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Control Induced Time-Scale Separation for
Multi-Terminal High Voltage Direct Current
Systems Using Droop Control

Yijing Chen, Miguel Jiménez Carrizosa, Gilney Damm, Francoise Lamnabhi-Lagarrigue, Ming Li and Yan Li

Abstract—This paper introduces a control induced time-scale
separation scheme for a multi-terminal high voltage direct
current system, used for large scale integration of renewable
energy sources. The main idea is to provide a detailed theoretical
analysis, to the long stand practice that consists of empirical
design of two control loops for the terminals. Experience has
shown that such loops, i.e. current and voltage control loop,
when heuristically tuned, often display very different dynamics.
In the present paper, singular perturbation theory is applied
to give explanation and fundamental analysis on why and how
the two control loops work, and how to achieve the timescale
separation between various state variables. Mathematical analysis
is also carried out to illustrate a clear trade-off between system
performance (actuator constraint) and the size of the region
of attraction of the controller. Numerical simulations for a
system with four terminals are presented to evaluate the system
performance and illustrate the theoretical analysis.

Index Terms—Droop control, power systems stability, singular
perturbation, multi-terminal VSC-HVDC systems.

I. INTRODUCTION

ITH the rapid development of semiconductor devices,

multi-terminal high voltage direct current (MTDC)
systems based on voltage source converter (VSC) technology
have become more and more attractive. Due to their flexibility
and controllability, such systems are particularly applicable to
the integration of scattered renewable energy sources, such
as offshore wind farms, solar plants etc, to the mainland
grids [1], [2], [3], [4], [5]. Taking physical considerations into
account, the operation range of MTDC systems is limited by
the DC voltage which must be kept within a narrow domain
of operation [6], [7].

Various DC voltage control strategies are reported in the
literature [8], [9], [10], [11], [12], [13], [14]. This paper mainly
focus on droop control method [9], [12], [14], [15], [16], [17],
[18], which is usually characterized by power vs DC voltage
(P vs U) or current vs DC voltage (I vs U) curves. In a DC
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voltage droop control scheme, more than one terminal is used
to regulate the DC voltage where the droop gains specify the
system operation in steady-state condition and have a great
effect on the system transient performance.

Different methodologies of choosing droop gains have
been investigated. In [19], a criterion for tuning the droop
gains based on the performance specifications is proposed.
Reference [15] develops an adaptive droop control scheme
according to each terminal’s available spare capacity. However,
prior studies are usually under the unproven assertion that the
dynamics of the inductor currents are much faster than the
dynamics of the DC network. Therefore, the currents through
the converters are assumed to equal their references and then,
the dynamic interaction between AC and DC sides of the
converters can be neglected. Unfortunately, this assertion, is
rarely verified in detail. Acknowledging this fact, the present
paper will explore and explain the conditions and limitations
of this assertion. To achieve this goal, a full theoretical analysis
of the time-scale separation between the system state variables
is carried out based on singular perturbation theory [20], which
is widely used in the context of the dynamic analysis of
power systems [21], [22], [23], [24]. Furthermore, sufficient
conditions on the control gains are derived to ensure the
locally asymptotic system stability by using Lyapunov theory.
Moreover, a trade-off between the system performance and the
region of attraction is also presented in the analysis.

The remainder of this paper is outlined as follows. An
MTDC system with a generic DC grid topology is modeled
in Section II. In Section III, we define the control operation
and introduce the control scheme. The main contribution of
this paper is presented in Section IV. A detailed theoretical
analysis is carried out by means of singular perturbation and
Lyapunov theories, from which the system in steady-state
condition is discussed and the sufficient conditions on the
control gains for stability and time-scale separation are also
established. In Section V, numerical simulations for an MTDC
system with four terminals are presented to illustrate the
theoretical analysis. Conclusions and future work are drawn
in Section VI

Notation: For a matrix A € R"*™, A;; is the element
of A in the i row and the j® column. A(:,i) and A(j,:)
denote the i column and the j™ row of A, respectively. A
diagonal matrix A € R™*™ is represented by A = diag(a;),
t=1,---,n. A(l: s,k : h) is a submatrix of A where A(l :
s,k h)ij = Aqyi—1)(k+j—1)- Given a set of matrix Ay €
R™eXme fp =1, ... nand N = >, my, A= diag(Ax)
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Fig. 1. A simplified configuration of the i GVSC terminal.

represents A € RY*N where A(1 : mq,1 : my) = A; and
AT my 1 0 my, S w1 3 my) = Ay,
for k = 2, ,n, and the other elements of A are zero. The
transpose of A is denoted by A”. rank(A) means the rank
of A. Opxm € R™ ™ represents the zero matrix, with all its
elements equal zero. The zero vector is denoted by 0, € R".
For v = [z1 -+ x,)7 € R, |jz|]| = a?+ - +22.
For A € R™"™, ||A]] = \/Amax(AHA) where AH is the
conjugate transpose of A and Ayax () represents the maximum
eigenvalue of matrix (). D, C R™ denotes the safe operating
domain of variable z € R™, which is convex. We define the
sets N ={1,--- N}, M={1,--- M} L={1,---,L},
{1,---, P}, Mxn {1+ N,---,M + N} and
= {1,---,N + M + P}. Unless otherwise noted, 4, j,
k and h denote “V i € N7, “V j € M”, “V k € L” and “V
h € P”, respectively. T represents the value of z in steady-
state condition and the initial value of = is denoted by x(tp).
The prescribed value of the variable x is denoted as z°. Any
complex matrix A can be expressed as A = H(A) + S(A)
where H(A) = 1/2(A + Af) is a hermitian matrix and
S(A) = 1/2(A — A®) is an anti-hermitian matrix. R(A);
is a reduced matrix by deleting the /™ row of matrix A.

II. MODELING OF AN MTDC SYSTEM

In this paper, we consider an MTDC system composed
of N grid connected VSC (GVSC) terminals, M wind farm
connected VSC (WVSC) terminals and a generic DC grid
topology. The AC side of all converters connected to the
MTDC system is modeled in a synchronously rotating ref-
erence dq frame. By convention, the active power on the AC
side and the current through the phase reactor are positive if
they flow from the AC side to the DC side via the VSC.

A. GVSC terminal modeling

A similar method as in [25] for modeling the GVSC
terminal in a dq reference frame is briefly described in this
section. The configuration of the i GVSC is shown in Fig.
1 where the currents 44, g, flow through the phase reactor
made up of an aggregated resistance I, and an aggregated
inductance Lgy,. The AC network is modeled by an ideal three-
phase AC source represented by vy, 44 at the frequency f,,.
According to Kirchhoff’s circuit laws, the dynamics of iy, 44
can be expressed by:

digid o Rgl US% uc.%‘

dt I, Zgzd +wg,ig,q + . Myg.q 0
digiq sglq “cm

& = T, Ul ~ Weilgid o Mglq

|
wj.dq

v
I“_,qu SWj,dq

W'““ o e,
wai Ry, L, =
P

Mw_,-,dq

Fig. 2. A simplified configuration of the ™ WVSC terminal.

where Mg, 4, are the modulation indices for the converter
control [26] and w,, = 27 f,,. For the sake of simplicity, the
rotating angle of Park’s transformation is usually chosen such
that the d-axis is aligned to the phase a of AC voltage, which
results in vgg,q = Vi, mms and vsg,q = 0 where Vg, 1y is the
root mean square value of AC network voltage. In addition,
the active and reactive power flows at the

P

3 3 .
gi — b} _51}891'1”91'11 2)

Usgidlg;d, Q(h =

B. WVSC terminal modeling

Figure 2 depicts a simplified configuration of the j" WVSC
terminal where the wind farm is modeled as a controlled
current source represented by Iy, 4q [25], [27]. A simple
capacitor C'y,,; operates as a high frequency AC filter, used
to eliminate unacceptable harmonics.

Similar to the modeling of GVSC, the dynamics of the dg
current i,,, 4, flowing into the phase reactor represented by a
resistance I, and an inductance L,,; are given by:

iy jd Ry Vsw; d Uew
J ] _Swie J
dat “Iu ’wjd + W lwsq + L T 2L, My;a
i R e (3
i = L g — W b d + —” — M
dt T L, wid wjbw;d Lu, 2L, " wid
The AC voltages at the PCC, vy, 44, are modeled by:
AV d .
dt] = Wu; Usw;q + wa (Iwy'd - ijd)
w4 . “)
%= oy Vswid + T T, g — Gw,q)
dt wj ¥ sW; Cy wj w;q w;q

with w,,, = 27 fwj. In addition, the frequency fwj can be
freely set since there is no need to synchronize the rotor
frequency with the general grid frequency.

The active and the reactive power at the PCC are expressed

as:
P,,=

ij =
Remark 1: Taking physical considerations into account, all
the modulation indices Mg, are limited by M, 3 + M q2 <1.In

addition, the active power of the wind farm P, are always
non-negative, i.e. ij > 0.

3 . .
*(Uswjdzwjd + Usquzqu) (5)

b (Uswj qz'wjd - Uswj dzwj q

C. DC grid modeling

We consider a generic DC network topology formed by
N GVSC nodes, M WVSC nodes, P intermediate nodes
and L transmission branches [19]. Each node is characterized
by its corresponding DC voltage (ucg;, Ucw,> Uet,) and DC
capacitor (Cy,, Cy;, Cy,). The transmission line /;, is modeled
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Fig. 3. An example of the DC grid.

by a lumped 7w-equivalent circuit consisting of an aggregated
resistance and an aggregated inductance (R., + jL.,). The
branch current of [, is denoted as ., . Every branch is used to
connect two adjacent nodes and every node can be connected
to a number of transmission lines. An example of such DC grid
with two GVSC nodes (ucg, ,), two WVSC nodes (ucw, )
three intermediate nodes (uc, ,,) and seven branches (ic,,
k=1,---,7) is depicted in Fig. 3 .

To better understand the properties of the DC network, we
analyze its topology with the help of graph theory. In this pa-
per, we study a class of DC networks which can be represented
by a weakly connected directed graph G without self-loops.
This graph is labeled by G = (V, E). V = {V;, Va, V3}
is the set of the vertices where V; = {vy, -+, vy}, Vo =
{vn41, -+, vngm} and Va = {on4p415 -5 UNfM4+P)
correspond to the N GVSC nodes, the M WVSC nodes and
the P intermediate nodes, respectively. £ = {eq, ---, er} is
the set of the edges mapped to the L circuit branches. The inci-
dence matrix of G = (V, E) is denoted by H € RIW+M+P)xL
and its element in the {™ row and the k™ column, i.e. Hy,
satisfies

1 if the branch current of e;, flows
into the node vy,

Hj = — 1 if the branch current of e¢; flows (6)

from the node vy,

0 otherwise.

In general, the incidence matrix H of the weakly connected
directed graph G without self-loops has the following features:

o Since the directed graph G is weakly connected, the
numbers of the vertices and the edges must satisfy
L>N+M+P)-—1.

o Every edge (transmission line) can only connect two
vertices (nodes) and hence, each column of H has only
two non-zero elements, 1 and —1.

Based on the above characteristics, we have the following
results whose proofs are referred in [28], [29].

Lemma 1: The vectors H(1,:), H(2,:), ... HIN+M+P,:)
are linearly dependent and the rank of H is N + M + P — 1.
In addition, SN M*HF H (i) = 07,

Lemma 2: If any one row is removed from H, for example,
H(l,:), 1 € T, we obtain a reduced incidence matrix R(H);
whose rank is still N+ M + P —1. It means that the remaining
(N + M + P — 1) row vectors are linearly independent.

Considering the lumped 7-circuit model [30], the dynamics
of the DC grid can be written in matrix expression form:

2=Az+9 @)

where z,9 € RNTM+P+L are given by:

Z = [ucm CtUegy Uew ** Ucwny Ucty ** Uctp by "'iCL]T
19:[0511 ... legN fewy o tcwm OT ]T
Cgl CQN Cwl CwM (P+L)
The matrix A is of the form:
A — | Qv+ Py x (N M+ P) C'H )
B —L71HT —L7'R

where ¢ € RIWHMAP)X(N+M+P) and L. R € REXL are
the capacitor, inductance and resistance matrices respectively,
which are given by:
C= diag(cgl e CgN Cw1 T CH)M Cpl o
L= diag(Lcj T LCL)’ R = diag(Rcl o

'CPP)
'RCL)

Due to the power balance on both sides of the converters, i,
and icu,j can be deduced as:

Pyi _ 3(vsgidigid + Vsgiqlgia) _ 3Usgidlg.d

o, = 2 = ©)
Ucg; 2Ucy, 2Ucg,

. Pu)7_j 3(vswjd7fwjd + Usquleq)

lew; = = 9 (10)
ucwj uc’u}j

while the losses of the phase reactor and the semiconductors
are neglected [31], [32].

Remark 2: In [26], it is indicated that the operation of the
converter is only valid in a limited region. If the operation is
beyond the safe operating region, it will damage the device
(for example, the DC voltage exceeds a maximum value).
Therefore, we restrict the next theoretical analysis to a finite
safe operating region where ig, ag € Di ., tw;,dg € ]D)iwj,dq»
Ueg, € Ducgi, Uew; € ]D)ucwj, Uet, € Ducth and i, € Di%.

III. VSC OPERATION AND CONTROL STRUCTURE
A. VSC operation

To ensure the normal operation of windfarm connections
via the DC grid, all of the WVSCs are required to keep their
AC voltage magnitudes and frequencies constant at the PCCs.
This can be achieved by regulating vy, 4q at their setpoints
Vow,.dq [27]. Since the semiconductor devices in VSC are
very sensitive to overvoltage, it is very important to restrict
the DC voltage to an acceptable band. To control the DC
voltage, the present work uses a droop strategy [33], which
is widely applied in the context of control of MTDC systems.
This control method has the advantage of sharing the duty
of eliminating the power imbalance of the DC grid between
several terminals. Additionally, it takes actions only based on
local information without remote communication. In our case,
we consider that every GVSC terminal is equipped with the
DC droop controller. Moreover, the reactive powers of all
the GVSCs at the PCCs, ie. @Qg,, are required to track the
reference values Q..
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B. Control structure

The proposed control structure is inspried on the so called
vector control method [27], [34]. This control strategy widely
used in industry is commonly applied to the VSCs and has the
advantage of a simple design procedure. The control design
consists of two loops, i.e. a fast and a slow control loop. The
reference sent to the fast control loop is derived from the slow
control loop. It is assumed that the dynamics of state variables
in the fast control loop are much faster than the dynamics of
the state variables in the slow control loop. Because of this
dynamic separation in different time scales, the two loops can
be designed separately. We have a similar approach as in [19],
[27] for building the control structure.

1) Design of the fast control loop: As described in (1) and
(3), the control inputs M. 4, are directly collocated with the
dq currents i(.),dq- Hence, a sub-controller can be developed
such that i(.) g, quickly converge to their reference trajectories
z?‘) g Yet to be designed.

We first define the dg current tracking errors by:
= lgidg —

%
€ig;.dq Lg:,dg

. o

eiwj,dq = ij,dq - ij,dq

With the introduction of the integral tracking errors ey;, . and

€Ii, . 4,» an augmented dq current subsystem is then generated
i

by:

dejlgid — e
ddt — Mlg,d
€i,. R,
g9d __ Usg
at Lg1 igid T Wglgiq + 911'
_ ]\ngducg _ di ;1(1
2L dt
deligiq — e
ddt T Mlg,q
Cigiq Ry, . %qlq
at Ly, leia T f‘iglzgld +
o My, qucg, o di 9idq
2Ly, dt
Lriuga _ an
at = Ciwja
deiy, 4 Ry ; Vsw.d
iv__ J swjid
= T Ty twd T Wl T
J J
My dWew; diy, Y d
2L, dt
de”qu
=e;
4 dt ]%
Cir . q . Vsw,q
J4 __ J
G = T Ta twig — Ww,lwd L,
J . J
My qucu, dig g
T T 2L, T at
J

In practice, the dynamics of ¢7 , and i;j}j dg are usually
neglected and considered as slow compared to %4, q, and
lyw, dq- Thus, the modulation indices can then be designed as:

Mgid ijzg (—}2 d+ wngglq + sg?
+Lklng€zg .t k2g1d6]zg d)

My, q *icg ( fmlgiq Wy, lg,d + s?q
;meeuq‘+k%m6ngJ . 12

ijd — u(:}: (_ ij Zw]d + ij Zw]q + Sj}jd
+h1w;d€i, a + kzwjdeuu,.d)

ijq :%(_%Zw]q wwjlw]d + Usw q

+k1qu€iqu + kajqejiqu)

with positive control gains k1 24, 4 and k1 2w, dg-

Remark 3: It is clear that the equilibrium (the origin) of
the augmented dg current subsystem (11) is exponentially
stable under the sub-controller (12) when * and sz] dq
are constant or slowly varying.

2) Design of slow control loop: The main task of the
slow control loop is to provide the slowly varying dgq current
references to the fast control loop. Most importantly, the dg
current references need to be designed such that all control
objectives are achieved. Since the operations of GVSCs and
WVSCs are different, the design principles of iy ;. and zw dg
are also different. Assuming that iy, 44 qulckly converge to
their reference trajectories iy, 4, under the sub-controller (12),
the AC voltage dynamics (4) of the wind farm at the PCC
become:

gi,dq

Vs a .

dt = Wuw,; Vsw;q + Cf (ijd - Zw]d) (13)
dv

swja 1 e

dt W, Vsw;d + wa,_ (ijq ijq)

where i, ;, can be viewed as the control inputs. We call
(13) the reduced model of (4) since the dynamics of iy, 44
are neglected and i, 44 are replaced by ij dq- The control
objective of WVSCs is to keep Usw;,dg at their reference values
U?ww dg 10 spite of variations in the power productions of the
wind farms. We then want to develop i, da in such a way
that vy, 4q in (13) can be controlled at v sw d . Similar to
the design procedure of the fast control loop, we define the

output tracking errors of voltage at the PCC as:
(14)

J— o
e”swj,dq - Uswj»dq - US’LUj,dq

We then augment (13) by taking the integral tracking errors
into account:

deIUsw-d
i — ¢
dt Vsw;d
devsmjd 1 - dvgmjd
dt — Cru, (Tw;d + Crw,;Ww,; Vsw,q — ijd) T T a@
d(i[usqu .
o @ e
ey dv?
sw]-dq _ 1 o ok _ sw;q
at  Cru, (Tw;q = Cfuw,;Wuw; Vsw;d ijq) at
(15)
Since the prescribed values vy, ;. are constant, we have
dv?
sw,,dq _ . e s .
—r— = 0. Finally, 77, can be designed as:

iz}jd: I’LUJd + waJ (kldJ e'uswjd + deJ eI'Uswjd + wwjvsqu)

» ok —

Z'qu_ Iu)jq + waj (quj efusqu + quj eIUsqu — ijvswjd)
(16)

with positive k1 44, and k2 44, such that the equilibrium of the
augmented model (15) is exponentially stable.

As mentioned in the foregoing part, in order to protect the
components of the VSCs, the DC voltage must be maintained
within a narrow safe operating region during the power
transmission process. This can be achieved in the case that
each GVSC terminal is equipped with a droop controller.
Therefore, all GVSC terminals participate in the regulation
of the DC voltage in case of power imbalance. The droop
control is usually expressed by DC voltage versus active power
characteristic [33]:

Py, :Pgoi JrKdi(ugg (17)

— Ucg; )
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where ug,, and P7 refer to the reference values of DC voltage
and active power respectively. The droop gain K, is the
ratio of the change in DC voltage to the change in active
power. According to (17), the varying reference for 44,4 can
be expressed by:

Igia = Tg,a = Kai (teg, — ugg,)

(18)
where i, is obtained from (2) and expressed as:

2P

SUSQid

0
tg;d

In addition, the relation between K4, and k4, is given by:

21
o Svsgid

kq d;

i

Considering @4, in (2), the reactive power can be directly
regulated by i4,,. Hence, i, can be designed as:

2 Q2
ihg= s, £ o (19)

giq

3 VUsg;d

Remark 4: All of the setpoints, i.e. uggi, P;L, Z and
Vg, dq> ¢ provided by a higher level controller. Their choice
should consider several factors [33], [35]. It is still an open
issue to set the proper values for these setpoints so that the
power flow of the MTDC system in steady-state condition
corresponds to the predetermined one from the power flow
dispatch. This problem is out of scope of this paper but can

be referred in [7]. In this paper, these setpoints are considered
Ugw-,dq
J

as known constants and hence, =

Zero.

Remark 5: In Remark 3, when zf) dg ATre slowly varying,
i(.),dg can quickly converge to the quasi-steady states z?) dg-
As seen in (16), (18) and (19), in order to obtain slowly
varying zzk) dg® the dynamics of vsy;,4q and 2z should be slow
enough comparing to ¢(.y 44- It is obvious that the dynamics
of Vs, aq and z strongly relay on ki aq;, k2,44, and kq,. We
infer that vs,, 44 and z could be slowly varying by properly
tuning k1 4q;, k2,49, and kg,. This will be verified in Section
Iv.

in (15) are equal to

IV. THEORETICAL ANALYSIS

The control design concept presented in the previous section
is mainly based on the assumption that a dynamic separation
in time scales is possible to be imposed between the fast and
slow control loops. As a consequence, z and vgy, 44 can be
considered as constant in the fast control loop, while the dg
currents can be replaced by their references in the slow control
loop.

In this section, we give a detailed theoretical analysis to
demonstrate the validity of the time-scale separation assump-
tion by means of singular perturbation theory. Furthermore,
sufficient conditions on the control gains for ensuring the
system stability are also derived based on Lyapunov theory.

A. Equilibrium Analysis

Before going further, we give a brief analysis of the equi-
libruim point. Substituting the controller composed by (12),
(16) , (18) and (19) into the plant model described by (1),
(3), (4) and (7) leads to the following augmented closed-loop
system:

deligid
5[; = Ciga
lig,d . .
= _klgidelgid - k2gid611gid
derig,q
5[; - elgiq
Ygia __ . _ .
at klgiqelgm k29iqehw‘1
deriy, g
a eiw]‘d
diw d
id_ . — i
. kle'deled k2wjdeI7’wjd
defiv,q
dt — Ciwja 20
diw . q
at _kleqeiw]'q - k2w.v’q€”“’j‘1
delvqm_»d .
Tat  Cvswja
AVsaw ;d Slwga
ji_ _ _ J
= kldj €vsu;a dej Clvsw;a Cru;
deI’Uqurjq _
Tat - Gveuja
dv gy q Ciw A
ja_ o _ _twja
a k1Qj Cvsuq qug‘ €lvsuwq Cru,
= Az+ 9

It will be more convenient in the following analysis to divide
¥ into two parts as:

V=194 + Yy
Recalling ¢y, in (9), icw, in (10), i;‘uj,dq in (16) and i;,dq in
(18), (19), the new variables ¥, and ¥,, are given by:
799 = 1991 + 7992 + 7‘993
P = Oy + Py + Poy + Oy

with
3 Usgidigid + Usgiqi(g)iq i e N
1991 (Z): 2Og, chi ’
0. otherwise
3 Uecg; — ul )
. - 7vsgidkdiu, 1€ _/\f
1992 (Z) = 20-‘” Ucg;
0. otherwise
3 ’Usgideigid + Usgiqeigiq i N
1993 (Z): chi Ucg; ’
0. otherwise
and
3 Ugwjd[wjd + ’Ugquleq J . M
Dy (j + N)= ¢ 2C,, Uew, 3
0. otherwise
3 Ugwj dCf'wj wu)j e'Usw]- q + evswj d ijd
2C, e,
o
Dy (J + N)= e”‘““jq‘rw-fq B Usqucfwj Ww; €vgy )
qu_j
jeM
0. otherwise
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3 Uswjd(kldj evswjd + k2d_7‘ eI'Uswjd)
Qij

Uew
cw;

UstQ(kl(Ij evsqu + k.QQj 61")5qu)

1911)3 (.] + N): ’
ucwj
jeM
0. otherwise
' 3 Uswjdeiu,jd + vsqueiqu ’ J c M
Dy (j+N)= Qij Ucw;
0. otherwise

Remark 6: 1t is obvious that, if the dq currents quickly enter
their respective manifolds, i.e. €iy. aq 0 and € ag 0,
¥4, and ¥, converge to zero. Moreover, 9, and v, also
g0 to zero as ey, 4, —* 0. These results are helpful for the
theoretical analysis in the next part.

When the closed-loop system (20) is in the steady-state
condition, the following algebraic equations

Az + 0y +0, =0

must hold where the notation (-) denotes the steady-state value
of the variable or vector (-). B B

Since P, = 3/2(vsg,dif, 4 + VUsgiqig,q)s Vg and U, can be
then expressed as:

21

0 3 o
Py + 5ka;vsg.aucy, _ 3“89idk

9, ()= G,y g, 2c, Fai €N
0. otherwise
BRCTIN eM
ﬁw (] + N): Owj Ucw; Y
0. otherwise
(22)

where we introduce the new variable:

P =322, aluya + U, o Luyq)

sw;q

Remark 7: From the algebraic equation (21), it can be
seen that: a) Prescribed setpoints (-)°; b) DC grid topology;
c¢) Droop gains kg,, determine the steady-state values of the
system variables and the distribution of efforts for the power
sharing in case of power imbalance. The control gains k14, 44,
k2g; dg> k1w, ,dgs k2w, dg> k1,dq; and k2 4, have no effect on
the steady state of the system. However, solving equation (21)
is not easy and is not considered in this paper. More details
about this issue can be referred in [9], [33].

To ensure the operating feasibility of the MTDC system,
we assume that ig,qq, iw,dg» Ueg,» Uew,» Uet, and ic, exist
and belong to their respective safe operating domains. The
equilibrium of the closed-loop system is denoted by S.

Remark 8: In stead-state condition, From the droop law (17),
we have:

Py, = P;i + K, (uggi - ’U’ng‘) (23)

Consider that the MTDC system initially (¢ = ) operates in
a steady-state condition, if the production of the wind farms
increases at the instant ¢, this makes the GVSCs absorb more
power from the DC grid. When the MTDC system achieves

a new steady state at to, we have P, (t2) < Py, (to) (for

i

example, Py, (to) = —100 MW and P, (t2) = —200 MW).
According to (23), we can deduce that the DC voltage also
rises to a new level and that @, (t2) > g, (to). It can be
summarized that w4, will rise if more power is injected into
the DC grid, and vice versa. This statement will be illustrated
by numerical simulations in Section V.

B. Multi-time-scale dynamics

In this part, a theoretical analysis to describe the dynamic
separation in time-scales is carried out. We present that
two different dynamics are created by the designed control
algorithm in Section III. In particular, the two time-scales are
quantified by the fast control gains kig, dq, k2g;,dg> K1w;,dg
and k2w, dq-

In order to make the analysis convenient, we perform a
change of variables. Then, the first eight equations of the
closed-loop system (20) can be rewritten as:

der;

9id _ .
ddt = Cig,a gi*
€4 )
g;d __ . _ . _ Mgud
dtl - _klg’tdelgid kggidellgid dtl
de[igiq o )
dt — Tg;q
de,» 1;*
949  __ . _ . _ 944
dt klgiqelgiq kQQiqehgiq dt
derly (24)
4 at  — Ciwja e
Ciw,d Yw,id
it . _ . _ J
dt - kl’w]’deled kQ’LU]‘ deIZw].d dt
de”qu
J dt eiw]‘q git
€iw q T, q
- 7 — _ . i . _ J
a = ~RrwqCin,g — k2w;qCliv, di

This shifts the quasi-steady states of the dq currents to the
origin.
Denote k1 = min(kig,a, K1g,q> k1w, d> K1w,q) and then in-
troduce a new variable e satisfying:
le =1

The subsystem (24) can be rewritten as:

der;

9id __ .
ddt - e’gid di
€; - 7
g9id __ . _ . _ g;d
o kigiaeiy,a — €kag,deri, . — €~
Cligiq __
ddt - e’giq di*
Cigia 1. ) ) Ygiq
€—ar = —F1g:9Ci,q — R2g,qCliy,, — €
deriy, 4 (25)
at eiwjd
de; _ di*
950 = Rrwsd€i, , — ekow-aeri, 4 — €
dt - 1wjd ijd 2wjd Izwjd dt
de”w q
dt = eiqu
deiqu - di:ujq
@ — _kleqeiqu - ekajquiqu T
where
kigia = €kig,a 2 1; kig,q = €k1g,q > 1
kled = 6kled > 1; kleq = €k‘1qu >1
We define a new time variable 7 as:
dy _dy
€e— = — (26)
dt dr
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Substituting (26) into (25) and then setting e = 0, we obtain
the following autonomous system:

dei -
a;
dTl 7k1977d6i9id
d€1 -
igja .
dr klgiqelgiq
o T @7
it _ L e
dr 1’LUjd led
dej,, q _
T = ~F1wqCiu,,

which is called the boundary-layer model of the system (20).
When ¢ — 0, it seems that the time variable ¢ and the
slow state variables are frozen at their initial values. By
using Lyapunov analysis, the origin of the boundary system
(27) is verified as exponentially stable. When the dg currents
quickly converge to their reference trajectories during the
initial interval, the full-scale system (20) is degenerated into
the following reduced model:

deIU

s'u,'jd
dt = evszuid
AV ; d ’
J- — —
dt - kldj e'Uswjd dej erswjd
dervaw;q (28)
ddt - evsw]-q
Vsw . q
i1 __ _
dt qu]‘ evsqu k2qj elvsu)jq

= Az + 9, + 9,

where U = 0,4, +19,, and ¥, = Jup, +u, + . In addition,
the solution of the reduced model (28) is denoted by (-)"¢
Now, we can state the first result of this paper.

Theorem 1: Consider the system (20) where all state vari-
ables are restrict to their respective arbitrary operating domains
for t € [to, t1]. There exists a positive constant ¢* such that
for all 0 < € = 1/k; < €*, the system (20) has a unique
solution on [tg, t1], and the trajectories of the state variables
can be approximated by:

; - re )
tgidg — Zgi’dq(z ) o 619 g
re

. 5 re
bw;,dg _’ij,dq(z ) Uswj,dq) elw dg

Uswj,dg — Uswj,dq
z— 2=

held uniformly for ¢ € [ty, t1] where €iy, 4, and &
the solution of the boundary-layer model (27)

= €iy, 4, (to) exp(—k1g, aq7)

gigz‘:dq
e 6iwj,dq (to) exp(_kle,qu)

€iw;,dq— (30)
Proof: 1t is obvious that the origin of the boundary-
layer model (27) is globally exponentially stable. Besides,
the reduced model (28) has a unique solution. Therefore, the
approximations (29) can be obtained by direct application of
Theorem 11.1 in [36]. | |
Remark 9: In terms of (29), the dg currents exhibit a two-
time-scale behavior by presenting a slow and a fast transients.
It is the dg current tracking errors, ie. € dq and elw dg
that characterize the part of fast dynamics. It is shown 'that
1(.),dq Start with a fast transient which exactly corresponds to
the solution of boundary-layer model (27) during the initial
interval. After the exponential decay of the fast transients
Cig. aa (elw dq) i(.),dq Temain close to their respective man-
ifolds z( ).da in the future time. Since the fast transient only

significantly appears on 7.y 44, We call the dq currents the fast
dynamic variables while vy, 4, and z are the slow dynamic
variables.

Remark 10: As expressed in (30), the control gains ki, 44,
k2g, dg> K1w;,.dq and kaw; 4q Play a major role in regulating
the fast transient performance and hence we call them the fast
control gains. The control gains k1 44, k2,4¢;, and kq;, domi-
nate the slow transient performance, and they are consequently
called the slow control gains.

C. Stability analysis

For the sake of simplicity, we introduce a new variable
e, =z2—2 31

Now, the closed-loop system (20) becomes:

deIz id
ddt T Mlg;d dit
€4 13
g;d ) _ ) _ @ga
g = kigia€i, 4 — kagialri, a
derig;q _
ddt T g4 ai
Cigia Yg9ia
dat _klgiqezgiq - k29iq6“9iq T dt
de”w -d B
i T Gl di*
Ciy.d Yw,d
dtJ = 7k1w_7d€iw7~d - k?u}jdeliwjd - dtJ
de”w q ’
dt — Ciwjq (32)
de;,, di*
i1 _ . _ . _ wid
dat kleqeleq k’ijquzqu dt
defvew a4
dt - evswjd
dey, e;
_Tewid _ _ _wyd
= —kiq, v k2djezvswjd Cru,y
delvsuw.q
at - Cvswq
deqyg,, . €iy .
i1 _ _ w9
dt - kl(]j evsur' k2(Ij elvcqu waj
dez _

= Ae, + AZ + 94 + Yy

where the equilibrium of the original closed-loop system, S, is
shifted to the origin. Moreover, there exist operating domains
for these new state variables that correspond to the arbitrary
safe operating regions mentioned in Remark 2. We call (32)
the error system of the closed-loop system. In terms of those
tracking errors, the varying reference trajectories (16) can be
expressed by:

°
wagwwg( sw;q + 61)<w q) =+ ijd
+h1d;€0.0,a + K2d; 010,04
-k
ijq Cf“’] ww]( swjd + eUswjd) + I'qu
+k1‘1j evsqu + k2Qj eI'Usqu

w.}

(33)

Since Iy, 44 are considered constant or slowly varying and

dlu. a
then we take —#—

can be expressed as:

= 0, the derivatives of the dq references

dil deu di}
9:d _ ql 9i9
—kq, 2= =0

di,, w;d @ij-q de d
dt = waj wwj at + kldj + dej evsw jd

difujq dey devéw 4
= + lej + k2qJ Vswjq
(34)

dt



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Remark 11: Note that the asymptotic stability of the origin
of the error system (32) would imply the asymptotic stability
of the equilibrium S of the original closed-loop system (20).
Hence, we investigate the stability of the error system (32)
instead of the original closed-loop system (20).

If e, ,, and €i,, 4, CONVETge to Zero, a new reduced model
is deduced from the error system as:

del”s'de
dt - evswjd
dey,
sw;d
& _kldj evswjd - k2dj elvswjd
dervgy . q o 35)
at — Cvsw;q
de”wu-
iq
ai = kg, CVwiq kg, €lvsuw;q

dPZ—AeZ+Az+19’ + 7,

where ¥ = ¥, + ¥y, and J;, = J, + Vu,. The reduced
model (35) can be divided into two parts, the external dy-
namics represented by e, ,. and e, ,. and the internal
dynamics represented by e, ”As the external variables converge
to zero, i.e. o) dg 0 and eyy,,, ,, — 0, the behavior of
the reduced model (35) is governed By the internal subsystem:

de,,
dt

We call (36) the zero dynamics of the reduced model (35).

Remark 12: In the reduced model (35), we remark that the
dynamics of the external variables are controlled by k1 44, and
k2 4q;, while kg, have a great effect on the dynamics of the
internal variables (or the dynamics of the DC grid). Recalling
Remark 10, it can be summarized that the control gains have
different impacts on the system performance.

Lemma 3: Consider the reduced model (35). Fix positive
control gains kq 24, and ki 24, Vj € M. Select the droop
gains kg, that satisfy the following conditions:

o Vi € N, kg, is chosen such that:

= Ae. + A5+ 0, + 0y 2 fror (36)

ko, > ka (37)

where
3
PO
+ 2

o There exists at least one GVSC terminal whose droop
gain satisfies:

0 —
vSdekdz min cgI =0

ka, > ka (38)

g min

where ¢ € N.

Then, the origin of the reduced model (35) is locally asymp-
totically stable.

The following properties of complex matrix as referred in
[37] is applied to prove the lemma.

Definition 1: A matrix ¥ € C™*™ is said to be positive
definite if Re(x ¥x) is positive for every non-zero column
vector # € C"*L. The set of positive definite matrix ¥ is
denoted as PJ.

Lemma 4: Matrix U € C"*™ is positive definite if and only
if its Hermitian part 7{(¥) is positive definite.

Lemma 5: If ¥ € Pg , then U is invertible and U—! ¢ Pér .

We now can prove Lemma 3 as follows.

Proof: For the system described by (35), if the zero
dynamics (36) is locally asymptotically stable, then the ori-
gin of the system (35) is locally asymptotically stable [38].
Therefore, to establish the claim, we first study the stability
of the zero dynamics (36). This is done by linearizing the
zero dynamics (36) around the origin. The Jacobian matrix

[OLeere]|, g is expressed by:

D C'H
~L7'HT —L7'R

afZETO

A
® =1 Oe,

]|ez:0 = (39)

where D = diag(dy), k =
matrix given by:

, N+ M + P, is a diagonal

3
Pg(; + 7’U5gzdkd u®

di = - i ) }
Cpii2 ieN
PO
A+ == g 2 jeM
dnyn+ar) =0 heP

Let us assume that there exists a particular eigenvalue of ®
denoted by A = a+ j5 € C, whose real part is non-negative,
ie. a > 0. Then, )\ satisfies:

det(AI — ®) =0

Alternatively, it can be expressed as:

M —-D —-C-'H
det(\p-1gr Aryp-1p|) =0 (40)
We define ®; £ A + L™'R = Ay + jAy where A; are

expressed by:

A; = diag(a + ]L%zi, o+ ];Z) € REXE
AQ :dlag(ﬂ7 56) ERLXL

Since the Hermitian part of ®; is equal to H(®;) = Ay, which
is positive definite, the complex matrix ®; is also positive
definite (Lemma 4). Consequently, ®; must be invertible
(Lemma 5) and then, Eq. (40) becomes:

M~-D —C'H )

L'H" XN+ L7 'R

=det(\ — D + C'HOT' L7 HT)det(®,)

=det(A\C' — CD + H(AL + R)"*H")det(®, )det(C™)

det(

Again, we define:

$y=\C - CD+H\L+ R)"'HT
AC — CD= Az + jAy
(AL + R)™'= A5 + jAg
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with the notations:

AgiO&C*C’Dédiag(O’l, JN+M+p)
Py + vs kq, ul
o= C,,(a+ 20, e N
Cyiug,
0(j+N):ij(a+ Cw]_ﬂjg)‘)’ jeM
U(h+N+M) :C’pha. hEP
Ay = pC
. Och +Rc
A5 = diag( (aLe, +RC;£2+(%LC’“)2) c RLXL
— —bLe LXL
As = diag( . y7rpr?) € R
(41)
Due to (38), we assume that kg, > k4, min, ¢ € N, where
3
Py, + 3Usggakid,. minttg, =0 (42)
Now, ®5 can be rewritten as:
Go= D3+ j(Ay + HAcHT
2 3+ j(Ag 6 ) (43)

®y= A} + A + H;HT

where A is a diagonal matrix whose ¢ element on the main
diagonal is q and other elements are zero. A3 and Hy are
given by AL = Ay — Al and Hy = HA

Let us define &, £ Aq + HyHy T and then the determinant
of ®4 can be calculated as:

det(®4) = oq det(R(Hy)gR(Hy)L) + det(HH])

Since Aé is a full rank matrix, i.e. rank(Aé) = L, then
rank(Hfo) = rank(Hy) = rank(H) = N+ M+ P —1
and as a result, det(H;H}) = 0. Similar to Lemma 2, by
removing any one row from Hy, such as Hs(j,:), j € T,
the rank of the reduced matrix R(Hy); is N+ M + P — 1.
Consequently, R(H),R(Hy)? is invertible and positive def-
inite. Since kdq satisfies (42), we get o, > 0 and then,
det(®y) = ogdet(R(Hy) R(Hy)Y) > 0. On the other
hand, ¢, and Ag are semi-positive definite because of (37)
and (38) and /hence, ®, is positive definite. Recalling that
$3 =0, + Ag , it turns out that, ®3 is also positive definite.
As presented in (43), we know that H(®2) = ®3 and then,
according to Lemma 4 and Lemma 5, ®- is positive definite
and invertible. Therefore, the following result is obtained:

det(M — @) = det(®5) det(®;) det(C—1) £ 0

for a« > 0. This leads to a contradiction to (40). Thus, all
eigenvalues of the Jacobian matrix & must have negative
real part, i.e. « < 0. Hence, ® is a Hurwitz matrix. As
a result, the origin of the zero dynamics (36) is locally
asymptotically stable. Thus, the reduced model (35) is also
locally asymptotically stable. The proof is completed. ]
Now, we can introduce another result of this paper.
Theorem 2: Consider the MTDC system modeled by (1),
(3), (4) and (7) with the control strategy (12), (16), (18) and
(19). Select the droop gains that satisfy the conditions (37) and
(38) in Lemma 3. Then, there exist control gains ki 4,4, K1g;qs
kled, kleq, k1,2d,- and kl,gqj such that the equilibrium S of
the closed loop system (20) is locally asymptotically stable.

Thereby, the proposed control strategy can stabilize the MTDC
system.

Proof: As previously mentioned in Remark 11, to study
the stability of the origin of the error system (32) is equivalent
to investigate the stability of the equilibrium S of the closed-
loop system (20). So we still focus on the stability property
of the error system (32).

We rewrite the last equation in (32) in the following special
form:

de,
dt

= fZCT‘O + 19_(]3 + 1911}2 + 19’[1)3 + ﬂw4 (44)

According to Taylor’s theorem, f,.., can be expressed by:

fzero =& €z +fze7’o c €z

where f,ero satisfies:

zZero 70
Ile zll ||f I

It means that, for any given v, there exist a region B, such

that:
HszeroH S (&7s] (45)

for all e, € B._. In addition, since ® is a Hurwitz matrix, for
any positive definite matrix G, there exists a positive definite
matrix F,  such that:

F, &+ ®"F,. = -G..

To simplify the notations, we introduce the following vari-
ables:

A
€igaq— [elgpdq eligl,dq e’gN,dq eth,dq]
A
eiw,dq_ elwlydq ellwydq elevdq elle,dtZ]
A
evw,dqi [eyswl,dq elvswl.dq evswkf,dq eIUswlu,dq]

Consider a Lyapunov function W = dW;+(1—d) W5 where
d € (0, 1). Wy and Wy are designed as:
Wi

_~(,T 1 ) T 1 )
o 2 (ei’ydﬂgd Ciga + eigq Fzgq Cigq

T T
+ €y aFinaCiva T €iny FingCing)

and

1
T T
Wy = *(evwdvad €vyg T el F, €v,, T €, Fe.e.)

9 Vwq ™ Ywq
where
) . ) 1 0
F, 0= diag(Fy | )3 Fy = {0 kgg%dq}
1 0

o J . _
Flw,dq dlag(sz dq) tw,dg 0 kaj,dq
F'Uw,dq dlag(F'gw,dq)

1
. 1+ Fri, 1 )
’Uw,dq 1 klydq], + kz,dq] + 2, dLZJ

k'l riq]
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It is clear that F;_, , F;, , and F,  are positive definite.
Then, the derlvatlve of W along the traJectories (32) can be

calculated by W — D, + Dy where:

Dy =T1+T
dn; dn; d
_ T ) ’Jd T mgq T mwd
D2 - eingng te FZ Zw,iFde
T g, T
+ 'quFlwIL + e’U wq Uququ + evwdFden'de

+6,£F€z (fzero €:+ 1993 + oy + Vapy + 19w4)
with

A -k - x T
Mig 0= [Zgl,dq 0 tgn,dg O] .
A [ e g
Miw,aq— [lwl,dq 0 Ywpr,dg O]
e; e; T
A wq,dq wn,dg 0
Mow,aq— [ Cru, Crun ]

and the other expressions are given by:
I'=— Z (kldy Vsw;d + dei e%ijd
+k’2q] 6lvw q) TGez €,
FZ: - Zz l(klgzde + kl!]?qe’bg q)
2
- ZJ 1(k1w]dezw d + kleqelw q)

2
+ quj €vswj p

i k i>d 0
Gigwd - dlag(qu dq) G"y dq = 1gO ! O:|
) T j %l _ kle,dq 0
Giag= dlag(Giw.dq)7 Giw‘dq = 0 0
k1 dq. 0
G“w,dq_ dlag(G’Uw dq ) G{}w,dq = 161% k2 dq-:|

Since the dg current reference trajectories only depend on the
slow dynamics state variables, we then have:

Migg _ DMigy de,  Migy _ IMigq des
dt —  de, dt’ dt ~—  de, dt

dniwd — dmmd de“wd dm’wd dequ + dm’wd de. (46)
AT ey At T depyy, de. dt

ANy, g _ Aniyg dev, ANy g dequ + dNiyg de,
At dey,, At T depy, de. dt

From the aforementioned sections, we know that:

[19g5] = 0 as |lei,, || — 0 and [es,, [ — 0
19w, |l = 0 as [le;,, || = 0 and [e;,,,[[ = 0
[[Pws |l = 0, [[9us || = 0 as [ley,, || = 0 and [[ey,, || =0

and then there exist positive S, k = 1,---

regions IB%% e’ B, e’ B, 4, Such that:

[Wgall < Billeiall + Balle,,
[ Pwsll < Bsllei,all + Ballei,,ll
[Pl < Bsllev,ull + Bsllev,, ||
[Pws|| < Brllev,q |l + Bsllev,, ||
foralle;, , € B, votq * Ciwag € IEB& » and e, ,, € IB%e“w,dq.

Note that in general larger size of IB%( ) leads to larger values

of ,Bk.
Applying the above inequalities and (45) to (44), we then
get that:

,8 and convex

|| 2e=(|< [ ®]] - [l + aollez|| + Bulles,qll + Balles,,
+B3l[€iall + Ballei, || + Bsllev,qll + Bsll€v,,
+57Hevmd | + BSHGUWH

|
(47)

€ B.. and

Ciy,dg

holds for all e, € B, ¢;, ,, € Be,

iy aq €iw.dq

vy ag € Be,, ,

Taking (34) (46) and (47) into account, it can be verified
that there exist positive parameters be, fork=1,---,L+3,
ieN,and ¢, forl=1,---,8, j € M such that D, satisfies
the inequality:

N _ . _
Dy <30y |leiy,al(Oilei, o + bylei, | + b5leu.,,|

L i M j
+ 2 bt+3|eict D|+ Zj:l (C“eiwjd| +
-(C§)|evs111jd‘ +

dlei.,, )

Ci|elvswjd| + C%‘evsqu| + célelvsqu|

tler, |+ dlei,, )

(48)
foralle, € B., C B, €, ,, € Belq ve CBei L5 €iyay €
B.. C B.. and e,,, € Be B. . These

bw.dg bw.dg w,dq Vg v

positive coefficients (bi, and cﬂ) are determined by the size
of the domains B(A), the droop gains kg;, k1,24;, k1,2;, the
system parameters and the prescribed setpoints while they are
independent of K1y, aq» K2g;.dg> K1w;,dg and k2w, dg-

Using Young’s inequality :
1 2
>l

1% 2
. < [l
1 1yl < 5=l + Syl

for the cross terms in (48) where p is a positive constant that
can be chosen arbitrarily, we obtain:

Dy <T'3+1y (49)
with
N bl
Pa=> i, 71’/1|€2g1d >+ 25; igq ?
(50)
dd
+Z ?1 |eiwjd|2 + 72"{%|eiqu|2
and
N b L b
4= Z¢=1 T,Z;|6ucgi |2 + Zt=1 2;;?3 ‘eict ‘2
M di dl
+Zj:1 ;Sg‘levswjd'Q ﬁ'elvswjd‘g (51)
d?
+2,:é Usqu|2 2KJ| Tvsw, q|

where 178 and K() have the same role as p, that can be chosen
arbitrarily.

In order to make the derivative of W negative except at the
origin, we first determine the values of droop gains kg, k1,24,
k1 24, and the size of region of attraction

Ratt = B X B@» X Be X Be
tw,dq Yw,dq z

e
‘g,dq

Then, the values of b} and cl’ can be estimated. Subsequently,
we choose large v,y and £y such that T’y +I'y < 0. Once
ka;, k1,24;, k1,24, are set, the size of region of attraction Rtt,

78! and K(.) are determined, no matter what values of %11/{
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%uﬁ, d—gn{ and d?éli‘zl are, we can always find %V{ < kig;d
%1/5' < kigiq» %{m{ < kyw,;q and dQ—%nﬂ < k1w, and hence,
I'; + '3 < 0. Consequently, there exist k1g,4, k2g,q> k1w, d>
kajq, k‘1,2dj and k172qj such that the derivative of W is
non-negative. In addition, W = 0 contains no trajectory of
the system except the trivial trajectory. All solutions starting
from R, will converge to the origin. According to LaSalle
theorem, the origin of the error system described by (32) is
locally asymptotically stable. Thereby, the equilibrium S of the
original closed-loop system (24) is also locally asymptotically
stable. Finally, we can say that the control strategy can ensure
the asymptotic stability of the MTDC system. ]

Remark 13: There is a trade-off between the size of R
and the performance of system. If we want to get a large
region of attraction, then we will have large values of k14, 44
and k1., aq- As seen in (12), large k14, a4 and k14,44 maybe
lead to large peak values of the control variables.

Remark 14: For the control algorithms described by (6),
(16), (18) and (19), the control gains can be divided into two
groups based on different control loops. It is clear that not
all arbitrary positive control gains can ensure the system’s
stability. According to the lemmas and theorems derived from
this section, the design guidelines for the control gains can be
summarized as follows to guarantee system’s stability.

e The control gains of fast control loop can be chosen as
k12g.d.00 k120,44 € By, = {k € R[k < L} where ¢
is a small positive constant.

o The control gains of slow control loop can be chosen as
k124;, k1,24, € By, = {k € R|k < Ei} where ¢, is a
small positive constant.

e ¢; and €, are chosen such that €; << ¢,.

o The droop gains are chosen such that (37) and (38) can
be satisfied.

V. SIMULATION STUDIES

In this section, the MTDC system as depicted in Fig. 3
consisting of two WVSCs and two GVSCs is simulated. The
values of the parameters are listed in Table I and Table II.
The AC voltage amplitude of the GVSCs is 415 V. The base
quantities of the per-unit system applied to the simulations
are presented in Table III. The base quantities of the AC and
DC currents are calculated as Tocpae = Sacbase/ (V3 Vachase)
and Igcpase = Sdcvase/Vacpase- As described in the previous
section, the wind farm is modeled as a controlled current
source and hence, I, 4 and I, q, represent the power
productions of the wind farms. The setpoints and the initial
values of I, ,q are given by Table IV. I, and I, are set
to zero. Furthermore, some system variables’ initial values are
provided by Table V.

For all the simulations in this section, the integral parts of
the fast control gains are set to zero, i.e. kag, dg = k2w;,dg = 0.
Three different sets of control gains as presented in Table VI
are chosen to verify the theoretical analysis.

A. Verification of two-time-scale behavior

The control gains in Set 1 are considered for the converters
in this part. The simulation results are displayed in Fig. 4.

TABLE I
PARAMETERS OF THE DC NETWORK.

[ [[ Resistance B [ Inductance L. |

l1 0.01 © 6 mH
l2 0.02 Q2 12 mH
I3 0.15 Q2 9 mH
la 0.14 8.4 mH
ls 0.16 Q2 9.6 mH
le 0.18 Q2 10.8 mH
l7 0.19 11.4 mH
TABLE 11

PARAMETERS OF THE VSC TERMINAL.

l [ Ry (Rw) | Ly (Lw) | Cg (Cw) |

SAC 1 9.9 m{2 6 mH 68 uF
SAC 2 9.4 mQ2 12 mH 20 puF
WAC 1 8.4 mS2 9 mH 27 puF
WAC 2 8.9 mQ2 8.4 mH 20 puF

The trajectory of 44,4 in Fig. 4(a) clearly performs a two-
time-scale behavior. It starts with a fast transient during the
initial interval as shown in Fig. 4(b). After the decay of this
fast dynamic, i4,4 is on or close to its manifold i;l 4 in all
future time. Figure 4(c) illustrates the error between g4, 4 and
iy - At the initial instant, |ig,q — 7, 4| is nearly 0.29 p.u..
After ¢ = 0.06 s, the discrepancy between the two trajectories
is less than 0.015 p.u.. It turns out that during the initial
interval [0, 0.06] s, the trajectory of 44,4 approaches that of
iy, 4- It is seen that, the exponential decay of the fast transient
during the initial interval corresponds to the solution of the
boundary-layer model. However, such two-time-scale behavior
is not significant in the DC voltage and the AC voltage, which
are considered to have slow dynamics. As depicted in Figs.
4(e)-4(g), there is no apparent fast transient that can be found
between the trajectories of w4, and uzgl (Vsw,d and Vg d)-
It can be observed that u.g, and v, ¢ are well approximated
by the solution of the reduced model, i.e. ucg, and vy .
Moreover, sy, 4 asymptotically converges to its setpoins vg,, ,
together with vgg ;.

B. Evaluation of the system performance in case of distur-
bance

Att = 2 s, 1,4 is changed to 0.6 p.u. because of the
increase in the active power generated by the wind farms.

TABLE III
BASE QUANTITIES USED IN THE PER-UNIT SYSTEM.
AC side || Sicpase = 4.5 KVA | Viepase = 4154/3/2 V
DC side || Sacpae = 3 kKVA Vacsase = 700 V
TABLE IV
SETPOINTS AND INITIAL VALUES OF THE CURRENT SOURCE.
Pg [ Qg | wug
SA'1 _0-4Sac,base 0 vdc,hase
SAC 2 _0-5Sac,base 0 V;lc,hase
Ugwjd U(s)qu Ty;a
WAC 1 ‘/ac,base 0 0~4Iac,base
WAC 2 ‘/ac,base 0 0~5Iac,base
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TABLE V
INITIAL STATES OF THE MTDC SYSTEM.
tg1d tgad i d layd
-0.2 p.u. -0.1 p.u. 0.3 p.u. 0.3 p.u.
VUswid Vswiq VUswaod Vswsaq
0.7 p.u. 0.01 p.u. 0.7 p.u. 0.01 p.u.
Ucgy Ucgy Ucwy Ucwy
1.043 p.u. | 1.043 p.u. | 1.043 p.u. | 1.043 p.u.
TABLE VI

CONTROL GAINS APPLIED TO THE MTDC SYSTEM.

l H kdl [ kdz [ klgi,dq (kle,dq) l
Set I [| 10ka, . | 10Fa, 1000
Set 2 10 d1 min 10 d2 min 300
Set3 || Thay .. | 2y 1000

Consequently, GVSC 1 and GVSC 2 should share the duty
of eliminating the power unbalance caused by this increase of
the power production. The simulation results are presented in
Fig. 5. Since more power needs to be transmitted via the DC
grid, in order to make the MTDC system operate normally,
GVSC 1 and GVSC 2 should absorb more power from the
DC grid. As shown in Figs. 5(a) and 5(b), 44,4 attains a new
steady value around —0.5 p.u. from —0.4 p.u. and 7,4 is also
changed from —0.5 p.u. to —0.6 p.u.. As discussed in Remark
8, if more power is absorbed by the GVSCs, this forces the DC
voltages to rise and reach new steady levels. This phenomenon
is clearly presented in Figs. 5(e) - 5(g). The new DC voltage
transmission level now is about 1.05 p.u. which deviates from
the setpoints ugghz = 1.0 p.u.. As seen in Fig. 5(c), %w,q
arrives around 0.6 p.u. to response to the change of I, 4.
On the other hand, vs,,,q is always well controlled around its
setpoint vg,, 4, = 1.0 p.u. irrespective of the variation in Iy, 4
after a short transient as depicted in Fig. 5(h).

By contrast to the increase in [, q, at t = 4 s, Iy,4
drops from 0.5 p.u. to 0.3 p.u.. The simulation results are
summarized in Fig. 6. Since the generated power from the
wind farm 2 decreases, %,,q starts to decrease and then
converges to a new steady state about 0.3 p.u. as shown in
Fig. 6(c). From Figs. 6(a) - 6(b), i4,4 is changed from —0.5
p.u. to —0.4 p.u. and 44,4 varies from —0.6 p.u. to —0.5 p.u.
This means less power is received by GVSC 1 and GVSC 2
because less power is injected into the DC grid. Additionally,
in order to comply with the droop law (17), the DC voltages
also drop and then get to a new steady state (~ 1.0 p.u.) as
displayed in Figs. 6(d) - 6(f).

To evaluate the capability in terms of AC voltage regulation,
at t = 6 s, a new setpoint v, , = 0.9 p.u. is sent to WVSC
1. Now vgy,q4 is required to be stabilized around this new
reference point. The transient response of vy, 4 is illustrated
in Fig. 7(a). It is found that v, 4 and v, , quickly converge
to the new setpoint with an acceptable undershoot. Since I,,, 4
is unchanged during the interval [6, 7] s as depicted in Fig.
7(b), the change of vg , has no effect on the steady state of
1w, d- According to (5), less power flows through WVSC 1 due
to the decrease of the AC voltage at the PCC, which implies
that the total transmitted power reduces. Therefore, GVSC 1
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Fig. 4. Simulation results with the control gains in Set 1.

and GVSC 2 get less power than before and then, i, 4 and
14,4 Start to decrease until converging to new steady states as
seen in Figs. 7(c) and 7(d). Similar to the results in Figs. 6(d)
- 6(f), the DC voltages start to drop and remain around 0.985
p-u. as shown in Figs. 7(e) and 7(f).

The responses of each terminal’s active power at the PCC
are plotted in Fig. 8. It is clear that GVSC 1 and GVSC 2
participate in balancing the active power of the DC grid. When
the power injection grows, both GVSCs share the incremental
power and then absorb more power from the grid. Conversely,
as the power injection reduces, both GVSCs decrease their
power absorption accordingly.



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

2 21 22 23 24 25 2 21 22 23 24 25
Time (s) Time (s)

(a) Responses of i4,4 and (b) Responses of ig,q and

* *
(2 . (2 .
g1d gad
i, o 0
A
0.55 00, 4 ()
A
0.5/
0.45]
0.4
2 21 24 25 1.99 2.02

22 23 2 2.01
Time (s) Time (s)

(c) Responses of i,,,4 and (d) Zoom of 7,,, 4 and i;ld‘

*
-

1.04) =g, (P1)

e
1.03 —cq, ()

_UD
1.02 %
101
o o
2 21 22 23 2.4 25 2 21 2.2 23 24 25
Time (s) Time (s)

(e) Responses of ucg, and (f) Responses of ucg, and

Te
u u
cg1 cg2
10
—Vew ¢ (PU)
107 ZWJ“
_ u,
1.06 g O
1.05
1.04
1.03
1.02
101
099551 24 25 099551 24 25

22 23 22 23
Time (s) Time (s)
(g) Responses of ucw; and

Te
Ueawy -

(h) Responses of v, d-
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C. Dynamics regulation

As stated in Remarks 10 and 12, we indicate that the control
gains play different roles in regulating the system dynamics.
This will be verified by the comparisons between different sets
of the control gains.

We point out that the fast transient of the dgq currents
corresponds to the solution of the boundary-layer model and
then the fast dynamics can be regulated by the fast control
gains. To clarify this issue, the comparison between Set 1 and
Set 2 is carried out where kg, aq and k1., 4 in Set 1 are
larger than in Set 2. The simulation results are displayed in
Fig. 9. During the initial interval, the two trajectories in Fig.

iy g ) iy )
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Fig. 6. Simulation results with the variation in [, 4.

9(a) start from the same initial point around 0.285 p.u.. It is
evident that the blue one has a faster rate of decay than that
of the red one because of larger k14,4 in Set 1 than in Set
2. As seen in Fig .9(b), the blue curve enters the error band
[—0.005, 0.005] p.u. around ¢ = 0.25 s and then remains
in this band in the future time, but in contrast, the red curve
reaches this error band after ¢ = 0.41 s. A similar event occurs
in the response of the error between iy, 4 and iy, , as plotted
in Figs. 9(c) and 9(d). Both curves in Fig. 9(c) have the same
initial value of 0.385 p.u.. Since k14,4 in Set 1 is larger than in
Set 2, the response of the error represented by the blue curve
drops faster than that described by the red one. Moreover, as
seen in Fig. 9(d), after ¢ = 0.2 s, the blue curve stays in the
error band [—0.005, 0.005] p.u.. The red one needs 0.41 s to
get into this error band and then remains in it. The simulation
results clearly show that the fast control gains play a critical
role in the regulation of the fast transient of the dg currents.

As expressed in (35), the behavior of the reduced model
is regulated by the droop gains ky;, k1,44, and k3 g4, Fur-
thermore, the dynamics of vy, 4¢ in (35) heavily depend on
k1,4q; and k3 44, while the zero dynamics (or the dynamics
of the DC network) strongly rely on the choice of the droop
gains k4,. To demonstrate the above points, two sets of control
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gains, i.e. Set 1 and Set 3, are chosen for comparison. The only
difference between them is that k4, in Set 1 is larger than in
Set 3.

The simulation results in Fig. 10 illustrate the effect of the
droop gains on the system performance. From Figs. 10(a)
and 10(c), both ucg, and uc,, with Set 1 and Set 3 are
asymptotically stabilized around 1.0 p.u.. However, it can
be observed that the blue trajectories remain in the domain
[0.99, 1.01] p.u. after ¢ = 0.05 s, whereas the red ones need
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Fig. 9. Comparison between Set 1 and Set 2.

nearly 1.9 s to stay in the same region. Moreover, as seen in
Figs. 10(b) and 10(d), the response of u¢g, (Ucw,) With Set 1
is much steeper than that with Set 2 during the initial interval.
The above description indicates that the performance of the
state variables related to the zero dynamics can be improved
by increasing the values of kg, appropriately.

Let us now focus on the responses of the AC voltage as
depicted in Figs. 10(g) - 10(j). Interestingly, as seen in Fig.
10(g), the response of vs,,q4 With Set 1 is very close to that
with Set 3. In particular, as seen in Fig. 10(h), the two curves,
the blue one and the red one, almost coincide with each other.
A similar result can also be obtained for v,,,,4 from Figs. 10(i)
and 10(j). This implies that the droop gains have little effect
on controlling the AC voltage. It is k1 44, and k2 44, that are
predominant in the regulation of the AC voltage.

VI. CONCLUSIONS

This paper presents a detailed theoretical analysis of a
control induced time-scale separation for an MTDC system
with a generic DC grid topology using droop control strategy.
The main contributions are that a rigorous mathematical expla-
nation is provided for the dynamic separation in time scales
between the system’s state variables and notably, sufficient
conditions on choosing the control gains for the system
stability are derived using singular perturbation and Lyapunov
theories. From the theoretical analysis, it is established that the
time-scale separation can be created by the designed control
algorithm. As a consequence, the system state variables can
reasonably be partitioned into different dynamics where the
dgq currents are listed as the fast dynamic state variables while
the remaining variables have slow dynamics. Based on the
time-scale separation, a boundary-layer and a reduced model
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Fig. 10. Comparison between Set 1 and Set 3.

are deduced. The exact solution of the slow dynamic state
variables can be uniformly approximated by the solution of
the reduced model. The fast transient of the fast dynamic state

variables corresponds to the solution of the boundary-layer
model. Additionally, our study establishes that the control
gains in the fast control loop are mainly responsible for
determining the fast transient of the dq currents, while other
gains are used to control the dynamics of the AC voltage.
Finally, the droop gains have a great effect on the dynamics
of the internal state variables (the dynamics of the DC grid).

The illustration of the theoretical analysis is carried out by
numerical simulations. A sequence of events is applied to the
MTDC system to evaluate the performance of the system with
the proposed control structure. The simulation results clearly
present that the dq currents exhibit a significant two-time-scale
behavior characterized by a slow and a fast transients. They
also show that the control gains have different impacts on
the behaviors of the system by performing the comparisons
between three sets of control gains.
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