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THE RELATIVISTIC VLASOV MAXWELL EQUATIONS

FOR STRONGLY MAGNETIZED PLASMAS

CHRISTOPHE CHEVERRY AND SLIM IBRAHIM

Abstract. An important challenge in plasma physics is to determine whether ionized gases
can be confined by strong magnetic fields. After properly formulating the model, this question
leads to a penalized version of the Relativistic Vlasov Maxwell system, marked by the role of
a singular factor ε−1 corresponding to the inverse of a cyclotron frequency. In this paper, we
prove in this context the existence of classical C1-solutions for a time independent of ε. We also
investigate the stability of these smooth solutions.

Keywords. Kinetic equations ; Vlasov-Maxwell system ; Magnetized plasmas ; Lifespan of
classical solutions ; Momentum support condition ; Energy estimates.
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1. Introduction

Given a small parameter ε > 0, in this paper we analyze the well-posedness of the Magnetized
Relativistic Vlasov-Maxwell (MRVM) system

(1.1)
∂tf + [ν(εξ) · ∇x]f − 1

ε2
[ν(εξ)×Be(x)] · ∇ξf

= −M ′(|ξ|) ξ ·E
|ξ|

+ [E + ν(εξ)×B)] · ∇ξf

∇x ·E = −Q(f) ; ∂tE −∇×B = J(f)(1.2)

∇x ·B = 0 ; ∂tB +∇x ×E = 0.(1.3)

Here, x and ν = ξ√
1+|ξ|2

are points in R3 representing position and velocity of charged particles

(electrons), respectively. The unknown of system (1.1)-(1.3) are a density function f(t, x, ξ)

Date: today.
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defined on Rt ×R3
x ×R3

ξ , and a self generated electro-magnetic field (E,B)(t, x). Particles are
out of a thermal equilibrium where velocity repartitions can be approximated by a Maxwell-
Boltzmann distribution M(·) with small density (See Assumptions 2.2, and 2.3). The total
charge Q and the current J are defined by

Q ≡ Q(f)(t, x) :=

ˆ
f(t, x, ξ)dξ(1.4)

J ≡ Jε(f)(t, x) :=

ˆ
ν(εξ)f(t, x, ξ)dξ.(1.5)

The system (1.1)-(1.3) is written after adimensionalization. All physical constants, except the
small parameter ε � 1 which stands for the inverse of the electron cyclotron frequency, are
normalized to one. We supplement (1.1)-(1.3) with initial conditions f in, Ein, and Bin.

In statistical physics, the relativistic Vlasov-Maxwell system is a kinetic mean-field model for
collisionless plasmas. It is commonly used in the context of planetary magnetospheres or fusion
devices. In such applications, the plasmas are confined by a strong external magnetic field that
is completely prescribed, and that is commonly represented by a vector valued spatial function
of the form x 7→ ε−1Be(x). The amplitude of the function Be(·) is of size one. The field Be(·)
is usually represented by the dipole model when dealing with magnetospheres [6], and it can be
derived from the knowledge of magnetic surfaces when studying tokamaks [7].

As it will be explained in Section 2, the study of the MRVM system (1.1)-(1.3) is a relevant
way to describe phenomena occurring in magnetized, cold, dilute, neutral gases which are taken
out of equilibrium. It allows to take into account many physical phenomena, especially in the
framework of space plasmas. Our main goal here is to study the wellposedness and the stability
of solutions to the Cauchy problem associated to (1.1)-(1.3). Since our problem depends on a
small parameter, it is crucial to show the existence of solutions on a uniform time.

The Cauchy problem associated to the Relativistic Vlasov-Maxwell (RVM) system, which
does not takes into account the influence of Be(·), has been extensively studied. A review
is provided in the monograph [14]. Local existence and uniqueness of classical solutions for
smooth, compactly supported data was established in [16]. Global existence of smooth solutions
has been obtained for small data [17], for nearly neutral data [15] and in other different contexts
[29]. But, in the case of large data, the global existence of solutions to the RVM system is still
an unresolved problem. In addition, the Cauchy problem as well as the non-relativistic limit
equation were studied in [1, 11, 30].

The above contributions related to global existence of classical solutions heavily rely on the
spreading of the bicharacteristics (defined by (3.65, 3.66)) associated to the left part of (1.1),
which is essential to induce a sort of decoupling between the density f and the electromagnetic
field (E,B). However, in the presence of a strong magnetic field, such a spreading is not
available. On the contrary, the bicharacteristics stay for a very long time in a compact set; they
involve large amplitude oscillations [6, 7]; and, as a consequence, they enforce strong interactions
between f and (E,B), which are the potential source of instabilities.

From a mathematical perspective, our problem is to study families of solutions to the RVM
system that are generated by large data. This is reflected at the level of the MRVM system into
the singular weight ε−2ν(εξ) = O(ε−1). A major difficulty arises because of this singular factor
being placed in front of a differential operator with variable coefficients with respect to both
variables x and ξ. This feature together with the large initial condition

∂tf |t=0 =
1

ε2
[ν(εξ)×Be(x)] · ∇ξf in +O(1) = O

(1

ε

)
, 0 < ε� 1(1.6)

may compromise the existence of uniform Lipschitz estimates. To deal with (1.6), the initial
data may be prepared (in the sense of Definition 4.2) to make the above first time-derivative
uniformly bounded. Or, as expected in (1.6), the data may be general which clearly indicates the
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presence of large amplitude oscillations, and therefore the occurrence of large Lipschitz norms
of both the density f , and the field E and B. In the context of such large data, the existence
of solutions to both RVM and MRVM systems on a uniform time interval [0, T ] is not at all
evident. The main result of this paper is the following.

Theorem 1.1. Assume that the background Boltzmann distribution M is in C∞c (R+;R+), that
the initial distribution f in ∈ C1(R3) is confined, and that (Ein, Bin) ∈ C1(R3) fits with f in in
the sense of (2.27). Then, the Cauchy problem for the MRVM system (1.1)-(1.3) is uniformly
locally well-posed in the sense of Definition 4.4. Moreover, prepared data give rise to families of
solutions which are uniformly bounded in the Lipschitz norm.

The above theorem is part of a long tradition of works on the RVM system, going back to
[15, 16]. It is also connected to problems arising in fast rotating fluids [2, 3, 5, 12, 19] or in
nonlinear geometric optics [25, 26], which are scientific domains where questions about uniform
estimates for large oscillating data have been and are commonly investigated.

The contributions related to [5, 25] deal with general hyperbolic nonlinear systems. Of course,
the corresponding results could be applied to more specific situations, like the actual MRVM
system. But they require a lot of prerequisites, among which more restricted prepared data and
regularity assumptions which are going far beyond the actual C1−context; they do not take into
account many peculiarities of the Vlasov and Maxwell equations, which will allow us to refine
the standard statements; they do not care about the momentum support condition, which here
plays a crucial part; and so on. In fact, there is much to do in this paper to adapt the approaches
coming from [5, 25] to the framework inspired by [15, 16].

The paper is organized as follows. In section 2, a detailed derivation of (1.1)-(1.3) from the
classical RVM system will be given. The proof of Theorem 1.1 hides a number of new difficulties
which, after a work of preparation in Section 3, are solved in Section 4. Taking into account
the material introduced in Subsection 4.1, we prove in Subsection 4.2 uniform L∞-estimates on
the family of solutions, from which the uniform lifespan (2.30) and the uniform confinement
property (2.31) follow (Proposition 4.6). In Subsection 4.3, we control some weighted Lipschitz
norm of the solutions (Proposition 4.9); then, we restrict our attention to the case of prepared
data, and we get a uniform bound on the Lipschitz norm (Proposition 4.12).

Acknowledgement. A part of this work was done while C.C. was visiting the Department
of Mathematics and Statistics of the University of Victoria, and S.I. was visiting IRMAR, the
“Institut de Recherche Mathématique de Rennes”. They both thank all members and staff at
the two institutions for their warm hospitality. They also thank Dayton Preissl for interesting
discussions about the text. Both C.C and S.I. were supported by France-Canada Research Fund.
S.I. was supported by NSERC grant (371637-2014).

2. Modeling of collisionless magnetized plasmas

Subsection 2.1 is inspired by theoretical considerations [8] about magnetospheres [6], stars and
fusion devices [7]. We show that the description of real magnetized plasmas forces to transform
the classical Relativistic Vlasov Maxwell system (the so-called RVM system) into a Magnetized
Relativistic Vlasov Maxwell system (the MRVM system), involving a large parameter ε−1. In
Subsection 2.2, this MRVM system is interpreted as a Valsov-Wave system (VW system).

2.1. From the RVM system to the MRVM system. The RVM system is built in coupling
the Vlasov equation and the Maxwell’s equations. It is applied here in a physical framework
based on concrete considerations. This means to retain a number of specific assumptions, giving
rise to special issues. These hypotheses are first and foremost related to the presence of a strong
external magnetic field (Paragraph 2.1.1). They also imply a cold and small density assumption
and some neutrality condition (Paragraph 2.1.2). At the end, this furnishes a formulation of the
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RVM system, called the MRVM system, introduced in Paragraph 2.1.3. Open related questions
are raised in Paragraph 2.1.4.

2.1.1. The impact of a strong external magnetic field. In view of a better understanding of what
happens in magnetospheres [9] or fusion devices [10], it is important to consider the influence
of a strong exterior inhomogeneous magnetic field, denoted by ε−1 Be(x). ”Strong” because
the parameter ε is small; in practice, the dimensionless number ε stands for the inverse of the
electron cyclotron frequency; it is often of size ' 10−4. ”Exterior” because the field is prescribed.
”Inhomogeneous” because the function Be(·) does depend on the spatial variable x ∈ R3.

Assumption 2.1. [strong inhomogeneous magnetic field] The function Be(·) is assumed to be
smooth, with bounded derivatives, that is Be ∈ C∞b (R3). It is of size one and does not vanish on
all compact sets. More precisely, for all compact sets K ⊂ R3, there exists a positive constant
c ≡ c(K) such that

∀x ∈ K, c(K) ≤ be(x) ≤ c(K)−1 ; be(x) := |Be(x)|(2.1)

Moreover, it is divergence and curl free

∀x ∈ R3, ∇x ·Be(x) ≡ 0 ; ∇x ×Be(x) ≡ 0(2.2)

Note that the condition (2.2) is satisfied in the case of dipole models, like for the Earth’s magnetic
field [9]. We consider that there is only one species, say electrons in a background of stationary
protons. These electrons are described by a scalar distribution function f(t, x, ξ) that gives at
the time t ∈ R+ their probability density on the phase space R3

x×R3
ξ. As usual, we denote ν(ξ)

the velocity (with the speed of light normalized to one) and 〈ξ〉 the Lorentz factor

∀ξ ∈ R3, ν(ξ) :=
ξ

〈ξ〉
; 1 ≤ 〈ξ〉 :=

√
1 + |ξ|2 ; |ν(ξ)| < 1(2.3)

In this article, we will focus on the electron cyclotron regime, when ε� 1. Then, the motion of
electrons is governed by the penalized Vlasov equation

∂tf + [ν(ξ) · ∇x]f =
[
E + ν(ξ)×

(
ε−1Be(x) + B

)]
· ∇ξf(2.4)

The electromagnetic field (E, ε−1Be + B) inside (2.4) depends only on (t, x), and it takes its
values in R3 × R3. It must satisfy Maxwell’s equations. In view of (2.2), this means that the
self-consistent electromagnetic field (E,B) is satisfies

∂tE−∇x ×
(
ε−1Be(x) + B

)
= ∂tE−∇×B = J(f)(2.5)

∂t
(
ε−1Be(x) + B

)
+∇x ×E = ∂tB +∇x ×E = 0(2.6)

and the compatibility conditions

∇x ·E = ρi − ρ(f)(2.7)

∇x ·
(
ε−1Be(x) + B

)
= ∇x ·B = 0(2.8)

In (2.7), the constant ρi represents the density of charge issued from ions. The expressions ρ(f)
and J(f) stand for the electron density of charge and the electric current, respectively. They can
be computed according to

ρ(f)(t, x) =

ˆ
f(t, x, ξ)dξ(2.9)

J(f)(t, x) =

ˆ
ν(ξ)f(t, x, ξ)dξ(2.10)

We say that the vector valued function U := (f,E,B) is a solution to the RVM system if it
satisfies the evolution equations (2.4,2.5,2.6) together with the compatibility conditions (2.7,2.8),
where ρ(·) and J(·) are as in (2.9,2.10). The RVM system is a well-established model for
describing the time evolution in collisionless strongly magnetized plasmas.
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2.1.2. Stationary solutions. We will consider a ionized gas that is a perturbation of a plasma at
thermal equilibrium, characterized by U ≡ Us := (fs,Es,Bs) with

(2.11) fs(t, x, ξ) ≡ fs(ξ) := ε−2M(ε−1 |ξ|) , Es(t, x) := 0 , Bs(t, x) := 0

Assumption 2.2. [cold and small density assumption] The function M(·) is in C∞c (R+;R+).

In plasma physics, “cold” means that the velocities of most electrons are small in comparison
to the speed of light or that the temperature of most electrons is a few electronvolts. The
cold assumption is often used to model astrophysical plasmas or even plasmas located at the
edge of fusion devices. As explained in [9, 10], this implies that the distribution function f(·) is
concentrated for velocities ξ such that |ξ| ∼ O(ε). This is reflected in Assumption 2.2 by the
fact that the function M(·) is compactly supported (in ξ)

∃RinM ∈ R∗+; supM ⊂ [0, RinM ](2.12)

From (2.12), it follows that

‖M ‖1:=
ˆ
M(|ξ|)dξ < +∞ ; ‖M ′ ‖1:=

ˆ
|M ′(|ξ|)|dξ < +∞(2.13)

Another ingredient of (2.11) is the size of the amplitude, which implies that the density of the
plasma is ”small”. Thus, the plasma is dilute, in the sense that

(2.14) ρ(fs)(t, x) =

ˆ
fs(t, x, ξ) dξ = ε ‖M ‖1= O(ε)

The distribution function fs(·) depends only on |ξ|, and therefore we have (2.4); it is even in ξ
while ν(·) is odd, and thereby we have J(fs) ≡ 0. Now, to obtain (2.7) with Es ≡ 0, the constant
ρi ≡ ρi(ε) must be adjusted accordingly.

Assumption 2.3. [neutrality assumption] We impose :

(2.15) ρi = ρ(fs) = ε ‖M ‖1

Under (2.15), the expression Us(·) is a stationary solution to the RVM system. It can also be
viewed as a solution to the RVM system associated with the initial data

(fs,Es,Bs)|t=0 =
(
ε−2M(ε−1 |ξ|) , 0 , 0

)
(2.16)

Note that more general stationary solutions could be considered. In [10], a notion of shifted
Maxwell-Boltzmann distribution is introduced. This allows to describe plasmas confined inside
tokamaks. Then, the curl-free condition (2.2) is not required, but the density fs(·) turns to be
more complicated than in (2.11), and the electromagnetic field (Es,Bs) is non zero. Here, for
the sake of simplicity, we will stick to the choice (2.11).

2.1.3. Perturbation theory. Descriptions of cold plasmas through representations like (2.11) are
rather restrictive. In reality, the observed self-consistent electromagnetic field (E,B) is non
zero. Experimental measures indicate that (E,B) 6≡ (0, 0), and it is clear that many important
phenomena are linked to discrepancies from (fs, 0, 0). Then, we can say that the plasma is
out of equilibrium [8]. Since electrons are much lighter than ions, they move quicker. Thus,
plasma phenomena out of equilibrium are mainly concerned with electrons moving in a (steady)
background of ions. This allows for a focus on the time evolution of only one species of particles,
namely electrons.

Away from thermal equilibrium, the probability density of electrons can differ from (2.11). Let
f(t, x, ε−1ξ) be the distribution function which indicates at the time t in the phase space R3

x×R3
ξ
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the divergence from (2.11). We look at solutions of (2.4,2.5,2.6) which represent fluctuations
near the thermal equilibrium (fs, 0, 0). Thus, at time t = 0, we impose

f|t=0 = fin := ε−2M(ε−1 |ξ|) + ε−2 f in(x, ε−1 ξ)(2.17)

E|t=0 = Ein := εEin(2.18)

B|t=0 = Bin := εBin(2.19)

and, consequently, we seek f(·), E(·) and B(·) in the form

(2.20) f(t, x, ξ) = ε−2M(ε−1 |ξ|) + ε−2 f(t, x, ε−1 ξ) , E = εE , B = εB

Expressed in terms of the new functions f(t, x, ξ), E(t, x) and B(t, x), the system (2.4,2.5,2.6)
can be decomposed into the transport equation

(2.21)
∂tf + [ν(εξ) · ∇x]f − 1

ε2
[ν(εξ)×Be(x)] · ∇ξf

= M ′(|ξ|) ξ ·E
|ξ|

+ [E + ν(εξ)×B)] · ∇ξf

along with

∇x ·E = −Q(f) ; ∂tE −∇×B = J(f)(2.22)

∇x ·B = 0 ; ∂tB +∇x ×E = 0(2.23)

where

Q ≡ Q(f)(t, x) :=

ˆ
f(t, x, ξ)dξ(2.24)

J ≡ Jε(f)(t, x) :=

ˆ
ν(εξ)f(t, x, ξ)dξ(2.25)

We want to bring the reader’s attention about the passage from the RVM system (2.4,2.5,2.6) to
(2.21,2.22,2.23). There are changes taking place: first and foremost, the variable ξ is replaced
by ξ := ε−1ξ and the cold assumption becomes |ξ| ≤ RinM ; second, the singular factor ε−1ν(ξ) is
exchanged with ε−2ν(εξ) which is still some O(ε−1); thirdly, there is the additional semilinear
source term implying ξ · E and coming from the perturbation procedure. To highlight these
differences, the system built with (2.21,2.22,2.23) will be called the MRVM system, the first“M”
being for magnetized. From now on, the unknown is U := (f,E,B).

By construction, U ≡ 0 is a special solution to the MRVM system with initial condition U in ≡ 0.
Now, at time t = 0, we modify this initial data. In other words, we impose

U|t=0 = U in ≡ (f in,Ein,Bin) ∈ C1c (R3 × R3)× C2c (R3)× C2c (R3)(2.26)

with U in 6≡ 0. Of course, the expression U in must be compatible, that is

∇x ·Ein = −ρ(f in) = −
ˆ
f in(x, ξ)dξ ; ∇x ·Bin = 0(2.27)

It is worth noting that f in(·) and f(·) are real valued functions without sign condition. As a
matter of fact, contrary to f, the expressions f in and f do not represent (positive) densities but
perturbations of densities. The two constraints inside (2.27) are propagated by the equations.
In other words, assuming (2.27), the trace U(t, ·) = (f,E,B)(t, ·) of a smooth solution will
satisfy for all time t ≥ 0 the condition

∇x ·E = −ρ(f) = −
ˆ
f(t, x, ξ)dξ ; ∇x ·B = 0.(2.28)

As mentioned in the introduction for large initial data, the existence of solutions to both RVM
and MRVM systems on a uniform time interval [0, T ] is not at all evident. In the next paragraph,
we explain more precisely why is this.
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2.1.4. Open-ended questions about lifespan, confinement and stability, and their responses. Real
plasmas are contained in a finite volume and the cold assumption means that we focus on
bounded velocities, with |ξ| < +∞. Thus, at time t = 0, it is natural to impose the following.

Assumption 2.4. [confinement assumption] The initial data f in(·) is in C1c (R3 × R3). It is
compactly supported both in position x ∈ R3 and velocity ξ ∈ R3. More precisely

(2.29) ∃ (Rin, Rin) ∈ (R∗+)2 ; sup f in(·) ⊂
{

(x, ξ) ; |x| ≤ Rin , |ξ| ≤ Rin
}

As noticed in [6], the presence of a strong magnetic field in MRVM prevents bicharacteristics
spreading. On the contrary, the bicharacteristics associated to the left part of (2.21), that is the
bicharacteristics defined by (3.65, 3.66), stay for a very long time in a compact set; they involve
large amplitude oscillations [6, 7]; and, by this way, they enforce strong interactions between f
and (E,B), which are the potential source of instabilities.

In the case of large data, the global existence of solutions to the RVM system is a problem which
is still unresolved. And therefore, the same applies to the MRVM system. Technically, the main
difficulty arises through the singular factor ε−1 that appears inside (2.21) and (1.6). To our
knowledge, current results furnish a finite lifespan Tε, which can shrink to zero at the speed
Tε ∼ ε. Not being able to prove that Tε = +∞, in view of applications, it would however be
very interesting to know if Tε can be uniformly bounded from below. This would be a rigorous
intrusion in the domain of large amplitude oscillating C1-solutions to the RVM system, and this
is our first question. Do we have

∃T ∈ R∗+; ∀ε ∈]0, 1), 0 < T ≤ Tε(2.30)

Another key result of Glassey-Strauss [16] shows that the solutions can be extended as long as
the momentum support of f ≡ fε remains bounded. Extensions of this criterion can be found
in [24, 31]. Now, assuming (2.30), the second question which is related to (2.30) is about the
existence of a uniform confinement. We would like to determine whether there exists bounded
functions R(·) and R(·) in L∞([0, T ]) such that

∀(ε, t) ∈]0, 1]× [0, T ], sup fε(t, ·) ⊂
{

(x, ξ) ; |x| ≤ R(t) , |ξ| ≤ R(t)
}

(2.31)

Denoting R∞ ∈ R∗+ and R∞ ∈ R∗+ the sup norms of R(·) and R(·), respectively this means to
deal at any time t ∈ [0, T ] with the momentum support condition

sup f(·) ⊂
{

(x, ξ) ; |x| ≤ R∞ , |ξ| ≤ R∞
}

(2.32)

The properties (2.28) and (2.32) are expected, and thereby we will work within the framework
of classical compatible solutions, that is with

X :=
{
U = (f,E,B) ∈ C1(R3 × R3)× C1(R3)× C1(R3) ;(2.33)

the two conditions (2.28) and (2.32) are verified for some R∞
}

A third question is related to the stability properties of the solutions thus exhibited. In the
continuation of [28], we want to determine how the Lipschitz norm can deteriorate when ε goes
to zero, and we want to measure how the difference (measured in relevant norms) between
solutions can change over time. Our main result Theorem 1.1 gives answers to all of them.

Before getting into the substance of the text, preliminary steps are required. This starts in
Subsection 2.2 with a reformulation of the MRVM system as a Vlasov Wave system (VW system).

2.2. From the MRVM system to a VW system. We adopt here the approach of [4, 27],
with some necessary adaptations induced by the magnetized, small density and perturbative
context. As in [4, 27], we seek in Paragraph 2.2.1 to write the electromagnetic field (E,B) in
terms of a special electromagnetic four-potential (Φ,A), called the Lienard-Wiechert potential.
As will be seen in Paragraph 2.2.2, this scalar potential Φ and this vector potential A are the
solutions of a particular wave-type equation.
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2.2.1. Choice of the Lorenz Gauge. In this paragraph, the discussion is completely general of
solutions (E,B) to Maxwell’s equations (2.22,2.23) with charge and current densities Q and
J as in (2.24,2.25). It does not explicitly involve the Vlasov equation (2.21). From the first
condition inside (2.23), we have that ∇x · B = 0 so that B = ∇x × A for some vector field
A : R × R3 7→ R3 known as the vector potential. For the same reason, we can find a vector
potential Ain such that

Bin = ∇x ×Ain ; ∇x ·Ain = 0(2.34)

We can also rewrite the electric field in terms of a scalar potential Φ : R×R3 7→ R according to

∂tB +∇x ×E = 0 ⇔ ∂t(∇x ×A) +∇x ×E = 0 ⇔ ∇x × [E + ∂tA] = 0

⇔ E + ∂tA = −∇xΦ
Note that the negative sign in the last line is simply a convention, and hence

E = −∇xΦ− ∂tA ; B = ∇x ×A(2.35)

It is important to note that these potentials are not uniquely defined in order to produce the
same well defined vector field (E,B). The following lemma explores this freedom.

Lemma 2.5. Select (E,B) ∈ C2(R4)×C2(R4) as in (2.35). Let A′ and Φ′ be potentials which
determine the same electromagnetic field (E,B). Then, for some sufficiently smooth function
λ : R× R3 7→ R, we find

Φ′ := Φ− ∂tλ ; A′ := A +∇xλ(2.36)

Conversely, given any sufficiently smooth λ, we have that A′ and Φ′ defined above will produce
the same fields (E,B).

Proof. Without loss of generality, let α := A′ −A and β := Φ′ − Φ. Then, we have that

∇x ×A′ = B = ∇x ×A = ∇x × [A′ − α] ⇒ ∇x × α = 0

Hence α = ∇xλ̃ for some scalar function λ̃. Similarly, we have that

−∇xΦ′ − ∂tA′ = E = −∇xΦ− ∂tA = −∇x[Φ+ β]− ∂t[A + α]

⇒ ∇xβ + ∂tα = 0

Plugging in α = ∇xλ̃, we obtain

∇x[β + ∂tλ̃] = 0 ⇒ β + ∂tλ̃ = k(t)

Define λ := λ̃ −
´ t
0 k(t′)dt′. By construction, we have that β = −∂tλ and α = ∇xλ̃ = ∇xλ,

which is the desired result. �

An interesting fact is that the correspondance that is pointed in Lemma 2.5 forms an equivalence
relation (Φ,A) ∼ (Φ′,A′). As a matter of fact, choosing λ = 0 gives reflexivity; replacing λ by
−λ gives symmetry; and adding λ1 and λ2 according to λ = λ1 + λ2 gives transitivity.

Definition 2.6. Define the choice of a Lorenz Gauge to be the selection of some electromagnetic
four-potential (Φ′,A′) ∼ (Φ,A) satisfying

G := ∂tΦ
′ +∇x ·A′ = 0(2.37)

◦

Start with any four-potential (Φ,A). To show that it is possible to recover the Lorenz gauge for
some well chosen (Φ′,A′), note that we can always adjust the scalar function λ in such a way
that it is a solution of �x,tλ = ∂tΦ+∇x ·A. Then

∂2t λ−∇2
xλ = ∂tΦ+∇x ·A ⇔ ∇x ·A +∇2

xλ = −∂tΦ+ ∂2t λ ⇔ ∇x ·A′ = −∂tΦ′

In contrast to Maxwell’s equations, the equations on A deduced from (2.22,2.23) are not invariant
under Gauge transformation [20]. The following is a nice consequence of the Lorenz Gauge.
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Lemma 2.7. Let (E,B) be C2(R4) fields determined by A and Φ in the Lorenz Gauge and
solving Maxwell’s equations. Then

�t,xA = −J(2.38)

�t,xΦ = −Q(2.39)

Conversely, given a C3(R4)×C3(R4) electromagnetic four-potential (Φ,A) satisfying (2.38,2.39)
together with the Lorenz Gauge condition (2.37), the electromagnetic field (E,B) defined by
(2.35) is a C2(R4)× C2(R4) solution to Maxwell’s equations (2.22,2.23).

Proof. As already noted, the equations inside (2.23) are the same as (2.35). Knowing (2.35) and
(2.37), we have

∂tE −∇x ×B = J ⇔ ∂t[−∇xΦ− ∂tA]−∇x × (∇x ×A) = J

⇔ ∇x(∇x ·A)− ∂2tA−∇x(∇x ·A) +∇2
xA = J

⇔ �t,xA = −J

As well as

∇x ·E = ∇x · [−∇xΦ− ∂tA] = −Q ⇔ −∇2
xΦ− ∂t[∇x ·A] = −Q

⇔ −∇2
xΦ+ ∂2t Φ = −Q

⇔ �t,xΦ = −Q

Since all above lines are equivalences, we get the result. �

Keep in mind that (2.38,2.39) together with (2.37) is an overdetermined system. Indeed, this
implies the compatibility condition

∂tQ+∇x · J = 0(2.40)

which is actually the mass continuity equation in the case of (2.21).

2.2.2. Lienard-Wiechert Potentials. We now wish to write the fields of the MRVM system in
terms of solutions to a wave equation. Let u(t, x, ξ) be the scalar function (sometimes called the
microscopic electromagnetic potential) which is a solution to the Cauchy problem built with

�t,xu = −f(2.41)

together with

u(0, x) = 0, ∂tu(t, x)|t=0 = 0(2.42)

With Ein as in (2.48) and Ain as in (2.34), let A0(t, x) be the vector-valued function satisfying

�t,xA
0 = 0 ; A0

|t=0 = Ain ; ∂tA
0
|t=0 = −Ein(2.43)

The Lienard-Wiechert potentials are correspondingly defined as

Φ :=

ˆ
udξ ; A := A0 +

ˆ
uν(εξ)dξ(2.44)

In view of (2.35), this means that

E = −∂tA0 −
ˆ

[ν(εξ)∂t +∇x]udξ(2.45)

B = ∇x ×A0 +

ˆ
∇x × [uν(εξ)]dξ(2.46)

The potential A0 is a fixed function determined by (2.41), independently of U . The introduction
of A0 allows to absorb the initial data Ein and Bin. It induces a shift on the electromagnetic
field, as indicated in (2.45,2.46). At the level of f , it generates a transport in the phase space.
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But it is not involved in a coupling between f , E and B. To avoid technicalities, from now on,
we assume that A0 ≡ 0, or equivalently that

f|t=0 = f in 6≡ 0(2.47)

E|t=0 = Ein ≡ 0(2.48)

B|t=0 = Bin ≡ 0(2.49)

The condition of compatibility becomes

0 = −ρ(f in) = −
ˆ
f in(x, ξ)dξ ; ∇x ·Bin = 0(2.50)

Lemma 2.8. The MRVM system (2.21,2.22,2.23) together with the coupling source terms
of (2.24,2.25) and the initial data (2.47,2.48,2.49) is equivalent to the Vlasov-Wave system
(2.21,2.41) closed by the relations (2.45,2.46) and the initial conditions (2.47,2.42).

Proof. First, consider the initial data. The condition (2.47) is unchanged. On the other hand,
the conditions (2.48,2.49) are a direct consequence of (2.42) together with (2.45,2.46).

From (2.41), with Φ and A given by (2.44), we can easily deduce

�t,xΦ :=

ˆ
�t,xudξ = −

ˆ
fdξ(2.51)

�t,xA :=

ˆ
�t,xuν(εξ)dξ = −

ˆ
fν(εξ)dξ(2.52)

where, in the right hand side, we can recognize the operators Q and J of (2.24) and (2.25).
Thus, we have (2.38,2.39) with the adequate definition of Q and J . Now, applying Lemma 2.7,
it suffices to check that the Lorenz Gauge condition (2.37) is indeed satisfied. We find

G(t, x) =

ˆ [
∂tu+∇x ·

(
u ν(ε ξ)

)]
dξ(2.53)

Exploiting (2.41), compute

(2.54) �t,xG = −
ˆ {

∂tf + ν(ε ξ) · ∇xf
}
dξ

According to (2.21), the above total derivative ∂tf + ν(ε ξ) · ∇xf can be replaced by

(2.55)
∂tf +

[
ν(ε ξ) · ∇x

]
f = divξ

[
〈ε ξ〉−1 f ξ ∧Be(x)

]
+M ′(|ξ|) ξ · E

|ξ|
+ divξ

[
E + f ν(ε ξ) ∧B

]
After integration in ξ as required by (2.54), all terms implying divξ disappear. Besides, the term
with M ′(·) in factor does not contribute because it involves the integral of an odd function (in
the variable ξ). There remains �t,xG = 0. This is not sufficient to guarantee that G ≡ 0. Look
at the initial data. It is clear that G|t=0 ≡ 0. On the other hand, we have

(2.56) (∂tG)|t=0 =

ˆ
(∂2ttu)|t=0 dξ = −

ˆ
f in(x, ξ) dξ .

This is where the neutrality condition (2.27) plays a crucial role. It is necessary to guarantee
that ∂tG|t=0 ≡ 0, which in turn furnishes G(t, ·) ≡ 0 for all times t ∈ R+, that is (2.37). In
other words, the constraint (2.27) appears as a compatibility condition allowing to solve the
overdetermined system (2.37,2.38,2.39). �

The system (2.21,2.41) with (2.45,2.46) is self-contained. This will be our starting point.
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3. Preparatory work

This section collects identities that will be needed in the sequel. In Subsection 3.1, we remark
that the solution u(·) of (2.41,2.42) can be determined through a convolution procedure implying
some homogeneous distribution; we generalize such formulas, and we derive related estimates.
In Subsection 3.2, we introduce commuting methods implying vector fields. In Subsection 3.3,
we explain the content of a somewhat classical division lemma, already exploited in [4, 27]; this
division lemma allows to replace (modulo error terms) the derivatives involved inside (2.45,2.46)
by the total derivative ∂t + ν(ε ξ) · ∇x of (2.21). The final Subsection 3.4 is more original; it
is specific to the present framework; it explains how to further convert, always in the context
of (2.45,2.46) and again modulo error terms, the derivative ∂t + ν(ε ξ) · ∇x into a nonsingular
derivative; this requires to deal with the penalized term that is implied at the level of (2.21);
this means to extract uniform estimates (in ε) from the term which inside has ε−2 in factor.

3.1. Convolution estimates. The fundamental solution Y associated with �Y = δ(t, x) is

Y :=
1

4πt
1t>0δ(|x| − t)(3.1)

Consequently, the solution u(·) of (2.41,2.42) is given by

u(t, x, ξ) = −Y ∗ (f1t>0)(3.2)

In (3.2), the symbol ∗ means a convolution with respect to the variables t and x (but not with
respect to the variable ξ which can be forgotten here). More generally, we will have to consider
expressions like

u(t, x) = (pY ) ∗ (f1t>0)(3.3)

where p ∈ Mm, the space of C∞ homogeneous functions on R4 \ {0} of degree m ∈ R. In other
words, given p ∈Mm, we have

∀λ ∈ R∗+, ∀(t, x) ∈ R4 \ {0}, p(λt, λx) = λmp(t, x)(3.4)

We haveMm ⊂Mm, where Mm is the space of homogeneous distributions with domain R4\{0},
having degree m. For instance, we have Y ∈ M−2. In Paragraph 3.1.1, we study (3.3) when
m ≥ −1. Then, in Paragraph 3.1.2, we investigate (3.3) in the critical case m = −2.

3.1.1. Convolution estimates: the easy case. This is when (3.3) is given by as a classical integral.

Lemma 3.1. Let p ∈ Mm with m ≥ −1. Select f ∈ L∞(R4). The expression u(·) given by
(3.3) is well-defined as a usual integral with parameters. Moreover, we have

|u(t, x)| ≤ t1+m

3
‖ p(1, ·) ‖L∞(S2)

ˆ t

0
‖ f(s, ·) ‖L∞(R3

x)
ds(3.5)

where S2 is the unit sphere of R3.

We can apply (3.5) with p ≡ 1 and m = 0 to obtain

|u(t, x, ξ)| ≤ t

3

ˆ t

0
‖ f(s, ·, ξ) ‖L∞(R3

x)
ds(3.6)

Proof. As explained in [18] (see Proposition 3.6.12), the homogeneous distributions pY ∈ Mβ

with β = m− 2 > −4 has a unique homogeneous extension in D′(R4). Thus, it can be applied
to smooth test functions f . Now, another way to interpret (3.3) and to extend (3.3) in the case
of more general functions f is to write u(·) as an integral, and then to observe that the support
of Y is the light cone

supY ≡ L C := {|x| = t} ⊂ R4(3.7)
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With this in mind, we have (formally)

u(t, x) =

ˆ
R4

p(s, y)

4πs
1s>0δ(|y| − s)f(t− s, x− y)1t−s>0 dsdy(3.8)

=

ˆ t

0

ˆ +∞

0

ˆ
S2

p(s, rω)

4πs
δ(r − s)f(t− s, x− rω)r2dsdrdσ

=

ˆ t

0

ˆ
S2

p(s, sω)

4π
f(t− s, x− sω)sdsdσ

where

ω :=
x

|x|
=

sinφ cos θ
sinφ sin θ

cosφ

 ∈ S2 := {|x| = 1}(3.9)

and where dσ is the rotation-invariant surface element on S2. Because p ∈ Mm with m ≥ −1,
this can be viewed as the following (convergent) integral

u(t, x) =

ˆ t

0

ˆ
S2

p(1, ω)

4π
f(t− s, x− sω) s1+mdsdσ(3.10)

from which we can easily deduce (3.5). �

In view of the above proof, Lemma 3.1 can be improved in two directions. First, the result (3.5)
does not change if p is multiplied by a smooth bounded function. Secondly, to obtain (3.5), it
suffices to know that p(·) is smooth and well defined in a conic neighborhood V of {1} × S2,
where V is viewed as a subset of (R× R3) \ {0}.

3.1.2. Convolution estimates: the critical case. The case p ∈ M−2 is more difficult because all
expressions pY ∈M−4 are not the restriction of some homogeneous element inside D′(R4).

Lemma 3.2. Let p ∈ M−2. The distribution pY ∈ M−4 can be extended as a homogeneous
distribution on the whole time-space R4 if and only ifˆ

S2
p(1, ω)dσ = 0(3.11)

Now, assume (3.11). Then, given f ∈ L∞(R4), the expression u(·) of (3.3) is well-defined as a
usual integral with parameters, and we have

|u(t, x)| ≤ t

4π

(ˆ
S2
|p(1, ω)|dσ

)
‖ ∇t,xf ‖L∞(3.12)

Proof. Since pY ∈M−4, we have that
t(t, x)pY ∈M−3 ; divt,x

(
t(t, x)(pY )

)
∈M−4(3.13)

Because t(t, x)p ∈ M−1, from Proposition 3.6.12 of [18], we can assert that t(t, x)pY has a
unique homogeneous extension in D′(R4). Moreover, from Euler relation, we know that

divt,x
(
t(t, x)(pY )

)
≡ 0 as an element of M−4(3.14)

This implies that

∃c ∈ R; divt,x
(
t(t, x)(pY )

)
= cδ in D′(R4)(3.15)

where the constant c is called the residue of pY . As is well-known (Proposition 4.1.8 in [18]),
the element pY ∈ M−4 can be extended as a distribution in D′(R4) if and only if c = 0. Now,
select a smooth function ϕ(t, x) of the form ϕ(t, x) = −φ

(
|(t, x)|2

)
, where φ(·) ∈ C∞c (R+) is such

that

φ(0) 6= 0, φ′(0) = 0,

ˆ +∞

0

φ′(t)

t
dt 6= 0(3.16)
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We can test (3.15) in the case of this special choice of ϕ(·) to obtain

cφ(0) =
〈
pY, 2|(t, x)|2φ′

(
|(t, x)|2

)〉
=

ˆ ∞
0

ˆ
S2
p
(
t, t

x

|x|

) 4t2

4πt
φ′(2t2)dtdσ

=

ˆ ∞
0

φ′(2t2)

πt
dt

ˆ
S2
p(1, ω)dσ =

1

2π

ˆ ∞
0

φ′(t)

t
dt

ˆ
S2
p(1, ω)dσ

In view of (3.16), the condition c = 0 is equivalent to (3.11). This furnishes the first part of
Lemma 3.2. On the other hand, exploiting (3.11), we find

u(t, x) =
1

4π

ˆ t

0

ˆ
S2
p(1, ω)

f(t− s, x− sy)− f(t, x)

s
dsdσ(3.17)

which gives rise to (3.12). �

3.2. Commuting vector fields. In this subsection, we exhibit vector fields that commute with
the wave operator �t,x. With v := ν(εξ), define

T (v) := ∂t + v · ∇x(3.18)

Li := xi∂t + t∂i, i = 1, 2, 3(3.19)

The existence of commuting vector fields associated with the operator �t,x is well known prop-
erty, see [21] or the survey article [22]. In particular, we have the following.

Lemma 3.3. We have [Li,�] = 0, Liδ(t, x) = 0 and LiY = 0 as distributions.

Proof. For the sake of completeness, we recall the proof. First

�Li = (∂2t −∆)(xi∂t + t∂i)

= [xi∂
3
t ] + [2∂2ti + t∂3itt]− [xi(∂

2
j + ∂2k)∂t + ∂2i (xi∂t)]− t∆∂i

= [xi∂
3
t ] + [2∂2ti + t∂3itt]− [xi∆∂t + 2∂2it]− [t∆∂i]

= xi∂
3
t + t∂3itt − xi∆∂t − t∆∂i

= (xi∂t + t∂i)(∂
2
t −∆) = Li�

Secondly, given φ(t, x) ∈ C∞c (R4), we have

〈Liδ, φ〉 =

ˆ
([xi∂t + t∂j ]δ(t, x))φ(t, x)dxdt

= −
ˆ
δ(t, x)[xi∂t + t∂i]φ(t, x)dxdt

= −(xi∂tφ(x, t) + t∂iφ(x, t))|(x,t)=(0,0) = 0

It follows that

0 = [�, Li]Y = �LiY − Li�Y = �LiY − Liδ(t, x) = �LiY

We then have

〈LiY, φ〉 = 〈(t∂i + xi∂t)Y, φ)〉 = −〈Y, t∂iφ+ xi∂tφ〉 = −
〈
1t>0δ(|x| − t)

4π
, ∂iφ+

xi
t
∂tφ

〉
= −
ˆ
R3

[∂iφ(x, |x|) +
xi
|x|
∂tφ(x, |x|)]dx = −

ˆ
R3

∂i[φ(x, |x|)]dx = 0

This is the third relation. �
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3.3. First transfer of derivatives. The following Lemma is stated and proved in [4]. In order
to introduce tools that will be useful, we repeat it in below with full details. Set ∂0 ≡ ∂t.

Lemma 3.4. (Division Lemma) For any v ∈ R3, with |v| < 1 we have the following.

(1) There exists aki (t, x) ∈M−k, with i ∈ {0, 1, 2, 3} and k ∈ {0, 1} such that

∂iY = T (a0iY ) + a1iY, ∀i = 0, 1, 2, 3(3.20)

(2) There exists bkij(t, x) ∈M−k with i, j ∈ {0, 1, 2, 3} and k ∈ {0, 1} such that

∂2i,jY = T 2(b0ijY ) + T (b1ijY ) + b2ijY ∀i, j = 0, 1, 2, 3(3.21)

(3) Moreover ˆ
S2
b2ij(1, ω)dσ = 0(3.22)

Proof. Observe that

3∑
j=1

vjLj =

3∑
j=1

xjvj∂t + vjt∂j = x · v∂t + tv · ∇x

= t(∂t + v · ∇x)− t∂t + x · v∂t
= tT (v) + (x · v − t)∂t = x · v∂t + tv · ∇x(3.23)

Using (3.23), we get

(t− x · v)Li + xi

3∑
j=1

vjLj = (t− x · v)(xi∂t + t∂i) + xi(x · v∂t + tv · ∇x)

= txi∂t + t2∂i − xix · v∂t − tx · v∂i + xix · v∂t + txiv · ∇x
= t[(t− x · v)∂i + xi(∂t + v · ∇x)]

= t[(t− x · v)∂i + xiT (v)]

From LjY = 0 (Lemma 3.3) and (3.23), we have

(

3∑
j=1

vjLj)Y = 0 = tT (v)Y + (x · v − t)∂tY

[(t− x · v)Li + xi

3∑
j=1

vjLj ]Y = 0 = t[(t− x · v)∂i + xiT (v)]Y(3.24)

We then define for x · v 6= t and i ∈ {1, 2, 3}

a0(t, x) :=
t

t− x · v
, ai(t, x) :=

xi
x · v − t

(3.25)

Away from x · v = t 6= 0, from (3.24), we can deduce that

∂iY = aiT (v)Y, i = 1, 2, 3(3.26)

Let x0 = t. Since LiY = 0, we have

−x · v∂tY = −vi(LiY − t∂iY ) = tv · ∇xY(3.27)

Adding t∂tY to (3.27), we obtain (3.26) for i = 0, that is

∂0Y = a0T (v)Y(3.28)

Looking at the definition (3.1), we have

supY ⊂ {(t, x)|0 ≤ |x| = t}(3.29)
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Combining (3.26) and (3.28) (away from x · v = t 6= 0) as well as (3.29), we can deduce that

sup(∂iY − aiTY ) ⊂ {(t, x)|x · v = t} ∪ {(t, x)|t = 0} ∩ {(t, x)|0 ≤ |x| = t}(3.30)

But, for 0 < |x| = t, since |v| = |ν(ξ)| < 1, we have t− x · v 6= 0. It follows that

sup(∂iY − aiTY ) ⊂ {(0, 0)}(3.31)

We have ai ∈M0 so that ∂iY − aiTY ∈M−3. As already seen, such homogeneous distributions
on R4 \ {0} of degree β > −4 have a unique homogeneous extension on R4. In view of (3.31),
this means that

∂iY − aiTY = 0 in D′(R4), i = 0, 1, 2, 3(3.32)

Fix v with |v| < 1, and construct a function χ ≡ χv ∈ C∞c (R+) (depending on v) such that

0 ≤ χ ≤ 1, χ
[0,
|v|+1
2|v| ]

= 1, supχ ⊂ [0,
1

|v|
)(3.33)

Introduce the auxilliary functions

a0i (t, x) := ai(t, x)χ
( |x|
t

)
∈M0(3.34)

a1i (t, x) := −T (a0i ) ∈M−1(3.35)

By construction, we have χ ≡ 1 on a neighborhood of 1, and therefore a0i ≡ ai on a neighborhood
of supY . We have ∂iY = aiTY = a0iTY = T (a0iY )− T (a0i )Y , and hence

∂iY = T (a0iY ) + a1iY, i = 0, 1, 2, 3(3.36)

This proves the subparagraph 1 of Lemma 3.4.

Now, let mk(t, x) ∈M−k, for k ∈ {0, 1}. Then

∂i(m
kY ) = mk∂iY + Y ∂im

k

= mk[T (a0iY )− Y T (a0i )] + Y ∂im
k

= mkT (a0iY ) + a0iY T (mk)− a0iY T (mk)−mkY T (a0i ) + Y ∂im
k

= T (mka0iY )− T (mka0i )Y + Y ∂im
k

= T (mka0iY ) + [∂im
k − T (mka0i )]Y(3.37)

Coming back to (3.20), we have that

∂2ijY = T
(
∂i(a

0
jY )

)
+ ∂i(a

1
jY )(3.38)

(3.39)

Then, applying (3.37) with m = a0j and m = a1j , we can obtain

∂2ijY =
{
T (T ([a0ja

0
i ]Y ) + [∂ia

0
j − T (a0ja

0
i )]Y )

}
+
{
T (a1ja

0
iY ) + [∂ia

1
j − T (a1ja

0
i )]Y

}
(3.40)

= T 2(a0ja
0
iY ) + T ([∂ia

0
j − T (a0ja

0
i ) + a1ja

0
i ]Y ) + [∂ia

1
j − T (a1ja

0
i )]Y(3.41)

where we read off

b0ij = a0ja
0
i(3.42)

b1ij = ∂ia
0
j − T (a0ja

0
i ) + a1ja

0
i(3.43)

b2ij = ∂ia
1
j − T (a1ja

0
i )(3.44)

This proves the subparagraph 2 of Lemma 3.4.

From (3.37), we have

M−4 3 [∂im
1 − T (m1a0i )]Y = ∂i(m

1Y )− T (m1a0iY )(3.45)
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Both m1Y and m1a0iY are in M−3, and thus they have a unique homogenous extension to R4.
It follows that the right hand side is well defined as some homogenous distribution in D′(R4),
of degree −4. The same must apply to the left hand side. Now, it suffices to apply Lemma 3.2
with p = [∂im

1 − T (m1a0i )] ∈M−2 to obtainˆ
S2

(
∂im

1 − T (m1a0i )
)
(1, ω)dσ(3.46)

This holds for any m1 ∈M−1. In particular, for m1 = a1j = −T (a0j ). This yields (3.22), proving
the subparagraph 3 of Lemma 3.4. �

When dealing with L∞-bounds extracted from (2.45,2.46), a key argument is to replace the
derivatives ν(ε ξ) ∂t + ∇x and ∇x by the derivative ∂t + ν(ε ξ) · ∇x of (2.21). This can work
because |ν(ξ)| < 1, which implies that these two derivatives are transverse to the light cone L C .
This possibility of exchanging these derivatives can be viewed as a consequence of the preceding
division lemma of [4, 27]. Define

p(t, x, ξ) :=
ν(ξ)t− x
ν(ξ) · x− t

; q(t, x, ξ) :=
1

〈ξ〉2
ν(ξ)t− x[
ν(ξ) · x− t

]2(3.47)

Remark that these two functions p(·) and q(·) are not defined on the whole time-space R4 but
they are well defined away from t = |x| = 0, that is on a neighborhood of L C .

Corollary 3.5. [First transfer of derivatives] For all ξ ∈ R3, we have

(3.48)
[
ν(ξ) ∂t +∇x

]
Y = −T (ξ)

[
p(t, x, ξ)Y

]
+ q|L C (x, ξ)Y

Proof. We can define

a0 := t(a01, a
0
2, a

0
3), a1 := t(a11, a

1
2, a

1
3)(3.49)

Fix ξ ∈ R3. Then, with v = ν(ξ) and χ ≡ χv ≡ χν(ξ), we can consider

p0(x, t, ξ) := −[va00 + a0] =
ν(ξ)t− x
ν(ξ) · x− t

χ
( |x|
t

)
, p0(·, ξ) ∈M0(3.50)

q0(x, t, ξ) := Tp0, q0(·, ξ) ∈M−1(3.51)

Using (3.36), this furnishes

[ν(ξ)∂t +∇x]Y = −T (p0Y ) + q0Y(3.52)

Because χ ≡ 1 in a neighborhood of 1, on a suitable neighborhood of supY ≡ L C , we have
p0 ≡ p and q0 ≡ q, so that p0Y ≡ pY and q0Y ≡ qY . Since the computation of qY involves a
Dirac mass without implying derivatives, as indicated in (3.48), we have qY ≡ q|L CY , with

p|L C (x, ξ) ≡ ν(ξ)|x| − x
ν(ξ) · x− |x|

, p(·, ξ)|L C ∈M0(3.53)

q|L C (x, ξ) ≡ 1

〈ξ〉2
ν(ξ)|x| − x

[ν(ξ) · x− |x|]2
, q(·, ξ)|L C ∈M−1(3.54)

Since supY ≡ L C intersects
{
ν(ξ) · x − t = 0

}
only at the origin of R4, the two distributions

pY and qY are respectively in M−2 and M−3. Thus, they can be extended uniquely as elements
of D′(R4). Now, the relation (3.52) with p0 and q0 replaced by p and q remains valid in the
sense of D′(R4). This is exactly (3.48). �

In view of (2.45, 2.46), the direction ξ is aimed to be replaced by εξ. With this in mind, define

Tε(ξ) := ∂t + ν(εξ) · ∇x(3.55)
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as well as

pε(t, x, ξ) := p(t, x, εξ) ; qε(t, x, ξ) := q|L C (x, εξ)(3.56)

a0ε(t, x, ξ) := a0(t, x, εξ) ; a1ε(t, x, ξ) := a1(t, x, εξ)(3.57)

Applying Corollary 3.5 with the parameter ξ replaced by εξ, the distribution

D ≡ D(ε, t, x, ξ) := ν(εξ)∂tY +∇xY(3.58)

is transformed into

D = −Tε(pεY ) + qεY(3.59)

Coming back to (2.45) with A0 ≡ 0 and using (3.2), it follows that

E = −
ˆ

(pεY ) ∗ Tε(f1t>0)dξ +

ˆ
(qεY ) ∗ (f1t>0)dξ(3.60)

In the same way, exploiting (3.20), we find that

B = −
ˆ

(a0εY ) ∗ Tε(f1t>0)× ν(εξ)dξ −
ˆ

(a1εY ) ∗ (f1t>0)× ν(εξ)dξ(3.61)

The right hand sides of both (3.60) and (3.61) involve only one differential action, namely Tεf .
Using (2.21), this becomes

Tεf = M ′(|ξ|)|ξ|−1ξ ·E +∇ξh(3.62)

where

h :=
1

ε2
[
ν(εξ)×Be(x)

]
f +

[
E + ν(εξ)×B)]f(3.63)

An integration by parts allows to shift the derivative ∇ξ to the weights pε(·) or a0ε(·). This
transfer is the key to L∞-bounds because it removes one derivative from f(·). It also produces
a gain of a small factor ε. By way of illustration, we consider below the case of pε(·).

Lemma 3.6. [gain of a derivative and of a small factor ε]∣∣ˆ (pεY ) ∗ ∇ξ(h1t>0)dξ
∣∣ ≤ εt

3

ˆ t

0

ˆ
‖ ∇ξp(1, ·, εξ) ‖L∞(S2)‖ h(s, ·, ξ) ‖L∞x (R3) dsdξ(3.64)

Proof. Just remark thatˆ
(pεY ) ∗ ∇ξ(h1t>0)dξ = −ε

ˆ (
∇ξp(·, εξ)Y

)
∗ (h1t>0)dξ

Like p(·, εξ), the function ∇ξp(·, εξ) is in M0 near the cone L C . To recover (3.64), it suffices
to apply Lemma 3.1. �

The factor ε appearing in (3.64) turns out to be crucial in several places. It can potentially absorb
the singular factor ε−1 involved by h(·). Another way to proceed, which ultimately amounts to
the same thing but which would appear more intrinsic, is to filter the Vlasov equation. This
particular method is selected in the next subsection.

3.4. Second transfer of derivatives. Introduce the approximated flow that is the flow which
is associated with the left part of the transport equation (2.21). Define

Ẋ = ν(εΞ) , X(0) = x(3.65)

Ξ̇ = −ε−2ν(εΞ) ∧Be(X) , Ξ(0) = ξ(3.66)

The functions X(·) and Ξ(·) depend on the parameter ε ∈ ]0, 1], on the time t ∈ R+, on the
initial position x ∈ R3, and on the initial velocity ξ ∈ R3. They can be denoted by X(ε; t, x, ξ)
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and Ξ(ε; t, x, ξ). Sometimes, as in the case of f(·), the dependence on ε will not be marked.
Also, in many occasions, we will simply use X(t, ·) and Ξ(t, ·). The flow

F : (s, y, η) 7−→ (t, x, ξ) :=
(
s,Fs(y, η)

)
; Fs(y, η) :=

(
X(s, y, η),Ξ(s, y, η)

)
(3.67)

is a diffeomorphism from R× R3 × R3 onto itself. From (3.66), we easily get |Ξ(ε; t, x, ξ)| = |ξ|
for all t ∈ R. Looking at (3.65,3.66), this means that the solution (X,Ξ)(·) remains in a compact
set of R3×R3, and therefore it is globally defined in time. For times t ∼ 1, the flow F(·) involves
oscillations at the frequency ε−1, and the main effect is a fast rotation (called gyration) around
the field lines. We refer to the article [12] for a precise description of the flow (X,Ξ)(·) when
the magnetic field Be(·) points in a fixed direction like in (4.62), and to [6, 7] for more general
studies adapted to magnetospheres and tokamaks.

In what follows, our aim is to apply a sort of filtering method to get rid at the level of (2.21)
or (3.66) of the singular factor ε−2ν(εξ) = ε−1〈εξ〉−1ξ = O(ε−1), which can affect the local
existence on a uniform time. In practice, this means to follow the particles along the oscillating
trajectories associated to (3.65,3.66). This can be done by replacing f(·) into g(·) as indicated
below

g(s, y, η) := f ◦ F(s, y, η) := f
(
s,X(s, y, η),Ξ(s, y, η)

)
(3.68)

f(t, x, ξ) := g ◦ F−1(t, x, ξ) := g
(
t,X(−t, x, ξ),Ξ(−t, x, ξ)

)
(3.69)

Formulated in terms of g(·), the VW system (2.21,2.41) becomes (in conservative form)

�t,x u(t, x, ξ) =− g
(
t,X(−t, x, ξ),Ξ(−t, x, ξ)

)
(3.70)

∂tg(t, x, ξ) = + |ξ|−1M ′(|ξ|) Ξ(t, x, ξ) ·E
(
t,X(t, x, ξ)

)
(3.71)

+
{
∇ξ ·

[
(E + ν ∧B)f

]}(
t,X(t, x, ξ),Ξ(t, x, ξ)

)
The initial data g|t=0 and u|t=0 are as in (2.47,2.42). In particular, we still have g|t=0 ≡ f in. On
the other hand, the two identities (2.45) and (2.46) remain unchanged.

Lemma 3.7. [Interpretation of E in terms of g] With D as in (3.58), the electric field E can
be expressed according to

E(t, x) = 〈(D ⊗ 1ξ) ◦ τt,x ◦ S ◦ F , (g1s>0)〉(3.72)

where τt,x and S are the following time-space translation and symmetry

τt,x : (s, y) 7−→ (s+ t, y + x) ; S : (s, y) 7−→ (−s,−y)(3.73)

whereas the brackets 〈·, ·〉 must be understood as an extension of the duality in D′(R4
t,x × R3

ξ).

Proof. Introduce the abbreviated notation f̃ := f1t>0. The pullback F−1∗ (f̃) of the generalized

”test function” f̃ is as usual (see Definition 3.4.18 in [18]) given by

F−1∗ (f̃) := f̃ ◦ F
∣∣det(DF−1) ◦ F

∣∣−1(3.74)

Similarly, we can define (τt,x)∗(f̃) and S∗(f̃). Taking into account (3.58), the formula (2.45) can
be written as

E(t, x) =

ˆ
D ∗ f̃dξ =

ˆ
〈D, f̃(t− s, x− y, ξ)〉dξ(3.75)

=
〈
D ⊗ 1ξ, f̃(t− ·, x− ·, ·)

〉
=
〈
D ⊗ 1ξ, (τt,x)∗ ◦ S∗(f̃)

〉
=
〈
(D ⊗ 1ξ) ◦ τt,x ◦ S, f̃

〉
The precise meaning of the above brackets 〈·, ·〉 results from Subsections 3.1 and 3.3, see for
instance (3.10). In fact, this can be viewed as some usual integral on R× S2 × R3. We have

E(t, x) = 〈(D ⊗ 1ξ) ◦ τt,x ◦ S ◦ F ◦ F−1, f̃〉(3.76)

= 〈(D ⊗ 1ξ) ◦ τt,x ◦ S ◦ F,F−1∗ (f̃)〉
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Recall that Fs is, for all s, a measure preserving C1-diffeomorphism on R3 × R3. This remark
is crucial. Combined with (3.68), it implies that F−1∗ (f̃) ≡ g1s>0. The result (3.72) becomes a
consequence of (3.76). �

Introduce the auxiliary functions

K1
ε (t, x, ξ) := 〈εξ〉−1

[
ξ ∧Be(x)

]
(3.77)

K2
ε (t, x, ξ) := ∇ξp(t, x, εξ)(3.78)

At the level of (3.72), replace D as indicated in (3.59). Now, the purpose is to pass from the
derivative Tε(pε Y ) to the derivative ∂s of some expression plus some contribution of order zero.
The interest of doing this is that ∂s is on the left. This will allow to perform inside (3.72) a
time integration by parts, while ∂sg is a ”good” derivative since the right hand side of (3.71),
in contrast with (2.21), does not contain the singular factor ε−2.

Lemma 3.8. [Second transfer of derivatives] With pε, qε, K
1
ε and K2

ε as in (3.56), (3.77) and
(3.78), we have

[D ⊗ 1ξ] ◦ τt,x ◦ S ◦ F = D1 +D2 +D3(3.79)

with

D1 := ∂s
[
(pεY ⊗ 1ξ) ◦ τt,x ◦ S ◦ F

]
(3.80)

D2 := (qεY ⊗ 1ξ) ◦ τt,x ◦ S ◦ F(3.81)

D3 := (K1
ε ◦ F) ·

[
(Y K2

ε ⊗ 1ξ) ◦ τt,x ◦ S ◦ F
]

(3.82)

Proof. By construction, given a locally integrable function ψ(t, x, ξ), we have

ψ ◦ τt,x ◦ S ◦ F(s, y, η) = ψ
(
t− s, x−X(s, y, η),Ξ(s, y, η)

)
(3.83)

By testing (3.79) against a test function g(·) which is compactly supported in ξ, we can always
work with ξ bounded. On the other hand, knowing that D is as in the right hand side of (3.59),
the formula (3.79) is issued from the properties of the weight pε and of the flow F. It does
not depend on the special structure of the distribution Y . It remains true for any smooth test
function Y(t, x) whose support is conveniently localized to allow a multiplication by pε or by qε.
In other words, the support of Y must be contained in a neighborhood of L C , that is away from
the origin and away from the singular set

{
(t, x); ν(εξ) · x− t = 0

}
. It suffices to show (3.79) in

the case of such functions Y. Then, a density argument gives (3.79) for distributions like Y . The
smoothness of Y allows to exploit (3.83), and then to apply the chain rule as indicated below

∂s
[
pε
(
t− s, x−X(s, y, η),Ξ(s)

)
Y
(
t− s, x−X(s, y, η)

)
⊗ 1η

]
= ∂s

[
pε
(
t− s, x−X(s, y, η),Ξ(s)

)]
×
[
Y
(
t− s, x−X(s, y, η)

)
⊗ 1η

]
− pε

(
t− s, x−X(s, y, η),Ξ(s)

)
×
[
Tε
(
Ξ(s)

)
Y
(
t− s, x−X(s, y, η)

)
⊗ 1η

]
In the last line, we can commute the multiplication by pε with the derivative Tε. The extra terms
that are produced are compensated by terms coming from the second line. There remains

∂s
[
pε
(
t− s, x−X(s, y, η),Ξ(s)

)
Y
(
t− s, x−X(s, y, η)

)
⊗ 1η

]
=
[
εΞ̇ · ∇ξp

(
t− s, x−X(s, y, η), εΞ(s)

)]
×
[
Y
(
t− s, x−X(s, y, η)

)
⊗ 1η

]
−Tε

(
Ξ(s)

){
pε
(
t− s, x−X(s, y, η),Ξ(s)

)
×
[
Y
(
t− s, x−X(s, y, η)

)
⊗ 1η

]}
With (2.3) and (3.66), we find εΞ̇ = −K1

ε ◦ F. Since p(t, x, ·) is not only a function of |ξ|, we
have K1

ε ·K2
ε 6≡ 0. This means that the expression which inside (3.79) involves the functions K∗ε

does contribute. The weight K1
ε (·) is, on the compact sets of R3 ×R3, uniformly bounded with

respect to ε ∈ (0, 1]. This is due to a compensation between the factor ε put in front of ξ inside
pε (and issued from the cold assumption) and the singular factor ε−1 coming from (3.66). This
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would not be verified in the hot case, that is if ε ξ would be replaced by ξ. Now, coming back
to (3.59), we can deduce (3.79). �

In view of Lemmas 3.7 and 3.8, we have

E = E1 + E2 + E3 ; Ei(t, x) =
〈
Di, (g1s>0)

〉
(3.84)

4. Well-posedness of the Cauchy problem

After a presentation in Subsection 4.1 of the functional framework, this section addresses the
questions raised in Paragraph 2.1.4: uniform control in the sup norm in Subsection 4.2 and
Lipschitz estimates in Subsection 4.3.

4.1. The functional framework. Fix an initial condition U in(·) satisfying (2.26). As was
explained in Paragraph 2.43, the introduction of a potential A0(·) satisfying (2.43) allows to
absorb Ein and Bin. This is why, from now on, we will work with Ein ≡ 0 and Bin ≡ 0, while
the initial condition f in is aimed to vary.

With such U in = (f in, 0, 0), we can associate some initial data to the RVM system, as indicated
in (2.17,2.18,2.19). Under Assumption 2.4, it is a well known fact [16, 28] that a classical solution
U = (f,E,B) exists on a time interval [0,Tε) with Tε ∈ R∗+. Let Tε be the maximal time Tε

that can be obtained by this way. The maximum time Tε is called the lifespan of the solution.
As a consequence of [16, 28], the time Tε can be bounded below by a constant δε ∈ R∗+ that

depends only on the Lipschitz norm of f in.

Interpreted according to (2.20) in terms of U = (f,E,B), these results also furnish on [0, Tε)
the local existence in time and the uniqueness of a classical solution to the MRVM system. For
all ε ∈]0, 1] and all time t ∈ [0, Tε), with X defined as in (2.33), there is a solution operator

Stε : X −→ X
U in 7−→ Stε(U

in) := U(t, ·) = (f,E,B)(t, ·)

By this way, we recover families of solutions
(
Sε(U

in)
)
ε

depending on the choice of ε and U in. In
Paragraphs 4.1.1 and 4.1.2, we introduce definitions allowing to describe precisely what happens.

4.1.1. Norms, bounded families and prepared data. Different norms can be put on X , like

N (U) := ‖ f ‖L∞x,ξ + ‖ (E,B) ‖L∞x(4.1)

N 1
1 (U) := ‖ f ‖L∞x,ξ + ‖ (E,B) ‖L∞x + ‖ ∇x,ξf ‖L∞x,ξ + ‖ ∇x(E,B) ‖L∞x(4.2)

The norm N is just the sup norm on L∞; the norm N 1
1 is the usual Lipschitz norm on W 1,∞.

Solving the MRVM system for all ε ∈]0, 1] for a fixed initial condition U in generates a family of
solutions (Uε)ε. Accordingly, we can introduce on X families of norms indexed by ε. Typically,
we can consider

N 1
ε (U) := ‖ f ‖L∞x,ξ + ‖ (E,B) ‖L∞x(4.3)

+ ‖ ε∇xf ‖L∞x,ξ + ‖ ∇ξf ‖L∞x,ξ + ‖ ε∇x(E,B) ‖L∞x
When computing N 1

ε (U), there is a difference of treatment between derivatives with respect
to x and ξ. Precisely, the use of N 1

ε is a way to change how the functions are asymptotically
evaluated when ε goes to zero. Obviously, we have

∀ε ∈]0, 1], N (U) ≤ N 1
ε (U) ≤ N 1

1 (U) ; X 1
1 ↪→ X 1

ε ↪→ X(4.4)

We can look at X as a normed space equipped with the sup norm. We can also define X 1
1 and

X 1
ε as the Banach spaces obtained by looking at X respectively with the norms N 1

1 and N 1
ε . We

denote by X ? with ? ∈ { , 11, 1ε} the functional space X equipped with the norm N ?. To study
the MRVM system, the sole estimation of N ?(U) does not suffice. It must be completed with a
control on the momentum support. This motivates the following notion of bounded set.
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Definition 4.1 (bounded set on X ?). A family of subsets (Bε)ε with ε ∈]0, 1] and Bε ⊂ X is
said to be bounded according to X ? with ? ∈ { , 11, 1ε} if:

(a) There exists a constant C ∈ R∗+ such that

∀(ε,U) ∈]0, 1]×Bε,
{
N ?(U) ≤ C if ? ∈ { , 11},
N 1
ε (U) ≤ C if ? ≡ 1

ε.
(4.5)

(b) There exists (Rin, Rin) ∈ (R∗+)2 such that (2.29) is verified for all (ε,U) ∈]0, 1]×Bε. ◦

By extension, we say that B is bounded in X ? if the stationary family (Bε)ε with Bε = B is
bounded according to X ?. Accordingly, a set B is bounded according to X 1

ε when all elements
of B satisfy (2.29) for some (Rin, Rin) ∈ (R∗+)2, and when

∃C ∈ R∗+; ∀(ε,U) ∈]0, 1]×B, N 1
ε (U) ≤ C(4.6)

In view of (4.4), this is equivalent to

∃C ∈ R∗+; ∀U ∈ B, N 1
1 (U) ≤ C(4.7)

which means that B is bounded according to X 1
1 . Thus, for a fixed B, the notions of boundedness

in X 1
ε and X 1

1 coincide. But, when B does depend on ε, they can differ. An interesting situation
is when Bε is given by a singleton, typically when Bε ≡ {Uε} where Uε is a solution to the
MRVM system. In this case, we say that a family of functions (Uε)ε with ε ∈]0, 1] and Uε ∈ X
is bounded on X ? when the family of unit sets

(
{Uε}

)
ε

is bounded according to X ?. For the

choice ? ≡ 1
ε, this amounts to the same thing as

∃C ∈ R∗+; ∀ε ∈]0, 1], N 1
ε (Uε) ≤ C(4.8)

The time derivative is not estimated when computing the weighted Lipschitz norm N 1
ε (Uε) of

a solution to the MRVM system. But, as this will be seen in Paragraph 4.3.1, it is deeply
linked to spatial derivatives of Uε, and of the same size. Then, in view of (1.6), the following
supplementary condition seems to be necessary to get families (Uε)ε of solutions to the MRVM
system that could be bounded in X 1

1 .

Definition 4.2 (prepared data). A family of subsets (Bε)ε with ε ∈]0, 1] and Bε ⊂ X is said to
be prepared if:

(a) The family (Bε)ε is bounded according to X 1
1 .

(b) There exists a constant C ∈ R∗+ such that

∀ε ∈]0, 1], ∀U = (f,E,B) ∈ Bε, ‖ [ξ ×Be(x)] · ∇ξf ‖L∞x,ξ≤ Cε(4.9)

In particular, a family (Uε)ε with ε ∈]0, 1] and Uε = (fε,Eε,Bε) ∈ X is said to be prepared if,
viewed as the family of unit sets ({Uε})ε, it is prepared. ◦

When (fε)ε is stationnary, with fε ≡ f for all ε, the condition (4.9) is the same as

[ξ ×Be(x)] · ∇ξf = 0(4.10)

Given ε0 ∈]0, 1] and a family (Bε)ε that is bounded in X 1
ε , we can define the finite bound

δ∞1 (ε0) ≡ δ∞1
(
(Bε)ε, ε0

)
:= sup

ε∈]0,ε0]
sup
U∈Bε

N 1
ε (U) < +∞(4.11)

4.1.2. Different notions of local well-posedness. There exists many different ways of defining
what is a well-posed Cauchy problem, see for instance [13]. In below, we introduce definitions
that seem to be particularly adapted to the MRVM framework.

Definition 4.3 (conditional local well-posedness in X ?). We say that the Cauchy problem for
the MRVM system is locally well-posed with uniform bounds in X ? if, for every family (Bε)ε of
bounded subsets in X 1

ε , there exists a time T ∈ R∗+ such that:
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(i) The family of mappings (Sε)ε is uniformly bounded. More precisely, we can find a modulus
of continuity ω : R+ → R+ and a constant C ∈ R∗+ such that

∀(ε,U in, t) ∈]0, 1]×Bε ×
[
0,min(Tε, T )

)
, N ?

(
Stε(U

in)
)
≤ ω

(
N ?(U in)

)
≤ C(4.12)

(ii) The continuation criterion on the momentum support is preserved in the following sense.
We can find a bounded function R(·) ∈ L∞([0, T ]) such that, for all ε ∈]0, 1] and for all
initial data U in ∈ Bε, the solution Uε = (fε,Eε,Bε) to the MRVM system is satisfying

∀t ∈
[
0,min(Tε, T )

)
, sup fε(t, ·) ⊂

{
(x, ξ) ; |x| ≤ Rin + t , |ξ| ≤ R(t)

}
(4.13)

where R(·) is some nondecreasing function on R+. ◦

In what follows, we will use (4.13) with R(t) = Rini + w(δ∞0 ) and δ∞0 given by (4.47). Applied
in the case of X , Definition 4.3 furnishes uniform bounds in the sup norm, while involving some
regularity assumption. Indeed, the family (Bε)ε is a priori assumed to be bounded in X 1

ε . When
dealing with X 1

ε , keep in mind that N ? must be replaced by N 1
ε at the level of (4.12). In both

cases, Definition 4.3 imposes (L∞ or Lipschitz) uniform bounds on the time interval [0, Tε) of
existence. But there is no condition (especially no uniform minoration) on Tε. This other aspect
is taken into account below.

Definition 4.4 (uniform local well-posedness). We say that the Cauchy problem for the MRVM
system is uniformly locally well-posed if, for every family (Bε)ε of bounded subsets in X 1

ε , there
exists a time T ∈ R∗+ such that:

(i) For all ε ∈]0, 1] and for all initial condition U in ∈ Bε, the MRVM system has a unique
solution Uε(·) which is defined on [0, T ], and which satisfies

Uε(·) ∈ C
(
[0, T ];X

)
; Uε|t=0 = U in ∈ Bε(4.14)

(ii) The Cauchy problem is locally well-posed with uniform bounds in X 1
ε . ◦

Paragraph (i) of Definition 4.4 ensures the existence of some T ∈ R∗+ such that 0 < T ≤ Tε
for all ε ∈]0, 1]. Then, Paragraph (ii) furnishes the validity of (4.12) and (4.13) on [0, T ], for a
possibly smaller T ∈ R∗+. Now, it is expected that the life span Tε becomes larger as the initial
condition gets smaller. This prediction can be formalized as indicated below.

Definition 4.5 (uniform long time well-posedness for small data). We say that the Cauchy
problem for the MRVM system is for small data uniformly well-posed for a long time when, for
all T ∈ R∗+, we can find ε0 ∈]0, 1] and δ∞1 ∈]0, 1] such that, for all family (Bε)ε satisfying (4.11)
with δ∞1 (ε0) < δ∞1 , the following holds true:

(i) For all ε ∈]0, ε0] and for all initial condition U in ∈ Bε, the MRVM system has a unique
solution Uε(·) which is defined on [0, T ] satisfying (4.14).

(ii) The family of mappings {Sε}ε is uniformly bounded. More precisely, we can find a modulus
of continuity ω : R+ → R+ and a constant C ∈ R∗+ such that

∀(ε,U in, t) ∈]0, ε0]×Bε × [0, T ], N
(
Stε(U

in)
)
≤ ω

(
N (U in)

)
≤ C(4.15)

(iii) The continuation criterion on the momentum support is preserved on [0, T ]. ◦

In Subsections 4.2 and 4.3, we will progressively consider situations where X ? is equal to X , X 1
ε

and finally X 1
1 .

4.2. Uniform estimates in the sup norm. We define on L∞
(
[0, t];X

)
the following norms

Nt(f) := sup
0≤s≤t

||f(s, ·, ·)||L∞x,ξ ; Nt(E,B) := sup
0≤s≤t

||(E,B)(s, ·)||L∞x(4.16)

as well as

Nt ≡ Nt(U) ≡ Nt(f,E,B) := Nt(f) +Nt(E,B)(4.17)
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Norms related to Lqξ(L
p
x) or Lpx(Lqξ) are commonly used in kinetic equations. As noted in [31], a

control of the density f(·) in L∞x (L1
ξ) can serve as a substitute for the Glassey-Strauss criterion

of explosion concerning the RVM system. The corresponding techniques can be exploited as
long as there is no sign change at the level of f(·).
But this approach is not at all adapted to the actual framework. As a matter of fact, when
dealing with the MRVM system, there is no sign condition on f(·). This is why, as in [16], we
will work with the L∞x,ξ-norm and with the usual support momentum condition on f(·). A key
statement is the following.

Proposition 4.6. [local uniform bounds in the sup norm] The Cauchy problem for the MRVM
system is locally well-posed with uniform bounds in X (in the sense of Definition 4.3).

The proof will be achieved in three steps. In Subsection 4.2.1, we control f . In Subsection 4.2.2,
we control (E,B). Then, in Subsection 4.2.3, we show Proposition 4.6.

4.2.1. L∞-bounds on the density. First, observe that the amplitude of f(·) can indeed increase,
due to the source term ξ ·E inside (2.21). But this remains under control.

Lemma 4.7 (control of f in sup norm). Select a function f in(·) satisfying Assumption 2.4 and
a bounded field (E,B)(·) ∈ C1([0, T ]×R3×R3). Then, the transport equation (2.21) with initial
condition f in(·) has a C1-solution f(·) on [0, T ], which is subjected to

∀t ∈ [0, T ], Nt(f) ≤ N0(f) + ||M ′||L∞ξ

ˆ t

0
Ns(E,B)ds(4.18)

Proof. The complete characteristic curves (X,Ξ) associated with (2.21) can be obtained by
integrating the following dynamical system

Ẋ = ν(εΞ), X(0, x, ξ) = x(4.19)

Ξ̇ = −ε−2ν(εΞ)×Be(X)−E(t,X)− ν(εΞ)×B(t,X), Ξ(0, x, ξ) = ξ(4.20)

The C1-regularity hypothesis made on E and B in Lemma 4.7 guarantees the local existence of
C1-solutions to (4.19,4.20), at least up to a stopping time T ∗ ≤ T . Looking at (4.19,4.24), it is
easy to infer that

|Ẋ| ≤ 1 ; |Ξ · Ξ̇| ≤ |E ·Ξ|(4.21)

from which we can deduce that

|x| ≤ Rin =⇒ ∀t ∈ [0, T ∗), |X(t, x, ξ)| ≤ Rin + t(4.22)

|ξ| ≤ Rin =⇒ ∀t ∈ [0, T ∗), |Ξ(t, x, ξ)| ≤ Rin + 2

ˆ t

0
Ns(E,B)ds(4.23)

Starting from (x, ξ) ∈ R3 × R3, the solution (X,Ξ)(·, x, ξ) does not leave on [0, T ∗) some well
chosen compact subset, so that T ∗ = T . There is therefore on [0, T ] an associated flow

F : (s, y, η) 7−→ (t, x, ξ) :=
(
s,Fs(y, η)

)
; Fs(y, η) :=

(
X(ε; s, y, η), Ξ(ε; s, y, η)

)
(4.24)

which is area preserving, and which should not be confused with the approximated flow F(·)
defined by (3.65,3.66). Solving (2.21) on [0, T ) by integration along the complete characteristics
gives rise to the following C1-solution

f(t, x, ξ) = f in
(
X(−t, x, ξ), Ξ(−t, x, ξ)

)
(4.25)

+

ˆ t

0

(
M ′(|Ξ|)Ξ ·E

|Ξ|

)(
s,X(s− t, x, ξ), Ξ(s− t, x, ξ)

)
ds

which leads directly to (4.18). �
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4.2.2. L∞-bounds on the fields. Next, we consider the fields E and B. To this end, as indicated
in Subsection 2.2, we can interpret the MRVM system as a VW system in order to use (2.45,2.46)
with A0 ≡ 0, or (3.60,3.61), or other identities established in Section 3.

Lemma 4.8 (control of E and B in sup norm). Any classical C1-solution (f,E,B) satisfying
the MRVM system on [0, T ] as well as the momentum support condition

∃R∞ ∈ [1,+∞[ ; ∀t ∈ [0, T ], sup f(t, ·) ⊂
{

(x, ξ) ; |ξ| ≤ R∞
}

(4.26)

is, for all t ∈ [0, T ], satisfying

Nt(E,B) ≤ Cc(R∞)
[
tN0(f) +

(
c(R∞)(t+ (R∞)3 + t(R∞)4

) ˆ t

0
Nsds(4.27)

+ εtc(R∞)(R∞)3
ˆ t

0
N 2
s ds
]

Proof. We start by estimating the electric field E. To this end, we can exploit (3.84), where
the distributions Di are given by (3.80,3.81,3.82). We first study E1. After one integration by
parts with respect to the time variable s, we find

E1 =−
ˆ ˆ

pε
(
t− 0, x−X(0, y, η),Ξ(0, y, η)

)
Y
(
t− 0, x−X(0, y, η)

)
g(0, y, η)dydη

−
ˆ t

0

ˆ ˆ
pε
(
t− s, x−X(s, y, η),Ξ(s, y, η)

)
Y
(
t− s, x−X(s, y, η)

)
∂sg(s, y, η)dsdydη

In the above line, replace ∂sg as indicated in (3.71). Then, make the change of variables based
on the approximated flow Fs(·) defined in (3.67). As already noted, this is (for all s) area
preserving. To avoid confusions, introduce the notations

(y′, η′) :=
(
X(s, y, η),Ξ(s, y, η)

)
By this way, we find that E1 = E1,1 + E1,2 + E1,3 with

E1,1 := −
ˆ ˆ

pε(t, x− y, η)Y (t, x− y)f in(y, η)dydη(4.28)

E1,2 := −
ˆ t

0

ˆ ˆ
pε(t− s, x− y′, η′)Y (t− s, x− y′)M ′(|η′|) η

′

|η′|
·E(s, y′)dsdy′dη′(4.29)

E1,3 := −
ˆ t

0

ˆ ˆ
pε
(
t− s, x− y′, η′

)
Y (t− s, x− y′)(4.30)

×∇η′ ·
[(
E(s, y′) + ν(εη′)×B(s, y′)

)
f
]
dsdy′dη′

In (4.28), there is no time integration. Thus, we cannot directly apply Lemma 3.1. But we can
proceed as in the proof of Lemma 3.1 to obtain

E1,1(t, x) = −
ˆ ˆ

S2
pε(1, ω, η)

1t>0

4π
f in(x− tω, η)tdσdη(4.31)

With Rin as in (2.29), we have Rin ≤ R∞ < +∞. By Assumption 2.4, we know that

|η| ≥ Rin =⇒ f in(·, η) ≡ 0(4.32)

In view of (4.31) and (4.32), we have

|E1,1(t, x)| ≤ |S
2|

4π

ˆ
|η|≤Rin

||pε(1, ·, η)||L∞(S2)||f in(·, η)||L∞x tdη(4.33)

On the other hand, for all ε ∈]0, 1] and |η| ≤ R∞, we find that

1

|ν(εη) · ω − 1|
≤ c(R∞) :=

√
1 + (R∞)2√

1 + (R∞)2 −R∞
< +∞(4.34)
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It follows that

||pε(1, ·, η)||L∞(S2) ≤ 2c(R∞)(4.35)

and therefore

|E1,1(t, x)| ≤ 8π

9
(Rin)3c(R∞)tN0(f)(4.36)

Look at the part E1,2 given by (4.29). Knowing that pε(·, η′) ∈ M0, we can apply Lemma 3.1
with m = 0 to find

|E1,2(t, x)| ≤ t

3

ˆ t

0

ˆ
||pε(1, ·, η′)||L∞(S2)|M ′(|η′|)|Ns(E,B)dsdη′(4.37)

where we used the convention (2.13). With (4.35), there remains

|E1,2(t, x)| ≤ 2t

3
c(R∞)||M ′||1

ˆ t

0
Ns(E,B)ds(4.38)

Now, consider the quantity E1,3 given by (4.30). Exploit Lemma 3.6 to extract

|E1,3(t, x)| ≤ εt

3

ˆ t

0

ˆ
||∇ξp(1, ·, εη′)||L∞(S2)||

[
E(s, ·) + ν(εη′)×B(s, ·)

]
f(s, ·, η′)||L∞x dsdη

′

From the definition (3.47) of p, we can compute ∇ξp(·) and use (4.34) to obtain

|η′| ≤ R∞ =⇒ ||∇ξp(1, ·, εη′)||L∞(S2) ≤ 8c(R∞)2(4.39)

Then, using the key information (4.26), there remains a quadratic form in (E,B) and f , namely

|E1,3(t, x)| ≤ 8εt

3
c(R∞)2

ˆ t

0

ˆ
|η′|≤R∞

Ns(E,B)Ns(f)dsdη′(4.40)

≤ 32εt

9
πc(R∞)2(R∞)3

ˆ t

0
Ns(E,B)Ns(f)ds(4.41)

Combining (4.36), (4.38) and (4.41), we find

|E1(t, x)| ≤ Cc(R∞)t
[
N0(f) + c(R∞)

ˆ t

0
Ns(E,B)ds(4.42)

+ εc(R∞)(R∞)3
ˆ t

0
Ns(E,B)Ns(f)ds

]
The quantity E2 is given by (3.84) with D2 as in (3.81). The preceding strategy gives rise to

E2 =

ˆ t

0

ˆ ˆ
qε
(
t− s, x−X(s, y, η),Ξ(s, y, η)

)
Y
(
t− s, x−X(s, y, η)

)
g(s, y, η)

=

ˆ t

0

ˆ ˆ
qε(t− s, x− y′, η′)Y

(
t− s, x− y′)f(s, y′, η′)dsdy′dη′

Since qε ∈M−1, Lemma 3.1 with m = −1 furnishes

|E2(t, x)| ≤ 1

3

ˆ t

0

ˆ
|η′|≤R∞

||qε(1, ·, η′)||L∞(S2)||f(s, ·, η′)||L∞x dsdη
′(4.43)

From the definition (4.34) of q, we can deduce

|η′| ≤ R∞ =⇒ ||qε(1, ·, η′)||L∞(S2) ≤ 2c(R∞)2

It follows that

|E2(t, x)| ≤ 8π

9
c(R∞)2(R∞)3

ˆ t

0
Ns(f)ds(4.44)
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The part E3 is defined by (3.84) with D3 as in (3.82). For the same reasons as above, we find

E3 =

ˆ t

0

ˆ ˆ
(K1

ε ·K2
ε )(t− s, x− y′, η′)Y

(
t− s, x− y′)f(s, y′, η′)dsdy′dη′

The two auxiliary functions K1
ε (·) and K2

ε (·) are given by (3.77) and (3.78). For |ξ| ≤ R∞, we
have |K1

ε | ≤ CR∞ uniformly in ε, t and x. On the other hand, the function K2
ε (·, ξ) ≡ ∇ξp(·, εξ)

is (near the cone L C ) in M0. It can be estimated exactly as in (4.39). This time, Lemma 3.1
applied with m = 0 leads to

|E3(t, x)| ≤ Ctc(R∞)2(R∞)4
ˆ t

0
Ns(f)ds(4.45)

Finally, combining (4.42), (4.44) and (4.45), we find

|E(t, x)| ≤Cc(R∞)
[
tN0(f) + tc(R∞)

ˆ t

0
Ns(E,B)ds+ c(R∞)(R∞)3

ˆ t

0
Ns(f)ds(4.46)

+ tc(R∞)(R∞)4
ˆ t

0
Ns(f)ds+ εtc(R∞)(R∞)3

ˆ t

0
Ns(E,B)Ns(f)ds

]
It remains to consider the expression B which is determined by (3.61). The discussion is exactly
as above. It suffices to replace pε and qε by the functions a0ε and a1ε of (3.57), where a0 and a1

are as in (3.34,3.35), whereas a0 and a1 are given by (3.25). The expressions a0ε and a1ε satisfy
the same features as pε and qε. Like pε and qε, they belong respectively to M0 and M−1. As a
consequence, the bound on |B(t, x)| is the same as in the right hand side of (4.46), and therefore,
with Nt as in (4.17), we can retain (4.27). �

4.2.3. Proof of Proposition 4.6. Consider a family (Bε)ε of bounded subsets in X 1
ε . We can find

some δ∞0 ∈ R∗+ such that

sup
ε∈]0,1]

sup
U∈Bε

N (U) < δ∞0 < +∞(4.47)

Fix some T ∈ R∗+. The matter is to show the subparagraphs (i) and (ii) of Definition 4.3. As
already explained, under Assumption 2.4, there exists a unique classical solution to the MRVM
system. This solution is defined on a time interval [0, Tε) with 0 < Tε. For the moment, select
some R∞ > Rin. Define Tε as the maximal time inside

[
0,min(T, Tε)

]
such that (4.13) is verified

with R(·) ≡ R∞ on [0, Tε). By the continuity of the flow, we have 0 < Tε ≤ T and

∀t ∈ [0, Tε), sup f(t, ·) ⊂
{

(x, ξ) ; |x| ≤ Rin + t , |ξ| ≤ R∞
}

(4.48)

In view of (4.48), for t ∈ [0, Tε), we can apply Lemmas 4.7 and 4.8. Adding (4.18) and (4.27),
we can easily see that, for all t ∈ [0, Tε), we have

Nt ≤ α+ C

ˆ t

0
g(Ns)ds, g(z) := α+ βz + εγz2(4.49)

where g ≡ gε,α,β,γ depends on parameters α, β and γ given by

0 ≤ α ≡ α(R∞, f in) := c(R∞)N (f in) < α∞ := c(R∞)δ∞0(4.50)

1 ≤ β ≡ β(R∞, T ) := 1 + c(R∞)2
[
T + (R∞)3 + T (R∞)4

]
(4.51)

1 ≤ γ ≡ γ(R∞, T ) := 1 + Tc(R∞)2(R∞)3(4.52)

The function g(·) is positive and nondecreasing on [0,+∞[. It is therefore compatible with non
linear extensions of Grönwall’s inequalities [23]. Define

G(λ) ≡ Gε,α,β,γ(λ) :=

ˆ λ

√
α

dz

g(z)
; G(+∞) :=

ˆ +∞

√
α

dz

g(z)
< +∞(4.53)
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The function G(·) is positive on the interval [0,
√
α[. It is nondecreasing on ]0,+∞[ onto the

interval ]G(0), G(+∞)[. By construction, we have G(
√
α) = 0. As a result, the Bihari-Lasalle

inequality can be applied as long as the time t is bounded according to

0 ≤ Ct < G(+∞)−G(α) =

ˆ +∞

α

dz

g(z)
(4.54)

In view of (4.50), it suffices to adjust t in such a way that

0 ≤ Ct ≤ T (α∞, R∞, T ) :=

ˆ +∞

α

dz

α∞ + βz + γz2
(4.55)

The continuous function T (α∞, R∞, ·) is decreasing on [0,+∞[ with

0 < T (α∞, R∞, 0) ; lim
T→+∞

T (α∞, R∞, T ) = 0

The choice of T can now be optimized by adjusting T in such a way that T ≡ T = T(α∞, R∞)
with CT = T (α∞, R∞,T). Up to the time Tε ≤ T, the Bihari-Lasalle inequality can be applied
with g1,α,β,γ(·) ≥ gε,α,β,γ(·) in place of gε,α,β,γ(·) to obtain

∀t ∈ [0, Tε), Nt ≤ ω(α) ≡ ωβ,γ(α) := G−11,α,β,γ

(
G1,α,β,γ(α) + CT

)
(4.56)

where C is the constant coming from (4.49). The above function ω(·) is clearly continuous,
positive and nondecreasing on [0,+∞[. On the other hand, remark that

G1,α,β,γ(α) = −
ˆ 1/

√
α

1

dz

1 + βz + γαz2
≤ −
ˆ 1/

√
α

1

dz

1 + γ + βz

≤ 1

2β
lnα+

1

β
ln(1 + γ + β)

It follows that, for α0 ∈ R∗+ small enough, we have

0 ≤ α ≤ α0 =⇒ G1,α,β,γ(α) + C ≤ 0 =⇒ 0 ≤ ω(α) ≤ G−1(0) =
√
α =⇒ lim

α→0
ω(α) = 0

Thus, the function ω(·) is indeed a modulus of continuity. Looking at (4.56), we can retain that

∀t ∈ [0, Tε), Nt ≤ ω
(
N0(f)

)
≤ ωβ,γ(δ∞0 )(4.57)

Coming back to (4.23), it follows that

∀t ∈ [0, Tε), |Ξ(t)| ≤ |Ξ(0)|+ 2ωβ,γ(δ∞0 )t(4.58)

which implies that

∀t ∈ [0, Tε), sup f(t, ·) ⊂
{

(x, ξ) ; |ξ| ≤ R(t) := Rin + 2ωβ,γ(δ∞0 )t
}

(4.59)

Given δ∞0 , we can now adjust T ≡ T (δ∞0 ) in such a way that

0 < T < sup
R∞>Rin

min
(

T(α∞, R∞) ;
R∞ −Rin

2ωβ(R∞,T),γ(R∞,T)(α∞)

)
(4.60)

This guarantees the existence of some finite R∞m > Rin satisfying T < T(α∞, R∞m ) as well as

0 ≤ t ≤ T =⇒ Rin + 2ωβ(R∞,T),γ(R∞,T)(α
∞)t < R∞m(4.61)

In view of (4.59) and (4.61), as long as Tε < min(T, Tε), we can exploit (4.48) with R∞ = R∞m .
Furthermore, since the inequality inside (4.61) is strict, the control (4.48) remains true on some
extended interval [0, Tε + t̄ ) with 0 < t̄, which contradicts the preceding definition of Tε. This
means that Tε = min(T, Tε). Then, the line (4.56) gives rise to (4.12) with N ? ≡ N and ω(·) as
in (4.56). On the other hand, the line (4.59) becomes the same as (4.13). �

Proposition 4.6 furnishes no information on Tε. A main difficulty is to prove that Tε can be
bounded from below by a positive threshold T ∈ R∗+ which do not depend on ε ∈]0, 1]. To
this end, Lipschitz estimates are necessary. They are also very useful to obtain stability or
convergence results. All these aspects are investigated in the next subsection.
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4.3. Estimates in Lipschitz norm. In order to clarify expectations, in Paragraph 4.3.1, we
first examine what happens concerning a simple case.

4.3.1. A toy model. Assume for the moment that the external magnetic field Be(·) points towards
a fixed direction, say the vertical direction t(0, 0, 1), so that

Be(x) = be(x)t(0, 0, 1) ;
(
ξ ×Be(x)

)
· ∇ξ = be(x)(ξ2∂ξ1 − ξ1∂ξ2)(4.62)

Then, from the Vlasov equation (2.21), just retain the singular part, that is

∂tf−
be(x)

ε〈εξ〉
(ξ2∂ξ1 − ξ1∂ξ2)f = 0, f|t=0 = fin(4.63)

The momentum flow on R3 generated by (4.63) is made of fast rotations around the vertical axis

Ξmε (t, x, ξ) :=

 cos
(
tbe(x)/ε〈εξ〉

)
ξ1 − sin

(
tbe(x)/ε〈εξ〉

)
ξ2

sin
(
tbe(x)/ε〈εξ〉

)
ξ1 + cos

(
tbe(x)/ε〈εξ〉

)
ξ2

ξ3

(4.64)

and the solution issued from (4.63) is just

f(t, x, ξ) = fin
(
x,Ξmε (−t, x, ξ)

)
(4.65)

Introduce polar coordinates in the plane
{

(ξ1, ξ2) ∈ R2
}

, so that

(4.66) (ξ1, ξ2) = r(cos θ, sin θ), ∂θ = ξ2∂ξ1 − ξ1∂ξ2 , (r, θ) ∈ R+ × R
With this convention, we find

∂tf(t, x, ξ) =
be(x)

ε〈εξ〉
∂θf

in
(
x,Ξmε (t, x, ξ)

)
= O

(1

ε

)
(4.67)

∂if(t, x, ξ) =
t∂ibe(x)

ε〈εξ〉
∂θf

in
(
x,Ξmε (t, x, ξ)

)
= O

(1

ε

)
(4.68)

|∂ξif(t, x, ξ)| ≤‖ ∇ξf
in(x, ·) ‖L∞x,ξ= O(1)(4.69)

Fix an initial condition fin(·) satisfying Assumption 2.4. From (4.67,4.68,4.69), it can be easily
seen that

∃C ∈ R∗+; ∀(ε, t) ∈]0, 1]× R, N 1
ε

(
f(t, ·)

)
≤ C(4.70)

This basic example is very instructive. First, it clearly indicates the relevance of the norm N 1
ε .

Secondly, we can see that the family (fε)ε is bounded in X 1
1 if and only if the initial data fin(·) is

prepared in the sense of Definition 4.2, that is if we have (4.10). As this will be seen in the next
paragraphs, consideration of the MRVM system can mix things and make them more difficult,
but this does not change the above conclusions.

4.3.2. Preparation of the Vlasov equation in view of commutator estimates. To get Lipschitz
bounds on f(·), a difficulty is to commute the Vlasov part with derivatives ∂ such as ∂t, ∂xi or
∂ξi . Most complications are due to the variable coefficients (in both x and ξ) which appear at
the level of (2.21) in front of the singular factor ε−1. As a matter of fact, we find

(4.71)
[
∂ ;

1

ε2
ν(εξ)×Be(x)] · ∇ξ

]
= O

(1

ε

)
∇ξ

This information is not sufficient in view of uniform estimates. To remedy this, we will use two
types of arguments. The first (a) is adapted to spatial derivatives; the second (b) is aimed to
deal with momentum derivatives.

- (a) Straightening of the field lines. The purpose here is to recover (4.62). To this end, select
a smooth frame field O(·) such that

O : S2 −→ SO(3)
ξ 7−→

(
e1(ξ), e2(ξ), e3(ξ) := ξ

)
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In other words, the vector fields ei(·) are C∞ on the sphere S2, and we have

∀(i, j) ∈ {1, 2, 3}2, ei(ξ) · ej(ξ) = δij

Then, define

O(x) := O
(
be(x)−1Be(x)

)
= tO(x)−1, f(t, x, ξ) := f

(
t, x,O(x)ξ

)
(4.72)

The role of the orthonormal matrix O(x) is to fix the direction of Be(x) through the relation

tO(x)Be(x) = be(x)t(0, 0, 1)(4.73)

Expressed in terms of f, the transport equation (2.21) becomes

(4.74)
∂tf +

ε

〈εξ〉
O(x)ξ · ∇xf +

ε

〈εξ〉
Q(x, ξ) · ∇ξf−

be(x)

ε〈εξ〉
(ξ2∂ξ1 − ξ1∂ξ2)f

= M ′(|ξ|) O(x)ξ ·E
|ξ|

+ [tO(x)E + ν(εξ)× tO(x)B)] · ∇ξf

whereQ(x, ξ) :=
(
O(x)ξ·∇x

)
O(x)O(x)ξ is some vector valued quadratic form in ξ. In Paragraph

4.3.4, to show Proposition 4.9, we will directly commute (4.74) with ε∇t,x. In Paragraph 4.3.8,
to show Proposition 4.12, we will first divide (4.74) by be(x) and then commute (4.74) with
∇t,x. These two sorts of arguments are inspired from works in geometrical optics [25, 26].

- (b) Filtering of the equation. Inspired by (4.65), we can further replace f(·) by f(·) with

f(t, x, ξ) := f
(
t, x,Ξmε (t, x, ξ)

)
; f(t, x, ξ) := f

(
t, x,Ξmε (−t, x, ξ)

)
(4.75)

The effect of this filtering is to suppress the penalized term, while large amplitude oscillations
appear in the coefficients. More precisely, there remains

(4.76)

∂tf +
ε

〈εξ〉
O(x)ξ · ∇xf +

ε

〈εξ〉
(DξΞ

m
ε )Q(x, ξ) · ∇ξf

− 1

〈εξ〉
(DξΞ

m
ε )(εDxΞmε )O(x)ξ · ∇ξf

= M ′(|ξ|) O(x)ξ ·E
|ξ|

+ (DξΞ
m
ε )[tO(x)E + ν(εξ)× tO(x)B] · ∇ξf

where DxΞmε and DξΞ
m
ε must be evaluated at the position t, x and Ξmε (−t, x, ξ). Note that the

quantities εk∂kxi∂
l
ξj

Ξmε are, for all (k, l) ∈ N2, of size one. This means that the coefficients can

(and do) oscillate in (t, x) but not in ξ. It follows that we can commute (4.76) with ∂ξj . By this
way, we can control ∇ξf (resp. ∇ξf) in terms of ε∇xf (resp. ε∇xf).
Another way to proceed is to express (4.74) in cylindrical coordinates, with (ξ1, ξ2) as in (4.66)
and the direction of ξ3 as a vertical axis. Since ∂θ = ξ2∂ξ1 − ξ1∂ξ2 , the effect is to remove the
dependence on ξ in the coefficient (there remains some harmless εξ). Then, we can commute
the equation with ∂θ and ∂r. But this procedure introduces a singularity near the origin (r = 0),
when computing ∇ξf in terms of (∂θf, ∂rf). Therefore, it works only away from (ξ1, ξ2) = (0, 0).

4.3.3. Commutator estimates to control the electromagnetic field. In order to recover estimates
of Lipschitz type on the field (E,B)(·), a good strategy is to commute the VW system with
derivatives, and then to apply the procedure of Subsection 4.2.2. From (2.41), we obtain easily

�t,x∂iu = −∂if(4.77)

The initial data associated with ∂iu are like in (2.42), that is

∂iu(t, x)|t=0 = 0, ∂t(∂iu)(t, x)|t=0 = 0(4.78)
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From (2.45) and (2.46), we can deduce

∀i ∈ {0, 1, 2, 3}, ∂iE = −
ˆ

[ν(εξ)∂t +∇x]∂iudξ(4.79)

∀i ∈ {0, 1, 2, 3}, ∂iB =

ˆ
∇x × [∂iuν(εξ)]dξ(4.80)

It is clear that the VW system is very suitable for commutations. Problems can only appear
due to the term ∂if inside (4.77), which requires to deal with (2.21). For i ∈ {0, 1, 2, 3}, we find

(4.81)

∂t(∂if) + [ν(εξ) · ∇x](∂if)− 1

ε2
[ν(εξ)×Be(x)] · ∇ξ(∂if)

= |ξ|−1M ′(|ξ|)ξ · ∂iE + [E + ν(εξ)×B)] · ∇ξ(∂if)

+
1

ε2
∇ξ ·

[
ν(εξ)× ∂iBe(x)f

]
+∇ξ ·

[(
∂iE + ν(εξ)× ∂iB

)
f
]

For i = 0, the first (singular) term in the last line of (4.81) simply disappears. But, we have
to deal with the expression ∂tf |t=0 as determined by (1.6). The multiplication of ∂tf by ε is
crucial to obtain something that is uniformly bounded. With this in mind, introduce

Ñ 1
ε

(
U(t, ·)

)
:= N

(
ε∂tU(t, ·)

)
+N 1

ε

(
U(t, ·)

)
; Ñ 1

ε,t := sup
0≤s≤t

Ñ 1
ε

(
U(s, ·)

)
(4.82)

For i 6= 0, we find that ∂if |t=0 = ∂if
in is bounded.

The situation concerning (∂iu, ∂if) is very similar to that of (u, f) in Subsection 4.2. To control
the amplitudes of ∂iE and ∂iB, we can proceed as in Subsection 4.2.2 with (concerning ∂iE)
decompositions like

∂iE = (∂iE)1 + (∂iE)2 + (∂iE)3 ; (∂iE)1 = (∂iE)1,1 + (∂iE)1,2 + (∂iE)1,3 + (∂iE)1,4

where the new part (∂iE)1,4 comes from the additional source terms which are collected in the
last line of (4.81). By this way, coming back to (4.46) where ∂if , ∂iE and ∂iB must (except in
the nonlinear part) come to replace respectively f , E and B, we find

|∂iE(t, x)| ≤Cc(R∞)
[
tN0(∂if) + tc(R∞)

ˆ t

0
Ns(∂iE, ∂iB)ds

+ c(R∞)(R∞)3
ˆ t

0
Ns(∂if)ds+ tc(R∞)(R∞)4

ˆ t

0
Ns(∂if)ds(4.83)

+ εtc(R∞)(R∞)3
ˆ t

0
Ns(E,B)Ns(∂if)ds

]
+ |(∂iE)1,4(t, x)|

Now, consider the new contribution (∂iE)1,4. Since all the terms in the last line of (4.81) are
in divergence form (in ξ), we can apply Lemma 3.6 to this situation. The same two remarkable
properties occur: first, a gain of one power of ε (due to the cold framework); secondly, a gain of
one derivative (due to an integration by parts in ξ). Taking into account (4.39), there remains

|(∂iE)1,4(t, x)| ≤ Ctc(R∞)2(R∞)4
[ˆ t

0
Ns(f)ds+ ε

ˆ t

0
Ns(f)Ns(∂iE, ∂iB)ds

]
(4.84)

We work with t ≤ min(Tε, T ). Exploiting Proposition 4.6 to control by some uniform constant
in the above nonlinear parts the multiplication by Ns(E,B) and Ns(f), we can simply retain

|∇t,xE(t, x)| ≤ C(t, R∞)
[
N0(∇t,xf) +

ˆ t

0
Ns(f)ds(4.85)

+

ˆ t

0
Ns(∇t,xf)ds+

ˆ t

0
Ns(∂iE, ∂iB)ds

]
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By multiplying (4.85) by ε, we get

Ñ 1
ε

(
(E,B)(t, ·)

)
≤ C(t, R∞)

[
Ñ 1
ε,0 +

ˆ t

0
Ñ 1
ε,sds

]
(4.86)

The term N0(∂tf) inside Ñ 1
ε,0 is not necessarily bounded, but N0(ε∂tf) is bounded.

4.3.4. Weighted Lipschitz estimates for general data. The Lipschitz regularity is asymptotically
preserved in the following sense.

Proposition 4.9. The Cauchy problem for the MRVM system is locally well-posed with uniform
bounds in X 1

ε (in the sense of Definition 4.3).

Proof. There is nothing to do about (4.13), which has been already obtained. Consider (4.12).
In view of (4.86), the missing piece is about ε∂if and ∇ξf . The passage from f(·) to f(·) up to
f(·) (and vice versa) does not change (modulo a uniform constant) the norms N and N 1

ε . Thus,
we can work with f(·), and then come back. The formulation (4.76) is suitable for commutations
with the derivatives ε∇t,x and ∇ξ. Of course, extra terms are produced but always implying
ε∇xf or ∇ξf. There is no term with ε−1 in factor and no term involving ∇xf (without ε in
factor). By this way, we get

‖ ε∇t,xf(t, ·) ‖L∞x,ξ+ ‖ ∇ξf(t, ·) ‖L∞x,ξ≤‖ ε∇t,xf(0, ·) ‖L∞x,ξ + ‖ ∇ξf(0, ·) ‖L∞x,ξ(4.87)

+ C

ˆ t

0
Ñ 1
ε

(
U(s, ·)

)
ds+ C

ˆ t

0
Ñ 1
ε

(
U(s, ·)

)2
ds

The electromagnetic part (E,B) can be estimated as in (4.86). Add (4.86) and (4.87) to find

Ñ 1
ε,t ≤ C

[
Ñ 1
ε,0 +

ˆ t

0
Ñ 1
ε,sds+

ˆ t

0
(Ñ 1

ε,s)
2ds
]

(4.88)

Restricting T if necessary, by Grönwall’s inequalities, we can deduce the important bound (4.12)

for the norm N ? ≡ N 1
ε ≤ Ñ 1

ε . �

4.3.5. Proof of Theorem 1.1. From Proposition 4.9, we know that

∀(ε,U in, t) ∈]0, 1]×Bε ×
[
0,min(Tε, T )

)
, N 1

ε

(
Stε(U

in)
)
≤ ω

(
N 1
ε (U in)

)
≤ C(4.89)

If T ≤ Tε, there is nothing to do. Suppose that Tε < T . Recalling [16, 28], we can extend the
smooth solution up to a time Tε + δε for some δε ∈ R∗+. The threshold δε may of course depend

on ε, α∞, T and Rin. It may even diminish when ε goes to zero or when Rin grows. But, these
parameters being fixed, it does not change. This is because the Lipschitz norm of U(·) near the
a priori life span Tε, which is well controlled by (4.89), allows to determine a minimum threshold
for δε. We can even repeat the continuation argument to attein Tε + 2δε, and so on up to T . In
other words, the time T gives a lower bound for the life span Tε of the classical solution. This
is clearly in contradiction with the assumption Tε < T .

4.3.6. Uniform long time well-posedness for small data. The determination of T is not only built
upon δ∞0 and Rin, but also on δ∞1 (ε) with δ∞1 (ε) as in (4.11). For general bounded families (Bε)ε,
there are strong restrictions on the size of T . These restrictions come from the nonlinear term
inside (4.88), and also from the condition on T inside (4.60). However, for δ∞1 (ε) small enough,
they can be lifted.

Proposition 4.10. The Cauchy problem for the MRVM system is for small data uniformly
well-posed for a long time in the sense of Definition 4.5.

Proof. The relation (1.6) implies that

∃C ∈ R∗+; ∀ε ∈]0, 1], Ñ 1
ε,0 ≤ Cδ∞1 (ε)(4.90)
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Take R∞ = 2Rin, and select any time T ∈ R∗+. Then, the coefficients β and γ of (4.51) and
(4.52), as well as the constant C inside (4.88), become fixed. Whether this is at the level of
(4.49) or (4.88), we have to deal with inequalities like

Z(t) ≤ Cδ∞1 (ε) + C

ˆ t

0

(
Z(s) + Z(s)2

)
ds(4.91)

The Grönwall’s inequality can be made explicit. It furnishes

∀t ≤ 1

C
ln
(

1 +
1

Cδ∞1 (ε)

)
, Z(t) ≤ Cδ∞1 (ε)eCt

Cδ∞1 (ε) + 1− Cδ∞1 (ε)eCt
(4.92)

Adjust δ∞1 in such a way that

δ∞1 ≤
1

2C

1

eCT − 1
⇐⇒ T ≤ 1

C
ln
(

1 +
1

2Cδ∞1

)
⇐⇒ 1

2
≤ Cδ∞1 (ε) + 1− Cδ∞1 (ε)eCt

Then, by construction, for δ∞1 (ε) ≤ δ∞1 , we have

∀t ≤ T, Z(t) ≤ 2Cδ∞1 (ε)eCt

Replacing Z by Z ≡ N , we can infer that

∀t ≤ T, |Ξ(t)| ≤ |Ξ(0)|+ 2δ∞1 (ε)eCt

We can further restrict δ∞1 to have 2δ∞1 e
CT < Rin, which furnishes (4.48) with R∞ = 2Rin. On

the other hand, with Z ≡ Ñ 1
ε,t, we obtain (4.15) together with a control on [0, T ] of the weighted

Lipschitz norm. This means that T ≤ Tε. Briefly, all the properties inside the paragraphs (i),
(ii) and (iii) of Definition 4.5 have been obtained. �

4.3.7. Access to uniform continuity. We come back here to the sup norm. Fix some t ∈]0, T ].
One question that arises is whether the family of solution maps {Sεt}ε is uniformly continuous
with values in the space L∞.

Proposition 4.11 (uniform continuity). Let B a bounded set according to X 1
ε . The family of

mappings {Sε}ε is uniformly continuous on B. More precisely, for T small enough and for all

δ > 0, we can find η > 0 such that, for all couple (Ũ in,U in) ∈ B ×B of initial data, we have

∀(ε, t) ∈]0, 1]× [0, T ], ‖ Ũ in −U in ‖L∞x,ξ≤ η =⇒ ‖ Stε(Ũ
in)− Stε(U

in) ‖L∞x,ξ≤ δ(4.93)

Proof. Select two C1-solutions U = (f,E,B) and Ũ = (f̃ , Ẽ, B̃) of the MRVM system, with

corresponding initial data U in and Ũ in. Consider the system of equations which is satisfied by
the difference Ũ − U . This is still a VW system with, at the level of the Vlasov equation, a
supplementary source term coming from the non linearities and given by

∇ξ ·
[(
E + ν(εξ)×B

)
(f̃ − f) +

(
(Ẽ −E) + ν(εξ)× (B̃ −B)

)
f
]

(4.94)

When looking at the Vlasov equation on (f̃−f)(·), the left hand side of (4.94) can be incorporated
in the transport part. The right hand side gives rise to

∀t ∈ [0, T ], Nt(f̃ − f) ≤ N0(f̃ − f) +Nt(∇ξf)

ˆ t

0
Ns(Ẽ −E, B̃ −B)ds(4.95)

Exploit Proposition 4.9 to control Nt(∇ξf) by a fixed constant. Then, the situation concerning

the difference f̃ − f is completely similar to what we had at the level of (4.18). There remains

to control Ẽ −E and B̃ −B. To this end, we can repeat what we did in Subsection 4.2.2. For
instance, concerning Ẽ −E, we still have decompositions like

Ẽ −E = (Ẽ −E)1 + (Ẽ −E)2 + (Ẽ −E)3

(Ẽ −E)1 = (Ẽ −E)1,1 + (Ẽ −E)1,2 + (Ẽ −E)1,3 + (Ẽ −E)1,4
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where the new part (Ẽ − E)1,4 comes from (4.94). Since all the terms inside (4.94) are in
divergence form (in ξ), we can again apply Lemma 3.6, which furnishes

|(Ẽ −E)1,4(t, x)| ≤ Cεt(R∞)3
ˆ t

0
Ns(U)Ns(Ũ −U)ds(4.96)

The proof of (4.12) can be readily repeated with Ũ −U in place of U . Consideration of (4.96)
only induces a change in the definition of g(·) and consequently of ω(·). We can still find a
modulus of continuity ω̃(·) such that

∀(ε, t) ∈]0, ε0]× [0, T ], ‖ (Ũ −U)(t, ·) ‖X≤ ω̃
(
‖ Ũ in −U in ‖X

)
(4.97)

This is enough to deduce (4.93). �

4.3.8. Lipschitz estimates for prepared data. As already explained, in general, uniform Lipschitz
estimates are not available. The condition (4.9) is necessary. It turns out to be sufficient.

Proposition 4.12. [uniform bound in Lipschitz norm for prepared data] Let (Bε)ε be a family
that is prepared in the sense of Definition 4.2. Then, there exists a time T ∈ R∗+ such that, for

all ε ∈]0, 1] and for all initial data U in ∈ Bε, the MRVM system has a unique solution Uε(·)
which is defined on [0, T ] and which, for some finite constant C ∈ R∗+, satisfies

∀(ε,U in, t) ∈]0, 1]×Bε × [0, T ], N 1
1

(
Stε(U

in)
)
≤ ω

(
N 1

1 (U in)
)
≤ C(4.98)

Proof. The idea is to reiterate the main lines of what we did before, but there are also subtle and
important variations. First and foremost, we have to estimate ∂tU(·). Consider ∂tf(·). Coming
back to (4.81), we have

‖ ∂tf(t, ·) ‖L∞x,ξ≤‖ ∂tf(0, ·) ‖L∞x,ξ +Nt(∇ξf)

ˆ t

0
Ns(∂tE, ∂tB)ds(4.99)

Knowing (4.9), the initial data ∂tf |t=0 is bounded as expected. In view of Proposition 4.9,
the quantity Nt(∇ξf) is already bounded. The problems can arise when estimating the spatial
derivatives ∇xf(·). The equations (2.21) and (4.76) can, in no way, be commuted with ∂i ≡ ∂xi
when i 6= 0 because this would introduce the factor ε−1. Things must be done differently.

The trick is well known in nonlinear geometric optics [25, 26]. It is to work at the level of (4.74).
In view of (2.1), the function be(·) does not vanish. Thus, we can divide (4.74) by be(·), apply
∂i, and then come back. This operation yields

(4.100)

∂t(∂if) +
ε

〈εξ〉
O(x)ξ · ∇x(∂if) +

ε

〈εξ〉
Q(x, ξ) · ∇ξ(∂if)−

be(x)

ε〈εξ〉
(ξ2∂ξ1 − ξ1∂ξ2)(∂if)

= M ′(|ξ|) O(x)ξ · ∂iE
|ξ|

+ [tO(x)E + ν(εξ)× tO(x)B] · ∇ξ(∂if)

+ [tO(x)∂iE + ν(εξ)× tO(x)∂iB)] · ∇ξf

+ ∂i(ln be)
{
∂tf +

ε

〈εξ〉
O(x)ξ · ∇xf +

ε

〈εξ〉
Q(x, ξ) · ∇ξf

−M ′(|ξ|) O(x)ξ ·E
|ξ|

− [tO(x)E + ν(εξ)× tO(x)B] · ∇ξf
}

− ε

〈εξ〉
(∂iO)(x)ξ · ∇xf−

ε

〈εξ〉
(∂iQ)(x, ξ) · ∇ξf

+M ′(|ξ|) (∂iO)(x)ξ ·E
|ξ|

+ [t(∂iO)(x)(E + ν(εξ)× t(∂iO)(x)B)] · ∇ξf
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The remarkable point is that (4.100) involves only ε∇xf, ∇ξf and ∂tf, but not ∇xf. Now, we
can follow the bicharacteristics to find

‖ ∂if(t, ·) ‖L∞x,ξ≤ ‖ ∂if(0, ·) ‖L∞x,ξ +C

ˆ t

0
Ns(∂tf)ds(4.101)

+ C

ˆ t

0
Ns(ε∇xf)ds+ C

ˆ t

0
Ns(∇ξf)ds

+ C
(
1 +Nt(∇ξf)

) ˆ t

0

[
Ns(E,B) +Ns(∂iE, ∂iB)

]
ds

On the other hand, we can exploit the argument (b) of Paragraph 4.3.2 to estimate ∇ξf. Recall

the definition (4.82) of Ñ 1
1 . Combine (4.85) with (4.99), (4.101) and this remark to find that

Ñ 1
1

(
U(t, ·)

)
≤Ñ 1

1

(
U(0, ·)

)
+ C + C

ˆ t

0
Ñ 1

1

(
U(s, ·)

)
ds(4.102)

The condition (4.9) is designed to ensure that Ñ 1
1

(
U(0, ·)

)
remains uniformly bounded for the

prepared data under consideration. This also holds true concerning Ñ 1
1

(
U(t, ·)

)
by Grönwall’s

inequality, and therefore concerning N 1
1

(
U(t, ·)

)
�
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Leclerc CS 74205 35042 Rennes Cedex, FRANCE

(Slim Ibrahim) Department of Mathematics and Statistics, University of Victoria 3800 Finnerty
Road, Victoria, B.C., V8P 5C2, CANADA

35


	1. Introduction
	Acknowledgement

	2. Modeling of collisionless magnetized plasmas
	2.1. From the RVM system to the MRVM system
	2.2. From the MRVM system to a VW system

	3. Preparatory work
	3.1. Convolution estimates
	3.2. Commuting vector fields
	3.3. First transfer of derivatives
	3.4. Second transfer of derivatives

	4. Well-posedness of the Cauchy problem
	4.1. The functional framework
	4.2. Uniform estimates in the sup norm
	4.3. Estimates in Lipschitz norm

	References

