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Abstract 

The ability to control size and morphology is crucial in optimizing nanoceria catalytic activity as 

this is governed by the atomistic arrangement of species and structural features at the surfaces.  

Here, we show that cuboidal cerium oxide nanoparticles can be obtained via microwave-assisted 

hydrothermal synthesis in highly alkaline media. HRTEM revealed that the cube edges were 

truncated by CeO2{110} surfaces and the cube corners by CeO2{111} surfaces. When adjusting 

synthesis conditions by increasing NaOH concentration, the average particle size increased. 

Although this was accompanied by an increase of the cube faces, CeO2{100}, the cube edges, 

CeO2{110}, and cube corners, CeO2{111} remained of constant size. Molecular Dynamics (MD) 

was used to rationalise this behaviour and revealed that energetically, the corners and edges cannot 

be atomically sharp, rather they are truncated by {111} and {110} surfaces respectively to stabilise 

the nanocube; both experiment and simulation agreed a minimum size of ~1.6 nm associated with 

this truncation. Moreover, HRTEM and MD revealed {111}/{110} faceting of the {110} edges, 

which balances the surface energy associated with the exposed surfaces, which follows 

{111}>{110}>{100}, although only the {110} surface facets because of the ease of extracting 

oxygen from its surface, which follows {111}>{100}>{110}. Finally, MD revealed that the {100} 

surfaces are ‘liquid-like’ with a surface oxygen mobility 5 orders of magnitude higher than that on 

the {111} surfaces; this arises from the flexibility of the surface species network that can access 

many different surface arrangements due to very small energy differences. 

This finding has implications for understanding the surface chemistry of nanoceria and provides 

avenues to rationalize the design of catalytically active materials at the nanoscale.  
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1. Introduction 

Since the first nanoparticle syntheses, research has focused on producing various nano-catalysts 

of different compositions and applications1-3. Over the years, the importance of their shape, hence 

their exposed facets, grew in interest4-6. The differences between facets, may sometimes remain 

unclear and controversial, but more and more effects in terms of reactivity and/or selectivity are 

shown in recent works5,7-12. Furthermore different morphologies are active towards oxidative 

catalysis at different temperatures, with nanocubes exposing the {100} surfaces being active at 

temperatures as low as 150°C13. 

CeO2 is now well known for its catalytic redox properties14, associated or not with other 

materials (Au on a reconstructed ceria surface15 and other noble metals, TiO2) especially towards 

CO oxidation, even at low temperature. After years of research, numerous shapes of ceria 

nanoparticles became available, as described in several papers6,15-22 like rods, octahedrons, cubes, 

etc. 

Among those particle shapes, the rods seem to be the most reactive nanoscale morphology, 

mainly because of the inherent amount of defects and the exposed facets, which are extremely 

reactive18, 23. The exposed {110} surfaces of nanorods have been shown to undergo reconstruction, 

with {111}-type faceting, providing an explanation for the higher surface reactivity observed20. 

However, these morphologies are so reactive that they tend to evolve under catalytic conditions, 

lowering or even inhibiting reactivity, by encapsulation of deposited precious metals and co-

catalysts19-23. For example shape-dependent activity of nanoceria has been demonstrated in in soot 

oxidation29. Cubes remain more stable than rods and exhibit mostly {001} facets, where the surface 

mobility of Ce ions can be controlled by the chemical atmosphere4,30. Cubes are more reactive for 

CO oxidation than the major {111} facets encountered on octahedrons18, 31. Hence, cubes seem to 
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be a good compromise between reactivity, stability and a promising morphology for further 

development. 

As shown by earlier work, cuboidal cerium oxide nanoparticles can be obtained via microwave-

assisted hydrothermal synthesis working on highly alkaline medium made of a mixture of aqueous 

sodium and ammonium hydroxide16. By using the ability of electron tomography to solve the third 

dimension of the object under study, main microstructural features of these nanocubes were 

evidenced: existence of a cubic shape with {002} facets, {011} (faceted) edges and {111} corners. 

A fitting procedure applied to the external surface of the particles allowed a precise determination 

of their aspect ratio, also revealing that they should be considered as parallelepipeds rather than 

isotropic cubes, as other groups have also shown4, 32. Here we chose to combine simulations and 

experimental data in order to provide further insights on those cuboidal nanoparticle 

morphological features. 

 

2. Experimental 

2.1 CeO2 cuboidal particles microwave heating-hydrothermal synthesis assisted 

Syntheses were performed using MARS-5 and Masterwave BTR microwave digestion systems 

(CEM and Anton-Paar Corp. respectively). Temperature was regulated by percent increments of 

the microwave power (300 W, 2.45 GHz frequency) and controlled by an optical fibre.  

All reagents were analytical grade and use without further purification. To obtain pure cerium 

oxide sample, 1.74 ml of Ce(NO3)3 (496 g.L-1) were dissolved in 50 mL of distilled water. This 

solution was added drop by drop at room temperature and under vigorous agitation in the basic 

medium (pH=14) composed by a mixture of NaOH (carlo erba reagenti 35%) and NH4OH (B.T. 

baker 30%) and placed in a closed Teflon container (100 mL) for microwave hydrothermal 

synthesis (XP-1500 plus model). The system was heated at 180°C for different reaction times 
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ranging from 5 to 45 min and then cooled down at room temperature. The precipitate was collected 

by centrifugation at 5000 rpm for 10 min, washed three times with distilled water and dried 

overnight at 100°C. Table 1 summarizes all the information about synthesis parameters used to 

obtain the desired morphologies.  

 

Table 1. Microwave-assisted synthesis conditions (45 min / 180 °C) and corresponding 

microstructural characterizations of pure cuboidal CeO2 samples  

 

Ref. 

sample 

 

%NaOH/ 

%NH4OH 

 

Median cube 

side length (nm) 

 

Standard 

deviation (nm) 

 

Ce1 5/95 10.4 1.4 

Ce2 25/75 13.3 2 

Ce3 50/50 16.5 2.5 

Ce4 75/25 18.5 2.5 

Ce5 95/5 23.5 3.9 

 

 

2.2 Characterization and measurement 

Samples for transmission electron microscopy (TEM) were prepared by suspending the powders 

in alcohol by ultrasonication and depositing a drop of the suspension on a copper grid covered 

with a carbon film. The grid was finally air-dried for 15 min. TEM, high-resolution TEM 

(HRTEM) experiments were performed on a JEOL 2200 FS equipped with a field emission gun 

operating at 200 kV with a point-to-point resolution of 0.23 nm. High-resolution micrographs and 
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videos were acquired with a Gatan Ultrascan CCD 2kx2k camera and digital diffractograms and 

calculated with the Gatan Digital Micrograph software. Moreover, in order to be representative 

and statistically meaningful, many images from several regions of various samples were recorded 

and the most characteristic results are presented here. 

The different compounds were characterized by X-Ray powder  diffraction (XRD) using a 

Philips PW 1050 diffractometer in a Bragg-Brentano geometry with Cu KR radiations of 1.54059 

and 1.54441 Å (KR1 and KR2 respectively). The intensity data were collected at room temperature 

aver a 2θ range of 8-80° with 0.02 steps and an integration time of 70 sec. Pattern profile matching 

was performed with the FULLPROF program33. 

2.3 Molecular Modelling  

Molecular dynamics calculations use the potential model of Minervini et al.34 and are carried 

out using the DL_POLY code35. Model structures are made using the METADISE code36.  

The minimized bulk structure was cut along Miller indices to obtain the {111}, {011}, and {100} 

surfaces. 3D boundary conditions were used throughout, and hence, the surfaces were modelled 

using the slab method37 in which a finite number of crystal layers is used to generate two identical 

surfaces via the introduction of a vacuum gap (~40 Å) perpendicular to the surface to minimize 

the interaction between images. The {100} and {110} slabs with a p(4 × 4)  and p(4 × 3) expansion 

of the surface unit cell included 10 and 12 repeat units respectively, while the {111} slab with a 

p(3 × 4) expansion included 8 repeat units. The 3 outermost layers of each slabs are allowed to 

relax whereas the middle of the slab is kept fixed. All slabs were equilibrated in the temperature 

range of 1500 K – 3600 K at 300 K intervals for 0.5 ns with a time step of 1fs in an NVT ensemble 

using the Nose - Hoover thermostat. All equilibrated configurations were then run for extra 5 ns 

allowing for data collection.  
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The generation of a model of a ceria cuboidal nanoparticle with molecular dynamics simulations 

has been achieved by simulating amorphisation and re-crystallization (A&R)1,4,38. However this 

has not been trivial, as the ceria nanoparticles naturally crystallize exposing the most stable {111} 

surface, rendering a polyhedral shape. In order to avoid this, a crystalline seed of fluorite structure 

with cubic shape has been used in order to direct the crystallization. A cube of CeO2 comprising 

of 20736 atoms (6912 Ce atoms, 13824 O atoms) (Fig. 1a) was melted holding fixed a cubic seed 

comprising of 12000 atoms (4000 Ce, 8000 O) in the centre of the nanoparticle performing 

constant volume MD at 8000 K for 50 ps (Fig. 1b). Crystallization was then performed applying 

constant volume MD simulation at 1500 K for 300 ps, allowing the atoms of the seed to move 

(Fig. 1c). The nanocube has then been annealed performing constant volume MD at 3750 K for 28 

ns. During this time the eventual transition to a polyhedral shape has not been observed, supporting 

the relative stability of the cuboidal shape observed experimentally. The nanoparticle was then 

cooled down performing constant volume MD at 1K for 20 ps (Fig. 1d). All A&R simulations used 

a time step of 4 fs in an NVT ensemble using the Nose - Hoover thermostat. 

 

(a) (b) 

(c) (d) 
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Figure 1. Amorphisation and crystallization of a ceria cubic nanoparticle; a) a pristine cube of 

fluorite CeO2 structure; b) amorphisation of the ceria nanoparticle, while a cubic crystalline seed 

is held fixed; c) crystallization of the nanoparticle; all atoms were allowed to move; d) final 

structure of the cuboidal ceria nanoparticle after annealing and cooling down. A projection along 

the <100> direction of the crystal is shown.     

 

3. Results and discussions 

3.1 (Micro)structural characterizations 

Pure ceria cuboid particles obtained by microwave-assisted hydrothermal synthesis are shown 

on Fig. 2. As expected they exhibit single crystalline structure (see the <001> zone axis oriented 

digital diffractogram on Fig. 2) and {001} lateral facets are enclosed by {011} flat edges and {111} 

corners. Particles account for cubes or rectangles in projection depending on the <001> zone axis 

they are imaged along confirming their cuboidal nature. These HRTEM images are consistent with 

previously reported HRTEM images for cuboidal ceria nanoparticles found in the literature 6,29,30. 

Figure 3 shows the size distributions of ceria particles. They were obtained by counting more 

than a hundred particles from TEM images for each sample and the measured particle size 

corresponds to an average of both projected sides for each cuboid. Mean particle sizes range from 

10.4 to 23.5 nm with increasing NaOH/NH4OH bases ratio while standard deviation enlarges (Fig. 

3) from 13.5% to 16.6%. One has to note the obvious effect of stirring, as the solvent becomes 

viscous with increasing NaOH proportion. Particles prepared via a synthesis route using a more 

efficient stirring (Anton-Paar Masterwave BTR system), due to differences in reactor volume and 

shape, show a decrease in median and average size (see orange and purple histograms on Fig. 3), 

compared to the same synthesis conditions, but with a less effective stirring. This indicates that a 

better stirring favours nucleation at the expense of growth of the particles. This feature has to be 
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taken in account for future microwave-assisted syntheses, when one is targeting a given particle 

size. 

 

 
Figure 2. HRTEM micrograph of pure CeO2 cuboidal nanoparticles (sample Ce1) and its 

corresponding FFT (inset). Cube edges and corners share a 1.6 nm side (diagonal of a s side square) 

 
Figure 3. (Color online) Side-length distributions of pure CeO2 cuboidal nanoparticles synthesized 

using NH4OH/NaOH mixture as solvent / *: particles prepared with a higher stirring efficiency 

Furthermore, whatever the particle might be, projected edges and corners width remains constant 

and corresponds to the diagonal of a four by four square formed by {002} planes (see the three 
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cuboids on Fig. 2). If we consider particles as perfect cubes with a as the cube length and c the 

truncation width, facets, edges and corners surfaces can be written as follows:  { }� � =  6. � − √ . �    (1) { }� � =  . �. � − √ . �   (2) { }� � =  √ . �    (3) 

 

Calculated contributions of those three surfaces to the overall particle area are plotted on Fig. 4. 

By keeping constant the size of the truncation, {001}area/{011}area ratio can be modulated from 

approximately 2.1 to 9.1 for smaller and larger cuboids respectively. The low energy {111} planes 

corresponding to cubes corners represent 5.1% of the cube surface for 5 nm-sized particles and 

can be lowered to 0.2% when the size is reaching 30 nm. It is worth noting that these values seem 

to adopt an asymptotic behaviour and can no longer be significantly adjusted for cuboid sizes 

beyond 30 nm. This suggests that a particle size of 30 nm may be a cut off for exploitation of 

enhanced catalytic activity. This "critical size" sees nanoparticles that are large enough to have a 

significant portion of the {100} surface, but they are still small enough to have a sufficient total 

surface area, i.e. high surface to volume ratio, ideal for catalysis15,29,39,40.  
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Figure 4. (Color online) Typical 3D cube models showing {001} faces (blue), {011} edges (green) 

and {111} corners (yellow) and their calculated contribution to the total particle surface as a 

function of the cube side length a (c=1.6 nm with respect to Figure 2) 

3.2 Surfaces characterization. 

We show the surface structure of ceria nanocubes characterized by HRTEM (Fig. 5a). The 

faceting of the lateral facet of a cube (Fig. 5b) show a characteristic irregular {111}/{110} sub-

faceting in the {110} mean surface plane. The faceting observed here is consistent with other 

studies of ceria nanoparticles in the literature, which observed faceting of both nanorods enclosed 

by {110} surfaces20, nanopowders21 and nanocubes15,22,30. 

In Fig. 5c the surface morphology of the simulated ceria cuboidal nanoparticle is shown. The 

cuboidal nanoparticle exposes mostly the {100} surface and it is truncated at the edge and corners 

exposing {110} and {111} surfaces, respectively. However, the simulations reveal that the edges 

are not wholly flat, but faceted40,41: the {110} surface in this case can be described as a faceted 

{111}/{110} (Fig. 5d). In Fig. 5e and 5f two projection along the <111> and <100> directions of 
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the crystal respectively are shown; corrugation (i.e. faceting) at the edges is visible for the 

projection along the <111> direction. The lengths of all projected corners of the model have been 

measured, being between 1.5 and 1.7 nm, in agreement with experiments. This minimum length 

of projected edges and corners stabilizes the cuboidal morphology; it is five times the inter-planar 

spacing of the {111} surface (0.32 nm42) as pointed out by both experiments and simulations. As 

this minimal length is a necessary requirement to stabilize the cube, it is not 

proportional/dependent to the size of the cube. As a consequence all corners must have at least 

three sides that are no smaller than 1.6 nm (Fig. 5c-f). 
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Figure 5. (a) HRTEM micrograph of a lateral facet of a cube (Ce5 sample) along a <110> zone 

axis and its corresponding digital diffractogram (inset); b) Zoomed in section of image in a) to 

highlight the faceting of the nanocube; c) surface rendered fully atomistic model of the ceria 

cuboidal nanoparticle showing the <100>, <110> and <111> surfaces; d) enlarged segment of the 

edge of the cuboidal nanoparticle, showing faceted <110> surface; e) and f) projections along 

<111> and <100> directions respectively.  
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To confirm the existence of {111}/{110} faceting on the {110}, we have performed MD 

calculations on the three surface, i.e. {100}, {110} and {111} separately. The {111} surface shows 

no faceting or reconstruction at any temperature, whereas the {100} shows a very mobile liquid-

like surface layer with both the Ce and O ions being highly mobile1, 43.  

The {100} surface is the most unstable of the three low Miller Index surfaces of ceria, with the 

order of stability being {111} > {110} > {100}44. According to the Tasker notation45, the {110} is 

a type 1 surface, the {111} is a type 2 surface and the {100} is a type 3 surface. The type 1 {110} 

surface is neutral with double O species per cation on each plane, which also correspond to the 

surface repeat unit. The type 2 {111} surfaces has charged planes, although the surface repeat unit 

is charge neutral, thus there is no dipole moment perpendicular to the surface. Both these surfaces 

show relatively low surface energy, with the {111} surface displaying the lowest as it contains 7-

fold coordinated surface Ce cations, compared to the 6-fold coordinated surface Ce cations on the 

{110} surface. The type 3 {100} surface is charged and has a dipole moment in the repeat surface 

unit perpendicular to the surface. Type 3 surfaces are stabilized by reconstruction to quench the 

dipole. This reconstruction occurs in our MD simulations. The liquid-like behavior of the {100} 

surface arises from the flexibility of the surface oxygen network, and so of the surface Ce ions, 

which can easily access many different surface oxygen arrangements due to very small energy 

differences between these arrangements43. The {110} and the {111} surfaces do not display this 

behavior and as such they do not show a liquid-like diffusion behavior. 

The origin of the faceting is a balance between the surface energy of the ceria surface which 

follows the {100} > {110} > {111} and the heat of reduction of the surface which follows the 

{111} > {100} > {110}44. As the {111} surface is the most stable any surface that undergoes 

faceting will favour its appearance followed by the {110}. However it is only the {110} surface 
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that undergoes faceting due to the ease of removing oxygen from its outermost layer. Visual 

inspections shows that oxygen species pop out the pristine flat surface and build up small ridges 

that then tend to crystallize into the faced {111}/{110} surface as Ce species are following the 

move. We noticed that faceting only occurs for the {110} surface at temperature above 2400 K.  

We can use the inter-planar spacing values for the {111}, {110} and {100} surfaces to define 

the surface unit areas of the pristine flat {110} surface and the faceted {110}/{111} surface: �� �  { } = [ � ,�{ } − ∗ | |] ∗  | |  (4) 

 ���  { }/{ } = [ ∑ � ,�{ } −{ } ∗ | | + ∑ �� � { }{ } ]  (5) 

 � ,�{ℎ }
 is the number of Ce ions (must be > 1) present at the {hkl} surface and |ℎ | represents 

the inter-planar spacing of the {hkl} surface (i.e. 0.32 nm, 0.19 nm and 0.27 nm for the {111}, 

{110} and {100} surfaces respectively42). For the faceted surface the total area is a summation ∑{ℎ }
 of all the {hkl} surface facets (i.e. the {111} and {110} surfaces that make up the faceting. 

Figure 6 shows schematics of different faceting all showing the relationship between inter-planar 

spacing and surface.  

The difference between the surface unit area of the pristine flat {110} surface and the faceted 

{110}/{111} surface gives the excess surface unit area gained by the nanoparticle:  

 �� �  { } = ���  { } −  �� �  { }   (6) 
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Figure 6. Schematic of different surface facets. a) ���  { }/{ } = [ ∗ | | +∗ | | ]  ∗  | | , b)  ���  { }/{ } = [ 6 ∗ | | ]  ∗  | |  c) ���  { }/{ } =[ ∗ | | + ∗ | | ]  ∗  | | , compared to d) a constant �� �  { } = [6 ∗ | |] ∗ | |. 

3.3 Dynamic mobility of ions at the surface. 

The mobility of ions on the surface of the ceria nanocube during the MD annealing simulation 

has been monitored using graphical techniques. The high temperature of annealing of 3750K was 

used to accelerate the dynamics to simulate what might happen over a longer timescale than ns 

that is typically accessible to MD simulations. In Fig. 7(a-f), snapshots of the ceria nanocube 

during this simulation are reported: truncated edges and corners exposing the {110} and {111} 

surfaces respectively are formed in the early stages of the simulation, Fig. 7b, yet their size remains 
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constant throughout the simulation. Cerium ions in the {100} surface has been noted to have an 

increased mobility compared with the ions in the {110} and {111} surfaces. During the simulation 

dynamic exchange of ions between the surfaces occurs; in Fig. 8a section of the nanocube is shown 

along one of the edges and two cerium ions have been coloured differently to improve the 

visualization of their mobility. As it can be seen from the sequence of images, Fig. 8a – d, the 

cerium ion coloured in yellow move from the {100} surface to the {110}, and at the same time the 

cerium ion coloured in red move from the {110} to the {100}, keeping constant the length of the 

truncation at the edge. Cubes, which are a metastable morphology of ceria nanoparticles, 

eventually will turn to polyhedral morphologies if subjected to thermal treatments29.  

 

 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 7. Annealing simulation at 3750K after a) 0 ns; b) 1.2 ns; c) 2.5 ns; d) 7.5 ns; e) 15 ns; f) 

25 ns.  

The diffusion of surface oxygen species affects surface structure and availability of oxygen 

species to catalytic activity46. To note is the liquid-like behaviour of the {100} surface. Indeed 

oxygen diffuses faster on the intrinsically defective {100} surface compared to the {110} and 

{111} surfaces1, 43. At 2400 K oxygen diffusion at the {100} surface is 1 and 5 order of magnitude 

higher than on the {110} and {111} surfaces; these remain at 1 order of magnitude higher for the 

{110} and reduce to 2 orders of magnitude higher for the {111}, at 3600 K, compared to the {100}. 

 
Figure 8. Section of the nanocube along one of the edges showing the dynamic mobility of cerium 

ions at a) 25.0 ns; b) 25.7 ns; c) 26.0 ns; d) 26.3 ns.  

4. Conclusions 

Nanocubes express the {100} surface with {111} corners and {110} edges. By adjusting the 

NH4OH/NaOH ratio during hydrothermal microwave-assisted synthesis, the distribution of {011} 

edges and {111} corners contributions to the total particle surface of cuboidal morphology can be 

modulated.  

{111} {100}{110}

(a) (b) 

(c) (d) 
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HRTEM and molecular dynamics calculations provide evidence that there is a minimum length 

of the {110} edges, which is 5 times (~1.6nm) the inter-planar spacing of the {111} surface, 

independently on particle size. Furthermore the {110} surfaces are faceted surfaces expressing 

{111} facets. This increases the nanoparticle surface areas proportionally to the inter-planar 

spacing of the {111} surface. 

These findings allow for a better understanding of the surface chemistry of nanoceria, and gives 

ways to a rationalization of the design and engineering of active surfaces for materials design, 

particularly in views of face-selective catalysis6. 

Future work should focus on testing the catalytic activity of these morphologies as well as on 

the effect of a chemical atmosphere on the structural changes of nanocubes synthesized via 

simulated amorphisation and re-crystallization and via hydrothermal microwave-assisted 

synthesis.  
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