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A high-gain observer for a class of 2x2 hyperbolic systems with
C1 exponential convergence

Constantinos Kitsos, Gildas Besançon, and Christophe Prieur ∗

Abstract

This paper extends a recently proposed observer
design based on high-gain to a more general first
order quasilinear hyperbolic system of balance laws.
This class of systems is written in an observable form
with two states and a distributed measurement. The
exponential stability of the related observation error is
fully established by means of Lyapunov-based analysis.

Keywords: high-gain observers, quasilinear hy-
perbolic systems of balance laws, Lyapunov analysis,
C1 exponential stability.

1. INTRODUCTION

High-gain observers are well-known and largely
used for finite-dimensional nonlinear systems. They ap-
ply to a large class of cases corresponding to uniformly
observable systems [8], [9]. They have been extensively
studied in the literature and remain widely considered,
see [11] and references therein. In the recent paper [12],
we extended this approach to a class of hyperbolic sys-
tems, for which first results on high-gain observer de-
sign have been proposed for a particular case of uni-
formly observable systems, written as an n× n quasi-
linear hyperbolic system of balance laws and consider-
ing distributed measurements. There are some results
on observer design for hyperbolic systems, consider-
ing the full state vector on the boundaries as measure-
ment. Amongst others, one can refer to [15] and [10] for
the backstepping design, to [2] for a discretization ap-
proach, to [4] for direct infinite-dimension-based Lya-
punov techniques (see also [3]) or to [16] for optimiza-
tion methods. For semigroup-based methods see [7], [5]
and [17].

The contribution of the present paper is two-fold.
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First, while in [12] we consider a non-strictly quasilin-
ear hyperbolic system of balance laws with only one
characteristic velocity, which is output-dependent and
written in a characteristic and uniformly observable
form, here we consider a more general case of quasilin-
ear and observable hyperbolic systems. This particular
observer design takes also advantage of the knowledge
of the space-derivative of the output, which in our case
is known, since we have considered distributed mea-
surement. Second, we prove a stronger result of C1

exponential stability of the observer error, contrary to
the C0 exponential stability result of [12]. This result is
inspired by the methodologies that one can find in [1]
and [6], where the problem of C1 Lyapunov stability,
mainly for quasilinear systems of conservation laws, is
confronted.

The theoretical method for the observer design that
we develop is presented in Section 2, where Theorem
2.1 constitutes the main result. Additionally, a numer-
ical example illustrates the results. Some conclusions
and perspectives are presented in Section 3.

Notation: For a given x ∈ Rn, |x| denotes its usual
Euclidean norm. For a given constant matrix A∈Rm×n,
AT denotes its transpose, |A| := sup{|Ax| , |x|= 1}
is its induced norm and Sym(A) = A+AT

2 stands
for its symmetric part. By eig(A) we denote the
minimum eigenvalue of a matrix A. For a func-
tion f (·, ·), we use the difference operator given by
∆

ξ̂2
[ f (ξ1,ξ2)] := f (ξ1, ξ̂2) − f (ξ1,ξ2), parametrized

by ξ̂2 and by abuse of notation, ∆
ξ̂2
[ f (ξ1,ξ2)] also

stands for ∆
ξ̂2
[ f (ξ1,ξ2)] (t,x). By ∂i we denote the

partial differentiation with respect to variable i and
∂i j stands for ∂i∂ j, where i, j = x or t. For a con-
tinuous (C0) map [0,1] 3 x 7→ ξ (x) ∈ Rn we adopt
the notation max{|ξ (x)| ,x ∈ [0,1]}. For a continu-
ously differentiable (C1) map [0,1] 3 x 7→ ξ (x) ∈ Rn

we adopt the notation ‖ξ‖1 := ‖ξ‖0 + ‖ξx‖0. For
f ∈ C1 by f ′ we denote its Jacobian. For a func-
tion ξ ∈ Lp ([0,1];Rn) , p ∈ N, we consider the

norm ‖ξ‖Lp :=
(∫ 1

0 |ξ |pdx
)1/p

. For a function



ξ ∈ H2 ([0,1];Rn) the definition of the H2-norm

is ‖ξ‖H2 :=
(∫ 1

0
(
|ξ |2 + |ξx|2 + |ξxx|2

)
dx
)1/2

.
B(δ ) denotes the set B(δ ) :={

ξ ∈C0
(
[0,+∞);H2

(
[0,1];R2

))
: ‖ξ (t, ·)‖H2 ≤ δ ,

∀t ≥ 0}.

2. Class of Systems and Observer

Let us consider the 2x2 first-order quasilinear hy-
perbolic system described by the following equations
on the domain Π := [0,+∞)× [0,1]:

∂tξ1 +λ11(ξ1)∂xξ1 = ξ2 + f1(ξ1)

∂tξ2 +λ21(ξ )∂xξ1 +λ22(ξ1)∂xξ2 = f2(ξ )
(2.1a)

y = ξ1 (2.1b)

where R2 3 ξ :=
[
ξ1 ξ2

]T is the state and y : [0,+∞)×
[0,1]→ R is the distributed output (measurement). As-
sume that, in addition to ξ1, space derivative ∂xξ1 is also
available as a measurement (which is not very restric-
tive since ξ1 is available on the full x-domain). Assume
also that λ11(ξ1),λ22(ξ1)> 0,∀ξ1 ∈ R.

We consider initial and boundary conditions as

ξ (0,x) =: ξ
0(x),x ∈ [0,1] (2.2a)

ξ (t,0) = H (ξ (t,1)) , t ∈ [0,+∞) (2.2b)

where H =
[
H1 H2

]T : R2→ R.
We make the following regularity assumption.
A0. Functions λ11(·),λ22(·), λ21(·), f1(·), f2(·),

Hi(·), i = 1,2 are of class C1.
The following assumption is essential for the well-

posedeness of our system, along with the minimal ob-
server design requirement of ”forward completeness”
and, furthermore, it imposes boundedeness of the solu-
tions in the H2-norm, which is essential in the design
of our nonlinear observer. For further details, the reader
can refer to [1], [14] and references therein, where suf-
ficient conditions for the well-posedeness of quasilinear
hyperbolic systems of balance laws are presented.

A1. There exists M ⊂ H2
(
[0,1];R2

)
, such

that for any initial conditions ξ 0 ∈ M, satisfy-
ing zero-order and one-order compatibility condi-
tions, problem (2.1a), (2.2) admits a unique solution
C0
(
[0,+∞);H2

(
[0,1];R2

))
. Moreover, for any ξ 0 in

the above-mentioned class, there exists δ > 0, such that
‖ξ (t, ·)‖H2 ≤ δ ,∀t ∈ [0,+∞).

Note, that by simple inclusion argu-
ments, Assumption A1 implies that solutions
ξ ∈C1

(
[0,+∞)× [0,1];R2

)
(classical solutions).

The following assumption is crucial for the stability
analysis of the observer error equation.

A2. There exist Lipschitz constants
L f2 ,Lλ21 ,LH ,L f ′2

,Lλ ′21
,LH ′ > 0, such that ∀ξ ∈ R2, ξ̂2 ∈

R, | ∂ f2
∂ξ2
| ≤ L f2 , |

∂λ21
∂ξ2
| ≤ Lλ21 , |

∂H
∂ξ2
| ≤ LH , |∆

ξ̂2

[
∂ f2
∂ξ

]
| ≤

L f ′2
|ξ̂2−ξ2|, |∆ξ̂2

[
∂λ21
∂ξ

]
| ≤ Lλ ′21

|ξ̂2−ξ2|, |∆ξ̂2

[
∂H
∂ξ

]
| ≤

LH ′ |ξ̂2−ξ2|.
Prior to our main result, we must emphasize the

fact that according to a well-known Sobolev inequality,
for all ξ ∈ H2

(
[0,1];R2

)
there exists c0 > 0, such that

‖ξ‖0 +‖ξx‖0 ≤ c0‖ξ‖H2 (2.3)

At this point, let us introduce some operators
parametrized by ξ̂2 ∈ R:

η0,η
ξ̂2
1 ,η

ξ̂2
2 : C0 ([0,+∞);H2 ([0,1];R2))

→C0 ([0,+∞)× [0,1];R2) ,
η

ξ̂2
3 : C0 ([0,+∞);H2 ([0,1];R2))
→C0 ([0,+∞);L2 ([0,1];R2)) ,

Λ1,Λ
ξ̂2
2 : C0 ([0,+∞);H2 ([0,1];R2))
→C0 ([0,+∞)× [0,1];R2×2)

acting on ξ (where ξ1 is substituted by y) and defined
by

η0[ξ ] := λ
′
22(y)λ

−1
22 (y)yt (2.4a)

η
ξ̂2
1 [ξ ] :=

∂ f2(y, ξ̂2)

∂ ξ̂2
− yx

∂λ21(y, ξ̂2)

∂ ξ̂2
+η0[ξ ] (2.4b)

η
ξ̂2
2 [ξ ] := ∆

ξ̂2
[ f2(y,ξ2)]− yx∆

ξ̂2
[λ21(y,ξ2)] (2.4c)

η
ξ̂2
3 [ξ ] := ∆

ξ̂2

[
∂ f2(y,ξ2)

∂ (y,ξ2)

]
∂tξ −∆

ξ̂2
[λ21(y,ξ2)]yxt

−yx∆
ξ̂2

[
∂λ21(y,ξ2)

∂ (y,ξ2)

]
ξt −η0[ξ ]η

ξ̂2
2 [ξ ] (2.4d)

Λ1(ξ ) :=
[

λ11(ξ1) 0
λ21(ξ ) λ22(ξ1)

]
(2.4e)

Λ
ξ̂2
2 [ξ ] := diag

(
η0[ξ ],η

ξ̂2
1 [ξ ]

)
(2.4f)

In the subsequent part of the proof, by abuse of nota-
tion, we use the above-mentioned notations for opera-

tors η
ξ̂2
i [ξ ], i = 1, . . . ,3,η0[ξ ] and Λ

ξ̂2
2 [ξ ] implying that

they are functions of (t,x).
Now, notice that whenever y ∈B(δ ), due to conti-

nuity and positiveness of λii, i = 1,2 and further the fact
that ‖ξ (t, ·)‖0 ≤ coδ ,∀t ≥ 0, as a result of (2.3), the
quantities maxξ1∈B(δ ))(λii(ξ1)), minξ1∈B(δ ))(λii(ξ1))
are well-defined and positive. In addition, note that
whenever ξ ∈ B(δ ), as a result of (2.3) and the use



of hyperbolic dynamics (2.1a), we easily calculate con-
stants δ1,δ2 > 0, such that

‖ξt(t, ·)‖0 ≤ δ1,‖ytx(t, ·)‖L2 ≤ δ2,∀t ≥ 0; (2.5)

Note that to obtain δ2, we use the fact that ‖ytx(t, ·)‖L2 =
‖−λ ′11(y(t, ·))y2

x(t, ·)−λ11(y(t, ·))yxx(t, ·)+∂xξ2(t, ·)+
f ′1(y(t, ·))yx(t, ·)‖L2 and we subsequently apply trivial
inequalities. By virtue of (2.3), (2.5), continuity and
global Lipschitzness (Assumption A2) of the involved
mappings, we can easily calculate positive constants
γi, i = 1, . . . ,5, such that whenever ξ ∈ B(δ ), the fol-
lowing inequalities are satisfied for all t ≥ 0,x ∈ [0,1]:

|η ξ̂2(t,x)
1 [ξ ](t,x)| ≤ γ1, |Λ2[ξ ](t,x)| ≤ γ2,

|η0[ξ ](t,x)| ≤ γ3, |η ξ̂2(t,x)
2 [ξ ](t,x)|

≤ γ4|ξ̂2(t,x)−ξ2(t,x)|, |η ξ̂2(t,x)
3 [ξ ](t,x)|

≤ γ5|ξ̂2(t,x)−ξ2(t,x)|, ξ̂2(t,x) ∈ R (2.6)

Let us now introduce our candidate observer dynamics
on the domain Π, as follows:

∂t ξ̂1 +λ22(y)∂xξ̂1 = ξ̂2 +(λ22(y)−λ11(y))yx + f1(y)

+θk1(ξ̂1− y) (2.7a)

∂t ξ̂2 +λ22(y)∂xξ̂2 = f2(y, ξ̂2)−λ21(y, ξ̂2)yx

+θ
2k2(ξ̂1− y) (2.7b)

with high-gain constant θ > 1 and boundary conditions
for t ≥ 0 satisfying

ξ̂ (t,0) = H
(

y(t,1), ξ̂2(t,1)
)

(2.8)

The following lemma guarantees the existence of a
unique global classical solution for our candidate ob-
server. We invoke paper [13], where an analogous result
is proven under Lipschitzness properties of the dynam-
ics. It is easy to check that our candidate observer satis-
fies semilinear hyperbolic laws and is written in a well-
posed characteristic form. Assumptions A0-A2 in con-
junction with the previously mentioned comments (de-
tails are left to the reader) are compatible with the suf-
ficient conditions of Theorem 2.1 in [13] and, thereby
similar global existence result is established for our ob-
server system. This yields the following result.

Lemma 2.1 Under Assumptions A0 - A2, the problem
described by equations (2.7), (2.8) on the domain Π

and initial conditions ξ̂ 0 := ξ̂ (0,x),∀x ∈ [0,1] satisfy-
ing zero-order and one-order compatibility conditions 1

admits a unique classical solution in Π, i.e., there exists
a unique solution ξ̂ ∈C1

(
[0,+∞)× [0,1];R2

)
.

1For the definition of compatibility conditions, refer to [1], Ap-
pendix B.

We now present our main result on the observer design.

Theorem 2.1 Consider system (2.1a)-(2.2), defined on
Π with output (2.1b) and suppose that Assumptions A0,
A1 and A2 hold. Let also P∈R2×2 be a positive definite
symmetric matrix satisfying2

2Sym(P(A+KC)) =−qI2×2 (2.9)

where A :=
[

0 1
0 0

]
,C =

[
1 0

]
,

R2 3 K =
[
k1 k2

]T
,q > 0 (2.10)

Then, for θ > 1, system (2.7), (2.8) with initial condi-
tion ξ̂ 0 ∈ C1([0,1];R2), with ξ̂ (0,x) = ξ̂ 0(x), satisfy-
ing zero-order and one-order compatibility conditions,
is a well-posed high-gain observer, in the sense that it
admits a unique classical solution in Π on one hand,
providing an estimate for the state of the system for θ

large enough on the other hand. More precisely, there
exists a constant θ0 ≥ 1, such that for every θ > θ0,
there exist constants l,κ > 0, such that for all t ≥ 0,
‖ξ (t, ·)− ξ̂ (t, ·)‖1≤ le−κt‖ξ 0(·)− ξ̂ 0(·)‖1 holds for the
solutions of (2.1a), (2.2) and (2.7), (2.8). The observer
convergence rate κ is adjustable by the choice of the
high-gain constant θ and can be arbitrarily large.

Proof: We define the linearly transformed observer
error ε = (ε1,ε2)

T by

ε1 = θ
−1(ξ̂1−ξ1);ε2 = θ

−2(ξ̂2−ξ2) (2.11)

By use of (2.1a) and (2.7), the error components ε1,ε2
satisfy the following equations in Π:

∂tε1 +λ22(y)∂xε1 = θ(k1ε1 + ε2) (2.12a)

∂tε2 +λ22(y)∂xε2 = θk2ε1 +θ
−2

η
ξ̂2
2 [ξ ] (2.12b)

Furthermore, the following equation is satisfied on the
boundaries for t ≥ 0, as a consequence of (2.2b) and
(2.8):

εi(t,0) = θ
−i

∆
ξ̂2
[Hi(y,ξ2)] (t,1), i = 1,2 (2.13)

Next, by temporarily assuming that ε is of class C2, we
perform time differentiation of equations (2.12), (2.13)
and we can easily obtain the following hyperbolic equa-
tions for εt defined on Π:

∂ttε1 +λ22(y)∂txε1 = θ(k1∂tε1 +∂tε2)

+η0[ξ ]∂tε1−θη0[ξ ](k1ε1 + ε2) (2.14a)

∂ttε2 +λ22(y)∂txε2 = θk2∂tε1 +η
ξ̂2
1 [ξ ]∂tε2

−θη0[ξ ]k2ε1 +θ
−2

η
ξ̂2
3 [ξ ] (2.14b)

2This is always possible since (A,C) is observable.



and boundary conditions for t ≥ 0 given by

∂tεi(t,0) = θ
−i

∆
ξ̂2

[
∂Hi(y,ξ2)

∂ (y,ξ2)

]
(t,1)ξt(t,1)

+θ
2−i ∂Hi(y, ξ̂2)

∂ ξ̂2
(t,1)∂tε2(t,1), i = 1,2 (2.15)

To proceed to the stability analysis, we need to define
functionals wp, Wp : C1([0,1];R2)→ R by

wp[ε] :=
(
ε

TPε +ρ0ε
T
t Pεt

)p
(2.16a)

Wp[ε] :=
(∫ 1

0
π(x)epµxwp[ε]dx

)1/p

(2.16b)

where ρ0 ∈ (0,1] is a constant (to be chosen appropri-
ately), p ∈ N, P ∈ R2×2 is a positive definite symmetric
matrix satisfying (2.9), π : [0,1]→ R is given by

π(x) :=

(
maxy∈B(δ )(λ22(y))
miny∈B(δ )(λ22(y))

−1

)
x+1,x ∈ [0,1]

(2.17)
and µ ∈ R is given by

µ := ln(µ0θ
2); (2.18a)

µ0 :=
|P|

eig(P)
max

(
(LH ′ +LHδ1)

2 ,LH (LH +LH ′δ1)
)

(2.18b)

where the above-used constants are defined in (2.5) and
Assumption A2. Notice that

π(x) ∈

[
1,

maxy∈B(δ )(λ22(y))
miny∈B(δ )(λ22(y))

]
,∀x ∈ [0,1] (2.19)

By invoking Lemma 2.1 and Assumption A1, which
establish global unique classical solutions for observer
system (2.7), (2.8) and system (2.1a), (2.2) respectively,
we are now in a position to define wp,Wp : [0,+∞)→R

by

wp(t) := wp[ε](t),Wp(t) := Wp[ε](t), t ≥ 0 (2.20)

(we use the notation ε(t)(x) := ε(t,x)). Calculating the
time-derivative Ẇp along the classical solutions ε,εt of
(2.12) - (2.13), (2.14) - (2.15), we get:

Ẇp =
1
p

W 1−p
p

∫ 1

0
pπ(x)epµxwp−1

×
(
ε

T
t Pε + ε

TPεt +ρ0ε
T
tt Pεt +ρ0ε

T
t Pεtt

)
dx (2.21)

After substituting the dynamical equations (2.12) and
(2.14) into the above equation and applying integration
by parts, Ẇp can be written in the following form:

Ẇp =W 1−p
p

(
1
p

T1,p +
1
p

T2,p +T3,p +T4,p

)
(2.22)

where

T1,p :=−π(1)λ22(y(1))epµ wp(1)
+π(0)λ22(y(0))wp(0) (2.23a)

T2,p :=
∫ 1

0
∂x (π(x)epµx

λ22(y))wpdx (2.23b)

T3,p := 2
∫ 1

0
π(x)epµxwp−1

(
ε

TPθ
−2

[
0

η
ξ̂2
2 [ξ ]

]

+ρ0ε
T
t Pθ

−2

[
0

η
ξ̂2
3 [ξ ]

]
+ρ0ε

T
t Sym(PΛ

ξ̂2
2 [ξ ])εt

)
dx

(2.23c)

T4,p := θ

∫ 1

0
π(x)epµxwp−1

×
(
2ε

TSym(P(A+KC))ε +2ρ0ε
T
t Sym(P(A+KC))εt

−ρ0η0[ξ ]ε
T
t P(A+KC)ε−ρ0η0[ξ ]ε

T(A+KC)TPεt
)

dx
(2.23d)

After substituting boundary equations (2.13) and (2.15)
in T1,p and by virtue of Lipschitz properties (Assump-
tion A2), equations (2.5), (2.17) and trivial inequalities,
we can easily obtain the following bound:

T1,p ≤ max
y∈B(δ )

(λ22(y))wp(1)
(
−epµ +

(
θ

2
µ0
)p
)

(2.24)

As a result of (2.18), we get:

T1,p ≤ 0 (2.25)

Next, observe that term T2,p is written as follows:

T2,p =
∫ 1

0
((π(1)−1)λ22(y)+ pµπ(x)λ22(y)

+π(x)λ ′22(y)yx
)

epµxwpdx (2.26)

By the fact that π(x)≥ 1,∀x ∈ [0,1], we obtain the fol-
lowing inequality:

T2,p ≤
(

α + p|µ | max
y∈B(δ )

(λ22(y))
)

W p
p (2.27)

where α := (π(1) − 1)maxy∈B(δ )(λ22(y)) +
c0δ maxy∈B(δ )(λ

′
22(y)).

By exploiting bounds given in (2.6), T3,p can be
bounded as follows:

T3,p ≤
∫ 1

0
π(x)epµxwp−1

×
(
2|P|

(
γ4|ε|2 +ρ0γ5|ε||εt |+ρ0γ2|εt |2

))
dx

≤
∫ 1

0
π(x)epµxwp−1

|P|
eig(P)

(
2γ4ε

TPε +2ρ0γ2ε
T
t Pεt

+γ5w1)dx≤ (γ5 +2max(γ2,γ4))
|P|

eig(P)
W p

p (2.28)



T4,p can be written in the following form:

T4,p :=−θ

∫ 1

0
π(x)epµxwp−1

([
εT εT

t
]

Σ

[
ε

εt

])
dx

(2.29)
where, after utilizing (2.9), Σ is given by

Σ :=
[

qI2×2 −ρ0η0[ξ ](A+KC)TP
−ρ0η0[ξ ]P(A+KC) ρ0qI2×2

]
(2.30)

Now, we can easily verify that matrix Σ is positive defi-
nite if and only if

q >
√

ρ0γ3|P(A+KC)| (2.31)

where γ3 is given by (2.6). It turns out that for ev-
ery choice of matrices P and K and constant q satisfy-
ing equation (2.9), there always exists a ρ0 (sufficiently
small), such that (2.31) is satisfied and this fact ren-
ders Σ positive definite. Consequently, for appropriate
choice of ρ0, there exists σ > 0, such that

T4,p ≤−σθ

∫ 1

0
π(x)epµxwp−1

(
|ε|2 + |εt |2

)
dx

≤−σθ

∫ 1

0
π(x)epµxwp−1

(
|ε|2 +ρ0|εt |2

)
dx

≤−θ
σ

|P|
W p

p (2.32)

Combining equations (2.25), (2.27), (2.28), (2.32) with
(2.22) and taking into account that p≥ 1, we obtain

Ẇp ≤ (−θA+Bln(θ)+Γ)Wp (2.33)

where A := σ

|P| , B := 2maxy∈B(δ )(λ22(y)), Γ := a +

ln(µ0)maxy∈B(δ )(λ22(y))+(γ5 +2max(γ2,γ4))
|P|

eig(P) .

We obtained the estimate (2.33) of Ẇp for ε of class
C2, but the proof so far implies that the result does not
depend on the C2-norms. Therefore, by invoking den-
sity arguments, the results remain valid with ε only of
class C1 (see [6] for further details).

Applying the comparison lemma to (2.33), we ob-
tain an estimate for Wp of the following form:

Wp(t)≤ e−(Aθ−B ln(θ)−Γ)tWp(0),∀t ≥ 0 (2.34)

Now, one can select the high gain θ , such that

θ > max(1,Γ/A) := θ0 (2.35)

and, therefore, for sufficiently large θ we achieve to ob-
tain Aθ −B ln(θ)−Γ > 0.

Next, by taking into account (2.19) we obtain the
following property:

lim
p→∞

Wp = lim
p→∞
‖π(·)

1
p eµx(εTPε +ρ0ε

T
t Pεt)‖Lp

= ‖eµx
ε

TPε‖0 +‖ρ0eµx
ε

T
t Pεt‖0 (2.36)

which holds for continuous ε and εt . We are now in a
position to define functional V : C1([0,1];R2) by

V[ε] := ‖eµx
ε

TPε‖1 (2.37)

and as in (2.20),

V (t) := V[ε](t), t ≥ 0 (2.38)

In conjunction with property (2.36), (2.34) yields:

V (t)≤ cρ
−1
0 e−2κtV (0),∀t ≥ 0 (2.39)

where κ is a positive constant, such that Aθ −B ln(θ)−
Γ ≥ 2κ and 0 < c ∼ θ 2 (where c is obtained after ex-
ploiting (2.12) and bounds derived from the Assump-
tions and (2.6), in order to calculate the bound in the
sup-norm for εx with respect to the bounds of εt and ε .
Details are left to the reader). By use of the inequality

e−
µ+|µ|

2 eig(P)‖ε(t, ·)‖2
1 ≤ V (t) ≤ e−

µ−|µ|
2 |P|‖ε(t, ·)‖2

1,
we easily obtain for all t ≥ 0

‖ε(t, ·)‖1 ≤ c1/2
ρ
−1/2
0 e|µ|/2

√
|P|eig−1(P)e−κt‖ε0‖1

(2.40)
where ε0(x) := ε(0,x). By virtue of (2.11), we derive
the following estimate, which holds for every t ≥ 0 :

‖ξ (t, ·) − ξ̂ (t, ·)‖1 ≤ le−κt‖ξ 0 − ξ̂
0‖1 (2.41)

where l := θc1/2ρ
−1/2
0 e|µ|/2

√
|P|eig−1(P). Conclud-

ing, we designed an exponential in the C1-norm high-
gain observer of adjustable convergence rate κ , depen-
dent on the selection of θ , namely, for every θ > θ0
given in (2.35), there exist l,κ > 0, such that (2.41) is
satisfied. The higher the values θ attains, the faster the
observation error converges to zero.

We are now in a position to illustrate our result by
an example.

Example 2.1 Consider the following system on Π:

∂tξ1 +(2+ cos(ξ1))∂xξ1 = ξ2 + sin(ξ1) (2.42a)
∂tξ2− sin(ξ1ξ2)∂xξ1 +(2+ sin(ξ1))∂xξ2 = sin(ξ2−ξ1)

(2.42b)

y = ξ1 (2.42c)

and boundary conditions satisfying

ξ1(t,0) =
3
2

ξ1(t,1)−ξ2(t,1) (2.42d)

ξ2(t,0) =−ξ1(t,1) (2.42e)

Consider the initial condition ξ 0
1 (x)= π(1−x),ξ 0

2 (x)=
−πx. All our Assumptions A0-A2 are satisfied for the



Figure 1. Space and time evolution of the ob-
server error of the second state

above system and, thus, we can design the high-gain ob-
server (2.7) in Π for a choice of high gain θ = 50 and
k1 = −1,k2 = −2: We choose observer initial condi-
tions (in accordance with the compatibility conditions)
ξ̂ 0

1 (x) = 2π(1−x), ξ̂ 0
2 (x) =−2πx. Fig. 1 illustrates the

estimation error function for the second state, which ex-
hibits exponential convergence to zero, as predicted by
Theorem 2.1.

3. Conclusion

In this paper a high-gain observer for a class of ob-
servable hyperbolic systems with distributed measure-
ment has been designed. This result constituted an
extension of the high-gain observer design for finite-
dimensional systems and at the same time an extension
of [12]. The exponential decay of the observer error in
the C1-norm by the choice of an appropriate Lyapunov
functional has been proven and an example illustrates
the main result. The extension of this methodology to
more general hyperbolic systems and weakening of the
assumptions are future perspectives.
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