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A GEOMETRIC APPROACH TO K-HOMOLOGY FOR LIE
MANIFOLDS

KARSTEN BOHLEN, JEAN-MARIE LESCURE

Abstract. We prove that the computation of the Fredholm index for fully elliptic
pseudodifferential operators on Lie manifolds can be reduced to the computation of
the index of Dirac operators perturbed by smoothing operators. To this end we
adapt to our framework ideas coming from Baum-Douglas geometric K-homology
and in particular we introduce a notion of geometric cycles that can be classified
into a variant of the famous geometric K-homology groups, for the specific situation
here. We also define comparison maps between this geometric K-homology theory
and relative K-theory.

1. Introduction

The Atiyah-Singer index theorem is a celebrated and fundamental result with numerous
applications in Geometry and Analysis. A particular approach to index theory is due to
P. Baum and R. Douglas, cf. [5] and [6]. They constructed a geometricK-homology and
a suitable comparison homomorphism between the geometric and analytic K-homology
groups. A complete proof that the comparison map is in fact an isomorphism was
published recently [7]. In the Baum-Douglas approach to the index theorem, the com-
putation of the Fredholm index of an elliptic pseudodifferential operator on a compact
closed manifold can be reduced to the computation of the index of a suitable geometric
Dirac operator, naturally associated to a geometric cycle. The origin of this work is to
address the corresponding question for singular manifolds, at least the ones for which
a suitable Lie groupoid permits to well pose the index problem. More precisely, we
consider Lie manifolds (M,G), that is Lie groupoids G over compact manifolds with
corners such that M0 = M \ ∂M is saturated and GM0 = M0 ×M0. This occurs in
many cases, for example manifolds with corners or fibered corners and manifolds with
foliated boundary. In such a case, there is a well defined notion of full ellipticity for
operators in the corresponding calculus, that ensures the Fredholmness of the associated
operators on M . The question can now be made more precise. Given a fully elliptic
operator P on (M,G), can we construct a Dirac operator D in the same calculus, which
is Fredholm and with the same index than P? Contrary to the case of C∞ compact
manifolds without boundary, we are not able to give an affirmative answer to this ques-
tion. Nevertheless, we are able to solve positively the question by allowing tamed Dirac
operators, that is, Dirac operators perturbed by smoothing elements in the calculus.
Along the way, we prove that if there is no obstruction at the level of K-theory for the
full ellipticity (and thus Fredholmness) of Dirac operators, then a perturbation into a
Fredholm operator using smoothing operators and elementary Dirac operators always
exists. This echoes previous works by Bunke [10] and Carrillo Rouse-Lescure [12]. Also,
these considerations bring a notion of geometric cycles that mimetizes the original one
of Baum-Douglas with the following main variations into the choice of ingredients:

(1) We only accept submersions of manifolds with corners ϕ : Σ → M instead of
general continuous maps from Spinc manifolds to M ;
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(2) We replace Dirac operators by tame Dirac operators.
The point (1) is apparently rather restrictive but actually sufficient for our purpose, since
the geometric cycles constructed by the clutching process are of this kind. Furthermore,
the classical operations on geometric cycles: isomorphisms, direct sums, cobordisms and
vector bundle modifications have a natural analog here. The resulting abelian group,
that we call geometric K-homology of (M,G) can then be compared with the suit-
able relative K-theory group (also known as stable homotopy group of fully elliptic
operators). Our approach is definitely tied to the clutching construction which, in a
sense, dictated to us the most convenient notion of geometric cycles for our purpose,
the latter being, as explained above, the possibility of representing the index of abstract
pseudodifferential operators by the one of Dirac operators, perturbed by smoothing op-
erators. We mention that other and more general approaches of geometric K-homology
for groupoids exist, in particular in [13, 15, 24].

Overview. The article is organized as follows.
• In section 2 we study fully elliptic operators contained in the pseudodifferential
calculus on the tuple (M,G), where G is a Lie groupoid over M . We introduce
the group of stable homotopy classes of fully elliptic operators VFEll(M) which
is defined to equal the relative K-theory group K(µ), where µ is the homo-
morphism of the continuous functions M into the full symbol algebra, given
by the action as multiplication operators. We prove a Poincaré duality type
result which states that the Fredholm index can be expressed in a precise way
in terms of an index map defined in terms of purely geometric data, given by
suitable deformation groupoids. More precisely, we recall the geometric model
for the full symbol space of a pseudodifferential operator on a Lie groupoid in
terms of the deformation groupoid T , referred to as the noncommutative tangent
bundle. The K-theory group K0(C∗(T )) turns out to be the natural receptable
for the stable homotopy class of the full symbol of a fully elliptic pseudodif-
ferential operator. The Poincaré duality result is the isomorphism of groups
VFEll(M) ∼= K0(C∗(T )) via the non-commutative principal symbol homomor-
phism σnc.
• In section 3 we investigate so-called tamings of geometric Dirac operators on Lie
groupoids. The main result is a Diracification theorem which states that any
fully elliptic pseudodifferential operator P on a Lie groupoid, whose principal
symbol has the same class in K-theory as a given Dirac operator D, has a
so-called taming B = (D ⊕ D′) + R, consisting of a Dirac operator D′ and a
smoothing operator R, such that the classes of the operators B and P agree in
the relative K-theory group K(µ). We introduce a pushforward operation on
the level of deformation groupoids and show that this operation commutes with
the Fredholm index.
• In section 4 we introduce geometric K-homology groups VKgeo

(M) (of even
and odd degree) on a given Lie manifold (M,G). Using the pushforward op-
eration, introduced in the previous section, we define the comparison map
λ : VK

geo
(M) → K(µ). The main result of this section is a proof that the

comparison map λ is a well-defined group homomorphism. This result is cor-
rectly viewed as a generalization of the cobordism invariance of the analytic
index in the standard setting.
• In section 5 we define the so-called clutching construction in the setting of Lie
manifolds. The resulting quotient map c : K0(C∗(T )) → VK

geo
(M) is induced
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by the map associating to a full symbol of a (fully elliptic) pseudodifferential
operator a geometric cycle. We show that c is a well-defined homomorphism of
groups. Then we finish the proof of the main result of the paper, which states
that the computation of the Fredholm index of any fully elliptic pseudodiffer-
ential operator on a Lie manifold can be reduced to the computation of the
index of a geometric Callias type operator, associated to the geometric data,
generating the geometric K-homology group.

The view of index theory on Lie manifolds considered in this work can be summarized
in terms of the following commutative diagram:

K0(C∗(T )) Z

VK
geo

(M) K0(µ) = VFEll(M)

indF

c

λ

pd

'
ind

(1)
In conjunction with the recent work of Bohlen-Schrohe [9] the reduction of the index
problem to first order geometric operators furnishes a corresponding index formula for
fully elliptic pseudodifferential operators on Lie manifolds.

2. Poincaré duality

Full ellipticity, groupoids and K-theory. Let G ⇒ M be a Lie groupoid with
Lie algebroid denoted by A. The manifold M will always be compact, and may have
corners. In that case, we assume that the boundary hypersurfaces of M and G are
embedded [33], and the source and range maps are submersions between manifolds with
corners [29], also called tame submersions in [39]. We recall that it means, for a C∞
map f : M → N between manifolds with corners, that at any point x ∈M we have:

dfx(TxM) = Tf(x)N and (dfx)−1(T+
f(x)N) = T+

x M. (2)

Here TM denotes the ordinary tangent vector bundle and T+M its subspace of inward
pointing vectors. Under such assumptions, f preserves the codimension of points and
its fibers have no boundary.
If Ej → M are vector bundles, we denote by Ψ∗G(E0, E1) the space of compactly G-
pseudodifferential operators [14, 36, 34, 41]. The principal symbol map is denoted by:

σpr : Ψm
G (E0, E1)→ C∞(S(A∗), π∗(Hom(E0, E1))).

Here S(A∗) is the sphere bundle of the dual Lie algebroid A∗ of G and π denotes any
of the projections maps of A∗ and S(A∗) onto M .
Let Ψm

G (E0, E1) denote the closure of Ψm
G (E0, E1)) into Mor(Hs(G, E0),Hs−m(G, E1))

[45] (and we choose once for all, the reduced or maximal completion indifferently). For
simplicity we denote ΨG(E) = Ψ0

G(E). We get a short exact sequence of C∗-algebras:

C∗(G,End(E)) // // ΨG(E)
σpr
// // C(S(A∗), π∗End(E)). (3)

Now let F ⊂ M be a closed subspace which is saturated, that is s−1(F ) = r−1(F ).
Then GF is a continuous family groupoid [42, 28]. By restricting over F , we get the
F -indicial symbol map:

IF : Ψ∗G(E0, E1)→ Ψ∗GF (E0|F , E1|F )
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Gathering both symbol maps, we get the F -joint symbol map:

σF,m = (σpr, IF ) : Ψm
G (E0, E1) −→ C(S(A∗), π∗Hom(E0, E1))×Ψm

GF (E0|F , E1|F ). (4)

The range Σm
F (E0, E1) of σF,m is called the F -joint symbols space and its closure is

denoted by Σm
F (E0, E1). We will write ΣF for Σ0

F . This gives the short exact sequence
of C∗-algebras [28]:

C∗(GO,End(E)) // // ΨG(E)
σF // // ΣF (E). (5)

where O = M \F and C∗(GO,End(E)) is the closure of C∞c (GO, r
∗End(E)) into ΨG(E).

We recall that for any elliptic A ∈ Ψ1
G(E,E′), the unbounded operator ΛE = (1 +

A∗A)1/2 defined by functional calculus belongs to Ψ1
G(E), realizes isomorphismsHs(G,E)→

Hs−1(G,E) and satisfies Λ−1
E ∈ C∗(G,End(E)) [45].

Definition 2.1. We say that P ∈ Ψm
G (E) is F -fully elliptic if σF (Λ−mE P ) ∈ ΣF (E)×.

We now turn our attention to the natural groups constructed out of F -full elliptic
operators [27, 44, 43, 3]. A convenient way to handle them is to use the so-called K-
group K(f) of a homomorphism f : A → B ([27, II.2.13]). We recall the definition:
the set of cycles Γ(f) is given by triples (E0, E1, α) where the Ei are finitely generated
projective A-modules and α : E0 ⊗f B → E1 ⊗f B is an isomorphism. The notions of
isomorphisms (') and direct sums (⊕) in Γ(f) are the obvious ones. A cycle (E0, E1, α)
is elementary if E0 = E1 and α is homotopic to the identity within the automorphisms
of E0 ⊗f B. Finally, the equivalence relation giving K(f) = Γ(f)/ ∼ is defined by:

σ ∼ σ′ if there exists elementary τ, τ ′ such that σ ⊕ τ ' σ′ ⊕ τ ′.
We always have K(f) ' K0(Cf ) where Cf is the mapping cone of f and K(f) '
K0(ker f) when f is onto [3]. In [43] these groups are introduced in a slightly differ-
ent way, namely as stable homotopy groups of elliptic operators. The comparison is
straightforward and we keep a notation inspired by A. Savin’s one.

Definition 2.2. The group FEllF (G) will be defined as the K-group K(µF ) of the
natural homomorphism µF : C(M) −→ ΨG/C

∗(GO) = ΣF .

We also consider another natural homomorphism µpr : C(M)→ ΨG/C
∗(G) ' C(S(A∗)).

If P ∈ Ψm
G (E0, E1) is F -fully elliptic, m ≥ 0, then it canonically defines classes:

[P ]F =
[
E0, E1, σF (Λ−mE1

P )
]
∈ K(µF ) = FEllF (G),

[P ]pr =
[
E0, E1, σpr(Λ

−m
E1

P )
]
∈ K(µpr) ' K0

c (A∗),

with Ej = C(X,Ej). The resulting classes do not depend on the choice of ΛE1 . Indeed,
consider ΛA = (1 +A∗A)1/2 and ΛB = (1 +B∗B)1/2. Since C(t) = (1− t)A∗A+ tB∗B

is elliptic self-adjoint and non negative we get a family Λt = (1 +C(t))1/2 ∈ Ψ1
G(E1) of

invertible elements connecting ΛA to ΛB, and σF (Λ−mt P ) provides the desired homotopy.
The same is true for the principal symbol classes.
Note that there is a natural isomorphism Cµpr ' C0(A∗) and therefore:

K(µpr) ' K0
c (A∗).

We will denote by [P ]pr,ev the image of [P ]pr through this isomorphism.

Proposition 2.3. Let P+ ∈ ΨG(E+, E−) be F -fully elliptic. Then P ∗+ is F -fully elliptic
and

[P+]F = −[P ∗+]F ∈ K0(µF ). (6)
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Proof. If P+ is F -fully elliptic, then P− := P ∗+ is also F -fully elliptic. Set P =(
0 P−
P+ 0

)
∈ ΨG(E), E = E+ + E−. We get by polar decomposition of the invertible

element p = σF (P ) in the C∗-algebra ΣF (E) the existence of U, T ∈ ΨG(E) such that
u = σF (U) is unitary, |p| = σF (T ) and p = u|p|. Since |p| is of degree 0, since p of
degree 1 with respect to the Z2 grading and since |p| is invertible, the unitary u is
necessarily of degree 1 with respect to the Z2-grading. Therefore, we can assume that

U =

(
0 U−
U+ 0

)
and T =

(
T+ 0
0 T−

)
. Since p is selfajoint, we can also assume that the

unitary u is self-adjoint, thus u− = u∗+ = u−1
+ . Since p is positive, we get a homotopy

p = u|p| ∼ u, therefore

[P+]F + [P ∗+]F = [E , E , p] = [E , E , u] = [E+, E−, u+] + [E−, E+, u
−1
+ ] = 0 ∈ K(µF ).

�

Index and Poincaré duality results. There is an index map coming with FEllF (G).
Indeed, the commutative diagram

C(M)

µ0

��

µF
// ΣF

Id
��

ΨG
σF // ΣF

gives rise to a homomorphism K(µF ) → K(σF ) and since σF is onto, we also have
a natural isomorphism K(σF ) ' K0(kerσF ) = K0(C∗(GO)) [3]. Their composition is
called the (F -)index map:

indF : FEllF (G)→ K(C∗(GO)). (7)

It is possible to get a slightly more geometrical description of (7) by establishing a
kind of Poincaré duality with the help of deformation groupoids. Let us introduce the
necessary objects.
The adiabatic groupoid Gad ⇒ Mad := M × [0, 1] is the natural Lie groupoid in-
tegrating the Lie algebroid (Aad, %ad) given by: Aad = A × [0, 1] and %ad : Aad →
TM × T [0, 1], Aad 3 (x, v, t) 7→ (x, tv, t, 0) ∈ TM × T [0, 1] = TMad. More precisely,

Gad = A× {0} ∪ G × (0, 1] and A(Gad) ∼= Aad.

Out of the adiabatic groupoid we construct the so-called F -Fredholm groupoid :

GFF := Gad \ (GF × {1}) ⇒ MFF = (M × [0, 1]) \ (F × {1}) (8)

This is again a Lie groupoid (as an open subset of Gad). The non-commutative tangent
bundle is defined by:

TFM := GFF \ (GO × (0, 1]) ⇒MF = MFF \ (O × (0, 1]). (9)

It is a C∞,0 groupoid [42]. The exact sequence:

C∗(GO × (0, 1]) // // C∗(GF )
e0 // // C∗(TFM) (10)

possessing a contractible kernel, we get an isomorphism e0 : K0(C∗(GFF ))→ K0(C∗(TFM)),
and if (10) has a completely positive section, then e0 ∈ KK(C∗(GFF ), C∗(TFM)) pro-
vides aKK-equivalence (that is, is invertible). Considering the restriction e1 : C∗(GFF )→
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C∗(GO), we get another index map:

indFF := (e1)∗ ◦ (e0)−1
∗ : K0(C∗(TFM))→ K0(C∗(GO)).

We think to ΣF as a noncommutative cosphere bundle, relative to F , and to TFM as
the noncommutative tangent bundle, relative to F , associated with G ⇒M . We end up
with a Poincaré duality like theorem.

Theorem 2.4. There is a group isomorphism:

σnc
F : FEllF (G)→ K0(C∗(TFM)) (11)

such that e0(σnc
F [P ]F ) = [P ]pr,ev ∈ K0

c (A∗) and indFF (σnc
F [P ]F ) = indF ([P ]F ). Here e0

is the restriction map C∗(TFM)→ C∗(A).

Proof. By [27, 44, 43] we have a natural isomorphism:

FEllF (G) = K(µF ) ' K0(CµF ) (12)

where Cf denotes the mapping cone of f . The isomorphism K0(CµF ) ' K0(C∗(TFM))
can be proved following verbatim the proof of Theorem 10.6 in [21, Theorem 10.6].
Alternatively, we use the following short argument1. Denote by Gad0 the restriction of
Gad toM× [0, 1). Since ΨGad0

/C∗(Gad0 ) ' C0(S(A∗)× [0, 1)) is contractible, the inclusion
C∗(Gad0 )→ ΨGad0

is an isomorphism in K-theory, as well as the inclusion

C∗(TFM) = C∗(Gad0 )/C∗(GO × (0, 1)) ⊂ ΨGad0
/C∗(GO × (0, 1))

as well. If µ0 : C(M) → ΨG denotes the natural homomorphism, then we have a
homomorphism κ : Cµ0 → ΨGad0

given by (f, P ) 7→ P . Using on the one hand the
commutative diagram

C0((0, 1),ΨG) // // Cµ0

κ

��

// // C(M)

κ0

��

C0((0, 1),ΨG) // // ΨGad0

// // ΨA.

and on the other hand that κ0 : C(M) −→ ΨA is a KK-equivalence, we get by the five
lemma that κ is a KK-equivalence too. Quotienting both algebras Cµ0 and ΨGad0

by
the ideal C∗(GO × (0, 1)), we get that the homomorphism

CµF −→ ΨGad0
/C∗(GO × (0, 1))

is a KK-equivalence. The remaining assertions in Theorem 2.4 are then easy. �

3. From abstract operators to tame Dirac operators

Dirac bundles over groupoids. Let G ⇒M be a Lie groupoid with Lie algebroid A.
We equip A with a euclidean structure and denote by Cl(A) the corresponding bundle of
Clifford algebras overM . We define Dirac bundles as in [10, Definition 3.1] by replacing
TM by A in the definition of c, in other words we deal with a Cl(A)-module complex
vector bundle E overM with Clifford multiplication induced by c, compatible hermitian
metric h, admissible connection ∇ and a Z2-grading z when A has even rank. Now by
[29], there is an associated Dirac operator D ∈ DiffG(E). For simplicity, we will denote
such a Dirac bundle by (E,D), the necessary data being understood.

1communicated to us by G. Skandalis
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K-tamings. One can check that, for any F -fully elliptic P ∈ ΨG(E0, E1), we have:

[P ]F,ev := σncF ([P ]F ) =
[
C∗(TFM,E0 ⊕ E1),

(
0 Q|TFM

P|TFM 0

)]
∈ KK(C, C∗(TFM)).

Here P is a F × {1}-fully elliptic lift of P , that is P ∈ ΨGad , P|t=1 = P and P|t=0 =
σpr(P ); while Q is a similar lift of a full parametrix Q of P . We refer to this situation
as the even case.
Now, if P ∈ ΨG(E) is selfadjoint and F -fully elliptic, which we refer to as the odd case,
we will consider instead of [P ]F and [P ]pr, the classes:

[P ]F,odd =
[
C∗(TFM,E),P|TFM

]
∈ KK1(C, C∗(TFM)),

[P ]pr,odd =
[
C∗(A, E), σpr(P )

]
∈ KK1(C, C∗(A)),

The convention is the same for positive order operators after using suitable order re-
duction operator Λ.

Definition 3.1. We say that an elliptic operator P ∈ Ψ∗G is F -tameable if [P ]pr,∗ is in
the range of

τ = (evt=0)∗ : K∗(C
∗(TFM)) −→ K∗(C

∗(A)). (13)

Using the K-equivalences GFF ∼K TFM and Gad ∼K A, we see that the above condition
is equivalent to be in the range of

i∗ : K∗(C
∗(GFF )) −→ K∗(C

∗(Gad)). (14)

where i : C∗(GFF ) ↪→ C∗(Gad) is the inclusion.
Also, in the even case, the natural homomorphism qF : ΣF → C(SA∗) induces a map:

qF : K(µF ) −→ K(µpr) (15)

which coincides with τ under the suitable isomorphisms. In particular qF ([P ]F ) = [P ]pr
and F -tameability of an elliptic operator P ∈ Ψ∗G(E0, E1) is equivalent to [P ]pr ∈ im qF .

Reduction to Dirac. We call (S,D) an even Dirac bundle for G if S = S+ ⊕ S− is a
Z2-graded Cliff(A)-module vector bundle over X and D = Antidiag(D+, D

∗
+) ∈ Ψ1

G(S)
is a Dirac operator. Odd Dirac bundles are defined in the same way without gradings.

Definition 3.2. Any F -fully elliptic operator of the form:

B = (D ⊕D′) +R

where
(1) (S′, D′) is a Dirac bundle of the same parity as (S,D),
(2) R ∈ Ψ−∞G (S ⊕ S′),
(3) [B]pr,∗ = [D]pr,∗,

is called a F -taming of D.

Theorem 3.3. Let (S,D) be a F -tameable Dirac bundle. Then for any F -fully elliptic
operator P ∈ ΨG such that [P ]pr,∗ = [D]pr,∗ ∈ K∗(A), there exists a F -taming B of
(S,D) such that

[B]F,∗ = [P ]F,∗ ∈ K∗(C∗(TFM)) ' K(µF ). (16)
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Proof of the Theorem. We begin with the even case and use for that the relative K-
theory description. Far any integer N , we can give Cliff(A)-modules structure to the
trivial bundlesX×Ck (by embedding isometrically the bundleA into some trivial bundle
over X) where k ≥ N is chosen in order to get an even Dirac bundle (M × Ck, Dk).
Then [Dk,+ ⊕ (−Dk,+)]pr = 0 ∈ K(µpr) and we set D′ = Dk + (−Dk).
Let P+ ∈ ΨG(E+, E−) be a F -fully elliptic element such that [P+]pr = [D+]pr. By
definition of K(µpr), there exist elementary elements

(ξ, ξ, α), (ξ′, ξ′, α′) ∈ Γ(µpr)

such that

(E+, E−, σpr(P+)) + (ξ, ξ, α) ' (S+,S−, σpr(D+)) + (ξ′, ξ′, α′).

Adding to both sides another elementary element, and renaming, we can assume that
ξ′ = C(S(A∗),Ck). We rename S± ⊕ C(S(A∗),Ck) into S± and identify E± ⊕ ξ ' S±.
Replacing α by 1 and α′ by σpr(D′+) after homotopies, and renaming P+ ⊕ 1 into P+,
we get: (

S+,S−, σpr(P+)
)
∼
(
S+,S−, σpr((D ⊕D′)+)

)
,

and in particular

σpr(P+)−1σpr((D ⊕D′)+) ∼ Id within Aut(S+). (17)

Now we use the homotopies lifting argument of [23, Proposition 4.3]. Since S± =
p±C(S(A∗))N for some projectors p± ∈ MN (C(M)), the surjectivity of q : ΣF −→
C(S(A∗)) implies the surjectivity of

q̃ : L(p+(ΣN
F )) −→ L(S+).

By the open mapping theorem, q̃ is then open. Thus, q̃(Aut(p±(ΣF ))(0)) is an open,
and therefore closed, subgroup of Aut(S+), therefore:

q̃(Aut(p±ΣN
F )(0)) = Aut(S±)(0).

By (17), we can choose y ∈ Aut(p+ΣN
F )(0) such that

σpr(P+)q̃(y) = σpr(P+)y = σpr((D ⊕D′)+). (18)

Let Y ∈ ΨG(S+) such that σF (Y ) = y. Let us set T = 1√
2

(
0 (P+Y )∗

P+Y 0

)
. Since y

is in the connected component of the identity in Aut(S±), we have [T±]F = [P±]F . If
∆ ∈ Ψ2

G(S) denotes a laplacian, Equation (18) gives:

T = (1 + ∆)−1/2(D ⊕D′) +R with R ∈ C∗(G,End(S)). (19)

We know that the class σF (T ) of T in the C∗-algebra ΨG(S)/C∗(GO,End(S)) is invert-
ible. By density of C∞c (G,End(S)) into C∗(G,End(S)), we can chooseR1 ∈ C∞c (G,End(S))
such that σF (T1)) remains invertible, where T1 = T − R + R1. We write R1 =

(1 + ∆)−1/2(1 + ∆)1/2R1 and we approximate (1 + ∆)1/2R1 ∈ C∗(G,End(S)) by an
element R2 ∈ C∞c (G,End(S)) close enough so that σF (T2)) remains invertible, where

T2 = (1 + ∆)−1/2(D ⊕D′) + (1 + ∆)−1/2R2.

Thus, B := (D ⊕ D′) + R2 is a F -fully elliptic operator and R2 ∈ Ψ−∞G (S). Without
loss of generality, we can assume that R,R1, R2 are close enough so that T and T2 are
homotopic among F -fully elliptic operators. We conclude:

[B+]F = [T+]F = [P+]F = −[P−]F = −[B−]F .
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In the odd case now, we consider the map τ∗ : KK1(C, C∗(TFM)) −→ KK1(C, C∗(A)).
Let P be a fully elliptic lift of P and p ∈ MN (C(M)) a projector such that E =
p(M × CN ). We have τ∗[pC∗(TFM)N ,P|TFX ] = [pC∗(A)N , σpr(P )], therefore by as-
sumption [pC∗(A)N , σpr(P )] = [pC∗(A)N , σpr(D)] ∈ KK1(C, C∗(A)). This means
that after the addition of degenerate Kasparov modules we have a homotopy between
σpr(P ) and σpr(D) within the automorphisms of the C∗-algebra L(τE)/K(τE) where
E = C∗(TFM,E) and τE = C∗(A, E) = E ⊗τ C∗(A). Now by lifting homotopies
through the epimorphism of C∗-algebras:

τ̃ : L(E)/K(E) −→ L(τE)/K(τE)

as in the even case, and using again a density argument, we conclude the proof. �

Lie manifolds. If M is a compact manifold with embedded corners, it is understood
that a decomposition into closed faces is given, which are themselves compact manifolds
with embedded corners inheriting the induced decomposition into faces. The set of
codimension k faces of M is denoted by FkM .
We will consider Lie manifold structures on manifolds with embedded corners [1]. Any
such structure on M is given by an almost injective Lie algebroid A, the latter being
integrable by [18] into a unique, up to isomorphism, s-connected Lie groupoid G. By a
slight abuse of notation, we will continue to call Lie manifold any pair (M,G) such that

(1) G ⇒M is a Lie groupoid over M ;
(2) M0 = M \ ∂M is saturated and GM0 = M0 ×M0.

Let (M,G) be a Lie manifold. We denote by Ψ∗V(M ;E0, E1) the algebra of pseudodif-
ferential operators of Lie type on M0 = M \ ∂M acting between the sections of vector
bundles Ej →M [1]. It coincides with the image of Ψ∗G(E0, E1) by the vector represen-
tation r# when G is s-connected [1]. By a slight abuse of notation, we continue to set
Ψ∗V = r#Ψ∗G in the general case. Equivalently, Ψ∗V is isomorphic to the space obtained
by restricting elements of Ψ∗G to the fiber of G over any arbitrary interior point x. The
isomorphism comes then from the diffeomorphism r : Gx →M0.
The ∂M -indicial symbols and ∂M -joint symbols can be related with their analogues
for any F ∈ F1(M) in the obvious way, and we can summarize this in the following
commutative diagram in which the outer rectangle is made of fibered products:

Σm
∂M (E)

π2

��

π1 // C∞(S(A∗), π∗End(E))

(rF )F∈F1(M)

��

Ψm
G (E)

σpr⊕I∂M
hhhh

I∂M

vvvv

σpr
55 55

)) ))∏
F∈F1(M) Ψm

GF (E|F )
⊕F σpr,F

// //
∏
F C

∞(S(A∗|F ), π∗End(E|F ))

We observe that with F = ∂M , we have O = M \ ∂M =: M0 and thus GO = M0 ×
M0. It follows that the ideal in (5) is the ideal of compact operators and that ind∂M
takes integer values. Since r# : C∗(GO,End(E))

'→ K(L2
V(M,E)) and r# : ΨG(E) ↪→

B(L2
V(M,E)) [1], the sequence (5) also shows that r#(P ) : Hs

V(M ;E)→ Hs−m
V (M ;E) is

Fredholm, when P ∈ Ψm
G (E) is ∂M -fully elliptic, and that ind∂M computes its Fredholm

index. Here Hs
V(M,E) are the Sobolev spaces of sections of E associated with the Lie

structure and L2
V = H0

V .
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From now on, whenever we take F = ∂M as a closed saturated subspace of a Lie
manifold (M,G), we will omit it in the notation, for instance: fully means ∂M -fully,
GF denotes GF∂M , etc ... and we set VFEll(M) = FEll∂M (G).

Pullbacks. Let ϕ : Σ −→ M be a surjective tame submersion, that is, a surjective
submersion satisfying (2). Then the decomposition into faces F∗(M) can be lifted to a
decomposition into faces of Σ. An interesting example occurs in the so-called clutching
spaces and vector bundle modification:

Example 3.4. Let M be a manifold with corners and π : V → M be a real vector
bundle. Consider the sphere bundle ϕ : Z = S(V ⊕ R) → M . Then ϕ is a tame
surjective submersion. We say that Z is the clutching space of π : V →M .

We recall the notion of pull-backs.

Definition 3.5. Let (A, %) be a Lie algebroid over M and G ⇒M a Lie groupoid over
M . Let ϕ : Σ→M be a surjective submersion.
(1) The Lie agebroid pullback of (A, %) over Σ is the Lie-algebroid (ϕA, ϕ%) given by:

ϕA = {(v, w) ∈ ϕ∗A× TΣ : %(v) = dϕ(w)} ⊂ ϕ∗A⊕ TΣ and ϕ% = pr2.

(2) The Lie groupoid pullback of G over Σ is the Lie groupoid ϕG ⇒ Σ given by
ϕG = {(x, γ, y) ∈ Σ× G × Σ : ϕ(x) = r(γ), ϕ(y) = s(γ)},

with structure maps: ϕr(x, γ, y) = x, ϕs(x, γ, y) = y, (x, γ, y)(y, γ′, z) = (x, γγ′, z).
Note that the Lie groupoid pullback of the Lie algebroid A also makes sense and will
be denoted by ϕA if a risk of confusion occurs.

Both notions are consistent since:

Theorem 3.6. Let (M,G) be a Lie manifold and ϕ : Σ → M be a tame surjective
submersion. Then (Σ, ϕG) is a Lie manifold such that A(ϕG) ∼= ϕA.
Moreover, ϕG is Morita equivalent to G and the (V-related) Lie structure ϕV is given
by:

ϕV = {Ṽ ∈ Γ(TΣ) ; ∃V ∈ V, dϕ(Ṽ ) = V ◦ ϕ}.

This is a compilation of known facts: the isomorphism A(ϕG) ∼= ϕA is proved in [32],
the Morita equivalence is proved in [22], that ϕG gives a Lie structure on Σ is done in
[39] and further developments can be found in [46].

Let (M,G) be a Lie manifold and ϕ : Σ → M a tame surjective submersion. The
operations consisting of taking the adiabatic deformation and taking a pullback do
not commute, however there are natural deformation groupoids relating them and it is
exploited in [46] in order to obtain pushforward maps (which are there occurences of
wrong way maps). We need to recall the results of [46] in our notation. Firstly, there
is a deformation Lie groupoid:

Lϕ = (ϕG)ad × {u = 0} ∪ ϕ1(Gad)× (0, 1]u ⇒ Σ× [0, 1]t × [0, 1]u, (20)

where ϕ1 = ϕ×Id : Σ× [0, 1]t →M× [0, 1]t. Let z be the lift by ϕ of a defining function
for the boundary of M and consider the following saturated subgroupoids of Lϕ:

LFϕ := Lϕ|(z,t)6=(0,1) = (ϕG)F × {u = 0} ∪ ϕ1(GF )× (0, 1]u, (21)

Lncϕ := Lϕ|tz=0 = T Σ× {u = 0} ∪ ϕ1TM × (0, 1]u ⇒ Σ∂Σ × [0, 1]u. (22)

L0
ϕ := Lϕ|t=0 = ϕA× {u = 0} ∪ ϕA× (0, 1]u ⇒M × [0, 1]u. (23)



K-HOMOLOGY 11

Using the restrictions homomorphisms evu=i, i = 0, 1, and the natural Morita equiva-
lenceM we get homomorphisms (see [46] for more details):

ϕad! =M◦ [evu=1] ◦ [evu=0]−1 : K∗(C
∗((ϕG)ad)) −→ K∗(C

∗(Gad))). (24)

Considering the variations (21), (22) and (23) of (20) leads to similar homomorphisms:

ϕF! : K∗(C
∗((ϕG)F )) −→ K∗(C

∗(GF ))), (25)

ϕnc! : K∗(C
∗(T Σ)) −→ K∗(C

∗(TM)). (26)

ϕ0
! : K∗(C

∗(ϕA)) −→ K∗(C
∗(A)). (27)

Then the following result is essentially a rephrasing of [46]:

Theorem 3.7. Let (M,G) be a Lie manifold and ϕ : Σ → M a tame surjective sub-
mersion. Then the map ϕnc! commutes with Fredholm index:

indF∂M ◦ϕnc! = indF∂Σ (28)

Here the target group of the index maps indF• is replaced by Z after applying the obvious
Morita equivalences.
In other words, if B ∈ Ψ∗ϕG(Ẽ+, Ẽ−) and P ∈ Ψ∗G(E+, E−) are fully elliptic operators
and satisfy ϕnc! [B]∂Σ,ev = [P ]∂Σ,ev then B and P have the same Fredholm index.

Proof. Using the groupoid Lϕ and the definition of indF we get a commutative diagram:

K0(C∗(T Σ)) K0(C∗((ϕG)F∂Σ)) K0(C∗(Σ0 × Σ0)) Z

K0(C∗(Lnc
ϕ )) K0(C∗(LFϕ )) K0(C∗(Σ0 × Σ0 × [0, 1])) Z

K0(C∗(ϕTM)) K0(C∗(ϕ(GF∂M ))) K0(C∗(Σ0 × Σ0)) Z

K0(C∗(TM)) K0(C∗(GF∂M )) K0(C∗(M0 ×M0)) Z

ϕnc
!

indF∂Σ

evtz=0 evt=1 M

evu=0

evu=1

evtz=0

evu=0

evu=1

evt=1

evu=0

evu=1

M×p∗

M

evtz=0

M

evt=1

M

M

indF∂M

evtx=0 evt=1 M

(29)
Above p = evu=α for arbitrary α ∈ [0, 1]. The result follows immediately. �

Theorem 3.8. Let (M,G) be a Lie manifold, π : V → M be a real vector bundle and
denote by ϕ : Σ = S(V ⊕R)→M the associated clutching and i : V ↪→ Σ the embedding
as an open hemisphere. Then

(1) πnc! and π0
! are isomorphisms, the latter being the inverse of the Thom isomor-

phism of the complex bundle πA → A.
(2) We have the identities:

ϕ•! ◦
(
i∗ ◦ (π•! )−1) = Id, with • = nc or 0. (30)
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Proof. Considering the groupoids Lπ, Lϕ and the embeddings provided by i, we get
commutative diagrams:

· · · K0(C∗(ϕG|∂Σ × (0, 1)) K0(C∗(T Σ)) K0(C∗(ϕA)) · · ·

· · · K0(C∗(G|∂M × (0, 1))) K0(C∗(TM)) K0(C∗(A)) · · ·

M

evt=0

ϕnc
! ϕ0

!

evt=0

(31)

· · · K0(C∗(πG|∂V × (0, 1)) K0(C∗(T V )) K0(C∗(πA)) · · ·

· · · K0(C∗(G|∂M × (0, 1))) K0(C∗(TM)) K0(C∗(A)) · · ·

M

evt=0

πnc
! π0

!

evt=0

(32)

K0(C∗(T Σ))
ϕnc

! // K0(C∗(TM))

K0(C∗(T V ))

i∗

OO

π0
! // K0(C∗(TM))

Id

OO
(33)

K0(C∗(ϕA))
ϕ0

! // K0(C∗(A))

K0(C∗(πA))

i∗

OO

π0
! // K0(C∗(A))

Id

OO
(34)

Since L0
π is the Thom groupoid of the complex bundle πA → A, we get that π0

! is the
inverse of the Thom isomorphism of this complex bundle [20]. By Diagram (32) and
the five lemma, πnc! is an isomorphism too. Now Diagrams (34) and (33) give:

ϕ•! ◦
(
i∗ ◦ (π•! )−1) = Id, with • = nc or 0. (35)

This proves that ϕ0
! and ϕnc! are surjective and gives explicit sections. �

Finally, we denote by map ϕ∗ : K(µ∂Σ) −→ K(µ∂M ) the map induced by ϕnc! through
the isomorphism of Theorem 2.4. Note that the homomorphisms q∂Σ and q∂M are then
exchanged with the homomorphisms evt=0.

4. Geometric K-homology

Geometric cycles. Let (M,G) be a Lie manifold.

Definition 4.1. A even (odd) geometric cycle over (M,G) is a 4-tuple x = (Σ, ϕ,E,B)
consisting of
(1) an even (odd) dimensional compact manifold with corners M ;
(2) a tame surjective submersion ϕ : Σ −→M ;
(3) an even (odd) Dirac bundle (E,D) on (Σ, ϕG);
(4) an self-adjoint even (odd) Dirac ∂Σ-taming B of D.
The set of geometric cycles of parity j is denoted by VEgeoj (M).

If the geometric cycle x = (Σ, ϕ,E,B) is even, we get a class

[B]0 := [B+]∂Σ,ev ∈ K0(C∗(T Σ))
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and if it is odd, we get a class

[B]1 := [B]∂Σ,odd ∈ KK1(C, C∗(T Σ)) ' K1(C∗(T Σ)).

Applying the pushforward map ϕnc
! , we get classes in K∗(C∗(TM)) as well.

Definition 4.2. Let x = (Σ, ϕ,E,B) be a geometric cycle of parity j. A geometric
cycle x′ = (Σ′, ϕ′, E′, B′) is isomorphic to x if there exists a diffeomorphism κ : Σ→ Σ′

such that
(1) ϕ′ ◦ κ = ϕ and (E,D) ' κ∗(E′, D′) is an isomorphism of Dirac bundles.
(2) [B]j = κ∗[B′]j ∈ Kj(C

∗(T Σ)).

Definition 4.3.
(1) The disjoint union of xi = (Σi, ϕi, Ei, Bi) ∈ VE

geo
∗ (M), i = 0, 1, is

x0 ∪ x1 = (Σ0 ∪ Σ1, ϕ0 ∪ ϕ1, E0 ∪ E1, B0 ∪B1) ∈ VEgeo∗ (M). (36)

(2) The direct sum of xi = (Σ, ϕ,Ei, Bi) ∈ VE
geo
∗ (X), i = 0, 1, is

x0 ⊕ x1 = (Σ, ϕ,E0 ⊕ E1, B0 ⊕B1) ∈ VEgeo∗ (M). (37)

(3) If x = (Σ, ϕ,E,B) ∈ VEgeoi (M) then the opposite cycle is

− x = (Σ, ϕ,Eop, Bop). (38)

Here Eop is the same bundle, with the opposite grading in the even case, and
Bop = −B. We have [Bop]j = −[B]j for j = 0, 1.

Cobordisms. To define cobordism of geometric cycles, we introduce:

Definition 4.4. A cobordism over M is a triple (W,Y,Φ) such that
(1) Φ : W −→M is a surjective submersion,
(2) Y = H1 ∪ · · · ∪Hk is a union of boundary faces of W called relative boundary

faces, the remaining boundary faces being called absolute and absolute faces are
assumed to be pairwise disjoint,

(3) Φ−1(∂M) = Y and for all relative boundary faces H, Φ(H) ∈ F1(M),
(4) If H ∈ F1(W ) is absolute, then Φ|H : H →M is tame.

The submersion Φ : W → M is no more tame. As a consequence, if (M,G) is a Lie
manifold, the absolute faces of W are not saturated for the pullback groupoid ΦG. We
will replace the latter by [34, 22] :

ΦbG ⇒W (39)

defined by blowing up successively all the absolute faces H0, . . . ,H` of W . Firstly, set:

G0 = ΦG, β0 = Id, H0 = Φ|H0G (40)

and then for any i ≥ 0:

Gi+1 = Sblupr,s(Gi;Hi)
βi+1−→ Gi, Hi+1 = (β1 ◦ . . . βi+1)−1(Φ|Hi+1G(M)) (41)

The required groupoid is ΦbG = G` and it does not depend on the order of blows-up
for the initial submanifolds Φ|HiG(M) are pairwise disjoint. This is true for any i for
the blowups manifolds Sblup(Gi;Hi) = [Gi,Hi] by [33], and since the structural maps
coincide over the open dense subset (W \ ∂W )2, the result follows. We now have by
construction:

(1) all faces H ∈ F1(W ) are saturated for ΦbG.
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(2) For any absolute H ∈ F1(W ), we consider an open neighborhood H ⊂ U '
H × [0,+∞) and then we have by [22, Paragraph 5.3.5] (after rearranging if
necessary the order of blowups in order to have H at the end):

(ΦbG)U '
(
Sblupr,s(W

2, H2)×W 2 G`−1

)
|U

' (Sblupr,s(W
2, H2)|U ×U2

Φ|U(G)

' (H2 × [0,+∞) oR) ×U2
Φ|U(G), using U ' H × [0,+∞). (42)

In particular

(ΦbG)H ' R× Φ|H(G) (43)

The last isomorphism will be called a boundary decomposition of ΦbG and the choice
of collar diffeomorphism U ' H × [0,+∞) (coming from the choice of a defining func-
tion) for the absolute faces will be considered as part of the data in the sequel. The
identifications above provide an isomorphism

(ΦbA)U ' ρ∗(R× Φ|H(A))

where ρ : U → H corresponds to the first projection through the collar diffeomorphism.
A Dirac bundle (E,D) over (W,ΦbG) is locally of product type if it satisfies [10, Defini-
tion 3.4] with TH × TN replaced here by T [0, 1)× Φ|H(A) and using the isomorphism
above. In such a case, we can apply the boundary reduction of [10, Paragraph 3.2],
replacing H and TN there respectively by [0,+∞) and Φ|H(A) here, and we get a Dirac
bundle (or rather an isomorphism class of Dirac bundles) over (H,Φ|H(G)) of the op-
posite parity denoted by (EH , DH) and called the boundary reduction of (E,D) to the
absolute face H.

Definition 4.5. A (even, odd) cobordism over (M,G) is a 5-tuple w = (W,Y,Φ, E,B)
where:

(1) (W,Y,Φ) is a (even, odd dimensional) manifold cobordism over M ;
(2) A (even, odd) Dirac bundle (E,D) on (W,ΦbG) is given;
(3) a self-adjoint (even, odd) Dirac Y -taming B of D.

A null-cobordism is a cobordism with exactly one absolute face.

If j is the parity of the cobordism, we get a class [B]j ∈ Kj(C
∗(ΦbGFY ))) ' Kj(C

∗(TYW )).
Let w = (W,Y,Φ, E,B) be a odd cobordism over (M,G), let ϕ : Σ → M where Σ is
an absolute face of W . Denote by D the underlying Dirac operator of w and pick up a
boundary reduction (EΣ, DΣ) of (E,D). We consider the commutative diagram:

K1(C∗(TYW )) K1(C∗(R× T Σ)) K0(C∗(T Σ))

K1(ΦbA) K1(R× ϕA) K0
c (ϕA)

ρΣ

evt=0

Bott

evt=0 evt=0

ρΣ Bott

(44)

where ρΣ is the composition of the natural restriction homomorphism

C∗(TYW ) −→ C∗((ΦbG)F |Σ)

with the isomorphism induced by (43) at the level of adiabatic and Fredholm groupoids:

C∗((ΦbG)F |Σ) ' C∗(R× (ϕG)F )
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and then with the morphism evzt=0 : C∗(ϕG)F ) → C∗(T Σ) (that is, the one which
gives the K-equivalence C∗(R × (ϕG)F )

K∼ C∗(R × T Σ)). It follows immediately from
the diagram (44) that

evt=0

(
Bott ◦ evzt=0 ◦ ρΣ([B]Y,odd)

)
= [DΣ]pr,ev. (45)

In particular, DΣ is ∂Σ-tameable and we can pick up a taming BΣ using Theorem 3.3
such that:

[BΣ]∂Σ,ev = Bott ◦ ρΣ([B]Y,odd). (46)

We get an even geometric cycle(
Σ, ϕ,EΣ, BΣ

)
∈ VEgeo0 (M). (47)

Picking up a different representative (E′Σ, D
′
Σ) and a different taming B′Σ satisfying (46)

provides isomorphic geometric cycles.

Definition 4.6. With the notation above, the isomorphism class of (47) is called the
boundary reduction of w to Σ.

The case of the other parity is similar.

Definition 4.7.
• Two geometric cycles xi = (Σi, ϕi, Ei, Bi) over (M,G), i = 0, 1, are cobordant if there
exists a cobordism w = (W,Y,Φ, E,B) such that

(1) The absolute faces of W are exactly Σ0 and Σ1;
(2) Φ|Σi = ϕi
(3) The boundary reduction of w with respect to Σi is the isomorphism class of

(−1)ixi.
• A geometric cycle x = (Σ, ϕ,E,Ψ) over (M,G) is null-cobordant if there exists a
null-cobordism with Σ as unique absolute face.

Example 4.8.

(1) Let xi = (Σ, ϕ,E,Bi) ∈ VE
geo
∗ (M), i = 0, 1, be two even cycles connected by a

tame homotopy. This means that there exists a C∞ homotopy of Dirac bundles
(E,Dt) (i.e., C∞ homotopies of Clifford homomorphisms and of connections)
and a family (Bt)t∈[0,1] of tamings of (Dt)t∈[0,1] connecting B0 to B1 and such
that:

σ∂Σ(Λ−1Bt) ∈ Σ∂Σ(E)×

is a continuous path. In particular: [B0,+]∂Σ,ev = [B1,+]∂Σ,ev ∈ K0(C∗(T Σ)).
The cycles x0 and x1 are then cobordant. A cobordism is given by

w =
(
Σ× [0, 1]t, Y, ϕ

′, E′, B′
)

where:
(a) Y = ∂Σ× [0, 1], ϕ′ = pr1 ◦ ϕ and E′ = pr∗1E ⊗ C.
(b) (E′, D′) is the product of (E,Dt), with ([0, 1]× C, it(1− t) ∂∂t). Thus:

D′ = Dt + it(1− t) ∂
∂t
. (48)

(c) The absolute faces are Σ0 = Σ× {0} and Σ1 = Σ× {1}.
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(d) We then consider the commutative diagram:

K1(C∗(TY (Σ× [0, 1])))
τ //

evt=0

��

K1(ϕA× bT [0, 1])

evt=0

��

K1(C∗((T Σ)× R))
τ // K1(ϕA× R)

K0(C∗(T Σ))

β

OO

τ // K0(ϕA)

β

OO

(49)

The vertical arrows are isomorphisms. Since evt=0[D′]pr,odd = [D0,+]pr,ev⊗
β and [D0,+]pr,ev belongs to im τ∗, we get that [D′]pr,odd belongs to im τ∗
too and we apply Theorem 3.3 to choose a Y -taming B′ of D′ such that
evt=0[B′]Y,odd = [B0,+]∂Σ,ev ⊗ β.

(2) For any x ∈ VEgeo(M), the geometric cycle x ∪ (−x) is null-cobordant. A null-
cobordism is given by the previous cobordism in which Σ× {0, 1} is considered
as the unique absolute face.

(3) Let x = (Σ, ϕ,E,B) ∈ VEgeo0 (M) with underlying Dirac operator denoted by D.
Let (E′, D′) be the product of (E,D) with the spin Dirac bundle (E2, D2) of
D2. Let (E1, D1) be the boundary reduction of (E2, D2), that is the spin Dirac
bundle associated with the spin structure of S1 that bounds the one of (E2, D2)
of D2. Let also (E′′, D′′) be the product of (E,D) with (E1, D1). Consider the
commutative diagram:

K0(C∗(T(∂Σ)×D2(Σ× D2)))
τ //

ρ

��

K0(ϕA× bTD2)

ρ

��

K0(C∗(T∂Σ×S1(Σ× S1)× R))
τ // K0(ϕA× TS1 × R)

K1(C∗(T∂Σ×S1(Σ× S1)))

S

OO

τ // K1(ϕA× TS1)

S

OO

K0(C∗(T∂Σ(Σ)))

⊗D1

OO

τ // K0(ϕA)

⊗D1

OO

(50)

The map ρ corresponds to the restriction to the boundary of D2 and S is the
suspension isomorphism. All the vertical arrows are isomorphisms.

Using the lower part of the diagram we first see that there exists a ∂Σ× S1-
taming B′′ of D′′ such that

[B′′]∂Σ×S1,odd = [B]∂Σ,ev ⊗ [D1]odd.

We then set:

0x =
(
Σ× S1,pr1 ◦ ϕ,E′′, B′′

)
∈ VEgeo1 (M).

Now using the upper part of the diagram, we obtain a ∂Σ×D2-taming B′ of D′
such that

ρ[B′](∂Σ)×D2,ev = S[B′′]∂Σ×S1,odd.

This provides a null-cobordism for 0x as follows:

w =
(
Σ× D2, (∂Σ)× D2,pr1 ◦ ϕ,E′, B′

)
. (51)
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Starting with an odd x, we get a null-cobordant cycle 0x in the same way.
(4) Combining the previous constructions, we see that for any x, y ∈ VEgeo(M), the

geometric cycles y and y ∪ 0x are cobordant.

Vector bundle modification. Let x = (Σ, ϕ,E,B) be an even geometric cycle over
(M,G) and π : V → Σ an even rank Spinc-vector bundle. Consider the sphere bundle
Z = S(V ⊕ 1R) of pr1 ◦ π : V ⊕ R→ Σ. The total space Z is a compact manifold with
corners and the projection πm : Z → Σ is tame, as well as ϕm = ϕ ◦ πm : Z −→ M .
Note that

ϕm(G) = πm(ϕG) and ϕmA ' π∗m(ϕA)⊕ V Z (52)

where V Z = ker dπm. The Spinc-structure of V induces a Spinc-structure on the bundle
V Z → Σ and therefore on the bundle

AZ := ϕmA −→ ϕA =: AΣ. (53)

Using Lπm , we get a commutative diagram:

K0(C∗(G(Z)ad)) K0(C∗(AZ))

K0(C∗(G(Σ)ad)) K0(C∗(AΣ))

evt=0

(πm)ad! (πm)0
!

evt=0

(54)

Here G(Z) = ϕm(G) and G(Σ) = ϕG. The horizontal maps are isomorphisms. Proceeding
as in [20], we prove that (πm)0

! is the Thom isomorphism of the Spinc-bundleAZ −→ AΣ.
Then (πm)ad! is an isomorphism too.
Let DΣ be the Dirac operator of the cycle x, let SZ be the complex spinor bundle of
V Z and set EZ = E ⊗ SZ . By [7, Propositions 3.6 and 3.11] we can choose a Dirac
bundle (EZ , DZ) such that

(πm)0
! [DZ)]pr,ev = [DΣ]pr,ev.

We then deduce from the previous diagram that

(πm)ad! ([DZ ]ad,ev) = [DΣ]ad,ev ∈ K0(C∗(G(Σ)ad)).

Now, since DΣ is tameable, we obtain by using the commutative diagram:

K1(C∗(G(Z)|∂Z)) K0(C∗(G(Z)F )) K0(C∗(G(Z)ad)) K0(C∗(G(Z)|∂Z))

K1(C∗(G(Σ)|∂Σ)) K0(C∗(G(Σ)F )) K0(C∗(G(Σ)ad)) K0(C∗(G(Σ)|∂Σ)).

∂

M' (πm)F!'

ev∂Z×1

(πm)ad
!

' M'

∂ ev∂Σ×1

(55)
that DZ is ∂Z-tameable too and we pick up a ∂Z-taming BZ such that

(πm)F! [BZ ] = [B]

The constructions are similar for odd geometric cycles.

Definition 4.9. A vector bundle modification of a geometric cycle x = (Σ, ϕ,E,B)
over (M,G) by an even rank Spinc-vector bundle π : V → Σ is a geometric cycle
m(x, V ) = (Z,ϕm, Em, BZ) over G(M) such that

(1) Z = S(V ⊕ 1R) is the sphere bundle;
(2) ϕm = ϕ ◦ πm : Z −→M ;
(3) πnc

! [BZ ]∂Z,∗ = [B]∂Σ,∗ ∈ K∗(C∗T Σ)).
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Geometric K-homology.

Definition 4.10. The equivalence relation ∼ on VEgeo∗ (M) is the one generated by the
following operations:
(i) Isomorphisms of geometric cycles;
(ii) Direct sums: if xi = (Σ, ϕ,Ei, Bi), i = 1, 2 are geometric cycles then

x1 ∪ x2 ∼ (Σ, ϕ,E1 ⊕ E2, B1 ⊕B2); (56)

(iii) Cobordisms;
(iv) Vector bundle modifications.
The quotient set

VK
geo
∗ (M) := VE

geo
∗ (M)/ ∼

is called geometric K-homology of (M,G).

Theorem 4.11. The following formula:

∀x0, x1 ∈ VE
geo

(M), [x0] + [x1] = [x0 ∪ x1]. (57)

turns (VK
geo

(M),+) into an abelian group.

Proof. If the equivalence x0 ∼ x′0 is given by one of the four elementary operations of
Definition 4.10 then x0∪x1 ∼ x′0∪x1. Therefore (57) is well defined. Commutativity and
associativity of + is obvious. The neutral element is represented by 0x and −[x] = [−x]

for any x ∈ VEgeo(M): details are provided in Example 4.8. �

Comparison map.

Theorem 4.12. The map (Σ, ϕ,E,B) ∈ VEgeo∗ (M) 7−→ ϕnc! [B]∂Σ,∗ gives rise to a well
defined homomorphism:

λ : VK
geo
∗ (M)→ K∗(C

∗(TM)). (58)

Proof. We prove the even case, the odd one is similar.
Invariance under cobordism: Let w = (W,Y,Φ, E,B) be a cobordism between two even
geometric cycles xi = (Σi, ϕi, Ei, Bi), i = 0, 1 over (M,G). We denote by:

(1) G(W ) = ΦbG the groupoid associated with the cobordism w;
(2) Gi = ϕiG the groupoid associated with xi, i = 0, 1;
(3) ρi := ρΣi : C∗(TYW ) → C∗(T Σi × R) the homomorphism defined just after

Diagram (44).
• Recall that we have by definition of a cobordism of geometric cycles:

ρi[B]Y,odd = (−1)i[Bi]∂Σi,ev ⊗ β
where β is the chosen Bott generator of K1(C∗(R)).

• We are going to prove that

(ϕ0)nc
! ([B0]∂Σ0,ev) = (ϕ1)nc

! ([B1]∂Σ1,ev) (59)

where the homomorphisms are defined in (26).
Denote by Ji the kernel of ρi and observe that J0 + J1 = C∗(TYW ). Set J = J0 ∩ J1

and consider the exact sequences:

0 −→ J −→ Ji
ρi−→ C∗(T Σi × R) −→ 0. (60)

for i = 0, 1. We denote by ∂i ∈ KK1(C∗(T Σi × R), Ji) the associated boundary
elements. Consider also:

0 −→ J −→ C∗(TYW )
ρ0⊕ρ1−→ C∗(T Σ0 × R)× C∗(T Σ1 × R) −→ 0 (61)
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whose ideal is given by J = J0∩J1 and boundary element denoted by ∂. By [46, Lemma
3.5]) we have:

∂(x0, x1) = ∂0(x0) + ∂1(x1) ∈ KK1(C, J), xi ∈ KK1(C, C∗(T Σi × R)). (62)

We know that

ρ0 ⊕ ρ1([B]Y,odd) = ([B0]∂Σ0,ev ⊗ β,−[B1]∂Σ1,ev ⊗ β) , (63)

therefore formula (62) and exactness imply:

∂0([B0]∂Σ0,ev ⊗ β) = ∂1([B1]∂Σ1,ev ⊗ β) ∈ K0(J). (64)

It is now time to extend the deformation (20):

Lw = (G(W ))ad × {u = 0} ∪ (Φ1)b(Gad)× (0, 1]u ⇒W × [0, 1]t × [0, 1]u. (65)

Here Φ1 = Φ ◦ pr1 : W × [0, 1]t →M . We can consider various saturated sub-groupoids
of Lw. For instance:

Lnc
Y (w) = Lw|(W×{t=0}∪Y×(0,1)t)×[0,1]u . (66)

If we consider in Lnc
Y (w) the faces corresponding to Σi, we recover the groupoids Lnc

ϕi
×R.

Continuing in this way and denoting by Φ′ : W \ (Σ0 ∪ Σ1) → M the restriction of Φ
(which is again a surjective submersion), we get the following commutative diagram:

K1(C∗(T Σ0 × R))⊕K1(C∗(T Σ1 × R)) K0(J)

K1(C∗(Lnc
ϕ0
× R))⊕K1(C∗(Lnc

ϕ1
× R)) K0(...)

K1(C∗(ϕ1(TM × R)))⊕K1(C∗(ϕ1(TM × R))) K0(C∗(Φ′1(TM)))

K1(C∗(TM × R))⊕K1(C∗(TM × R)) K0(C∗TM))

∂

' u=0

u=1

∂′

' u=0

u=1

M'

∂′′

M'

∂′′′

(67)

The map in the bottom line is given by addition and Bott periodicity, in particular, if
∂′′′(u⊕ v) = 0 then u = −v.
The map obtained from top to bottom in the left column is equal to (ϕ0)nc

! ⊗Id⊕(ϕ1)nc
! ⊗

Id.
Therefore, using the equality (64) together with the commutativity of the previous
diagram and the remarks just above, we conclude that the equality (59) holds true.

Invariance under vector bundle modification:
Consider x = (Σ, ϕ,E,Ψ) ∈ VEgeo(M) and a vector bundle modification m(x, V ) =
(Z,ϕm, Em, BZ). One one hand, we know that

(πm)F! ([BZ ]) = [B].

On the other hand, we have ϕm = ϕ ◦ πm, therefore:
(ϕm)F! ([BZ ]) = (ϕ ◦ πm)F! = (ϕF! ◦ (πm)F! )([BZ ]) = ϕF! ([B])
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and the equality (ϕm)F! ([BZ ]) = ϕF! ([B]) proves the invariance under vector bundle
modification. �

5. Reduction to Callias

Let (M,G) be a Lie manifold. We are going to define a clutching map2:

c̃ : Γ(µ∂M )→ VK
geo
0 (M) (68)

and show that it descends to a clutching homomorphism c : VFEll(M)→ VK
geo
0 (M).

We set ΣA = S(A ⊕ R) for the clutching space of A. We denote by ϕ the tame
submersion ΣA → M . We can write, ΣA = B(A)+ ∪ B(A)−, where B(A) denotes the
ball bundle in A and B(A)± denote the upper and lower hemispheres respectively. Let
Â = A ∪ S(A) be the radial compactification of A and π̂ : Â → M the corresponding
projection map.
Let P ∈ Ψm

V (M ;E0, E1) be a fully elliptic operator. By ellipticity of P we have an
isomorphism

σpr(P ) : π∗E0
∼−→ π∗E1.

The clutched bundle Eσ → ΣA is defined by the glueing of pullbacks of E0 and E1,
along the boundary stratum S(A), using σpr(P ):

Eσ = π̂∗E0 ∪S(A) π̂
∗E1.

To define a geometric cycle c̃(E0, E1, σf (Λ−1P )) associated with (E0, E1, σf (Λ−1P )) ∈
Γ(µ∂M ), we consider the Dirac operator DΣA on the Lie manifold (ΣA,

ϕG) associated
with the Spinc-structure of ϕA → ΣA, and we first observe:

Lemma 5.1. ([8]) Let (M,G) be a Lie manifold and P ∈ ΨG(E0, E1) be an elliptic
operator. Then:

(i ◦ Thom)([P ]pr,ev) = [DΣA ]pr,ev ⊗ ([Eσ]− [ϕ∗E1]) ∈ K0(ϕA). (69)

This lemma is proved in [8] in the case A = TM . The proof is the same here. Secondly:

Proposition 5.2. Let (M,G) be a Lie manifold and P ∈ Ψm
G (E0, E1) be a fully elliptic

operator. Then there exists an even Dirac bundle (E,D) on (ΣA,
ϕG) with boundary

taming B such that

ϕnc! ([B]∂ΣA,ev) = [P ]∂M,ev ∈ K0(C∗(TM)). (70)

In particular, B+ and P have the same Fredholm index.

Proof. Rewriting the proof of Theorem 3.8, we get a commutative diagram:

K0
c (A∗) K0

c (πA∗) K0
c (ϕA∗)

K0(C∗(TM)) K0(C∗(T A)) K0(C∗(T ΣA))

Thom −⊗[i]

evt=0

(πnc
! )−1

evt=0

−⊗[i]

evt=0
(71)

2We only treat here the clutching map in the even case, the odd case is similar.
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By the previous lemma and this diagram, we obtain the existence of a fully elliptic Q
on ϕG such that

[Q]pr,ev = [DΣA ]pr,ev ⊗ ([Eσ]− [ϕ∗E1]) = [D1]pr,ev (72)

where (D1, Eσ ⊕ ϕ∗E1) is the even Dirac bundle with:

D1 = DΣA ⊗ Eσ ⊕D
op
ΣA
⊗ ϕ∗E1

and DΣA⊗Eσ is the Dirac operator on Σ twisted by Eσ and Dop
ΣA

= −DΣA . Now, using
Theorem 3.3, we get an even Dirac bundle (Ẽ, D̃) with boundary taming B = D̃ + R
such that we still have

[B]∂ΣA,ev = [Q]∂ΣA,ev ∈ K0(C∗(T ΣA)),

from which we conclude that (70) holds true using Theorem 3.8, (2). The last assertion
comes from Theorem 3.7. �

Now, using Proposition 5.2 to pick up suitable (Ẽ, D̃) and B, we define:

c̃(E0, E1, σ∂M (Λ−mP )) = [(ΣA, Ẽ, ϕ,B)]iso ∈ VK
geo
0 (M).

The clutching map c̃ sends a relative cycle to an isomorphism class of geometric cycles
(note that two choices of B yield isomorphic cycles).

Theorem 5.3. The map c̃ induces a well defined homomorphism

c : VFEll(M)→ VK
geo
0 (M).

Proof. Let (P0)rel := (E0,F0, p0) and (P1)rel := (E1,F1, p1) be elements of Γ0(µM )
which are equivalent. Let α, β ∈ Γ0(µM ) be elementary elements such that

(E0,F0, p0)⊕ α ' (E1,F1, p1)⊕ β.

Without loss of generality, we can consider that E = E0 = E1, F = F0 = F1 and
p0, p1 connected by a smooth homotopy pt of fully elliptic symbols. Denote by σt :
π∗E −→ π∗F the map obtained by extending by homogeneity σpr(Pt) over A\ {0} and
multiplying it with a function χ ∈ C∞(A) such that χ(ξ) = 0 in a neighborhood of the
0-section and χ(ξ) = 1 near infinity.
Define Ê via the glueing diffeomorphism [0, 1]×S(A)×E → [0, 1]×S(A)×F, (t, x, v) 7→
(t, x, σt(v)) along the cylinder [0, 1]×S(A). This furnishes the vector bundle Ê over the
cylinder clutching space Σ̂ := [0, 1]×Σ. Denote by ϕ̂ : Σ̂ −→M the natural projection.
Setting Y = [0, 1]× ∂Σ, we already get a cobordism over M , namely (Σ̂, ϕ̂, Y ).
Let Dj be the Dirac operator underlying the geometric cycle c̃((Pj)rel). We consider on
Σ̂ the Spinc-structure that coincides with the one of Σ at Σ× {0} and to the opposite
one at Σ× {1}.
Lut us consider a Dirac operator D̂ on the Lie manifold (Σ̂, ϕ̂bG) whose boundary re-
ductions at Σ×{j} coincide with Dj . The corresponding Clifford vector bundle over Σ̂
is:

Ẽ = S
Σ̂
⊗ Ê ⊕ (−S

Σ̂
)⊗ ϕ̂∗F.

Arguing as in Example 4.8, we obtain a Y -taming B̂ such that (Σ̂, ϕ̂, Y, Ẽ, B̂) is a
cobordism between the geometric cycles c̃((Pj)rel).

�
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Theorem 5.4. The diagram

K∗(µ)

VK
geo

(M) K(C∗(TM))

c
pd

λ

commutes. In particular, if P : C∞(M,E0)→ C∞(M,E1) denotes a fully elliptic pseu-
dodifferential operator on the Lie manifold (M,G), then there is a taming C on the Lie
manifold (ΣA,

ϕG) such that ind(C) = ind(P ).

The proof follows from Proposition 5.2.

Appendix A. Cobordisms

Theorem A.1. The cobordism relation is transitive up to isomorphisms of geometric
cycles.

Proof. Let xi = (Σi, ϕi, Ei, Bi), i = 1, 2, 3, be geometric cycles over (M,G) such that
x1 is cobordant to x2 and x2 cobordant to x3. Let wi = (Wi, Yi,Φi, Fi, Ci), i = 1, 2 be
respective cobordisms. We set Φ = Φ1 ∪Φ2 : W = W1 ∪

Σ2

W2 −→M , Y = Y1 ∪ Y2. The

triple (W,Φ, Y ) is a manifold cobordism over M between Σ1 and Σ3. We set :

G̃(W ) = G(W1)
⋃

G(Σ2)×R

G(W2). (73)

Also, setting F = F1 ∪
Σ2

F2 and using the point (3) in Definition 4.7, we get a Dirac

bundle (F, D̃) over (W, G̃(W )) that restricts to the one of wj on Wj , j = 1, 2. In
particular, we have by assumption that (F, D̃) is Y -tameable.
Note that G̃(W ) = SBlupr,s(G(W ),G(W )Σ2

Σ2
) where

G(W ) =
bΦG(M). (74)

Choosing a collar decomposition around Σ2 into W , we get a deformation Lie groupoid:

H(W ) = {t = 0} × G̃(W ) ∪ (0, 1]t × G(W ) ⇒ [0, 1]×W

and it is clear that the Dirac bundle (F, D̃) can be lifted to a Dirac bundle (F,C) over
(W × [0, 1],H(W )) and we thus end with a Dirac bundle (F,D) over (W,G(W )) by
restriction at t = 1.
Since D̃ is Y -tameable, we get using the following diagram (where we use this time
Fredholm groupoids rather than their K-equivalent non commutative tangent space
counterparts) that C is Y × [0, 1]-tameable too and finally D is Y -tameable.

K0(C∗(G̃(W )FY )) K0(C∗(G̃(W )ad))

K0(C∗(H(W )F[0,1]×Y )) K0(C∗(H(W )ad))

K0(C∗(G(W )FY )) K0(C∗(G(W )ad)).

|t=1

|t=0

|t=1

|t=0'

(75)
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Fixing a Y -taming B for D then provides the required cobordism (W,Y,Φ, F,B) be-
tween x1 and x3. �
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