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Logic and Rational Languages of Scattered and Countable Series-Parallel
Posets

Amazigh Amrane, Nicolas Bedon∗

LITIS (EA 4108), Université de Rouen, Rouen, France

Abstract

Let A be an alphabet and SP �(A) denote the class of all countable N-free partially ordered sets labeled
by A, in which chains are scattered linear orderings and antichains are finite. We characterize the rational
languages of SP �(A) by means of logic. We define an extension of monadic second-order logic by Presburger
arithmetic, named P-MSO, such that a language L of SP �(A) is rational if and only if L is the language
of a sentence of P-MSO, with effective constructions from one formalism to the other. As a corollary, the
P-MSO theory of SP �(A) is decidable.

Keywords: automata and logic, transfinite N-free posets, series-parallel posets, series-parallel rational
languages, branching automata, monadic second-order logic, Presburger arithmetic

1. Introduction

Since they were independently established by Büchi [10], Elgot [16] and Trakhtenbrot [33], links between
automata theory and formal logic have been widely developed. The fundamental result is the effective
equivalence between Kleene automata [20] and sentences of Monadic Second-Order logic (MSO) for the
description of languages of finite words. It provides, as examples, tools for languages classification, or
decision algorithms on formal logic. This fundamental result have been later generalized to less restricted
structures than finite words, relying on adapted notions of automata. Among them, let us cite words
indexed by all the natural integers [11], ordinals [12], trees [29, 31, 14], linear orderings [5], etc. Among
the first consequences of such generalizations are decision algorithms for second-order theories of countable
ordinals [12], of two successors functions [29] and many others. Automata on a particular class C of structures
were often used to obtain decision procedures for a theory of C. However, it is to notice that automata on C
can also be used to obtain decision procedures for a theory of a seemingly unrelated class. As an example,
the decidability of the second-order theory of countable linear orderings is reducible to the solvability of
the decision problem of the second-order theory of two successors functions [29]. Apart from their interest
in formal logic, generalization of Kleene automata are also used as models for processes. As an example,
automata over ω-words provide a basement for the model-checking theory of sequential processes. Automata
over finite N-free (or equivalently, series-parallel [34]) partially ordered sets (posets for short) can be used
as models for concurrent programs, where concurrency relies on fork-join rules. Recall that a set partially
ordered by < is N-free if it has no subset X = {a, b, c, d} such that < ∩X ×X = {(a, b), (c, b), (c, d)}.

In this paper we focus on the class SP �(A) of all countable N-free posets, labeled over an alphabet A,
and whose chains are scattered linear orderings and antichains are finite. Recall that a linear ordering is
scattered if it has no dense sub-ordering. A notion of automata, named branching automata, adapted to
SP �(A) has been introduced in [6] as well as equivalent rational expressions. These automata and rational
expressions are a generalisation of those on finite N-free posets of Lodaya and Weil [23, 24, 25, 26] and
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those of Bruyère and Carton [9] on linear orderings. The logic P-MSO effectively equivalent to branching
automata on finite N-free posets was introduced in [3]. Roughly speaking, P-MSO is a mix of MSO and
Presburger arithmetic [28]. In [5] it was proved that the class of languages of countable linear orderings
recognized by Bruyère and Carton automata is strictly included into MSO-definable languages, and that
MSO and automata are effectively equivalent when linear orderings are restricted to be scattered. In [21, 22]
Kuske proposed an extension of branching automata of Lodaya and Weil over finite N-free posets to N-free
posets with finite antichains and ω-chains, together with a connection with MSO in the particular case
of languages of N-free posets with bounded-size antichains. This is extended in [2] to N-free posets with
bounded-size antichains and scattered and countable chains.

Our main result is that a language of SP �(A) is rational if and only if it is P-MSO definable (Theorem 36)
with effective constructions from one formalism to the other. The decidability of the P-MSO theory of
SP �(A) follows as a corollary. P-MSO is defined in Section 4.

It is known from [4] that the class of rational languages of SP �(A) is closed under boolean operations.
Relying on this, the proof of the implication from right to left of Theorem 36 involves only well-known
techniques: it is not developed in this paper. It is the purpose of the short Section 8. For the implication
from left to right we had to develop new techniques. The usual technique used in order to build directly a
MSO-formula from an automaton in the case of finite or ω-words encodes by means of MSO the existence
of a successful path labeled by some word. The formula attaches a transition to each letter of the word,
consistently with the definition of the automaton. This can not be easily extended to the case of automata on
linear orderings, since the MSO formula have to encode the use of limit transitions without the assumption
that every factor has a least upper or a greater lower bound. This difficulty was avoided in [5] by constructing
a formula from a rational expression instead of an automaton. The same difficulty occurs in the case of
SP �(A), and we avoid it in this paper in the same way, but other problems arise. This paper is essentially
devoted to the construction of a sentence ϕe(X) of P-MSO from a rational expression e such that P satisfies
ϕe(P ) if and only if P ∈ L(e). It is developed using the following scheme. The first step is to transform
the rational expression into an equivalent form, named >1-expression. In >1-expression, sequential products
guarantee the sequential composition of at least two non-empty posets. Thus, the sequential composition
of two languages necessarily contains only non-trivial sequential posets. The >1-expressions are introduced
together with rational expressions in Section 3. The next step consists in computing a graph by induction
on a >1-expression (Section 5). The nodes of the graph are labeled by letters, sequential operations involved
in >1-expressions and Presburger formulæ. The operations labeling the nodes are all P-MSO expressible;
in particular the sequential operations can be expressed with MSO using techniques from [5]. During the
induction, we enforce properties on the resulting graph in order to calculate the Presburger formulæ that
will appear in the final P-MSO formula. The next step is the transformation of the graph into a P-MSO
formula. To each node n we associate a P-MSO formula φn, and the idea is to make φn dependent of
φm if there is an edge n → m. Unfortunately the graph is not always acyclic. Cycles can be broken by
avoiding particular edges, named special, that are identified in each inductive step of the construction of the
graph. In order to avoid circular dependencies between the φns we develop in Section 6 a technique named
s-coloring, that permits to identify particular factors of posets by means of P-MSO. Using s-coloring, the
effective transformation of the graph into a P-MSO formula is given in Section 7.

This paper is a long version, with proofs, of [1].

2. Notation, linear orderings and posets

We let |E| denote the cardinality of a set E, 2E its power-set, [n] the set {1, . . . , n} (for any non-negative
integer n ∈ N), and πi(c) the ith component of a tuple c. We let 1k denote the tuple of integers with 1 at
the kth position and 0 at all other positions. Every time we use this notation the size n of the tuple is clear
from the context, and of course k ∈ [n]. Arithmetic operations on tuples of integers are componentwise. We
also let |s| denote the length k of a finite sequence s of k elements.
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2.1. Unlabeled posets and linear orderings

Recall that an ordering < over a set E is an irreflexive, transitive and asymmetric binary relation over
the elements of E. It is total, or linear, when either x < y or y < x for all distinct x, y ∈ E. It is dense when
for all x, y such that x < y there is some z such that x < z < y. It is scattered if it has no dense non-trivial
sub-ordering.

A partially ordered set, poset for short, (P,<) consists of a set P and an ordering relation < over the
elements of P . For simplicity we often denote (P,<) by P . We let 0 = (∅, ∅) denote the empty poset. A
chain is a totally ordered set. An antichain A is a set whose elements are pairwise incomparable: for all
x, y ∈ A, neither x < y nor y < x. An interval I of (P,<) is a subset I ⊆ P such that for all i1, i2 ∈ I and
p ∈ P , if i1 < p < i2 then p ∈ I.

A poset (P,<) is N-free if there is noX = {x1, x2, x3, x4} ⊆ P such that< ∩X2 = {(x1, x2), (x3, x2), (x3, x4)}.
N-free posets play a particular role in computer science, since they are related to scheduling of processes,

x2 x4

x1 x3

Figure 1: The poset N . Exceptionally, in this Figure, the (increasing) ordering is bottom-up

and model for example series and parallel electronic circuits, and concurrent processes relying on fork/join
primitives. In this paper we particularly focus on N-free posets with finite antichains only.

We need the following operations on posets. The reversal −(P,<) is (P,<′) defined by x <′ y if and
only if y < x. Let (P,<P ) and (Q,<Q) be two disjoint posets. The union (or parallel composition) P ∪Q
of (P,<P ) and (Q,<Q) is the poset (P ∪ Q,<P ∪ <Q). The sum (or sequential composition) P + Q of P
and Q is the poset (P ∪Q,<P ∪ <Q ∪P ×Q).

Example 1. Figure 2 represents two posets P1 = ({x1, x2, x4, x4}, x1 <1 x2, x3, x4) and P2 = ({y1, y2, y3, y4}, y1, y2 <2

y3, y4), the parallel composition P1 ∪ P2 and the sequential composition P1 + P2.

x2

x4

x3x1P1 : P2 :

y1

y2

y3

y4

P1 ∪ P2 :

x2

x4

x3x1

y1

y2

y3

y4

P1 + P2 :

x2

x4

x3x1

y1

y2

y3

y4

Figure 2: The Hasse diagrams of two N-free posets P1 and P2, and their parallel and sequential compositions. In this Figure
and all the others below, the ordering is from left to right

Before continuing let us focus on the particular cases of (P,<) where the ordering < is total. Linear
orderings have a particular place in set theory. We refer the reader eg. to Rosenstein’s book [30], entirely
devoted to the subject. As it is conventional in the literature we let ω denote a representative of the class of
linear orderings isomorphic to the linear ordering (N, <N) of the natural integers. Ordinals are a particular
case of scattered linear orderings. We let O and S denote respectively the class of countable ordinals and the
class of countable scattered linear orderings (up to isomorphism). A cut (K,L) of a linear ordering (J,<)
consists of a pair of two disjoint intervals K and L of J such that K∪L = J and k <J l for all (k, l) ∈ K×L.
The set Ĵ of all cuts of J is naturally equipped with the linear ordering (K1, L1) <Ĵ (K2, L2) if and only if

K1 ( K2. By extension, we equip the set J ∪ Ĵ with the linear ordering < containing <J and <Ĵ , and such

3



that j < (K,L) (resp. (K,L) < j) whenever j ∈ K (resp. j ∈ L), for any j ∈ J and (K,L) ∈ Ĵ . We let Ĵ∗

denote Ĵ \ {(∅, J), (J, ∅)}.
The sum of two posets can be generalized to any linearly ordered sequence (Pj , <j)j∈J of pairwise disjoint

posets by ∑
j∈J

Pj = (
⋃
j∈J

Pj , (
⋃
j∈J

<j) ∪ (
⋃

j,j′∈J, j<j′
Pj × Pj′))

In this paper we consider posets of the following class:

Definition 2. The class SP � of series-parallel scattered and countable posets is the smallest class of posets
containing 0, the singleton and being closed under disjoint finite parallel composition and disjoint sum indexed
by countable scattered linear orderings. In this definition, posets are considered up to isomorphism.

The following is an extension of a well-known result [34] on finite N-free posets.

Theorem 3 ([6]). Let NF � be the class of countable N-free posets with scattered chains only and without
infinite antichains (up to isomorphism). Then NF � = SP �.

Example 4. For any i ∈ N, let Ai be an antichain of cardinality |Ai| = i. Set P =
∑
i∈ω Ai. Then

P ∈ SP �. Observe that there is no n ∈ N such that |A| < n for all antichain A of P .

We let SP �+ denote SP � \ {0}.
F. Hausdorff proposed in [19] an inductive definition of scattered linear orderings. In fact, each countable

and scattered linear ordering is obtained using sums indexed by finite linear orderings, ω and −ω. This has
been adapted in [6] to SP �.

We denote by C∪,+(E) the closure of a set E under finite disjoint union and finite disjoint sum. Recall
that 0 denotes the empty poset. We also let 1 denote the singleton poset.

Definition 5. The classes of countable and scattered posets (equivalent up to isomorphism) Vα and Wα are
defined inductively as follows:

V0 = {0, 1}
Wα = C∪,+(Vα)

Vα =

{∑
i∈J

Pi : J ∈ {ω,−ω} and ∀i ∈ J, Pi ∈
⋃
β<α

Wβ

}
∪
⋃
β<α

Wβ

and the class Ssp of countable and scattered posets by Ssp =
⋃
α∈OWα.

The following theorem extends a result of Hausdorff on linear orderings [19].

Theorem 6 ([6]). Ssp = SP �.

A unique ordinal can be associated to every poset of SP �, which can be used to prove properties
inductively:

Definition 7. The rank r(P ) of P ∈ Ssp is the smallest ordinal α such that P ∈Wα.

The notion of a rank for posets of SP � can be refined as follows. For every α ∈ O, the class Wα can be
decomposed as the closure of Vα by finite disjoint union and finite disjoint sum.

Theorem 8 ([6]). For all α ∈ O, i ∈ N, let

Xα,0 = Vα

Yα,i =

{
P : ∃n ∈ N P =

∑
j≤n

Pj such that Pj ∈ Xα,i for all j ≤ n

}

Xα,i+1 =

{
P : ∃n ∈ N P =

⋃
j≤n

Pj such that Pj ∈ Yα,i for all j ≤ n

}
Then Wα =

⋃
i∈N

Xα,i.
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Define a well-ordering on O × N by (β, j) < (α, i) if and only if β < α or β = α and j < i. As a
consequence of Theorems 6 and 8, for any P ∈ SP � there exists a pair (α, i) ∈ O × N as small as possible
such that P ∈ Xα,i.

Definition 9. The X-rank rX(P ) of P ∈ SP � is the smallest pair (α, i) ∈ O × N such that P ∈ Xα,i.

We finish this section on unlabeled posets by some definitions that generalize to posets the usual notions
of factors of words.

Definition 10. An interval I of P ∈ SP � is good if it is non empty and, for all p ∈ P , if there are x, y ∈ I
such that p < x or x < p and neither p < y nor y < p, then p ∈ I.

As emphasized by the following proposition, the notion of a good interval is deeply related with the usual
notion of a factor. For that reason, in the sequel good intervals are called factors. Strictness of factors is
relative to inclusion.

Proposition 11. Let P ∈ SP � and I ⊆ P . Then I is a good interval of P if and only if there exist
a non-empty J ∈ S and a sequence of non-empty posets (Pj)j∈J such that P =

∑
j∈J Pj, or J is finite,

P =
⋃
j∈J Pj, and there exists j ∈ J such that either I = Pj or I ( Pj and I is a good interval of Pj.

Proof. Observe that when I is a good interval of P and X is such that I ⊆ X ⊆ P , then I is also a good
interval of X. As a consequence, the implication from left to right holds. For the converse, it suffices to note
that when I is a good interval of I ′ which is itself a good interval of P , then I is a good interval of P .

Definition 12. Let P be a poset and J ∈ S. A J-sequential-factorization of P , also called J-factorisation
or sequential factorization for short, is a sequence (Pj)j∈J of posets such that P =

∑
j∈J Pj.

A poset P is sequential if it admits a J-factorization where J contains at least two elements j 6= j′

with Pj , Pj′ 6= 0, or P is a singleton. It is parallel when P = P1 ‖ P2 for some P1, P2 6= 0. A sequential
factorization is irreducible when all the Pj are either singletons or parallel posets. The notions of parallel
factorization and irreducible parallel factorization are defined similarly.

We let Seq denote the class of all sequential posets of SP �+. Note that every P ∈ SP �+ is either
sequential or parallel, but not both. The empty poset is the only poset of SP � which is neither sequential
nor parallel. The poset N of Figure 1 is neither sequential nor parallel, but N 6∈ SP �.

2.2. Labeled posets

An alphabet A is a non-empty finite set whose elements are called letters. Recall also that a language of
a set S is a subset of S.

A poset (P,<, l) labeled by A, also denoted by P for short, consists of a poset (P,<) and a labeling total
map l : P → A. Considered up to an isomorphism, labeled posets, also named pomsets in the literature, are
a generalization of the usual notion of a word, since a word can be seen as a finite linear ordering labeled
by A. The finite case was first investigated in [35, 18] from a systematic point of view. In order to be
consistent with the usual notation on words, we let ε denote the unique empty labeled poset, and a the
singleton poset labeled by a. The class of posets of SP � labeled by A (or over A) is denoted by SP �(A),
and SP �+(A) = SP �(A) \ {ε}. We also denote by A� the restriction of SP �(A) to posets with antichains of
cardinality at most 1. Again, this notation is consistent with the words indexed by countable and scattered
linear orderings, see eg. [9]. In order to match the words case, we also adapt the notation and nomenclature
previously introduced for posets for the labeled case. The sequential and parallel compositions + and ∪ of
posets are named products, and respectively denoted by · and ‖, when labeled posets are considered:

Definition 13. Let (P,<P , lP ) and (Q,<Q, lQ) be two disjoint posets labeled by an alphabet A. The se-
quential product, or concatenation, (P,<P , lP ) · (Q,<Q, lQ), or (P,<P , lP )(Q,<Q, lQ) for short, is the poset
(P,<P ) + (Q,<Q) labeled by lP ∪ lQ. Similarly, the parallel product (P,<P , lP ) ‖ (Q,<Q, lQ) is the poset
(P,<P ) ∪ (Q,<Q) labeled by lP ∪ lQ. The sequential product of a linearly ordered sequence of labeled posets
is denoted by

∏
.
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Let A and B be two alphabets, P ∈ SP �(A), L ⊆ SP �(B) and ξ ∈ A. The language of SP �+(A\{ξ}∪B)
consisting of the labeled poset P in which each element labeled by the letter ξ is non-uniformly replaced by
a labeled poset of L is denoted by L ◦ξ P . By non-uniformly we mean that the elements labeled by ξ may
be replaced by different elements of L. This substitution L◦ξ is the homomorphism from (SP �(A), ‖,

∏
)

into the power-set algebra (2SP
�(A∪B), ‖,

∏
) with ξ 7→ L and a 7→ a for all a ∈ A \ {ξ}. In other words:

Definition 14. Let A and B be two alphabets, P ∈ SP �(A), L ⊆ SP �(B) and ξ ∈ A. Let SP , <P and
lP denote respectively the set of elements, the ordering relation, and the labeling map of P . Then L ◦ξ P
consists of all R ∈ SP �(A \ {ξ} ∪B) such that there exists νR : l−1P (ξ)→ L and

SR =(SP \ l−1P (ξ))
⋃

x∈l−1
P (ξ)

SνR(x)

<R=<P |SR
⋃

x∈l−1
P (ξ)

<νR(x)

⋃
(x,y)∈<P∩P×l−1

P (ξ)

{x} × SνR(y)

⋃
(y,x)∈<P∩l−1

P (ξ)×P

SνR(y) × {x}

lR =lP |SR
⋃

x∈l−1
P (ξ)

lνR(x)

where f |X is the restriction of the map or relation f to X.

Example 15. Let B = {a, b}, A = B ∪ {ξ}, P = b ‖ (ξ · ξ) ∈ SP �(A) and L = {a ‖ b, b · a} ⊆ SP �(B).
Then L ◦ξ P = {b ‖ ((a ‖ b) · (a ‖ b)), b ‖ ((b · a) · (b · a)), b ‖ ((a ‖ b) · (b · a)), b ‖ ((b · a) · (a ‖ b))}.

Sequential and parallel products are extended from labeled posets to languages of labeled posets in the
usual way: when L and L′ are languages of labeled posets and op is either the sequential or the parallel
product, then L op L′ = {P op P ′ : P ∈ L,P ′ ∈ L′}.

3. Rational languages

In this section we define languages by means of expressions. Let op be operations over a class of languages
of structures labeled by an alphabet A. Recall that an expression e is a term of the free algebra over {∅}∪A
using the operations of op as functions. The language L(e) of e is defined inductively using the definitions
of the operations of op. Rational expressions describe rational languages. In a rational expression e, the
union is usually denoted by + instead of ∪.

In the first sub-section, we recall the definition of the class of rational languages of SP �(A). By extension
of a well-known result of Kleene [20] on languages of finite words, it is known from [6] that a language
L ⊆ SP �(A) is rational if and only if L is the language of some automaton. In this paper, we need a slightly
modified definition of rational languages of SP �(A). In Sub-section 3.2, we define the class of >1-rational
languages. A language L ⊆ SP �(A) is rational if and only if it is >1-rational. Finally, in Sub-section 3.3,
we recall the link between rational and semi-linear languages of finite commutative words.
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3.1. Rational languages of SP �(A)

Let A be an alphabet and ξ ∈ A. Define the following (disjoint) operations on the languages L,L′ of
SP �(A):

L ◦ξ L′ =
⋃
P∈L′

L ◦ξ P L∗ = {
∏
j∈[n]

Pj : n ∈ N, Pj ∈ L}

L∗ξ =
⋃
i∈N

Liξ with L0ξ = {ξ} and L(i+1)ξ = (
⋃
j≤i

Ljξ) ◦ξ L

Lω = {
∏
j∈ω

Pj : Pj ∈ L} L−ω = {
∏
j∈−ω

Pj : Pj ∈ L}

L\ = {
∏
j∈α

Pj : α ∈ O, Pj ∈ L} L−\ = {
∏
j∈−α

Pj : α ∈ O, Pj ∈ L}

L � L′ = {
∏

j∈J∪Ĵ∗
Pj : J ∈ S \ {0} and Pj ∈ L if j ∈ J and Pj ∈ L′ if j ∈ Ĵ∗}

Definition 16. Let A be an alphabet and ξ ∈ A. The class of rational languages [6] of SP �(A) is the
smallest class containing ∅, {ε}, {a} for all a ∈ A, and being closed under the operations of op = {‖
, ◦ξ,∗ξ ,∪, ·, ∗, �, ω,−ω, \,−\} under the following conditions:

• ε /∈ L in L ◦ξ L′ and L∗ξ;

• in L∗ξ, each element labeled by ξ in a poset of L must be incomparable with another element.

The last condition excludes from the rational languages those of the form (aξb)∗ξ = {anξbn : n ∈ N}, for
example, which is not rational in the usual language theory of finite words.

The definition above generalizes the notions of rational languages of several classes of structures. Actu-
ally:

• with op = {∪, ·, ∗} we get the rational languages of finite words of Kleene [20];

• with op = {∪, ·, ∗, ‖, ◦ξ,∗ξ } we get the rational languages of finite N-free posets of Lodaya and Weil [23,
24, 25, 26];

• with op = {∪, ·, ∗, �, ω,−ω, \,−\} we get the rational languages of scattered and countable words of
Bruyère and Carton [9].

For convenience we use the shortcut L� for L � ε+ ε.

Example 17. Let A = {a} and L = a ◦ξ (a(ξ ‖ ξ))∗ξ. Then L is the smallest language containing a and
such that if x, y ∈ L then a(x ‖ y) ∈ L. Thus L = {a, a(a ‖ a), a(a(a ‖ a) ‖ a), a(a(a ‖ a) ‖ a(a ‖ a)), . . . }.
Furthermore, L is a rational language of SP �(A), since L1 = a(ξ ‖ ξ) and L2 = a are rational, ε 6∈ L1, L2

and each ξ is in parallel with the other ξ in L1.

The following result is fundamental in the sequel:

Theorem 18 ([4]). Let A be an alphabet. The class of rational languages of SP �(A) is effectively closed
under boolean operations.

3.2. >1-rational languages of SP �(A)

In the remainder of the paper, we need sequentially operations to compose at least two non-empty
posets. This is not the case for operations of the previous section, since for example {ε} · {a} = {a}. When
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L,L′ ⊆ SP �(A) define

L·>1L′ = (L \ {ε}) · (L′ \ {ε}) L∗
>1

= {
∏
i∈[n]

Pi : n > 1, Pi ∈ L \ {ε}}

Lω
>1

= {
∏
i∈ω

Pi : Pi ∈ L for all i ∈ ω and Pi, Pj 6= ε for some i, j with i 6= j}

L�>1L′ = {
∏

j∈J∪Ĵ∗
Pj : J ∈ S \ {0}, Pj ∈ L if j ∈ J, Pj ∈ L′ if j ∈ Ĵ∗

and Pi, Pj 6= ε for some i, j ∈ J ∪ Ĵ∗, i 6= j}

Define similarly L−ω
>1

, L\
>1

and L−\
>1

.

Definition 19. Let A be an alphabet and ξ ∈ A. The class of >1-rational languages of SP �(A) is the
smallest class containing ∅, {ε}, {a} for all a ∈ A, and being closed under the operations of op>1 = {‖
, ◦ξ,∗ξ ,∪, ·>1, ∗>1, �>1, ω>1,−ω>1, \>1,−\>1} under the following conditions:

• ε /∈ L in L ◦ξ L′ and L∗ξ;

• in L∗ξ, each element labeled by ξ in a poset of L must be incomparable with another element.

We let L+c L
′ denote L+ L′ when condition c is verified, L otherwise. Then

L · L′ = L·>1L′ +ε∈L L
′ +ε∈L′ L L∗ = L∗

>1

+ L+ ε

Lω = Lω
>1

+ε∈L L
∗ L � L′ = L�>1L′ + L+ε∈L L

′

Similar equalities hold for −ω, \ and −\. Every rational expression can be transformed into a >1-expression.
Considering the equalities above as rewriting rules this transformation is unique (up to associativity). As a
consequence of Theorem 18, a language of SP �(A) is rational if and only if it is >1-rational.

Example 20. Consider the rational expressions e1 = a ◦ξ (a(ξ ‖ ξ))∗ξ and e2 = e1 � b�. Then e′1 =
a ◦ξ (a·>1(ξ ‖ ξ))∗ξ is the >1-expression of e1. The >1-expression of e2 is e′1�>1(b�>1ε+ b+ ε) + e′1.

3.3. Rational languages of finite commutative words

Recall that in a monoid (S, ·), the class of rational languages is the smallest containing the empty set,
{s} for all s ∈ S and closed under the operations of {∪, ·,∗ }. When the monoid is commutative we usually
denote its product by ‖ instead of · and its Kleene closure ~ instead of ∗. When A is an alphabet, A~ is the
class of all finite antichains over A, or equivalently, the class of all finite commutative words over A.

Definition 21. Let (S, ‖) be a commutative monoid. A subset L of S is linear if it has the form L = a1 ‖
· · · ‖ ak ‖

(⋃
i∈I(ai,1 ‖ · · · ‖ ai,ki)

)~
where I is a finite set, k, ki ∈ N, ai,ai,j ∈ S for all i ∈ I and j ∈ [ki].

It is semi-linear if it is a finite union of linear sets.

Theorem 22 (see e.g. [15]). In a commutative monoid, a language is rational if and only if it is semi-linear.

Example 23. Consider the language L over the alphabet A = {a, b} consisting of all commutative finite
words with strictly more as than bs. Then L is the language of the rational expression a ‖ a~ ‖ (a ‖ a~ ‖ b)~
over the commutative monoid A~. It is linear, hence semi-linear, since it also has the form a ‖ (a ‖ b∪a)~.

The following lemma is a direct consequence of a Parikh’s Theorem [27, Theorem 2]:

Lemma 24. Let A be an alphabet, ξ ∈ A, L and L′ semi-linear languages of A~. Then L ◦ξ L′ is a
semi-linear language of A~, and if ε /∈ L then so is L∗ξ.
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In the remainder of the paper, when an ordering is required over an alphabet A = {a1, . . . , an} and is not
specified explicitly, it is implicitly given by the indexes of the ais. Let A = {a1, . . . , an} and B = {b1, . . . , bm}
be two disjoint and totally ordered alphabets. For any i ∈ [m] let us denote by A ◦bi B the totally ordered
alphabet {b1, . . . , bi−1, a1, . . . , an, bi+1, . . . , bm}. When L and L′ are rational sets of respectively A~ and
B~, A and B disjoint, then L ◦bi L′ is a rational set of (A ◦bi B)~. If A = B then L ◦bi L′ is a rational set
of A~.

Recall that every u ∈ A~ can be thought of as its Parikh’s commutative image, that is a n-tuple
(|u|a1 , . . . , |u|an) ∈ Nn, where |u|ai denotes the number of occurrences of letter ai in u. Thus, A~ is
isomorphic to (Nn,+).

4. Logic

Presburger arithmetic and Monadic Second-Order logic (MSO) are two classical logics in computer
science. In this section we briefly recall those two logics and introduce P-MSO, which extends MSO with
Presburger arithmetic.

4.1. Presburger arithmetic

Recall that Presburger arithmetic is the first-order logic of (N,+). The Presburger set L(ρ) of a Pres-
burger formula ρ(x1, . . . , xn) whose free variables are x1, . . . , xn consists of all interpretations of (x1, . . . , xn)
which satisfy ρ. A language L ⊆ Nn is a Presburger set of Nn if it is the Presburger set of some Presburger
formula. We let Pn denote the class of all Presburger formulæ with n free variables and we set P =

⋃
i∈N Pi.

Presburger logic provides tools to manipulate semi-linear sets of commutative monoids with formulæ.

Theorem 25 ([17]). Let A = {a1, . . . , an} be a totally ordered alphabet. A language L of A~ is semi-linear
if and only if it is the Presburger set L(ρ) of some Presburger formula ρ(x1, . . . , xn), i.e. (|u|a1 , . . . , |u|an) ∈
L(ρ) if and only if u ∈ L. Furthermore, the constructions from one formalism to the other are effective.

Observe that the ordering of the free variables x1, . . . , xn of ρ is related to the ordering of A. By
convention {()} is the Presburger set of any closed tautology ρ. When ρ is used to define some language,
we identify the empty tuple () with ε.

Example 26. The Presburger set of the formula ρ(x, y) ≡ ∃ k, k′ k = k′ + 1 ∧ x = y + k of P2 is
{(x, y) : y < x}. Let A and L be as in Example 23. Then ρ(x, y) defines L in A~.

With the help of Theorem 25 and Lemma 24 we get the following definition.

Definition 27. Let ρ(x1, . . . , xk) and ρ′(x′1, . . . , x
′
k′) be Presburger formulæ and let A = {a1, . . . , ak} and

B = {b1, . . . , bk′} be two totally ordered alphabets, either disjoint or equal. Consider the Presburger sets of
ρ and ρ′ as semi-linear languages L and L′ of respectively A~ and B~. When A and B are disjoint, for all
i ∈ [k′], L ◦bi L′ is a semi-linear language of (A ◦bi B)~ and also the Presburger set of some formula that we
denote by ρ ◦x′i ρ

′. When A = B, for all i ∈ [k′], L ◦bi L′ is a semi-linear language of A~ and the Presburger

set of some formula that we denote by ρ•x′iρ
′. If (0, . . . , 0) 6∈ L(ρ), for all j ∈ N and i ∈ [k], L∗ai and Ljai

are semi-linear languages of A~ and also the Presburger sets of some formulæ that we denote respectively
by ρ∗xi and ρjxi .

Example 28. Let ρ(x1, x2) = x1 + x2 = 1 and ρ′(x′1, x
′
2, x
′
3) = x′1 = 1 ∧ x′2 + x′3 ≤ 1. Then L(ρ) =

{(1, 0), (0, 1)} and L(ρ′) = {(1, 0, 1), (1, 1, 0), (1, 0, 0)}. Let A = {a1, a2} and B = {b1, b2, b3} disjoint. Con-
sider the Presburger sets of ρ and ρ′ as semi-linear languages L and L′ of respectively A~ and B~. Then L, L′

and L◦b3L′ are respectively the languages of the rational expressions a1+a2, b1 ‖ (b2+b3+ε) and b1 ‖ (b2+a1+
a2+ε) of A~, B~, and (A◦b3B)~. The Parikh commutative image {(1, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)}
of L ◦b3 L′ is also the Presburger set of ρ ◦x′3 ρ

′ ≡ x1 = 1 ∧ x2 + x3 + x4 ≤ 1.

Lemma 29. Let ρ(x1, . . . , xn) be a Presburger formula and i ∈ [n]. For all j ∈ N, ρ(j+1)xi ≡ (∨k≤jρkxi)•xiρ.
Furthermore, L(ρ∗xi) = ∪j∈NL(ρjxi).
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Proof. Consider the Presburger set of ρ as a semi-linear language over the totally ordered alphabet {a1, . . . , an}.
Let us start with the first part of the lemma. Following definitions,

L(ρ(j+1)xi) = L(ρ)(j+1)ai = (∪k≤jL(ρ)kai) ◦ai L(ρ)

= (∪k≤jL(ρkxi) ◦ai L(ρ) = L(∨k≤jρkxi) ◦ai L(ρ) = L((∨k≤jρkxi)•xiρ)

For the second part of the lemma, L(ρ∗xi) = L(ρ)∗ai = ∪j∈NL(ρ)jai = ∪j∈NL(ρjxi).

Example 30. Let ρ(x1, x2) = (x1 = 1 ∧ x2 = 0) ∨ (x1 = 0 ∧ x2 = 2). Let A = {a1, a2} and consider the
Presburger set of ρ as a language L of A~. Then L = {a1, a2 ‖ a2}. Consider L∗a2 =

⋃
i∈N

Lia2 . By induction

on i it can be checked that ⋃
j≤i

Lja2 = {u ∈ A~ : 1 ≤ |u| ≤ 2i and |u|a1 ≤ 2i−1}

It follows that L∗a2 = A~ \ {ε}, and as a consequence ρ∗x2(x1, x2) ≡ x1 + x2 ≥ 1. Now for any i ∈ N let
ρi(x1, x2) ≡ 1 ≤ x1 + x2 ≤ 2i ∧ x1 ≤ 2i−1. Then L(ρi) is the Parikh commutative image of

⋃
j≤i

Lja2 . Thus

ρ(i+1)x2 ≡ ρi•x2
ρ and ρ0x2(x1, x2) ≡ x1 = 0 ∧ x2 = 1.

The following lemmas are direct consequences of the definitions above.

Lemma 31. Let ρ(x1, . . . , xk) and ρ′(x′1, . . . , x
′
k′) be two Presburger formulæ where k ∈ N, k′ ∈ N \ {0} and

L(ρ), L(ρ′) 6= ∅, and let i ∈ [k′]. Then (v′′1 , . . . , v
′′
k+k′−1) ∈ L(ρ◦x′i ρ

′) if and only if (v′′1 , . . . , v
′′
i−1, v

′
i, v
′′
i+k, . . . ,

v′′k+k′−1) ∈ L(ρ′), for some v′i ∈ N, and there exist (v1,1, . . . , v1,k), . . . , (vv′i,1, . . . , vv′i,k) ∈ L(ρ) such that
(v′′i , . . . , v

′′
i+k−1) = (v1,1, . . . , v1,k) + · · ·+ (vv′i,1, . . . , vv′i,k).

Lemma 32. Let ρ(x1, . . . , xk) and ρ′(x′1, . . . , x
′
k) be two Presburger formulæ where k ∈ N \ {0} and

L(ρ), L(ρ′) 6= ∅, and let i ∈ [k]. Then (v′′1 , . . . , v
′′
k ) ∈ L(ρ•x′iρ

′) if and only if there exist (v′1, . . . , v
′
k) ∈ L(ρ′)

and (vj,1, . . . , vj,k) ∈ L(ρ) for all j ∈ [v′i] such that for all r ∈ [k]

v′′r =

{∑
j∈[v′i]

vj,r when r = i;

v′r +
∑
j∈[v′i]

vj,r otherwise.

Lemma 33. Let ρ(x1, . . . , xk) be a Presburger formula for some k ∈ N\{0} and such that (0, . . . , 0) /∈ L(ρ).
Let i ∈ [k] and t ∈ [k] \ {i}. Then 1t ∈ L(ρ) if and only if 1t ∈ L(ρ∗xi).

4.2. P-MSO

We refer the reader to [32] for a survey on MSO. Presburger Monadic Second-Order logic, P-MSO for
short, is an extension of Monadic Second-Order logic (MSO) with Presburger arithmetic.

Let A be an alphabet, V1 = {x, y, . . . }, V2 = {X,Y, . . . } and VN be three disjoint sets of variables, respec-
tively named first-order variables of P-MSO, second-order variables of P-MSO, and (first-order) variables of
Presburger arithmetic. Formulæ of P-MSO are inductively built according to the following grammar, where
a ∈ A, x, y ∈ V1, X,Y, Z ∈ V2, x1, . . . , xn ∈ VN, ψ,ψ1, . . . , ψn are P-MSO formulæ, and ρ a Presburger
formula.

ψ ::= a(x) | x ∈ X | x < y | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | ¬ψ
| ∃xψ | ∃Xψ | ∀xψ | ∀Xψ | Q(Z,ψ1, . . . , ψn, ρ(x1, . . . , xn))

This grammar restricted to the 10 first items produces exactly the formulæ of MSO. The last item
extends MSO to P-MSO.

Let us turn to the semantics. Formulæ of P-MSO are interpreted over posets of SP �(A). Note that we
allow posets to be empty. The variables of V1, V2, VN are respectively interpreted over the elements of the
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posets, sets of elements of the posets, and N. For convenience we often do not make the distinction between
a variable and its interpretation when the context is sufficiently explicit.

When x and y are interpreted over the elements of a poset (P,<P , lP ) ∈ SP �(A) and X is interpreted as
a subset of P , then the atomic formula x < y is interpreted as x <P y, and a(x) as lP (x) = a. The semantics
of x ∈ X is self-explanatory, and those of all the other forms of formulæ of the grammar, except the last one,
are as usual. So let us turn to the semantics of ψ(Z) ≡ Q(Z,ψ1, . . . , ψn, ρ(x1, . . . , xn)). Let P ∈ SP �+(A)
and Z ⊆ P . Then Z satisfies ψ if it is a non-empty factor of P , and there exist (v1, . . . , vn) ∈ L(ρ) and
sequential posets Z1,1, . . . , Z1,v1 , . . . , Zn,1, . . . , Zn,vn ∈ SP �+(A) such that Z =‖i∈[n]‖j∈[vi] Zi,j and Zi,j
satisfies ψi for all i ∈ [n] and j ∈ [vi].

Example 34. Let A = {a1, a2}, and let ψi ≡ ∃x ai(x), i ∈ [2]. Let ρ(x1, x2) ≡ ∃k1, k2 x1 = 2k1 ∧ x2 =
2k2 + 1 ∈ P. Let P1 = a1(a1 ‖ a1)a1, P2 = a2a2 and P3 = (a1 ‖ a2)a1. Then P = P1 ‖ P2 ‖ P3 satisfies
Q(P,ψ1, ψ2, ρ(x1, x2)) since there is (K1,K2) = ({1, 3}, {2}) with (|K1|, |K2|) ∈ L(ρ), and for all i ∈ Kj,
j ∈ [2], Pi satisfying ψj.

In this paper we use a lot of common shortcuts in formulæ, such as for example ψ1 → ψ2 for ¬ψ1 ∨ ψ2.
As usual the logical equivalence of formulæ is denoted by ≡.

A relation R ⊆ Pm × (2P )n is P-MSO (resp. MSO) definable in P ∈ SP �(A) if there is a P-MSO (resp
MSO) formula φR(x1, . . . , xm, X1, . . . , Xn) which is true if and only if (x1, . . . , xm, X1, . . . , Xn) ∈ R.

Example 35. Let P ∈ SP �(A), X,Y, Z ⊆ P . The following relations are MSO definable:

• Y ⊆ Z, Y ∪ Z = X, Y ∩ Z = ∅ and Y, Z 6= ∅. For example, Y ⊆ Z ≡ ∀y y ∈ Y → y ∈ Z;

• X < Y ≡ ∀x∀y (x ∈ X ∧ y ∈ Y )→ x < y

• “(Y,Z) is a partition of X”:
Partition(X,Y, Z) ≡ Y ∪ Z = X ∧ Y ∩ Z = ∅ ∧ Y, Z 6= ∅

• |X| = n, for any n ∈ N:

– |X| = 0 ≡ ∀x x 6∈ X
– |X| = n+ 1 ≡ ∃Y,Z Partition(X,Y, Z) ∧ |Y | = 1 ∧ |Z| = n

• X = Y + Z ≡ |Y | 6= 0 ∧ |Z| 6= 0 ∧ Partition(X,Y, Z) ∧ Y < Z

• F (R,P ) “R is a factor of P”, as a direct consequence of Proposition 11;

• Fs(R,P ) “R is a sequential factor of P”, since
Fs(R,P ) ≡ F (R,P ) ∧ (|R| = 1 ∨ ∃R1, R2 Partition(R,R1, R2) ∧R1 < R2)

The main result of this paper is the following:

Theorem 36. Let A be an alphabet. A language L of SP �(A) is rational if and only if it is P-MSO definable.
Furthermore the constructions from one formalism to the other are effective.

5. D-graphs

A D-graph is a particular case of rooted, directed and finite graph whose edges are partially ordered and
nodes are labeled. More formally:

Definition 37. A D-graph D = (V,ES , EN , r, out, A, γ) is a rooted, directed, finite and labeled graph whose
edges are partially ordered:

• V is a finite set whose elements are the nodes of D;
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• the edges of D consist of two disjoint sets ES ⊆ V × V ( special edges) and EN ⊆ V × V ( normal
edges). An edge (n, n′) is also denoted n→ n′. Its source is n and its destination is n′;

• r ∈ V is the root of D;

• out is a total map that associates to every n ∈ V a totally ordered and finite sequence e1 . . . ek containing
all edges of D of source n (note that an edge may occur more than once in the sequence). We say that
n is edged by out(n) = e1 . . . ek. A leaf is a node n such that out(n) has no normal edge;

• A is the alphabet of D;

• γ : V → A∪P ∪{·>1, ∗>1, �>1, ω>1,−ω>1, \>1,−\>1} is a total map labeling the nodes of D verifying:

– if γ(n) ∈ A then |out(n)| = 0;

– if γ(n) ∈ Pk then |out(n)| = k;

– if γ(n) ∈ {∗>1, ω>1,−ω>1, \>1,−\>1} then |out(n)| = 1;

– if γ(n) ∈ {·>1, �>1} then |out(n)| = 2.

The sets of special edges, normal edges, and the root of D are respectively denoted by ES(D), EN (D) and
r(D).

In a D-graph D, a sequence of nodes n1, . . . , nk is consecutive if there is an edge ni → ni+1 for all
i ∈ [k − 1]. Similarly, a sequence of edges e1, . . . , ek is consecutive if the destination of ei is the source of
ei+1, for all i ∈ [k − 1].

Let n and p be two nodes of D. In D, we say that p is an ancestor of n if D contains a sequence of
consecutive nodes m1, . . . ,mk for some k ∈ N, such that p,m1, . . . ,mk, n are consecutive too. When k = 0
we say that p is a parent of n. The definitions of the notions of descendant and child are symmetrical. When
n is the destination of the ith edge of out(p) then n is the ith child of p. Note that n may be simultaneously
the ith and the jth child of p with i 6= j (see Example 52). It may be also the child of more than one node.

We often see sequences as words. For example, we let e ◦e′ s denote the sequence of edges obtained by
replacing in the sequence of edges s each occurrence of the edge e′ by the edge e. When i is the position of
an element of s, then s′ ◦i s is the sequence obtained by replacing the ith element of s by s′. We also let
n′ ◦srcn s denote the sequence of edges obtained from s by replacing every occurrence of n in sources of edges
by n′. When nothing is specified, replacing the source of a normal (resp. special) edge provides a normal
(resp. special) edge.

In Section 5.1 a D-graph De is constructed from a >1-expression e by induction on e. The inductive
steps for substitutions, ie. e ◦ξ e′ and e∗ξ are key cases. Informally the main idea is as follows. For simple
substitution e ◦ξ e′, De◦ξe′ is built from the union of De and De′ by replacing each node labeled by ξ in De′

by a copy of r(De). The case of e∗ξ is more tricky since the substitution is recursive and the base case must
be ensured. The idea here is: first to guaranty that the root of De is labeled by a Presburger formula ρ with
a child n labeled by ξ, and to substitute every node labeled by ξ, except n, by a copy of the root. Second,
transform ρ consistently with the definition of e∗ξ. This requires n to be a child of the root only. In order
to make the transformation of Presburger formulæ easily we need nodes labeled by Presburger formulæ to
have at most one child labeled by ξ. Actually we need that De is in a normal form defined as follows, and
has properties defined below.

Definition 38. Let A be an alphabet and ξ ∈ A. A D-graph D = (V,ES , EN , r, out, A, γ) is ξ-normalized
when the following conditions are verified:

1. if a node labeled by ξ is a child of the root then it cannot be child of another node;

2. for every n ∈ V with γ(n) ∈ P, if out(n) is some out(n) = s1 → d1, . . . , sk → dk there is at most one
i ∈ [k] such that γ(di) = ξ.

The ξ-normalization of D consists of the transformation given by Algorithm 1.

12



Algorithm 1 ξ-normalization of a D-graph

// First step
for each edge f : n→ x for some n 6= r, x child of r and with γ(x) = ξ do

Add a new node y labeled by ξ in V and n→ y in EN (D)
out(n)← (n→ y) ◦f out(n)

// Second step
for all n ∈ V such that γ(n) is some ρ(x1, . . . , xk)

and out(n) is some e1 : n→ n1, . . . , ek : n→ nk do
if |{i1, . . . , im ∈ [k] : γ(nij ) = ξ}| > 1 then

Add a new node n0 labeled by ξ in V and n→ n0 in EN (D)
γ(n)← ∃xi1 , . . . , xim(x0 =

∑
j∈[m] xij ) ∧ ρ(x1, . . . , xk)

out(n)← (n→ n0)(ε ◦ei1 . . . ε ◦eim out(n))
Remove all nij , j ∈ [m], that are not the destination of some remaining edge

In Algorithm 1 by ε ◦ej out(n) (resp. out(n)← (n→ y) ◦f out(n)) we remove all the occurrences of the
edge ej (resp. f) from out(n) and thus implicitly from the D-graph.

Definition 39. Let D = (V,ES , EN , r, out, A, γ) be a D-graph. We say that D has Property PP if it has
no edge n→ m such that γ(n), γ(m) ∈ P. It has Property SS if it has no special edge n→ m such that m
is labeled in P. It has Property DAG if (V, ∅, EN , r, out, A, γ) is acyclic.

Algorithm 2 transforms a D-graph with no consecutive edges n→ n′, n′ → n′′ such that γ(n), γ(n′), γ(n′′) ∈
P into a D-graph with Property PP.

Algorithm 2 PP-suppression

for all node n such that γ(n) is some ρ(x1, . . . , xk) do
while there is some (p, i) such that n is the ith descendant of node p

and γ(p) is some ρ′(x′1, . . . , x
′
k′) do

γ(p)← ρ ◦x′i ρ
′

out(p)← (p ◦srcn out(n)) ◦i out(p)

Remove n if it has no incoming edge

Obviously, ξ-normalization and PP-suppression preserve Properties PP and SS. The ξ-normalization also
preserves Property DAG, but not PP-suppression.

5.1. From >1-expressions to D-graphs

Let e be a >1-expression. In this section we build a D-graph De by induction on e. During the con-
struction, we assume the D-graphs obtained by the induction to be ξ-normalized. Thus, at each inductive
step we construct a D-graph, and if is not ξ-normalized we implicitly transform it with Algorithm 1. The
construction ensures that the D-graph constructed at each inductive step has Properties PP, SS and DAG.

Let us start the construction of De = (V,ES , EN , r, out, A, γ). Except when the contrary is specified,
new edges added during the constructions of this section are normal.

• Case e = ε (resp. e = a ∈ A)
De is just a node labeled by any closed Presburger tautology (resp. labeled by a), without edges.

• Case e = e1 op e2 (resp. e = e′op) with op ∈ {·>1, �>1} (resp. op ∈ {∗>1, ω>1,−ω>1, \>1,−\>1})
Then De is built from the union of De1 and De2 (resp. from De′), with one more node n as a root,
labeled by op, and edged by n→ r(De1), n→ r(De2) (resp. n→ r(De′)).
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Algorithm 3 Construction of De1◦ξe2

for all node n of De2 with γ(n) = ξ do
γ(n)← γ(r(De1))
out(n)← n ◦srcr(De1 ) out(r(De1))

Apply PP-suppression

Remove r(De1) from the D-graph

• Case e = e1 ◦ξ e2
When e2 = ξ then De is identical to De1 . Otherwise, De is built from the union of De1 and De2

transformed by Algorithm 3. The root of the new D-graph is r(De2).

• Case e = e′∗ξ

This is the only case where special edges are added. This is also the only case likely to add to the
edging out(n) of a node n an edge which is already in out(n). The construction of De′∗ξ from De′

relies on the same principle as the previous case: each node of De′ labeled by ξ should be replaced
by a copy of the root. Again, this may be not so simple in some cases because of the properties we
want to ensure on the resulting D-graph. The construction follows Algorithm 4, starting from De′ . We
proceed in two steps. The first step ensures in particular that the root is labeled by some Presburger
formula ρ with a ith child labeled by ξ for exactly one i, and that 1i is in the Presburger set of ρ.
In the second step we proceed with the replacement of nodes labeled by ξ by a copy of the root and
we ensure Property PP. Note that after the first step, the D-graph fulfills Property PP. In particular,

Algorithm 4 Construction of De′∗ξ

// First step: root transformation
if γ(r(De′)) is some ρ(x1, . . . , xk) and out(r(De′)) is some e1 . . . ek then

if there exists ei : r(De′)→ ni, i ∈ [k], such that γ(ni) = ξ then
. Since De′ is ξ-normalized i is unique

γ(r(De′))← ρ∗xi

else
Add a new node x labeled by ξ and r(De′)→ x in EN (De′)
γ(r(De′))← (ρ(x1, . . . , xk) ∧ xk+1 = 0) ∨ (∧i∈[k]xi = 0 ∧ xk+1 = 1)
out(r(De′))← out(r(De′))(r(De′)→ x)

else
Consider De′+ξ instead of De′ for the remainder of the construction

// Second step
for each node n labeled by ξ which is not a child of the root r do

γ(n)← γ(r)
out(n)← n ◦srcr out(r) . All those new edges are special
Apply PP-suppression

none of the childs n1, . . . , nk of the root r has its label in P. Since the new special edges have their
destinations in n1, . . . , nk then the construction preserves Property SS.

• Case e = e1 + e2 (resp. e = e1 ‖ e2)
De is built from the union of De1 and De2 , with a new node n labeled by ρ(x1, x2) ≡

∑
i∈[2] xi = 1

(resp. x1 = x2 = 1), edged by n→ r(De1), n→ r(De2), which is the root of De. Apply PP-suppression
if necessary.

Example 40. Let e = (b · (a ‖ ξ∗))∗ξ. The corresponding >1-expression is f = (b·>1(a ‖ (ξ∗
>1

+ ξ + ε)))∗ξ.
The different steps of the construction of Df are detailed in Figure 3. The transformation of the Presburger
formula during the PP-suppression step is detailed in Example 28.
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Figure 3: The step-by-step construction of the D-graph of (b·>1(a ‖ (ξ∗
>1

+ ξ+ ε)))∗ξ. PP-suppression is detailed only for the
last step

In the remainder of the paper we let De denote the D-graph of e when e is a >1-expression, or of the
>1-expression of e when e is a rational expression.

5.2. Properties

This section is devoted to some structural properties of D-graphs of rational expressions. The proofs of
these properties are essentially verification by induction on the rational expression from which the D-graphs
are built.

The following lemma characterizes the D-graph De of some >1-expression e such that ε ∈ L(e).

Lemma 41. Let e be a >1-expression. Then ε ∈ L(e) if and only if r(De) is labeled by some Presburger
formula ρ(x1, . . . , xk) and (0, . . . , 0) ∈ L(ρ), or De has a unique node labeled by a closed Presburger tautology.

Recall that by definition (Section 3.1), L∗ξ is not rational when L contains a poset of the form PξP ′.
The following lemma characterizes the D-graph De of some rational expression e such that PξP ′ ∈ L(e) for
some P, P ′.

Lemma 42. Let f be a rational expression and e the corresponding >1-expression. Then either De consists in
a single node labeled by ξ, or there exists in De a sequence of consecutive edges e1 : s1 → d1, . . . , en : sn → dn
such that

• s1 = r(De);

• dn is labeled by ξ;

• for all i ∈ [n], if si is labeled by some Presburger formula ρ(x1, . . . , xn), there is some j ∈ [n] such that
ei is the jth edge of out(si) and 1j ∈ L(ρ)

if and only if P1ξP2 ∈ L(f) for some P1, P2 ∈ SP �(A).

Note that in the statement of Lemma 42, the D-graph is obtained from the >1-expression of a rational
expression, and not from an arbitrary >1-expression. This is a necessary condition (consider for example
the >1-expression ξ·>1ε, whose language is empty, and its D-graph).
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According to the inductive construction of D-graphs from >1-expressions (Section 5.1), special edges are
added only during the replacement of nodes labeled by ξ in the construction of De∗ξ from De, for some
>1-expression e (Algorithm 4). Relying on Lemma 42, we have:

Proposition 43. Let Df be the D-graph of some rational expression f . For any sequence α = e1 : s1 →
d1, . . . , el : sl → dl of consecutive edges of Df such that s1 = r(Df ) and el ∈ ES(Df ), there exists i ∈ [l]
such that si is labeled by some Presburger formula ρ(x1, . . . , xm), and for all r ∈ [m] such that ei has index
r in out(si) and for all (y1, . . . , ym) ∈ L(ρ), if yr > 0 then

∑
i∈[m] yi > 1.

Starting the sequence of edges from any special edge we have:

Proposition 44. Let Df be the D-graph of some rational expression f . For any sequence α = e1 . . . el of
consecutive edges of Df with e1, el ∈ ES(Df ), l > 1, there exists a node n source of some ei, i ∈ [l], such
that n is labeled by some Presburger formula ρ(x1, . . . , xm), and for all r ∈ [m] such that ei has index r in
out(n) and for all (y1, . . . , ym) ∈ L(ρ), if yr > 0 then

∑
i∈[m] yi > 1.

5.3. Languages

In this section we define the language L(De) of a D-graph De of a rational expression e, such that
L(De) = L(e).

Definition 45. Let e be the >1-expression of some rational expression. Let n be a node of De and P ∈
SP �(A). A path from n in De and labeled by P is an ordered labeled tree TP such that:

1. when P is a singleton labeled by a ∈ A and n is a leaf labeled by a then TP is a singleton labeled by
(n, a);

2. when P is a sequential poset and n is labeled by ·>1 and edged by out(n) = n → n1, n → n2 then TP
has the form TP = (m,TP1

, TP2
) with m labeled by (n, 2) and TPi is a path in De from ni labeled by

some non-empty Pi, i ∈ [2], such that P = P1P2;

3. when P is a sequential poset and n is labeled by ∗>1 and edged by out(n) = n → n1 then TP has the
form TP = (m,TP1

, . . . , TPk) with m labeled by (n, k) and TPi is a path in De from n1 labeled by some
Pi, i ∈ [k], such that P = P1 . . . Pk. There must exist i, i′ ∈ [k], i 6= i′, such that Pi, Pi′ 6= ε;

4. when P is a sequential poset and n is labeled by ω>1 and edged by out(n) = n → n1 then TP has the
form TP = (m, (TPi)i∈ω) with m labeled by (n, ω) and TPi is a path in De from n1 labeled by some Pi,
i ∈ ω, such that P =

∏
i∈ω Pi. There must exist i, i′ ∈ ω such that i 6= i′ and Pi, Pi′ 6= ε;

5. the construction when P is a sequential poset and n is labeled by −ω>1 is symmetrical;

6. when P is a sequential poset and n is labeled by \>1 and edged by out(n) = n → n1 then TP has the
form TP = (m, (TPi)i∈α) for some α ∈ O\{0, 1} with m labeled by (n, α) and TPi is a path in De from
n1 labeled by some Pi, i ∈ α, such that P =

∏
i∈α Pi. There must exist i, i′ ∈ α such that i 6= i′ and

Pi, Pi′ 6= ε;

7. the construction when P is a sequential poset and n is labeled by −\>1 is symmetrical;

8. when P is a sequential poset and n is labeled by �>1 and edged by out(n) = n → n1, n → n2 then TP
has the form TP = (m, (TPj )j∈J∪Ĵ∗) for some J ∈ S \ {0, 1} with m labeled by (n, J ∪ Ĵ∗) and TPj is a

path in De from n1 when j ∈ J , from n2 when j ∈ Ĵ∗, and labeled by some Pj, j ∈ J ∪ Ĵ∗, such that

P =
∏
j∈J∪Ĵ∗ Pj. There must exist j, j′ ∈ J ∪ Ĵ∗ such that j 6= j′ and Pj , Pj′ 6= ε;

9. when n is labeled by a Presburger formula ρ(x1, . . . , xk) and edged by out(n) = n → n1, . . . , n →
nk then TP has the form TP = (m, (TPi,j )i∈[k],j∈[yi]) with m labeled by some (n, (y1, . . . , yk)) with
(y1, . . . , yk) ∈ L(ρ), and TPi,j is a path in De from ni labeled by some non-empty Pi,j, i ∈ [k], j ∈ [yi],
such that P =‖i∈[k]‖j∈[yi] Pi,j. Note that since the parallel product of posets commutes, the ordering
of the sequence (TPi,j )i∈[k],j∈[yi] has no consequence.
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In the last case, when TP has the form TP = (m, (TPi,j )i∈[k],j∈[yi]) and n → nt ∈ ES(De) for some t ∈ [k],
we say that Pt,j is marked by n → nt in TP , and that n → nt starts TPt,j , for all j ∈ [yt]. Marking is an
hereditary notion: every factor of Pi marked by some special edge e in TPi is also considered marked by e in
TP . The class of paths of De from n labeled by P is denoted RP (De, n).

Note that ε can be the label of a path only by Case 9 when (0, . . . , 0) ∈ L(ρ) or when ρ is a closed
tautology. Note also that Property PP ensures that all Pi,j are non-empty in Case 9. Finally observe also
that a path may have infinite height (with the usual definition of height on trees). Proposition 47 below
shows that Definition 45 is well-founded.

Definition 46. Let T and T ′ be two paths in the D-graph of some >1-expression. Then T ′ is a (resp. strict)
sub-path of T if T ′ ⊆ T (resp. T ′ ( T ). A strict sub-path T ′ of T is direct when it is not a strict sub-path
of strict sub-path of T .

Proposition 47. Definition 45 is well-founded.

Proof. Consider the class of all (TP , P ) formed of a path TP and its label P partially ordered by the relation
(TP , P ) < (TP ′ , P

′) if and only if TP is a strict sub-path of TP ′ . We claim that < is a well-ordering.
Indeed, assume by contradiction that there exists an infinite decreasing sequence · · · < (TPi , Pi) < · · · <
(TP1 , P1) < (TP0 , P0). We may assume that TPi+1 is a direct sub-path of TPi , for all i. Each TPi is a
path from a node ni. Thus, there is an edge ei : ni → ni+1 in De for each i. The sequence e0, e1, . . .
is infinite and consecutive. Since a loop of consecutive edges in a D-graph must contain a special edge,
there is among the ei’s a special edge e that occurs infinitely often in the sequence. Let i0, i1, . . . be the
sequence of all indexes ij such that eij = e. The construction of Pij from Pij+1

involves at least one parallel
product by a non-empty labeled poset, as a consequence of Proposition 44. Since the destination of a special
edge is not labeled by a Presburger formula, the construction of Pij from Pij+1 also involves a sequential
product by a non-empty sequential labeled poset. Thus necessarily rX(Pij ) > rX(Pij+2

). The sequence
rX(Pi0) > rX(Pi2) > . . . is an infinitely decreasing sequence of X-ranks, which can not exist since the
ordering of X-ranks is well-founded.

Definition 48. Let D be the D-graph of some rational expression. Let n be a node of D. The language
L(n) of n consists of all labels of paths from n in D. The language of D is L(D) = L(r(D)).

Note that when D is the D-graph of some rational expression and n is a node of D, if a ∈ L(n) for some
a ∈ A, then necessarily n is labeled by a, or n is labeled in P and has a child labeled by a.

It is just verification to check that when they are applied during the construction of the D-graph of a
rational expression, Algorithms 1 and 2 preserve the languages of the D-graphs as well as Properties PP, SS
and DAG.

Property PP is used in particular in order to compute, during the construction of De from e, the
Presburger formulæ that will appear later in the P-MSO formula built from De. Property SS ensures that
L(n) do not contain parallel posets when n is the destination of a special edge.

Remark 49. As a consequence of Proposition 44, when there is a path from r(De) labeled by some P , if it
contains two different sub-paths labeled by F1 and F2 both marked by the same special edge, then F1 and F2

are necessarily sequential posets (Property SS), and either

(C1) F1 ∩ F2 = ∅. Possibly, F1F2 is a sequential factor of P ;

(C2) one is strictly included into the other, wlog. F1 ( F2. In this case, there is some x ∈ F2 \F1 such that
x is incomparable to all the elements of F1.

The following proposition can be checked with an induction on f .

Proposition 50. For any rational expression f , L(Df ) = L(f).
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Example 51. Let L1 and L2 be the languages of respectively e1 = a ◦ξ (a(ξ ‖ ξ))∗ξ (see also Example 20)
and of e2 = b�. Consider the D-graphs De, De1 and De2 of respectively e = e1 � e2, e1 and e2 pictured on the
left side of Figure 4. We let ζ denote the linear ordering of all integers (negative, 0 and positive) and by 3

the finite linear ordering {x1, x2, x3} such that x1 < x2 < x3. Then 3̂
∗

= {({x1}, {x2, x3}), ({x1, x2}, {x3})}.
Let x4 = ({x1}, {x2, x3}) and x5 = ({x1, x2}, {x3}). Then 3 ∪ 3̂

∗
= {x1, . . . , x5} ordered by x1 < x4 < x2 <

x5 < x3. The same reasoning can be applied to infer the infinite set of elements and the ordering of ζ ∪ ζ̂∗.
On the right side of the figure is pictured a path T of De from r(De) labeled by P =

∏
j∈3∪3̂∗ Fj, where Fx1

=

a(a(a ‖ a) ‖ a), Fx4
= ε, Fx2

= a, Fx5
= bζ and Fx3

= a(a ‖ a). Note that Fx1
, Fx2

, Fx3
∈ L(a ◦ξ (a(ξ ‖ ξ))∗ξ)

and Fx4 , Fx5 ∈ L(b�). Note also that Fx5 =
∏
j∈ζ∪ζ̂∗ F5,j where F5,j = b when j ∈ ζ and F5,j = ε when

j ∈ ζ̂∗. Observe that the path T has a unique direct sub-path T ′ also labeled by P . Let T ′x1
, T ′x4

, T ′x2
, T ′x5

, T ′x3

be the direct sub-paths of T ′ taken in order from the left to the right. Then observe that each T ′xi is labeled
by Fxi .

x1 + x2 + x3 = 1

�>1

x1 + x2 = 1

·>1

a x1 + x2 = 2

a

a

x1 + x2 ≤ 1

�>1

b true

b

·>1

a x1 + x2 = 2

a

a

321

1 2

1
2 1 2

1 2

1
2

1
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2
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2
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. . .. . . . . .. . .

Figure 4: The D-graph De of e = a ◦ξ (a(ξ ‖ ξ))∗ξ � b� and a path in De from r(De). In order to lighten figures, nodes of paths
are labeled by s instead of (n, s) where n is a node of De

Example 52. Let e = ((a ‖ ξ∗)∗ξ + b(c ‖ d))∗ξ be a rational expression. The D-graph De of the >1-
expression of e and the poset P = a ‖ (ξ(a ‖ (b(c ‖ d)b(c ‖ d)))) of L(De) are represented on the left side
of Figure 5. Let n1, . . . , n11 be the pre-order traversal of De without its special edges. We have ES(De) =
{n4 → n2, n4 → n3, n4 → n7}. The leaves of De are n2, n5, n6, n8, n10, n11. Note that in out(n4) = n4 →
n2, n4 → n3, n4 → n2, n4 → n3, n4 → n5, n4 → n7 each of n4 → n2 and n4 → n3 occurs twice. On the
right side of Figure 5 is pictured a path TP in De from n1 labeled by P . Its root is labeled by (n1, (1, 1, 0, 0))
with (1, 1, 0, 0) ∈ L(ρ1). The path TP has two direct sub-paths TP1 = (n2, a) and TP2 = ((n3, 2), TP2,1 , TP2,2)
labeled respectively by P1 = a and P2 = P2,1P2,2, with P = P1 ‖ P2, TP2,1

and TP2,2
direct sub-paths of

TP2
from n4 and respectively labeled by P2,1 = ξ and P2,2 = a ‖ (b(c ‖ d)b(c ‖ d)). In continuation, TP2,1

and TP2,2
have respectively the form ((n4, (0, . . . , 0, 1, 0)), (n5, ξ)) and ((n4, (1, 1, 0, . . . , 0)), TF4

, TF3
) with

(0, . . . , 0, 1, 0), (1, 1, 0, . . . , 0) ∈ L(ρ2) and (n5, ξ), TF4 and TF3 are from respectively n5, n2 and n3 labeled by
respectively ξ, F4 = a and F3 = b(c ‖ d)b(c ‖ d). Note that there is a path from n4, different from TP2,2 and
with the same label. It differs only by its root which is labeled by (n4, (0, 0, 1, 1, 0, 0)). Observe that TF3

and
TF4

are started by respectively n4 → n3 and n4 → n2. Similarly, TF1
and TF2

are sub-paths of TF3
from n7

labeled by F1 = F2 = b(c ‖ d) and started by n4 → n7. Each Fi is marked by the edge that starts TFi , i ∈ [4].
As a consequence of Remark 49, the edge marking F3 is necessarily different from those which mark F1 and
F2.
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Figure 5: The D-graph De of the >1-expression of e = ((a ‖ ξ∗)∗ξ + (b(c ‖ d)))∗ξ, a poset P = a ‖ (ξ(a ‖ (b(c ‖ d)b(c ‖ d)))) of
L(e) and a path in De from r(De) labeled by P . Here ρ1(x1, . . . , x4) ≡ (x1 = x2 = 0∧x3 +x4 = 1)∨(x1 ≥ 1∧x2 +x3 +x4 ≤ 1)
and ρ2(x1, . . . , x6) ≡ (x1 ≥ 1∧x2 ≤ 1∧3≤i≤6xi = 0)∨(x1 ≥ 0∧x2 = 0∧((x3 = x4 = 0∧x5+x6 = 1)∨(x3 ≥ 1∧x4+x5+x6 ≤ 1)))

6. Coloring

Let C be a non-empty finite set whose elements are named colors and P ∈ SP �. We let Fs(P ) denote
the class of all sequential factors of P .

Definition 53. Let P ∈ SP � and C be a non-empty finite set of colors. A s-coloring c : Fs(P ) → C of P
with C is a partial map from Fs(P ) to C. It is compatible if for any different F, F ′ ∈ Fs(P ) such that c(F )
and c(F ′) are defined, either:

• F ∩ F ′ = ∅ and, if FF ′ ∈ Fs(P ), then c(F ) 6= c(F ′);

• one is strictly included into the other, say wlog F ( F ′, and if c(F ) = c(F ′) there is some x ∈ F ′ \ F
such that x is incomparable to all the elements of F .

In Sub-section 6.2 we show how compatible s-colorings can be encoded by means of MSO. The tech-
nique relies on another one, called ms-coloring, specific to some particular case of sequential factors (Sub-
section 6.1). In Sub-section 6.3 we link compatible s-colorings and paths in D-graphs of rational expressions.

Before starting we need some additional definitions on posets.
A factor F of P is sequentially maximal if there is no R,S with at least one of them non-empty such that

R + F + S is a factor of P . We let Fms(P ) denote the class of all elements of Fs(P ) that are sequentially
maximal. A factor F ∈ Fms(P ) is direct if there is no P ′ ∈ Fms(P ) \ {P, F} such that F ∈ Fms(P ′). We let
DFms(P ) denote the subclass of Fms(P ) consisting of all strict direct factors of P .

Example 54. Let P = (a ∪ b) + c+ (d ∪ (e+ (f ∪ (g + h))) ∪ i). Then:

• a, a ∪ b and (a ∪ b) + c are strict factors of P ;

• a ∪ b and d ∪ (e+ (f ∪ (g + h))) ∪ i are parallel factors of P ;

• (a ∪ b) + c and c+ (d ∪ (e+ (f ∪ (g + h))) ∪ i) are sequential factors of P ;

• g + h and d ∪ i are sequentially maximal factors of P ;

• a, e+ (f ∪ (g + h)) and P are direct sequentially maximal sequential factors of P .
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6.1. ms-coloring

A ms-coloring of P ∈ SP � with C is a total map c : Fms(P ) → C. In general functions are not MSO-
expressible, but a ms-coloring can be encoded using three sets Xw

c , X
s
c , X

p
c of elements of P , for each c ∈ C.

For short let msXC denote the sets (Xw
c , X

s
c , X

p
c )c∈C . Also, given c ∈ C, x ∈ P and α ∈ {w, s, p}, we denote

by msXC +α
c x the subsets (X ′wc′ , X

′s
c′ , X

′p
c′ )c′∈C of P defined by

X ′βc′ =

{
Xβ
c′ ∪ {x} when β = α and c′ = c;

Xβ
c′ otherwise.

When (y, x, x′) ∈ P 3 we denote by msXC +c (y, x, x′) = msXC +s
c y+p

c x+p
c x
′. Also, we denote by msXC +c x =

msXC +w
c x when x ∈ P .

The three following definitions lay the foundations on how msXC is used to encode a ms-coloring of a
poset.

Definition 55. Let P ∈ SP �, msXC some subsets of P , and let c ∈ C. Then (y, x, x′) ∈ Xs
c ×Xp

c ×Xp
c is

directly bound by c for F ∈ Fms(P ) in msXC if the following conditions are true:

1. F = F1 + F2 + F3, F2 = Fx ∪ Fx′ , x ∈ Fx, x′ ∈ Fx′ and y ∈ F \ F2, for some F1, F2, F3, Fx, Fx′ ;

2. there exists z ∈ F \ F2 incomparable to (and distinct from) y;

3. there is no F ′ ∈ Fms(F )\{F} such that F ′ = F ′1+F ′2+F ′3, F ′2 = F ′2,1∪F ′2,2 for some F ′1, F
′
2, F

′
3, F

′
2,1, F

′
2,2,

such that one of the following conditions is true:

(a) there exist x1, x2 ∈ Xp
c such that x1 ∈ F ′2,1, x2 ∈ F ′2,2 and y ∈ F ′ \ F ′2;

(b) there exist y1 ∈ Xs
c and x1 ∈ Xp

c such that x ∈ F ′2,1, x1 ∈ F ′2,2 and y1 ∈ F ′ \ F ′2;

(c) there exist y1 ∈ Xs
c and x1 ∈ Xp

c such that x′ ∈ F ′2,1, x1 ∈ F ′2,2 and y1 ∈ F ′ \ F ′2.

In this case y, x, and x′ are respectively directly s-bound, p-bound and p-bound by c for F in msXC . In
addition, we say that (y, x, x′) (resp. y, x and x′) is indirectly bound (resp. s-bound, p-bound and p-bound)
by c in msXC for all F ′ ∈ Fms(P ) \ {F} such that F ∈ Fms(F ′).

Observe that if y, x and (y, x, x′) are directly respectively s-bound, p-bound and bound by c ∈ C for some
F ∈ Fms(P ) in msXC then they are indirectly respectively s-bound, p-bound and bound in (Xw

c ∩ F ′, Xs
c ∩

F ′, Xp
c ∩F ′)c∈C for all F ′ ∈ Fms(P ) strictly containing F . Also, it follows from Definition 55 that if (y, x, x′)

is directly bound by some c ∈ C for P in msXC then there is no (y, s, s′), (t, x, s′), (t, s, x′) ∈ Xs
c ×Xp

c ×Xp
c

that is bound by c for some F ′ ∈ Fms(P )\{P} in msXC . An element of P 3 (resp. P ) is bound (resp. s-bound,
p-bound) by some c ∈ C for some F ∈ Fms(P ) in some msXC if it is indifferently directly or indirectly bound
(resp. s-bound, p-bound) by c ∈ C for F ∈ Fms(P ) in msXC .

Definition 56. Let P ∈ Seq of irreducible sequential factorization
∑
j∈J Pj and msXC some subsets of P .

The set CmsXC (P ) of candidates for the ms-coloring of P is the smallest subset of P ∪ P 3 such that:

• if there exist j ∈ J such that |Pj | = 1 and c ∈ C such that Pj ⊆ Xw
c then Pj ⊆ CmsXC (P );

• f there is no j ∈ J such that |Pj | = 1 and there exist c ∈ C, y, x, x′ ∈ P such that (y, x, x′) is directly
bound by c for P in msXC then (y, x, x′) ∈ CmsXC (P ).

Definition 57. Let P ∈ Seq of irreducible sequential factorization
∑
j∈J Pj and msXC some subsets of P .

Then msXC ms-colors P in c ∈ C, denoted msXC (P ) = c, if CmsXC (P ) is some singleton CmsXC (P ) = {x} and

either x ∈ Xw
c or x ∈ Xs

c ×Xp
c ×Xp

c . In this case we say that P is ms-colored in c by x. In addition msXC
completely ms-colors a poset P ∈ SP � if msXC (F ) is defined for all F ∈ Fms(P ). Finally, when P ∈ SP �
and c : Fms(P ) → C is a ms-coloring of P with C then the subsets msXC of P encode c if msXC (F ) = c(F )
for all F ∈ Fms(P ).
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At the end of this sub-section we show how to encode the ms-coloring of some P ∈ SP � by some msXC ,
by induction on rX(P ). The ms-coloring in c ∈ C of a factor of Fms(P ) that has no candidate for its
ms-coloring and has an element x comparable to all the others is easy, since it suffices to add x to Xw

c . Note
that this does not influence the ms-coloring of other factors of Fms(P ). However, adding an element of P
into Xs

c or Xp
c in order to ms-color some factor of Fms(P ) may influence the ms-coloring of other factors.

This leads us to introduce the following definition.

Definition 58. Let P ∈ SP �, msXC some subsets of P , F ∈ Fms(P ) and c ∈ C. Then x ∈ P is s-free (resp.
p-free) for (F, c) in msXC if it is not s-bound (resp. p-bound) by c for F in msXC +s

c x (resp. msXC +p
c x).

Observe that if x ∈ P is α-free for some (F, c) with F ∈ Fms(P ), c ∈ C and α ∈ {s, p} then x is α-free
for (F ′, c) in msXC and in (Xw

c ∩ F ′, Xs
c ∩ F ′, Xp

c ∩ F ′)c∈C for all F ′ ∈ Fms(F ) such that x ∈ F ′.

Example 59. Let C = {red, blue} be a set of colors. Consider the poset P ∈ SP � of Figure 6. Let
P1 = {xi : i ∈ [2; 16]}, P2 = {xi : i ∈ [17; 25]} and P3 = {x19, x20, x22, x23}. Then P1, P2, P3 ∈ Fms(P ).
Let c : Fms(P ) → C be a ms-coloring of P such that c(P1) = red and c(P2) = c(P3) = blue. We define

x1

x2

x3
x4

x5

x6

x7 x8

x9
x10 x11

x12

x13 x14

x15 x16

x17

x18

x19

x20

x21

x22

x23

x24

x25

x26

Xw
red = {x4}

Xs
red = Xp

red = ∅
Xw

blue = ∅
Xs

blue = {x19, x18}
Xp

blue = {x22, x23, x21, x19}

Figure 6: The Hasse diagram of a poset P ∈ SP � and a ms-coloring of P1, P2, P3 ∈ Fms(P )

msXC that encodes c(Pi), i ∈ [3]. Note that in this example we encode only the restriction of c to P1, P2, P3:
the generalization of the method in order to encode the total map c : Fms(P ) → C is easy. We start with
all sets of msXC empty. Observe that P1 contains two elements comparable to all the other elements of P1:
x4 and x16. Choose one of them, indifferently x4. Then add x4 to Xw

red. This suffices to encode that P1 is
ms-colored in red, since there is no other candidate in msXC for the ms-coloring of P1. Let us now encode
that c(P3) = blue. Note that since P3 has no element comparable to all the others, we have to use a 3-tuple
in P3. Choose for example (x19, x22, x23), and add x19 in Xs

blue, x22, x23 in Xp
blue. Then (x19, x22, x23) is

directly bound by blue for P3 in msXC . This encodes that P3 is ms-colored in blue, since there is no other
c ∈ C, (z, z′, z′′) ∈ Xs

c ×Xp
c ×Xp

c that can also encode a color for P3, and that this does not interfere with
encoding of ms-coloring of other factors of Fms(P ). Let us turn now to P2. It has no element comparable
to all the others, so we have to choose a 3-tuple (y, y′, y′′) as we did for P3. Note that x19 is not a possible
choice for y since it is already s-bound by blue for P3 in msXC . Also, x20 is not a possible choice for y
since it is not s-free for (P3, blue) and thus not s-free for (P2, blue). Indeed, adding it in Xs

blue would make
(x20, x22, x23) another candidate for ms-coloring P3 in blue and as a consequence, regardless of y′ and y′′,
(x20, y

′, y′′) could not be bound by blue for P2 in msXC . Choose, for example, y = x18 and y′ = x21. As
we can not take y′′ ∈ {x22, x23} since they are already p-bound by blue for P3 in msXC , then necessarily
y′′ is indifferently one of x20, x19, say x19. Add y in Xs

blue and y′, y′′ in Xp
blue and this is done. Finally,

(Xw
red, X

s
red, X

p
red) = ({x4}, ∅, ∅) and (Xw

blue, X
s
blue, X

p
blue) = (∅, {x19, x18}, {x22, x23, x21, x19}).

Proposition 60. Let C be a non-empty finite set of colors and P ∈ SP �. For any ms-coloring c of P with
C there exist some subsets msXC of P that encode c.

The remainder of this section is devoted to the proof of Proposition 60. The following lemma shows in
particular that any poset P of Seq that is completely ms-colored by some msXC contains, for all c ∈ C, at
least a s-free and a p-free element for (P, c) in msXC .
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Lemma 61. Let P ∈ Seq completely ms-colored by some msXC . If for all c ∈ C, all the elements of Xp
c

(resp. Xs
c ) are p-bound (resp. s-bound) by c for P in msXC then there exist x, y ∈ P such that for all c ∈ C,

x is p-free and y is s-free for (P, c) in msXC .

Proof. We prove the lemma by induction on rX(P ). If rX(P ) = (0, i) for i ∈ {0, 1} then P is either the
singleton or a finite linear ordering. In both cases and for all c ∈ C, there is no (y, x, x′) ∈ P 3 bound by c
for P in msXC . Thus,

⋃
c∈C

Xs
c =

⋃
c∈C

Xp
c = ∅ and for all x ∈ P , for all c ∈ C, x is naturally s-free and p-free

for (P, c) in msXC . Otherwise, assume that the irreducible sequential factorization of P is
∑
j∈J Pj , for some

J ∈ S \ {0, 1}. Assume that P is ms-colored in e by z ∈ Xw
e . Then by Definitions 56–57, z is comparable to

each element of P \ {z}. In this case, by Definition 58, z is s-free and p-free for (P, c) in msXC , for all c ∈ C.
Otherwise, assume that P is ms-colored in e by (y, x, x′) ∈ Xs

e × Xp
e × Xp

e . Then by Definition 57,
CmsXC (P ) = {(y, x, x′)} and by Definition 56 there is no j ∈ J such that |Pj | = 1, and (y, x, x′) is directly

bound by e for P in msXC . By Definitions 55, P = P1 + P2 + P3, P2 = Px ∪ Px′ ∪ Px′′ for some Px, Px′ ∈
DFms(P ) and P1, P2, P3, Px′′ some factors of P , such that x ∈ Px, x′ ∈ Px′ and y ∈ P \ P2. Observe that
there exists Py ∈ DFms(P ) such that y ∈ Py and all the elements of Py are comparable to those of P2.
We have rX(Py), rX(Px), rX(Px′) < rX(P ). Furthermore, x is not p-bound, x′ is not p-bound and y is not
s-bound by e for respectively Px, Px′ and Py in msXC , otherwise (y, x, x′) cannot be directly bound by e for

P in msXC according to Definition 55. So, let Xp
e = Xp

e ∩ Py, Xs
e = (Xs

e ∩ Py) \ {y} and Xp
c = Xp

c ∩ Py,

Xs
c = Xs

c ∩ Py for all c ∈ C \ {e} and let msXC = (Xw
c , X

s
c , X

p
c )c∈C . Observe that Py and msXC satisfy the

hypothesis of the lemma. Then by induction hypothesis, there exists z ∈ Py such that z is p-free for (Py, c)

in msXC , for all c ∈ C. In addition, for all c ∈ C, z is still p-free for (Py, c) in msXC . In fact, assume by
contradiction that there exists c′ ∈ C such that z is not p-free for (Py, c

′) in msXC . Then by Definition 58,

there exist y1 ∈ Xs
c′ and x2 ∈ Xp

c′ such that (y1, x2, z) is bound by c′ for Py in msX
′

C = msXC +p
c′ z. Note

that as y is used in (y, x, x′) to ms-color P in e then y is s-free for (Py, e) in msXC . Thus z may not be p-free

only when y1 = y and c′ = e. Indeed, despite y1 ∈ Xs
c′ and x2 ∈ Xp

c′ when y1 6= y or c′ 6= e, (y1, x2, z) did

not form a bound tuple since z was proved p-free for (Py, c
′) in msXC .

By the lemma hypothesis, x2 is p-bound by e for P in msXC . Then there exist y2 ∈ Xs
e and x′2 ∈ Xp

e

such that (y2, x2, x
′
2) is bound by e for P in msXC . In addition, (y2, x2, x

′
2) is bound by e for Py in msXC

since if y2, x
′
2 ∈ P \ Py then (y2, x2, x

′
2) will be another candidate for ms-coloring P in e by msXC which is

not allowed by definition of the complete ms-coloring of P . Thus, (y, x2, z) and (y2, x2, x
′
2) are bound by

e for Py in respectively msX
′

C and msXC . Assume that (y, x2, z) and (y2, x2, x
′
2) are directly bound by e for

respectively P ′y in msX
′

C and P ′′y in msXC for some P ′y, P
′′
y ∈ Fms(Py). Observe that (y2, x2, x

′
2) is bound by

e for P ′′y in msXC too since y2 6= y (the contrary would contradict the fact that (y, x, x′) is bound by e for P

in msXC ). Observe also that msX
′

C contains msXC . There are three cases:

1. if P ′y ∈ Fms(P ′′y ) \ {P ′′y } then necessarily each of y, z and x2 are incomparable to x′2. Then, naturally

(y2, z, x
′
2) is also directly bound by e for P ′′y in msXC +p

c′ z, which contradicts the fact that z is p-free

for (Py, e) in msXC ;

2. in the case where P ′y = P ′′y then by Definition 55, P ′y = P ′y,1 + P ′y,2 + P ′y,3 such that x2, x
′
2, z ∈ P ′y,2, z

and x′2 are incomparable to x2 and y, y2 ∈ P ′y \ P ′y,2. In this case (y2, x2, z) is also directly bound by

e for P ′y in msXC +p
c′ z, which contradicts the fact that z is p-free for (Py, e) in msXC ;

3. if P ′′y ∈ Fms(P ′y) \ {P ′y} then (y, x2, z) cannot be bound by e in msX
′

C by Definition 55.

Thus for all c ∈ C, z is still p-free for (Py, c) in msXC .
Let us prove that for all c ∈ C, z is still also p-free for (P, c) in msXC . By contradiction suppose that

there exists c′ ∈ C such that z is not p-free for (P, c′) in msXC . Then, there exist y1 ∈ Xs
c′ and x2 ∈ Xp

c′ such

that (y1, x2, z) is bound by c′ for P in msX
′

C . As z is p-free for (Py, c
′) in msXC then y1, x2 /∈ Py. That means

that (y1, x2, z) is directly bound for P in msX
′

C . Then by Definition 55 there exist Py1 , Px2
∈ DFms(P ) such
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that y1 ∈ Py1 , x2 ∈ Px2 and all the elements of Py are comparable to those of Py1 and incomparable to
those of Px2 . By hypothesis, y1 and x2 are respectively s-bound and p-bound by c′ for P in msXC . Then
there exist y2 ∈ Xs

c′ and x1, x
′
1, x
′
2 ∈ X

p
c′ such that (y1, x1, x

′
1) and (y2, x2, x

′
2) are bound by c′ for P in msXC .

By hypothesis P is ms-colored by (y, x, x′) in msXC . Then the complete ms-coloring of P by msXC implies

that (y1, x1, x
′
1) and (y2, x2, x

′
2) are bound by c′ for respectively Py1 and Px2 in msXC . Observe that msX

′

C

contains msXC and Py1 , Px2
∈ Fms(P ) \ {P}. Thus by Definition 55, (y1, x2, z) cannot be bound by c′ in

msX
′

C which is a contradiction.

Now, let Xs
e = Xs

e ∩ Px, Xp
e = (Xp

e ∩ Px) \ {x} and Xp
c = Xp

c ∩ Px, Xs
c = Xs

c ∩ Px for all c ∈ C \ {e}
and let msXC = (Xw

c , X
s
c , X

p
c )c∈C . Observe that Px and msXC satisfy the hypothesis of the lemma. Then by

induction hypothesis, for all c ∈ C, there exists z ∈ Px such that z is s-free for (Px, c) in msXC . The proof
that z is still s-free for (P, c), for all c ∈ C, in msXC uses similar arguments.

Using the previous lemma, we show that the ms-coloring of a poset P ∈ Seq can be encoded without
changing the ms-coloring of its sequentially maximal strict sequential factors.

Lemma 62. Let P ∈ Seq and msXC some subsets of P . If the following conditions are true:

• CmsXC (P ) = ∅;

• for all P ′ ∈ Fms(P ) \ {P}, P ′ is completely ms-colored by msXC ;

• for all c ∈ C, all the elements of Xp
c (resp. Xs

c ) are p-bound (resp. s-bound) by c for P in msXC ,

then for all e ∈ C, there exist z ∈ P ∪ P 3, msX
′

C = msXC +e z, such that:

• for all P ′ ∈ Fms(P ) \ {P}, x ∈ P ′3 and c ∈ C, x is bound by c in msXC for P ′ if and only if x is bound

by c in msX
′

C for P ′;

• z ms-colors P in e.

Proof. Assume we want to ms-color P in e ∈ C. If P = {x} then each set of msXC is empty. Define

msX
′

C by all sets empty except X ′
w
e = {x}. In this case, CmsX′C (P ) = {x}. If |P | > 1, assume that its

irreducible sequential factorization is P =
∑
j∈J Pj , for some J ∈ S \ {0, 1}. If there exists j ∈ J such that

Pj = {x} then it suffices to set msX
′

C = msXC +e x to reach the lemma. Assume now that the irreducible
sequential factorization of P is P =

∑
j∈J Pj , for some J ∈ S \ {0, 1} and each Pj is a parallel poset.

Let j, j′ ∈ J such that j 6= j′. Then Pj = Pj,1 ∪ Pj,2 ∪ Pj,3 and Pj′ = Pj′,1 ∪ Pj′,2 ∪ Pj′,3 such that
Pj,1, Pj,2, Pj′,1, Pj′,2 ∈ DFms(P ). By hypothesis, each of Pj,1, Pj,2, Pj′,1, Pj′,2 are completely ms-colored by
msXC . In addition, all the elements of Pk,t ∩Xp

c and Pk,t ∩Xs
c are respectively p-bound and s-bound by c

for Pk,t in msXC , k ∈ {j, j′}, t ∈ [2], for all c ∈ C. By Lemma 61 there exist yj,1 ∈ Pj,1 s-free, xj′,1 ∈ Pj′,1
p-free and xj′,2 ∈ Pj′,2 p-free for respectively (Pj,1, e), (Pj′,1, e) and (Pj′,2, e) in msXC . In addition, one can
prove, by contradiction and using the same arguments of Lemma 61’s proof, that yj,1,xj′,1 and xj′,2 are still

respectively s-free, p-free and p-free for (P, e) in msXC . So, by setting msX
′

C = msXC +e (yj,1, xj′,1, xj′,2), then

(yj,1, xj′,1, xj′,2) is directly bound by e for P in msX
′

C and (yj,1, xj′,1, xj′,2) ms-colors P in e. Furthermore,
since yj,1, xj′,1 and xj′,2 are respectively s-free, p-free, p-free for (P, e) in msXC then for all P ′ ∈ Fms(P )\{P},
x ∈ P ′3 and c ∈ C, x is bound by c in msX

′

C for P ′ if and only if x is bound by c in msX
′

C for P ′.

We are now ready to prove Proposition 60.

Proof of Proposition 60. The case of the empty poset is trivial, so assume P ∈ SP �+. We build, by induction
on rX(P ), a ms-coloring msXC = (Xw

c , X
s
c , X

p
c )c∈C encoding c, making sure that for all c ∈ C, Xp

c and Xs
c

contain only respectively p-bound and s-bound elements for P in msXC . We start with all sets of msXC empty.
The first case is when rX(P ) = (0, 0). In this case, P is the singleton {x}. Then, set Xw

e = {x}, where
e = c(P ), and all the other sets composing msXC to ∅ and this is done.
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Otherwise, assume that P ∈ Seq and its irreducible sequential factorization is
∑
j∈J Pj , for some J ∈

S \ {0, 1}. For all j ∈ J , let Pj =
⋃
i∈[kj ] Pj,i be the irreducible parallel factorisation of Pj . Note that each

rX(Pj,i) < rX(P ) for all Pj,i. Then by induction hypothesis, there exists ms
Xj,i
C satisfying the hypothesis of

the proposition for each Pj,i ∈ DFms(P ). Let msX
′

C be the union, set by set, of the different ms
Xj,i
C , for all

j ∈ J , i ∈ [kj ], kj > 1. By construction of msX
′

C , for all c ∈ C, each element x of Xp
c (resp. Xs

c ) is p-bound

(resp. s-bound) by c for some element Fx ∈ Fms(P ) \ {P} in msX
′

C . This ensures that CmsX′C (P ) = ∅ and

msX
′

C (F ) = c(F ) for all F ∈ Fms(P ) \ {P}. It suffices to apply Lemma 62 to conclude.
Finally, assume that P is of the form

⋃
j∈[k] Pj for some k > 1 where each Pj ∈ DFms(P ). Since each

Pj ∈ Seq, building a ms-coloring ms
Xj
C satisfying the hypothesis of the proposition for each Pj can be

achieved using the same arguments that those used in the previous paragraph. We define msXC as the union,

set by set, of the different ms
Xj
C s, for all j ∈ [k].

We proved that any ms-coloring c of P with C can be encoded by some msXC as above. Furthermore, we
claim that there exist MSO formulæ:

• msXC (F ) = c which is satisfied if and only if msXC (F ) = c (cf. Definition 57), assuming F ∈ Fms(P ). It
expresses that

– if F has at least one element comparable to all the others, then there is a unique (e, x) ∈ C × F
such that x is comparable to all the other elements of F , and x ∈ Xw

e . If such (e, x) exists then
e = c;

– or F has no element comparable to all the others, and there is a unique (e, x) ∈ C×F 3 such that
x is directly bound by e for F in msXC (cf. Definition 55). If such (e, x) exists then e = c.

• ms-Coloring(P,msXC ) which is satisfied if and only if msXC is a complete ms-coloring of P . It expresses
that for each F ∈ Fms(P ) there exists c ∈ C such that msXC (F ) = c.

These formulæ are obtained by a direct translation into MSO of Definitions 55–57.

6.2. Encoding a compatible s-coloring with MSO

We encode a compatible s-coloring by means of MSO with a set Xv
c for each c ∈ C, and a complete

ms-coloring of P with 2C encoded by some msX2C . For short we let sXC denote the sets ((Xv
c )c∈C ,ms

X
2C ).

Definition 63. Let P ∈ SP �+, F ∈ Fs(P ) of sequentially irreducible factorisation F =
∑
j∈J Fj, X

v
c a

subset of P for each c ∈ C, and msX2C a complete ms-coloring of P . Then sXC s-colors F in c ∈ C, denoted
sXC (F ) = c, if for all j ∈ J ,

1. Fj ∈ Xv
c when |Fj | = 1;

2. when |Fj | > 1, c ∈ msX2C (Fj,i) for all Fj,i such that Fj =
⋃
i∈[nj ] Fj,i is the irreducible parallel

factorisation of Fj;

3. there is no F ′, F ′′ not both empty such that F ′ + F + F ′′ ∈ Fs(P ) and sXC (F ′ + F + F ′′) = c.

Finally, when P ∈ SP � and c : Fs(P )→ C is a s-coloring of P with C then the subsets sXC of P encode c if
sXC (F ) = c(F ) for all F ∈ Fs(P ).

As a consequence of Condition 3 of Definition 63, observe that when F and F ′ are two sequential
factors of P such that FF ′ is also a sequential factor of P , there is no sXC encoding a s-coloring such that
sXC (F ) = sXC (F ′).
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ms-coloring
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F4

Xv
green = {a, e}, Xw

{green} = {b, c}
Xv

red = {d}, Xw
{red} = {e, f, g, h, i, j}, Xs

{red} = {h}
Xp
{red} = {i, j}

Xw
∅ = {a}

All other sets are empty.

Figure 7: The Hasse diagram of a poset P ∈ SP � and a s-coloring sXC of P .

Example 64. Let C = {red, green} be a set of colors and P = a+ (b∪ c) + d+ (e∪ ((g ∪ h) + (i∪ j))∪ f).
Let F1 = a+ (b∪ c), F2 = P \F1, F3 = (g ∪ h) + (i∪ j) and F4 = e. Then F1, F2, F3, F4 ∈ Fs(P ). Note that
F3 ( F2 and that there exists x ∈ F2 \F3 such that x is incomparable to any y ∈ F3. Let also c : Fs(P )→ C
be the s-coloring defined by c(F1) = c(F4) = green and c(F2) = c(F3) = red. Note that c is compatible.
Figure 7 represents P with an encoding sXC of c.

The set Fms(P ) consists of the singleton posets b, c, e, g, h, i, j, f , of F3 and of P . We have msX2C (b) =
msX2C (c) = {green} and msX2C (e) = msX2C (g) = msX2C (h) = msX2C (i) = msX2C (j) = msX2C (f) = {red}. We
also have msX2C (F3) = {red} since CmsX

2C
(F3) = {(h, i, j)}, (h, i, j) ∈ Xs

{red}×X
p
{red}×X

p
{red} and there is no

decomposition of F3 into F3 = X + Y +Z for some X,Y, Z such that Y is a singleton. As CmsX
2C

(P ) = {a}
and a ∈ Xw

∅ we have msX2C (P ) = ∅, and thus P is completely ms-colored by msX2C .

We have sXC (F1) = green since a ∈ Xv
green, d 6∈ Xv

green, DFms(F1) = {{b}, {c}}, and green ∈ msX2C (F )

for all F ∈ DFms(F1). We have sXC (F2) = red since d ∈ Xv
red, red 6∈ msX2C (b), red 6∈ msX2C (c), DFms(F2) =

{{f}, F3, F4} and red ∈ msX2C (F ) for all F ∈ DFms(F2). We have sXC (F3) = red since DFms(F3) =
{{g}, {h}, {i}, {j}}, red ∈ msX2C (F ) for all F ∈ DFms(F3), and there is no X,Y non both empty such that
X +F3 +Y is a factor of P . Finally sXC (F4) = green since e ∈ Xv

green and there is no X,Y non both empty
such that X + e+ Y is a factor of P .

Proposition 65. Let P ∈ SP �, C be a non-empty finite set of colors and c : Fs(P ) → C a compatible
s-coloring of P . There exist some subsets sXC of P that encode c.

Proof. From c define a ms-coloring c′ : Fms(P )→ 2C as follows: for all F ∈ Fms(P ),

c′(F ) = {c : F ∈ DFms(F ′) for some F ′ ∈ Fs(P ) such that c(F ′) = c}

According to Proposition 60, c′ is encoded by somemsX2C . In order to define an encoding sXC = ((Xv
c )c∈C ,ms

X
2C )

of c it suffices now to define Xv
c as follows, for each c ∈ C: x ∈ Xv

c if and only if there exists F ∈ Fs(P )
such that c(F ) = c and x is comparable to all the elements of F \ {x}. We verify that sXC (F ) = c(F ) for
all F ∈ Fs(P ). Assume first that c(F ) = c for some F ∈ Fs(P ) and c ∈ C, and let F =

∑
j∈J Fj be its

irreducible sequential factorisation. Let j ∈ J such that Fj consists of a unique element x, which is thus
comparable to all the elements of F \ {x}. By definition x ∈ Xv

c . Thus Item 1 of Definition 63 is verified.
Similar arguments apply when Fj is not a singleton: Item 2 of Definition 63 is also verified. Since there is
no F ′ ∈ Fs(P ) such that c(F ′) = c and FF ′ or F ′F ∈ Fs(P ), and there is no X,Y not both empty such
that c(XFY ) = c, then Item 3 of Definition 63 is verified, and thus sXC (F ) = c. Similar arguments are used
to show that if sXC (F ) = c then c(F ) = c.

We proved that any compatible s-coloring c of P with C can be encoded by some sXC as above. Further-
more, we claim that there exist MSO formulæ:
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• sXC (F ) = c which is satisfied if and only if sXC s-colors F in c ∈ C, assuming F ∈ Fs(P ). It is obtained
by a direct translation into MSO of Definition 63;

• s-Coloring(P, sXC ) which is satisfied if and only if ms-Coloring(P,msX2C ) is true and for each non-
empty parallel factor F of P there exists c ∈ 2C such that msX2C (F ′) = c, for all F ′ ∈ DFms(F ).

6.3. Compatible s-colorings and D-graphs

s-coloring is a key argument in the transformation of the D-graph of a rational expression into a P-MSO
formula (Section 7). We use s-coloring in order to associate a special edge to some F ∈ Fs(P ) as follows.

Proposition 66. Let De be the D-graph of a rational expression e, C = B × ES(De), n a node of De.
Assume that there is a path TP from n labeled by some P ∈ SP �(A). There exist a compatible s-coloring of
P with C and its encoding sXC with MSO such that π2(sXC (F )) = f ∈ ES(De) if and only if F is marked by
f in TP , for any F ∈ Fs(P ).

The encoding for s-colorings does not allow sXC (F ) = sXC (F ′) when F, F ′, FF ′ ∈ Fs(P ). Alternation of
the booleans in C is used when we need a s-coloring to associate the same special edge to F and F ′.

Proof. Let c : Fs(P ) → C be a s-coloring of P such that, for all F ∈ Fs(P ), c(F ) = (b, f) if and only if the
following conditions are verified:

• F is marked by f in TP ;

• for all F ′ ∈ Fs(P ), if FF ′ ∈ Fs(P ) and c(F ′) = (b′, f) then b 6= b′.

Obviously c verifies the specification of the proposition (see also Remark 49), and the existence of sXC comes
from Proposition 65.

Example 67. Let us continue Example 52. Denote by bl, cl, dl (resp. br, cr, dr) the leftmost (resp. rightmost,
cf. Figure 5) elements of P labeled by b, c and d. Let C = B × ES(De). By Proposition 66 there exists a
compatible s-coloring and its encoding sXC = ((Xv

c )c∈C ,ms
X
2C ) such that sXC (F1) = (b1, n4 → n7), sXC (F2) =

(b2, n4 → n7), sXC (F3) = (b3, n4 → n3), sXC (F4) = (b4, n4 → n2) for some b1, b2, b3, b4 ∈ B, and sXC (F )
is undefined when F 6= F1, F2, F3, F4. Note that b1 must be different from b2 since F1F2 ∈ Fs(P ) and
π2(sXC (F1)) = π2(sXC (F2)) = n4 → n7. Following the techniques of Section 6 we have

• Xv
(b1,n4→n7)

= {bl};

• Xv
(b2,n4→n7)

= {br};

• Xv
(b3,n4→n3)

= {bl, br};

• Xv
(b4,n4→n2)

= F4;

• Xv
c = ∅ for all c ∈ C \ {(b1, n4 → n7), (b2, n4 → n7), (b3, n4 → n3), (b4, n4 → n2)};

• msX2C (cl) = msX2C (dl) = {(b3, n4 → n3), (b1, n4 → n7)};

• msX2C (cr) = msX2C (dr) = {(b3, n4 → n3), (b2, n4 → n7)};

• msX2C (F ) = ∅ when F ∈ Fms(P ) \ {{cl}, {dl}, {cr}, {dr}}.

Proposition 66 states that the s-coloring c of P issued from marks in a path can be encoded with MSO
using some sXC .
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7. From D-graphs to P-MSO

Let e be a rational expression, De the D-graph of its >1-expression and C = B×ES(De). We are going
to parse De in order to compute a P-MSO sentence φDe such that P is a model for φDe if and only if
P ∈ L(De), for all P ∈ SP �(A). For each node n of De, we define a P-MSO formula φn accordingly to
the definition of a path from n. The formula φn depends on a second-order parameter X, and we want φn
to be satisfied if and only if X is a factor of P labeling a path TX from n. The formula φn(X) depends
on the label of n and its edging out(n) = n → n1, . . . , n → nk. If n is labeled by some letter a ∈ A, then
φn(X) ≡ |X| = 1 ∧ ∀x (x ∈ X → a(x)). In the case where n is labeled by ·>1 then n has two childs n1 and
n2, and φn(X) expresses that there exists a partition of X into non-empty X1, X2 such that X1 < X2 and
Xi, i ∈ [2], satisfies φni(Xi). This construction for ·>1 is P-MSO definable. The cases of other labels are
mere adaptations of the case of linear orderings [5], except for Presburger formulæ. Indeed, recall that by
construction, De without its special edges has a structure of acyclic graph (Property DAG), and that only
nodes labeled in P may be sources of special edges, which may cause circular dependencies between the φns.
Recall also that a sub-path TR is started by a special edge e if and only if its label R is marked by e in TR
(Definition 45), and that R is necessarily a sequential poset because of Property SS. Circular dependencies
between the φns are avoided as follows. We encode by means of MSO the marking of labels of sub-paths
using s-coloring: we assume R to be the label of a sub-path marked by some special edge e if and only if R
is s-colored by (b, e) for some boolean b. Proposition 66 states that this can always be done. When n is the
source of a special edge n→ m, instead of making φn dependant of φm for testing that a sequential factor
F ∈ L(m), we make φn dependant of a formula that checks if F is s-colored by (b, n→ m) for some boolean
b. This supposes that it is known that every sequential factor F s-colored by (b, n→ m) satisfies φm.

Formally, set C = B × ES(De). When the label of a node n is some ρ(x1, . . . , xk) and out(n) = n →
n1, . . . , n→ nk, set

φn(X) ≡ Q(X,χ1, . . . , χk, ρ(x1, . . . , xk))

where

χi ≡

{
∀Y (∀y y ∈ Y )→ φni(Y ) when n→ ni ∈ EN (De);

∀Y (∀y y ∈ Y )→ ∨b∈B sXC (Y ) = (b, n→ ni) when n→ ni ∈ ES(De).

Informally speaking, the sentence φDe encodes that P ∈ L(De) if and only if there is a path TP in De from
r(De) and labeled by P ; in order to avoid circular dependencies it uses an encoding sXC of a compatible
s-coloring of P such that π2(sXC (F )) = f if and only if F is marked by f in TP , for any sequential factor F
of P . It guarantees that when F is marked by f = n→ m then F satisfies φm(F ). Formally

φDe ≡∃R∃sXC (∀x x ∈ R) ∧ s-Coloring(R, sXC ) ∧ φr(De)(R)

∧ ( ∧
n→m∈ES(De)

∀F (Fs(F,R) ∧ ∨
b∈B

sXC (F ) = (b, n→ m))→ φm(F ))

∨
ε∈L(e)

∀X (∀x x ∈ X)→ |X| = 0

Example 68. Let e = a◦ξ (a(ξ ‖ ξ))∗ξ be the rational expression e1 of Example 51. In this example we detail
the construction of the P-MSO formula φDe from De, using the techniques of Section 7. The D-graph De

and the poset P = a(a ‖ a(a(a ‖ a(a ‖ a)) ‖ a(a ‖ a))) of L(De) are represented on the left side of Figure 8.
Let n1, . . . , n6 be the pre-order traversal of De without its special edges. We have ES(De) = {n4 → n2},
C = B× ES(De) and

• φn1(X) ≡ Q(X,φn2
(Y ), φn6

(Y ), x1 + x2 = 1);

• φn2(X) ≡ ∃X1, X2, X = X1 +X2 ∧ φn3(X1) ∧ φn4(X2);

• φn3
(X) ≡ φn5

(X) ≡ φn6
(X) ≡ |X| = 1 ∧ ∀x (x ∈ X → a(x));

• φn4
(X) ≡ Q(X,∨b∈B sXC (Y ) = (b, n4 → n2), φn5

(Y ), x1 + x2 = 2)
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where ψ(Y ) ≡ ∀Y (∀y y ∈ Y )→ ψ(Y ). Then

φDe ≡∃R∃sXC (∀x x ∈ R) ∧ s-Coloring(R, sXC ) ∧ φn1
(R)

∧(∀F (Fs(F,R) ∧ ∨
b∈B

sXC (F ) = (b, n4 → n2))→ φn2
(F ))

On the right side of Figure 8 is pictured a path TP in De from n1 labeled by P . The root of TP is
labeled by (n1, (1, 0)) with (1, 0) ∈ L(x1 + x2 = 1). Then TP has a unique direct sub-path T ′P from n2
also labeled by P . Thus P ∈ L(n2). Observe that T ′P = (m,TP1

, TP2
) where m is labeled by (n2, 2),

and TP1
and TP2

are some paths in De from respectively n3 and n4 labeled respectively by P1 = a and
P2 = a ‖ a(a(a ‖ a(a ‖ a)) ‖ a(a ‖ a)). Hence, P = P1P2. Let Fi, i ∈ [4], be the labels of the sub-paths TFi ,
i ∈ [4], of TP started by the special edge n4 → n2, as in Figure 8. A factor of P is marked by n4 → n2 in TP
if and only if it is one of the Fis. Therefore, observe that there is some x ∈ Fi \ Fj which is incomparable
to all the elements of Fj when Fj ( Fi, as mentioned in Item (C2) of Remark 49. By Proposition 66, this
marking can be expressed by means of MSO by some encoding sXC of a compatible s-coloring. A factor of P

marked in TP satisfies ∨b∈B sXC (Y ) = (b, n4 → n2), for some b ∈ B, if and only if it is one of the Fis. The
maximum elements of P2 satisfy φn5

, P1 satisfies φn3
and P2 satisfies φn4

. Thus P satisfies φn2
as well as

φn1
and is a model for φDe .

(1, 0)

2

a (1, 1)

2

a (2, 0)

2 2

a (0, 2)

a a

a (1, 1)

2
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a a

a

a

TF1

TF3TF2

TF4

x1 + x2 = 1

·>1

a x1 + x2 = 2

a

a

1
2

1
2

1

2

n1

n2

n3

n4

n6

n5

a

a

a

a

a

a

a

a

a

a

a

F1

F3

F2

F4

Figure 8: The D-graph De of the >1-expression of e = a ◦ξ (a(ξ ‖ ξ))∗ξ, a poset P = a(a ‖ a(a(a ‖ a(a ‖ a)) ‖ a(a ‖ a))) of
L(e) and a path in De from n1 labeled by P

8. From P-MSO to rational expressions

The transformation of a P-MSO formula ϕ into a rational expression e such that L(ϕ) = L(e) is based on
several known results and uses only well-known techniques. Thus we give here only the main arguments, and
refer the reader to the bibliography for the details. Automata over posets of SP �(A) effectively equivalent
to rational expressions were introduced in [6]. Melting the techniques of the translation of a MSO formula
to an automaton over countable and scattered linear orderings [5], and those of the translation of a P-MSO
formula to an automaton over finite N-free posets [3], we build by induction on ϕ a branching automaton
Aϕ such that L(Aϕ) = L(ϕ). The only inductive step which can not be directly deduced from [5] or [3] is
the construction of A¬ϕ′ from Aϕ′ . This case is a direct consequence of Theorem 18.
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9. Conclusion

Links between automata theory and formal logic have been initiated by Büchi in his earlier works, in
particular in order to use automata as a basis for decision procedures for MSO. The results presented in this
paper have the same use. The construction of a branching automaton Aϕ from a formula ϕ of P-MSO such
that L(Aϕ) = L(ϕ) is effective. Furthermore, it is decidable whether L(Aϕ) = ∅ or not. As a consequence:

Theorem 69. Let A be an alphabet. The P-MSO theory of SP �(A) is decidable.

Since the pioneer works of Büchi, links between automata and logic have been used in many ways,
such as the characterization of fragments of MSO and classification of languages of words, trees and other
structures. Our work is a step in that direction for languages of transfinite posets. It could be continued for
example by a study of the relative expressive power of logics weaker than P-MSO. This is usually done, for
logic over finite structures (such as finite words), by a change of the predicates, or by restricting the number
of variables or the alternation of quantifiers. For linear orderings, it is also interesting to restrict over the
interpretation of second-order variables, for example, over their cardinality or orderings. This has been done
in [13] when sets are restricted to singletons (see also [7, 8]), ordinals, or scattered linear orderings, with
algebraic Schützenberger-like characterizations of such logics.
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