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Abstract

The ability to control size and morphology is crucial in optimizing nanoceria catalytic activity as

this is governed by the atomistic arrangement of species and structural features at the surfaces.

Here, we show that cuboidal cerium oxide nanoparticles can be obtained via microwave-assisted
hydrothermal synthesis in highly alkaline media. HRTEM revealed that the cube edges were
truncated by CeO2{110} surfaces and the cube corners by CeO2{111} surfaces. When adjusting
synthesis conditions by increasing NaOH concentration, the average particle size increased.
Although this was accompanied by an increase of the cube faces, CeO2{100}, the cube edges,
Ce02{110}, and cube corners, CeO2{111} remained of constant size. Molecular Dynamics (MD)
was used to rationalise this behaviour and revealed that energetically, the corners and edges cannot
be atomically sharp, rather they are truncated by {111} and {110} surfaces respectively to stabilise
the nanocube; both experiment and simulation agreed a minimum size of ~1.6 nm associated with
this truncation. Moreover, HRTEM and MD revealed {111}/{110} faceting of the {110} edges,
which balances the surface energy associated with the exposed surfaces, which follows
{111}>{110}>{100}, although only the {110} surface facets because of the ease of extracting
oxygen from its surface, which follows {111}>{100}>{110}. Finally, MD revealed that the {100}
surfaces are ‘liquid-like’ with a surface oxygen mobility 5 orders of magnitude higher than that on
the {111} surfaces; this arises from the flexibility of the surface species network that can access

many different surface arrangements due to very small energy differences.

This finding has implications for understanding the surface chemistry of nanoceria and provides

avenues to rationalize the design of catalytically active materials at the nanoscale.



1. Introduction
Since the first nanoparticle syntheses, research has focused on producing various nano-catalysts
of different compositions and applications!. Over the years, the importance of their shape, hence

their exposed facets, grew in interest*®

. The differences between facets, may sometimes remain
unclear and controversial, but more and more effects in terms of reactivity and/or selectivity are
shown in recent works>’!2. Furthermore different morphologies are active towards oxidative
catalysis at different temperatures, with nanocubes exposing the {100} surfaces being active at
temperatures as low as 150°C"3.

CeO; is now well known for its catalytic redox properties!*, associated or not with other
materials (Au on a reconstructed ceria surface'® and other noble metals, TiO>) especially towards
CO oxidation, even at low temperature. After years of research, numerous shapes of ceria
nanoparticles became available, as described in several papers®!>2? like rods, octahedrons, cubes,
elc.

Among those particle shapes, the rods seem to be the most reactive nanoscale morphology,
mainly because of the inherent amount of defects and the exposed facets, which are extremely
reactive'® 2. The exposed {110} surfaces of nanorods have been shown to undergo reconstruction,
with {111}-type faceting, providing an explanation for the higher surface reactivity observed?’.
However, these morphologies are so reactive that they tend to evolve under catalytic conditions,
lowering or even inhibiting reactivity, by encapsulation of deposited precious metals and co-
catalysts'*?3. For example shape-dependent activity of nanoceria has been demonstrated in in soot
oxidation?’. Cubes remain more stable than rods and exhibit mostly {001} facets, where the surface

mobility of Ce ions can be controlled by the chemical atmosphere*°. Cubes are more reactive for

CO oxidation than the major {111} facets encountered on octahedrons'®3!. Hence, cubes seem to



be a good compromise between reactivity, stability and a promising morphology for further
development.

As shown by earlier work, cuboidal cerium oxide nanoparticles can be obtained via microwave-
assisted hydrothermal synthesis working on highly alkaline medium made of a mixture of aqueous
sodium and ammonium hydroxide!®. By using the ability of electron tomography to solve the third
dimension of the object under study, main microstructural features of these nanocubes were
evidenced: existence of a cubic shape with {002} facets, {011} (faceted) edges and {111} corners.
A fitting procedure applied to the external surface of the particles allowed a precise determination
of their aspect ratio, also revealing that they should be considered as parallelepipeds rather than
isotropic cubes, as other groups have also shown* 3. Here we chose to combine simulations and
experimental data in order to provide further insights on those cuboidal nanoparticle

morphological features.

2. Experimental

2.1 CeOs cuboidal particles microwave heating-hydrothermal synthesis assisted

Syntheses were performed using MARS-5 and Masterwave BTR microwave digestion systems
(CEM and Anton-Paar Corp. respectively). Temperature was regulated by percent increments of
the microwave power (300 W, 2.45 GHz frequency) and controlled by an optical fibre.

All reagents were analytical grade and use without further purification. To obtain pure cerium
oxide sample, 1.74 ml of Ce(NO3); (496 g.L'") were dissolved in 50 mL of distilled water. This
solution was added drop by drop at room temperature and under vigorous agitation in the basic
medium (pH=14) composed by a mixture of NaOH (carlo erba reagenti 35%) and NHsOH (B.T.
baker 30%) and placed in a closed Teflon container (100 mL) for microwave hydrothermal

synthesis (XP-1500 plus model). The system was heated at 180°C for different reaction times



ranging from 5 to 45 min and then cooled down at room temperature. The precipitate was collected
by centrifugation at 5000 rpm for 10 min, washed three times with distilled water and dried
overnight at 100°C. Table 1 summarizes all the information about synthesis parameters used to

obtain the desired morphologies.

Table 1. Microwave-assisted synthesis conditions (45 min / 180 °C) and corresponding

microstructural characterizations of pure cuboidal CeO, samples

Ref. %NaOH/ Median cube Standard
sample %NH4OH side length (nm) deviation (nm)

Cel 5/95 10.4 1.4
Ce2 25/75 13.3 2

Ce3 50/50 16.5 2.5
Ce4 75/25 18.5 2.5
Ce5 95/5 23.5 3.9

2.2 Characterization and measurement

Samples for transmission electron microscopy (TEM) were prepared by suspending the powders
in alcohol by ultrasonication and depositing a drop of the suspension on a copper grid covered
with a carbon film. The grid was finally air-dried for 15 min. TEM, high-resolution TEM
(HRTEM) experiments were performed on a JEOL 2200 FS equipped with a field emission gun

operating at 200 kV with a point-to-point resolution of 0.23 nm. High-resolution micrographs and



videos were acquired with a Gatan Ultrascan CCD 2kx2k camera and digital diffractograms and
calculated with the Gatan Digital Micrograph software. Moreover, in order to be representative
and statistically meaningful, many images from several regions of various samples were recorded
and the most characteristic results are presented here.

The different compounds were characterized by X-Ray powder diffraction (XRD) using a
Philips PW 1050 diffractometer in a Bragg-Brentano geometry with Cu KR radiations of 1.54059
and 1.54441 A (KR1 and KR2 respectively). The intensity data were collected at room temperature
aver a 20 range of 8-80° with 0.02 steps and an integration time of 70 sec. Pattern profile matching
was performed with the FULLPROF program?®?.

2.3 Molecular Modelling

13* and are carried

Molecular dynamics calculations use the potential model of Minervini et a
out using the DL POLY code?®. Model structures are made using the METADISE code?.

The minimized bulk structure was cut along Miller indices to obtain the {111}, {011}, and {100}
surfaces. 3D boundary conditions were used throughout, and hence, the surfaces were modelled
using the slab method®’ in which a finite number of crystal layers is used to generate two identical
surfaces via the introduction of a vacuum gap (~40 A) perpendicular to the surface to minimize
the interaction between images. The {100} and {110} slabs with a p(4 x 4) and p(4 x 3) expansion
of the surface unit cell included 10 and 12 repeat units respectively, while the {111} slab with a
p(3 x 4) expansion included 8 repeat units. The 3 outermost layers of each slabs are allowed to
relax whereas the middle of the slab is kept fixed. All slabs were equilibrated in the temperature
range of 1500 K —3600 K at 300 K intervals for 0.5 ns with a time step of 1fs in an NVT ensemble

using the Nose - Hoover thermostat. All equilibrated configurations were then run for extra 5 ns

allowing for data collection.



The generation of a model of a ceria cuboidal nanoparticle with molecular dynamics simulations
has been achieved by simulating amorphisation and re-crystallization (A&R)!***. However this
has not been trivial, as the ceria nanoparticles naturally crystallize exposing the most stable {111}
surface, rendering a polyhedral shape. In order to avoid this, a crystalline seed of fluorite structure
with cubic shape has been used in order to direct the crystallization. A cube of CeO2 comprising
0f' 20736 atoms (6912 Ce atoms, 13824 O atoms) (Fig. 1a) was melted holding fixed a cubic seed
comprising of 12000 atoms (4000 Ce, 8000 O) in the centre of the nanoparticle performing
constant volume MD at 8000 K for 50 ps (Fig. 1b). Crystallization was then performed applying
constant volume MD simulation at 1500 K for 300 ps, allowing the atoms of the seed to move
(Fig. 1c). The nanocube has then been annealed performing constant volume MD at 3750 K for 28
ns. During this time the eventual transition to a polyhedral shape has not been observed, supporting
the relative stability of the cuboidal shape observed experimentally. The nanoparticle was then
cooled down performing constant volume MD at 1K for 20 ps (Fig. 1d). All A&R simulations used

a time step of 4 fs in an NVT ensemble using the Nose - Hoover thermostat.




Figure 1. Amorphisation and crystallization of a ceria cubic nanoparticle; a) a pristine cube of
fluorite CeO; structure; b) amorphisation of the ceria nanoparticle, while a cubic crystalline seed
is held fixed; c) crystallization of the nanoparticle; all atoms were allowed to move; d) final
structure of the cuboidal ceria nanoparticle after annealing and cooling down. A projection along

the <100> direction of the crystal is shown.

3. Results and discussions

3.1 (Micro)structural characterizations

Pure ceria cuboid particles obtained by microwave-assisted hydrothermal synthesis are shown
on Fig. 2. As expected they exhibit single crystalline structure (see the <001> zone axis oriented
digital diffractogram on Fig. 2) and {001} lateral facets are enclosed by {011} flat edges and {111}
corners. Particles account for cubes or rectangles in projection depending on the <001> zone axis
they are imaged along confirming their cuboidal nature. These HRTEM images are consistent with
previously reported HRTEM images for cuboidal ceria nanoparticles found in the literature >3,

Figure 3 shows the size distributions of ceria particles. They were obtained by counting more
than a hundred particles from TEM images for each sample and the measured particle size
corresponds to an average of both projected sides for each cuboid. Mean particle sizes range from
10.4 to 23.5 nm with increasing NaOH/NH4OH bases ratio while standard deviation enlarges (Fig.
3) from 13.5% to 16.6%. One has to note the obvious effect of stirring, as the solvent becomes
viscous with increasing NaOH proportion. Particles prepared via a synthesis route using a more
efficient stirring (Anton-Paar Masterwave BTR system), due to differences in reactor volume and
shape, show a decrease in median and average size (see orange and purple histograms on Fig. 3),

compared to the same synthesis conditions, but with a less effective stirring. This indicates that a

better stirring favours nucleation at the expense of growth of the particles. This feature has to be



taken in account for future microwave-assisted syntheses, when one is targeting a given particle

size.

(002) jEE :

Figure 2. HRTEM micrograph of pure CeOzcuboidal nanoparticles (sample Cel) and its

corresponding FFT (inset). Cube edges and corners share a 1.6 nm side (diagonal of a s side square)
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% 48 g

Figure 3. (Color online) Side-length distributions of pure CeO> cuboidal nanoparticles synthesized

Particle size (nm)

using NH4OH/NaOH mixture as solvent / *: particles prepared with a higher stirring efficiency

Furthermore, whatever the particle might be, projected edges and corners width remains constant

and corresponds to the diagonal of a four by four square formed by {002} planes (see the three



cuboids on Fig. 2). If we consider particles as perfect cubes with a as the cube length and ¢ the
truncation width, facets, edges and corners surfaces can be written as follows:

{001}4req = 6.(a —V2.0)? (1)

{011} greq = 12.c.(a —V2.¢) 2)

{111}4req = 2V3.c? )

Calculated contributions of those three surfaces to the overall particle area are plotted on Fig. 4.
By keeping constant the size of the truncation, {001 }area/{011}area ratio can be modulated from
approximately 2.1 to 9.1 for smaller and larger cuboids respectively. The low energy {111} planes
corresponding to cubes corners represent 5.1% of the cube surface for 5 nm-sized particles and
can be lowered to 0.2% when the size is reaching 30 nm. It is worth noting that these values seem
to adopt an asymptotic behaviour and can no longer be significantly adjusted for cuboid sizes
beyond 30 nm. This suggests that a particle size of 30 nm may be a cut off for exploitation of
enhanced catalytic activity. This "critical size" sees nanoparticles that are large enough to have a
significant portion of the {100} surface, but they are still small enough to have a sufficient total

surface area, i.e. high surface to volume ratio, ideal for catalysis!'>%3%4,
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Figure 4. (Color online) Typical 3D cube models showing {001} faces (blue), {011} edges (green)
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and {111} corners (yellow) and their calculated contribution to the total particle surface as a

function of the cube side length a (c=1.6 nm with respect to Figure 2)

3.2 Surfaces characterization.

We show the surface structure of ceria nanocubes characterized by HRTEM (Fig. 5a). The
faceting of the lateral facet of a cube (Fig. 5b) show a characteristic irregular {111}/{110} sub-
faceting in the {110} mean surface plane. The faceting observed here is consistent with other
studies of ceria nanoparticles in the literature, which observed faceting of both nanorods enclosed
by {110} surfaces’, nanopowders®!' and nanocubes'>>-°,

In Fig. 5c the surface morphology of the simulated ceria cuboidal nanoparticle is shown. The
cuboidal nanoparticle exposes mostly the {100} surface and it is truncated at the edge and corners
exposing {110} and {111} surfaces, respectively. However, the simulations reveal that the edges

are not wholly flat, but faceted*>*!: the {110} surface in this case can be described as a faceted

{111}/{110} (Fig. 5d). In Fig. Se and 5f two projection along the <111> and <100> directions of

11



the crystal respectively are shown; corrugation (i.e. faceting) at the edges is visible for the
projection along the <111> direction. The lengths of all projected corners of the model have been
measured, being between 1.5 and 1.7 nm, in agreement with experiments. This minimum length
of projected edges and corners stabilizes the cuboidal morphologys; it is five times the inter-planar
spacing of the {111} surface (0.32 nm*?) as pointed out by both experiments and simulations. As
this minimal length is a necessary requirement to stabilize the cube, it is not
proportional/dependent to the size of the cube. As a consequence all corners must have at least

three sides that are no smaller than 1.6 nm (Fig. Sc-f).
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. {100}

Figure 5. (a) HRTEM micrograph of a lateral facet of a cube (Ce5 sample) along a <110> zone
axis and its corresponding digital diffractogram (inset); b) Zoomed in section of image in a) to
highlight the faceting of the nanocube; c) surface rendered fully atomistic model of the ceria
cuboidal nanoparticle showing the <100>, <110> and <111> surfaces; d) enlarged segment of the
edge of the cuboidal nanoparticle, showing faceted <110> surface; e) and f) projections along

<111> and <100> directions respectively.
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To confirm the existence of {111}/{110} faceting on the {110}, we have performed MD
calculations on the three surface, i.e. {100}, {110} and {111} separately. The {111} surface shows
no faceting or reconstruction at any temperature, whereas the {100} shows a very mobile liquid-
like surface layer with both the Ce and O ions being highly mobile!**.

The {100} surface is the most unstable of the three low Miller Index surfaces of ceria, with the
order of stability being {111} > {110} > {100}**. According to the Tasker notation®’, the {110} is
a type 1 surface, the {111} is a type 2 surface and the {100} is a type 3 surface. The type 1 {110}
surface is neutral with double O species per cation on each plane, which also correspond to the
surface repeat unit. The type 2 {111} surfaces has charged planes, although the surface repeat unit
is charge neutral, thus there is no dipole moment perpendicular to the surface. Both these surfaces
show relatively low surface energy, with the {111} surface displaying the lowest as it contains 7-
fold coordinated surface Ce cations, compared to the 6-fold coordinated surface Ce cations on the
{110} surface. The type 3 {100} surface is charged and has a dipole moment in the repeat surface
unit perpendicular to the surface. Type 3 surfaces are stabilized by reconstruction to quench the
dipole. This reconstruction occurs in our MD simulations. The liquid-like behavior of the {100}
surface arises from the flexibility of the surface oxygen network, and so of the surface Ce ions,
which can easily access many different surface oxygen arrangements due to very small energy
differences between these arrangements*’. The {110} and the {111} surfaces do not display this
behavior and as such they do not show a liquid-like diffusion behavior.

The origin of the faceting is a balance between the surface energy of the ceria surface which
follows the {100} > {110} > {111} and the heat of reduction of the surface which follows the
{111} > {100} > {110}*. As the {111} surface is the most stable any surface that undergoes

faceting will favour its appearance followed by the {110}. However it is only the {110} surface

14



that undergoes faceting due to the ease of removing oxygen from its outermost layer. Visual
inspections shows that oxygen species pop out the pristine flat surface and build up small ridges
that then tend to crystallize into the faced {111}/{110} surface as Ce species are following the
move. We noticed that faceting only occurs for the {110} surface at temperature above 2400 K.
We can use the inter-planar spacing values for the {111}, {110} and {100} surfaces to define

the surface unit areas of the pristine flat {110} surface and the faceted {110}/{111} surface:

Aptar 1oy = (205, — 2) ¥ 1100]] = [110] ()

surf,Ce

111 111
Aracerea oy = | (27 (nGaee = 1) * 11111) + (2™ Apracaroy ) (5)
niﬁ’;lf}c . 18 the number of Ce ions (must be > 1) present at the {hkl} surface and |hkl| represents

the inter-planar spacing of the {hkl} surface (i.e. 0.32 nm, 0.19 nm and 0.27 nm for the {111},
{110} and {100} surfaces respectively*?). For the faceted surface the total area is a summation
Z{hkl} ofall the {hkl} surface facets (i.e. the {111} and {110} surfaces that make up the faceting.

Figure 6 shows schematics of different faceting all showing the relationship between inter-planar
spacing and surface.
The difference between the surface unit area of the pristine flat {110} surface and the faceted

{110}/{111} surface gives the excess surface unit area gained by the nanoparticle:

G6Acxcess {110} = Araceted {110} — Apiat {110} (6)
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Figure 6. Schematic of different surface facets. a) Apgcetea 11041113 = [(4*[111]) +

(4 =|100])] * [110], b) Argcetea {110}/{111} = [(6 % [111])] * |110] ¢) Afpacetea {110}/{111} =
[(4 % |111]) + (2 = [100])] = |110], compared to d) a constant Apq¢ (1103 = [6 * |100]] *

1110].

3.3 Dynamic mobility of ions at the surface.

The mobility of ions on the surface of the ceria nanocube during the MD annealing simulation
has been monitored using graphical techniques. The high temperature of annealing of 3750K was
used to accelerate the dynamics to simulate what might happen over a longer timescale than ns
that is typically accessible to MD simulations. In Fig. 7(a-f), snapshots of the ceria nanocube
during this simulation are reported: truncated edges and corners exposing the {110} and {111}

surfaces respectively are formed in the early stages of the simulation, Fig. 7b, yet their size remains

16



constant throughout the simulation. Cerium ions in the {100} surface has been noted to have an
increased mobility compared with the ions in the {110} and {111} surfaces. During the simulation
dynamic exchange of ions between the surfaces occurs; in Fig. 8a section of the nanocube is shown
along one of the edges and two cerium ions have been coloured differently to improve the
visualization of their mobility. As it can be seen from the sequence of images, Fig. 8a — d, the
cerium ion coloured in yellow move from the {100} surface to the {110}, and at the same time the
cerium ion coloured in red move from the {110} to the {100}, keeping constant the length of the
truncation at the edge. Cubes, which are a metastable morphology of ceria nanoparticles,

eventually will turn to polyhedral morphologies if subjected to thermal treatments?’.

(@ (b)

(d)

®
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Figure 7. Annealing simulation at 3750K after a) O ns; b) 1.2 ns; ¢) 2.5 ns; d) 7.5 ns; e) 15 ns; f)

25 ns.

The diffusion of surface oxygen species affects surface structure and availability of oxygen
species to catalytic activity*®. To note is the liquid-like behaviour of the {100} surface. Indeed
oxygen diffuses faster on the intrinsically defective {100} surface compared to the {110} and
{111} surfaces"*. At 2400 K oxygen diffusion at the {100} surface is 1 and 5 order of magnitude
higher than on the {110} and {111} surfaces; these remain at 1 order of magnitude higher for the

{110} and reduce to 2 orders of magnitude higher for the {111}, at 3600 K, compared to the {100}.

{110}

{111} {100}

(@)

Figure 8. Section of the nanocube along one of the edges showing the dynamic mobility of cerium

ions at a) 25.0 ns; b) 25.7 ns; ¢) 26.0 ns; d) 26.3 ns.

4. Conclusions

Nanocubes express the {100} surface with {111} corners and {110} edges. By adjusting the
NH4+OH/NaOH ratio during hydrothermal microwave-assisted synthesis, the distribution of {011}
edges and {111} corners contributions to the total particle surface of cuboidal morphology can be

modulated.
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HRTEM and molecular dynamics calculations provide evidence that there is a minimum length
of the {110} edges, which is 5 times (~1.6nm) the inter-planar spacing of the {111} surface,
independently on particle size. Furthermore the {110} surfaces are faceted surfaces expressing
{111} facets. This increases the nanoparticle surface areas proportionally to the inter-planar
spacing of the {111} surface.

These findings allow for a better understanding of the surface chemistry of nanoceria, and gives
ways to a rationalization of the design and engineering of active surfaces for materials design,
particularly in views of face-selective catalysis®.

Future work should focus on testing the catalytic activity of these morphologies as well as on
the effect of a chemical atmosphere on the structural changes of nanocubes synthesized via
simulated amorphisation and re-crystallization and via hydrothermal microwave-assisted

synthesis.
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