2 during the initial interval.
The above description indicates that the performance of the
state variables related to the zero dynamics can be improved
by increasing the values of kdi appropriately.

Let us now focus on the responses of the AC voltage as
depicted in Figs. 10(g) - 10(j). Interestingly, as seen in Fig.
10(g), the response of vsw1d with Set 1 is very close to that
with Set 3. In particular, as seen in Fig. 10(h), the two curves,
the blue one and the red one, almost coincide with each other.
A similar result can also be obtained for vsw2d from Figs. 10(i)
and 10(j). This implies that the droop gains have little effect
on controlling the AC voltage. It is k1,dqj and k2,dqj that are
predominant in the regulation of the AC voltage.

VI. CONCLUSIONS

This paper presents a detailed theoretical analysis of a
control induced time-scale separation for an MTDC system
with a generic DC grid topology using droop control strategy.
The main contributions are that a rigorous mathematical expla-
nation is provided for the dynamic separation in time scales
between the system’s state variables and notably, sufficient
conditions on choosing the control gains for the system
stability are derived using singular perturbation and Lyapunov
theories. From the theoretical analysis, it is established that the
time-scale separation can be created by the designed control
algorithm. As a consequence, the system state variables can
reasonably be partitioned into different dynamics where the
dq currents are listed as the fast dynamic state variables while
the remaining variables have slow dynamics. Based on the
time-scale separation, a boundary-layer and a reduced model
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Fig. 10. Comparison between Set 1 and Set 3.

are deduced. The exact solution of the slow dynamic state
variables can be uniformly approximated by the solution of
the reduced model. The fast transient of the fast dynamic state

variables corresponds to the solution of the boundary-layer
model. Additionally, our study establishes that the control
gains in the fast control loop are mainly responsible for
determining the fast transient of the dq currents, while other
gains are used to control the dynamics of the AC voltage.
Finally, the droop gains have a great effect on the dynamics
of the internal state variables (the dynamics of the DC grid).

The illustration of the theoretical analysis is carried out by
numerical simulations. A sequence of events is applied to the
MTDC system to evaluate the performance of the system with
the proposed control structure. The simulation results clearly
present that the dq currents exhibit a significant two-time-scale
behavior characterized by a slow and a fast transients. They
also show that the control gains have different impacts on
the behaviors of the system by performing the comparisons
between three sets of control gains.
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