
HAL Id: hal-02090259
https://hal.science/hal-02090259v1

Submitted on 8 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Guard Evaluation and Synchronization Issues in Causal
Semantics for UML2.X Sequence Diagrams

Fatma Dhaou, Inès Mouakher, J. Christian Attiogbe, Khaled Bsaïes

To cite this version:
Fatma Dhaou, Inès Mouakher, J. Christian Attiogbe, Khaled Bsaïes. Guard Evaluation and Synchro-
nization Issues in Causal Semantics for UML2.X Sequence Diagrams. 13th International Conference
on Evaluation of Novel Approaches to Software Engineering, Mar 2018, Funchal, Portugal. pp.275-282,
�10.5220/0006708102750282�. �hal-02090259�

https://hal.science/hal-02090259v1
https://hal.archives-ouvertes.fr


Guard Evaluation and Synchronization issues in Causal Semantics for
UML2.X Sequence Diagrams

Fatma Dhaou1, Ines Mouakher 1, J.Christian Attiogbé2 and Khaled Bsaies 1

1Lipah, Faculty of Sciences Tunis, Tunis, Tunisia
2LS2N, University of Nantes, Nantes, France

Keywords: UML2.X Sequence Diagrams, Semantics, Combined Fragments, Guard Evaluation

Abstract: UML2.X sequence diagrams (SD) permit the modelling of behaviours of systems. With the combined frag-
ments (CF) that can be nested and aggregated in a single SD more complex behaviours can be created. How-
ever the standard interpretation and the consideration of all the aspects related to the CF are not obvious to
handle, this represses their proper use. We proposed in a previous work, a causal semantics based on partial
order theory, which is suitable for the computation of all possible valid traces for UML2.X sequence diagrams
with nested CF modelling behaviours of distributed systems. In this work, we deal with an important aspect
that is the guard evaluation and the synchronization between the lifelines that are complex issues.

1 INTRODUCTION

Context. The context of our work is the use of
the UML2.X sequence diagrams (SD) as a privileged
language that are adopted by the engineering and
designers in the modelling of behaviours of systems
due its intuitive use and its intuitive graphical repre-
sentation.
However, the standard semantics of SD that is defined
by the Object Management Group (OMG) (Group,
2015) leaves several intentional variations points
to adopt the use of this language in the modelling
of different kinds of systems. These intentional
variations points lead sometimes to ambiguities that
induce some issues, which repress the proper use of
SD.
Motivation. We interested especially on the compu-
tation of partial order between the events for UML2.X
SD modelling behaviours of distributed systems. We
reported the inadequacy and the ambiguities of the
definitions of the standard semantics whose its rules
did not take into account of the independence of
the components involved into an interaction. For
the other works, they proposed two approaches
for the computation of the partial order. The first
approach consists in flattening the SD into several
basic SDs that are semantically equivalent ((Cengarle
and Alexander, 2004), (Knapp and Wuttke, 2006),
(øystein Haugen et al., 2005), (Harald, 2003)). The
second approach uses the concept of locations that is
borrowed from the Live Sequence charts formalism
((Cavarra and Filipe, 2004), (Juliana, 2006), (Harel

and Maoz, 2008)).
We have considered the most popular CF SEQ, ALT,
OPT and LOOP that permit to model respectively
sequential, alternative, optional and iterative be-
haviours. The standard defines weak sequencing
as the default composition operator for CF. Ac-
cordingly, most semantics retain this operator to
compose a combined fragment with the rest of the
diagram ((Harald, 2003), (øystein Haugen et al.,
2005), (Cengarle et al., 2005)). However the weak
sequencing operator can lead to non intuitive orders
between events. This explains that the most of the
existing semantics interpret the some of CF as in the
structured programming language. For instance the
ALT CF is considered as the IF-Then-Else construct
and in the loop CF strict sequencing is applied
between iterations. These non-standard interpretation
limit considerably the expressive power of CF and
some order between events is lost. Moreover, the
most of the existing approach did not deal explicitly
with nested CF whose complicate the determination
of the precedence relations between the events. In
our previous work, we proposed an extension of the
causal semantics to remedy to the insufficiencies of
the existing works and to deal with some issues of the
standard semantics. Indeed we have firstly interested
on computation of partial order between the events
of UML2.X SD that model behaviours of distributed
systems.

In this paper we interested on issues that are re-
lated to the consideration of constraints interactions



that guard some combined fragments. Indeed this as-
pect is often ignored by the most of the existing se-
mantics, (Aredo, 2002), (Harald, 2003), (Li et al.,
2004), (Grosu and Smolka, 2005), (Cengarle et al.,
2005), since it causes several inconsistencies. The
few semantics that have considered guards, have ei-
ther proposed approaches that are not convenient for
all kind of systems or they adopt some strict hypoth-
esis. In the semantics where only synchronous mes-
sages are considered, the guard evaluation does not
raise any issue. However, in the distributed systems
where the communication is mainly asynchronous it
must be handled with caution. Indeed, after the guard
evaluation in the case of an ALT, a synchronization
between the lifelines (that model the objects involved
in the interaction) must be ensured in order to prevent
a parallel execution of several operands.
Contribution. This paper extends our previous work
(Dhaou et al., 2015), (Dhaou et al., 2016), (Dhaou
et al., 2017). In (Dhaou et al., 2015), (Dhaou et al.,
2016) we have extended an existing semantics pro-
posed for UML 1.X (O.Tahir et al., 2005) to deal
with SD with the most popular combined fragments
(ALT, OPT and LOOP), by processing the SD as a
whole (without parsing the SD). We have proposed
several rules to derive the partial order between the
events. In (Dhaou et al., 2017), we have updated the
formalization of sequence diagrams in order to sup-
port nested CF, and we have generalized the previ-
ous rules for the derivation of partial order between
events.

We now propose some additional contributions
that consist, in proposing an approach to deal with
guard evaluation and synchronization issue in our
causal semantics that is dedicated to SD with nested
CF modelling behaviours of distributed systems.
Organization. The remainder of the article is struc-
tured as follows. In Section 2, we propose an
overview on our previous work. Section 3 is devoted
to the approach that we propose for guard evalua-
tion for SD with nested CF modelling behaviours of
distributed systems. In Section 4, we define the be-
haviour of SD. Then in Section 5, we we deal with
the synchronization issue. Before concluding in Sec-
tion 7, we present some related works in Section 6.

2 OVERVIEW ON THE
PREVIOUS WORK

The extended causal semantics (Dhaou et al.,
2017) is based on precedence relations that permit to
compute, for each event of an SD with nested CF its
preceding events, without parsing the SD and with-

out making syntactic restrictions on the considered
CF (especially for LOOP CF or nested structure that
contains LOOP CF that requires a special processing).

To define and formalize these precedence rela-
tions, we have proceeded as follows.
• We first proposed a formalization of UML2.X
that is based on set theory notations. Thus an SD is
defined as a tuple:
SD : 〈L,M,EV T,FCT s,FCT r,FCT l,OP,F,<caus, tree OP〉
where the elements depict respectively the set of
lifelines, the set of asynchronous messages, the set of
events, the function that permits to associate to each
message one sent event, the function that permits to
associate to each message one received event, the
function that associates to each event one lifeline (the
transmitter or the receiver), the set of the operands,
the set of the combined fragments, the causal relation
and the function that allows to structure the SD in the
form of a tree of operands,
• then we have encoded the SD into a tree structure,
such that the tree is composed by a set of linked
operands. Indeed, we consider the whole SD as a
root operand that we note OP00; we define the set
OP = (

⋃
i={1..n}

OPi)∪{OP00}; where n is the number

of operands of the considered SD. The figure 2
represents the tree associated to the SD of the figure
1. The idea consists to associate a node to each CF
or operand. When building the tree of an SD, we
always have a root node that represents the complete
SD; the process is then breadth-first. Note that the
operands of the CF ALT are independent, i.e they
have disjoint executions. Therefore, to simplify
the tree representation of the SD, we substitute the
node which should stand for these fragments with
the nodes representing their operands. They are
moved to the upper level. However, to distinguish
them, the operands of the same fragment have their
indexes built with the same prefix (it’s the case of the
operands OP21 and OP22 that belong to the same CF
ALT (see Fig.1). From the node of a current SD, the
consecutive fragments of the SD become the nodes of
the current node. Each fragment is either represented
as a node or it is represented by the nodes of its
operands. A node is associated to each CF that has
only one operand (for instance loop or opt). A CF
with more than one operand (for instance ALT CF) is
replaced with the nodes associated to its operands.

Each operand in an SD has a weight. For instance,
each operand of a SEQ, an ALT and an OPT CF have
a weight equal to 1, and an operand of a LOOP CF
has a weight equal to a value max, where max is
the maximum number of iteration of the considered
LOOP CF. The general definition of an operand in a



L1

loop

alt

[0,3]

[G2]

[G3]

[G1]

m1

L2 L3

m2

loop [0,2] OP4.1[G5]

OP00

OP11

OP21

OP22

m3

m4

m5

opt
m6

OP31

loop [0,3] OP5.1[G6]

m7

m8

[G4]

Figure 1: Example of SD with nested CF

OP00

OP11

OP21 OP22 OP31

OP41

OP51

Figure 2: Tree associated to the SD of the figure 1

combined fragment is given as follows:

Definition 1. (Operand in Combined Fragment)
We define a set of operands OPi in a CF Fi as follows:
OPi = {OPi, j={1..k} |

OPi j =
〈
guardi j,weighti j,EV T Di j

〉
}

where: i) k is the number of operands in CF Fi,
ii) weighti j is the weight of the operand OPi j, iii)
EV T Di j are the events that are directly contained in
an operand OPi j.

• finally we have defined several relations and
functions that are required for the formalization of
the precedence relations. For instance some functions
permit to return some important informations in the
tree : i) the function ancestor permits to associate to
each operand all the operands where it is nested (its
ancestor operands in the tree); ii) the function brother
permits to identify the operands that belong to the
same CF ALT. In a given tree the brother operands
are the operands that belong to the same level and
that have the same index i. Hence, the operands of
the same sibling are not all necessarily brothers, since
some of them came from lower level when built the
tree. This function is used in the precedence relations
to enforce that the events that belong to different
operands of an ALT CF, or that have in their ancestor
operands that are brothers, must not be ordered.

Illustration 1: in Fig.1, ancestor[{OP00}] = /0, and
ancestor[{OP21}] = {OP11,OP00}.
Illustration 2: in Fig.1, the operands OP21,OP22

belong to the same CF ALT, thus they are brothers.
brother[{OP21}] = {OP22}
The other functions and relations permit to return
some informations about the operands.
In the sequel we resume some of them that are re-
quired in this paper and we define a new ones.

We use the following functions to manipulate the
operands:

• EV T D permits to get the events that are directly
contained in each operand,

• EV T G permits to get all the events that are con-
tained in an operand including those which are
contained in its nested operands.

In the following we need to define a function that
is required later to deal with the evaluation of guards
and the synchronization issues.

We assume that each operand of a CF has only one
first event. Intuitively, a first event is an event that has
not a preceding events in the considered operand. We
define the function f irst that permits to get the first
event of each operand: f irst : OP→ EV T

first={(X ,e)|X ∈ OP ∧ e ∈ EV T G(X) ∧
(∀ e′)[e′ ∈ EV T ∧ e′ <∗caus e⇒ e′ /∈ EV T G(X)]}

The causal semantics (Dhaou et al., 2017) is based on
fourth precedence relations:

1. the synchronization relation < Sync allows to each
lifeline to synchronize its behaviour; it expresses
that a given message m is received if it was sent
previously,



2. the emission-emission relation < EE permits to
order two successive events emitted by the same
lifeline,

3. the reception emission < RE relation expresses
that the reception of an event by a lifeline causes
the emission of the event that is successive to it,

4. the hidden relations < Hcaus are the relations be-
tween the events of LOOP CF of the current it-
eration and the events of the previous iterations.
These relations appear when the LOOP operand is
flatten at least one time. They are due to the over-
lapping between the occurrence of the events of
different iterations of a loop CF.

In this paper, we propose to cover an important
aspect of CF that should not be disregarded: it is
the constraint interaction that guards CF. Indeed, the
evaluation of guards constraints the occurrence of the
events. There are two aspects to consider for the
guards: their evaluations and the effects of their eval-
uations on the occurrence of the events of the same
operand and the events of the other operands; this is
the synchronization issue.

3 GUARD EVALUATION

All kind of CF can be guarded. There are several
features that must be considered. They lie on how
to, and who must, evaluate the guard, when and how
many time the guard evaluation should be done.

The standard semantics states that the guard has to
be evaluated before the occurrence of the first event
of each operand. This definition is ambiguous. More-
over the first event of an operand was not clearly de-
fined. We propose an approach for guard evaluation
that is faithful with the standard semantics. In our
approach we have defined the first event with some
restrictions. We consider the guard evaluation as an
internal operation that is not visible from the envi-
ronment. Hence, we use fictitious events (τ events)
to deal with guard evaluation as well as the synchro-
nization issue. Moreover the fictitious events will en-
sure the synchronisation between the operands once
the guard is evaluated.
For each operand, every fictitious event belongs to
the same lifeline of the first event of the considered
operand; it is placed above the first event. For each
guarded operand, the guard is evaluated one time by
the lifeline of its fictitious event. For an ALT CF,
the guard of each operand is evaluated one time by
the corresponding fictitious event. If we have, si-
multaneously, several operands with true guards and
whose their fictitious events satisfy the precedence

constraints, only one fictitious event will be chosen to
occur in a non-deterministic way. This is guaranteed
by our semantics since it is an interleaving1 seman-
tics.

In the sequel we provide the formal definition of
the fictitious events as well as the precedence relations
that are caused by their introduction in the SD.

3.1 Formal definition of fictitious events

For each guarded operand OPi j, we opted for the use
of two fictitious events (positive and negative) (as de-
picted in (Fig.3), since they have distinct execution
effects. The positive fictitious event (τ+i j ) occurs when
the guard is evaluated to True, and permits to the
events of the corresponding operand to occur; the neg-
ative fictitious event (τ−i j ) occurs when the guard is
evaluated to False, and permits to prohibit the occur-
rence of the events of the concerned operand. In the
following, we define some sets and functions that are
used in the sequel.

• Fic pos and Fic neg represent, respectively the
sets of positive and negative fictitious events, such
that Fic = Fic pos∪Fic neg

• We define two partial bijective functions that per-
mit to associate respectively to each operand its
positive and negative fictitious events.

– Fct τ pos : OP 7�→ Fic pos: for each operand
we associate a positive fictitious event,

– Fct τ neg : OP 7�→ Fic neg: for each operand
we associate a negative fictitious event,

• Fct lτ : Fic→ L permits to associate to each fic-
titious event its correspondent lifeline. Each ficti-
tious event belongs to the lifeline of the first event
of the considered operand,

• <τ: denotes the partial order relationship that con-
tains the precedence relationships that are caused
by the addition of the fictitious events. This rela-
tion is detailed in the sequel.

3.2 The Precedence Relations Induced
by the Introduction of Fictitious
Events

The fictitious events are inserted between the first
event of an operand and its preceding events. This
causes new precedence relations (i.e new couples of
events) between them and the events of the SD.

The precedence relation <τ is decomposed into
two precedence relations <τ1 and <τ2 that are

1i.e. two events may not occur at exactly the same time.



detailed in the following.

For an operand OPi j, the fictitious events τ
+
i j and

τ
−
i j are both located between the first event of OPi j

and all its preceding events. Consequently, they
inherit all the preceding events of the first event of the
considered operand. These new precedence relations
are computed from a relation noted <τ1.

Illustration: in Fig.3, according to the <EE relation-
ship, the event !m1 precedes the first event !m2 of the
LOOP operand ; by inserting the fictitious events (τ+
and τ−), to evaluate the guard of the LOOP operand,
the event !m1 becomes the preceding event of both τ+
and τ− events.

<τ1=
{(e,e′)|e ∈ EV T ∧ e′ ∈ Fic ∧ (∃X)[(X ∈ OP)
∧ (e′ = Fct τ pos(X) ∨ e′ = Fct τ neg(X))
∧ ((e, f irst(X)) ∈<caus)]}

Moreover, the positive fictitious event τ
+
i j becomes

the only preceding event of the first event, this is com-
puted from <τ2 relation.
Illustration: in Fig. 3, τ+ becomes the only preced-
ing event of the event !m2.

<τ2=
{(e,e′)|e ∈ Fic pos ∧ (∃X)
[X ∈ OP ∧ e = Fct τ pos(X) ∧ (e′ = f irst(X))]}

To recapitulate, the relation <τ2 permits to
generate new precedence relations that must be
added to <caus relationships, however the relations
<RE ,<EE ,<hcaus are overloaded with <τ1 relation-
ship. Up to now, we define a new relation <causG as
follows.

<causG=<Sync ∪<REG ∪<EEG ∪<hcausG ∪<τ2

The relations <REG, <EEG, <hcausG are obtained
by overloading the <RE , <EE , <hcaus relations with
the <τ1 relation. That means the ordering of events
depends on the cumulative rules of the relationships.
The valid traces are those which can be generated
satisfying these orders.

The definitions provided by the standard for the
computation of traces of an SD are not formalized.
The rules that we defined in this paper can be adjusted
to formalize the definitions of the standard by restor-
ing some constraints that we relaxed. In the same way,
these rules can be adapted for any kind of semantics
by strengthening or weakening some constraints. The
ordering of events depends on the cumulative rules of
the relationships. The valid traces are those which can
be generated with respect to these orders.
The semantics defined in this paper assumes that all

the behaviour is explicitly specified in the diagram.
The behaviour that is not modelled is considered as
invalid.

L1 L2

loop [0,2] G

m1

m2

m3

+
-

OP00

OP11

Figure 3: Fictitious Events

4 BEHAVIOUR OF SEQUENCE
DIAGRAMS

The behaviour of a given SD is a set of traces. The
trace is a set of events occurrences. The checking
of the occurrence of all the preceding events for an
event constraints its occurrence. However its occur-
rence depends on other constraints, such as the value
of its state, that we need to define precisely, and the
guard evaluation if it is about an event that belongs to
guarded CF.

4.1 The state of an event

According to a run, an event which belongs to a ba-
sic SD can have two obvious basic states: occurred
or not yet occurred. However, these basic states are
not sufficient to express the state of an event in an
SD with sophisticated structures (nested CF). Indeed,
each event that belongs to such SD can be: either not
yet occurred, or occurred or ignored one or several
times (if it belongs to LOOP operand of nested CF
that contains LOOP operand), or consumed. Then, the
variable state is defined as follows.

state : EV T → NAT
Depending on the precedence relations on events, we
can define which event should be run according to
their state. The initial value of the state of each event
corresponds to its maximal value of occurrence in
each run. The state of an event is decreased when-
ever it is occurred or ignored. To describe the state
of an event e, we use the following vocabulary: i) not
yet occurred, ii) occurred: if the event e is executed or
ignored one or several times, iii) consumed: when the
state of the event is equal to zero. During its execu-
tion, an SD can be in one state among the following



states: i) an initial state, when all its events are not
yet occurred, ii) an intermediate state, iii) a final state,
when all its events are consumed.
The notion of state is very important, indeed, it con-
straints the occurrence of a given event (for instance
we decrement the state of an event whenever it is oc-
curred, or if we want to prohibit its occurrence); it
also serves to indicate the location of the considered
event; this information is useful especially when we
have several nested LOOP CF. This notion is also used
for other purposes that we precise in the sequel.

4.2 The occurrence of events

An event occurs under some trigger conditions
and produces some execution effects. The textual
description of the definition of an event in a given SD
with nested CF is done as follows.
The occurrence of a normal event: the trigger
conditions consist in checking that:
i) the preceding events of the current event are
occurred (executed or ignored),
ii) the current event is not yet consumed.
The occurrence of a fictitious events: The ficti-
tious events (positive and negative) have additional
executions effects, indeed we must add a trigger
condition in which we check the value of guard of the
considered operand.
The execution effects consist in:
i) updating the state of the event,
ii) updating the lifeline of the current event.

The fictitious events of an ALT or a LOOP CF have
additional execution effects to deal with the synchro-
nization issue that we explain in the sequel.

5 SYNCHRONIZATION ISSUE

For an ALT and a guarded LOOP CF, an important
issue should be handled after the guard evaluation,
is the synchronization between the lifelines covered
by them. Indeed, the standard semantics of an ALT
CF imposes that only one operand must be executed
among several potential operands. When none guard
is True, the CF is omitted. In the context of SD
modelling behaviours of distributed system, since the
lifelines involved in the interactions are independent,
a synchronization issue arises. Therefore, in the
context of distributed components, when the guard is
evaluated, the decision must be propagated properly
to the other lifelines to prevent a parallel execution
of events that belongs to distinct operands, and
the emergence of unspecified behaviours in the
implementation.

Moreover, for the guarded LOOP operand, the events
inside the operand are executed while the guard
is evaluated to True and the maximal number of
iterations is not reached. The LOOP CF represents
a recursive application of the WEAK SEQUENCING
operator, thus the traces that contain an overlapping
between the occurrence of the events of different
iterations are possible. Hence, once the guard become
False, the events of the previous iterations that are
not yet occurred must occur, while the events of the
remaining iterations must not occur.

In the sequel we explain how the fictitious events
are used to ensure the synchronization.

1. The execution effect of a positive fictitious event
of a given operand of an ALT CF should: i) update
its state, and its lifeline; ii) update the state of the
negative fictitious event of the same operand for
which it belongs, iii) decrease the state of each
event of the brother operands in order to prohibit
the occurrence of the events that are contained in
them (i.e to ignore them),

2. The execution effect of a negative fictitious event
of an ALT CF should decrease the state of all the
events of the considered operand in order to ig-
nore them.

3. The execution effect of a positive fictitious event
of a LOOP CF should: i) update its state by
decreasing it, ii) update its lifeline, iii) update the
state of the of the negative fictitious event of the
same operand,

4. The execution effect of a negative fictitious event
of a LOOP operand should decrease the state of
each event of the considered operand in the two
following cases:
i) if the guard is false from the beginning: none it-
eration of the LOOP operand is executed, hence we
decrement the state of each event of the operand
including the state of the events that belong to the
nested operands of the considered operand (if they
exist); ii) if the guard changes its value and be-
comes false during the iterations: the events of
the current iteration must finish their occurrences
(if we have some messages that are already sent,
then their corresponding received events must oc-
cur), and the events of the remaining iterations
must not occur.

The use of fictitious events causes new precedence re-
lations that must be handled. However the fictitious
events give us a high flexibility in defining execution
strategies of the events. Moreover by ensuring the



tasks of evaluating guard and the synchronization be-
tween the lifelines, this permits us to define for the
events of the SD a same shape (same trigger condi-
tions and same execution effects).

6 RELATED WORK

The definitions that are given by the standard se-
mantics (Group, 2015) concerning the guard evalua-
tion are imprecise. This opens the door to the propo-
sition of several approaches by the existing semantics
that deal differently with this issue. However these
approaches are not convenient for all kinds of sys-
tems. The existing semantics that are proposed in
the literature for SD are of two categories (Zoltán
and Hélène, 2011): the semantics of the first cat-
egory are compositional ((Cengarle and Alexander,
2004), (Knapp and Wuttke, 2006), (øystein Haugen
et al., 2005), (Harald, 2003), (Eichner et al., 2005),
(Youcef, 2006), (Fernandes et al., 2007), (Shen et al.,
2008)) such that they proceed to the parsing of the
SD with CF into several basic SDs, then the seman-
tics of an SD is mechanically built from the semantics
of its constituent. The constituents are ordered and
combined by the weak sequencing operator. In these
semantics the guards are implicitly evaluated, hence
several hidden issues are not treated explicitly.
In the semantics of the second category ((Cavarra
and Filipe, 2004), (Juliana, 2006), (Harel and Maoz,
2008)), the SD is treated as a whole, and guards
are explicitly evaluated. However some of them ap-
ply syntactic restrictions to avoid many inconsisten-
cies. For instance, in the approach of (øystein Hau-
gen et al., 2005), the guards are handled as local con-
straints. Contrarily to our approach their semantics
allows non-local choices. However, it is not specified
how to handle constraints if several guards are true
simultaneously. In the works of (Cavarra and Filipe,
2004), (Juliana, 2006), (Shen et al., 2008), each life-
line can make its choice independently, however they
impose an ordered guard evaluation of the operands
(from top to bottom, and the first one evaluated as true
be chosen). In (Eichner et al., 2005), the authors use
a black box semantics to interpret CF, that consists to
consider the CF as an atomic event, thus the behaviour
of a CF does not interfere with the behaviours out-
side the CF. In some works, the authors adopt a non-
standard interpretation of the ALT and the LOOP CF.
In (Youcef, 2006), (Huszerl et al., 2008), (Cavarra and
Filipe, 2004), (Maoz et al., 2011), the authors trans-
form the ALT CF into an IF − T HEN−ELSE con-
struct, hence there is no problem of synchronization
between the lifelines; moreover they do not consider
LOOP operand with guard that requires a special pro-

cessing. In (Group, 2005), the authors define a deter-
ministic ALT. In (Youcef, 2006), the authors use strict
sequencing rather than weak for the LOOP CF to avoid
a pathological case of divergence in LOOP combina-
tion when using asynchronous communication. Simi-
larly, in (Knapp and Wuttke, 2006), the authors define
a new CF SLOOP that enforces strict sequencing be-
tween the iterations. Hence a synchronization on en-
tering and exiting CF is imposed. In (Juliana, 2006),
the proposed approach considers a smaller number of
CF (ALT, PAR, SEQ, and state invariants). The authors
did not deal with synchronization issue and they did
not consider the LOOP CF that requires a special pro-
cessing for the definition of preceding events of each
event. In our approach, we interpret the LOOP and
ALT CF as in the standard semantics, differently of
the interpretation in the structured programming lan-
guages. We deal with ALT CF having several true
guards simultaneously and we deal with guarded loop
CF. The guard evaluation is explicit. For an ALT CF
the guard evaluation is done in one step to ensure that
only one of the operands is chosen.

7 CONCLUSION

The causal semantics that we have proposed in our
previous work (Dhaou et al., 2017), the meaning of
SD with nested CF (ALT, OPT, LOOP) modelling be-
haviours of distributed systems is unambiguously in-
terpreted using the partial order relations. The prece-
dence relations allow to compute all possible valid
traces for SDs with nested CF that model behaviours
of distributed systems, by avoiding the parsing of SD
equipped with (ALT, OPT, LOOP) CF, hence the com-
pact syntactic representation is preserved. The pro-
posed semantics can serves as basis for the derivation
of traces of UML2.X SD, as well as for the definition
of an operational semantics that facilitates the analy-
sis of the SD.

In this paper we extended our semantics to cover
an important aspect that is the guard evaluation and
it consequences. This aspect is tackled with different
manners by the existing semantics that are not usually
appropriate in our context where the components are
distributed. We are developing a plug-in for autom-
atizing the computation of precedence relationships
between the events of SD with nested CF. We plan to
implement the semantics above in Event-B (Abrial,
1996), (Butler, 2008) to enable rigorous model analy-
sis, the checking of the correctness of the model and
some properties using the formal techniques of Event-
B and its various tools Rodin: with a theorem-prover,
and with ProB model-checker.



REFERENCES

Abrial, J.-R. (1996). The B Book. Cambridge Univer-
sity Press.

Aredo, D. B. (2002). A framework for semantics of
uml sequence diagrams. in PVS Journal of Uni-
versal Computer Science (JUCS), pages 674–
697.

Butler, M. (2008). Incremental design of distributed
systems with event-b. Lecture Notes in Markto-
berdorf Summer School.

Cavarra, A. and Filipe, J. K. (2004). Formaliz-
ing liveness-enriched sequence diagrams using
asms. In Abstract State Machines 2004. Ad-
vances in Theory and Practice, 11th Interna-
tional Workshop, Lutherstadt Wittenberg, Ger-
many, Proceedings, pages 62–77.

Cengarle, M. V. and Alexander, K. (2004). Uml 2.0
interactions: semantics and refinement. Technis-
che Universitat München, pages 85–99.

Cengarle, M. V., Graubmann, P., Wagner, S., and
München, T. U. (2005). Semantics of uml 2.0
interactions with variabilities.

Dhaou, F., Mouakher, I., Attiogbé, C., and Bsaies, K.
(2015). Extending causal semantics of uml2.0
sequence diagram for distributed systems. Pro-
ceedings of the 10th International Conference on
Software Engineering and Applications, Colmar,
Alsace, France, pages 339–347.

Dhaou, F., Mouakher, I., Attiogbé, C., and Bsaies, K.
(2016). Refinement of UML2.0 sequence dia-
grams for distributed systems. In Proceedings of
the 11th International Joint Conference on Soft-
ware Technologies (ICSOFT 2016) Lisbon, Por-
tugal, pages 310–318.

Dhaou, F., Mouakher, I., Attiogbé, C., and Bsaies,
K. (2017). A causal semantics for UML2.0
sequence diagrams with nested combined frag-
ments. pages 47–56.

Eichner, C., Fleischhack, H., Meyer, R., Schrimpf,
U., and Stehno, C. (2005). Compositional se-
mantics for uml 2.0 sequence diagrams using
petri nets. Lecture Notes in Computer Science,
3530:133148.

Fernandes, M., Tjell, S., Jorgensen, J. B., and Ribeiro,
O. (2007). Designing tool support for translating
use cases and uml 2.0 sequence diagrams into a
coloured petri net. In 6th Int.Wsh. on Scenarios
and State Machines. IEEE Computer Society.

Grosu, R. and Smolka, S. (2005). Safety-liveness se-
mantics for uml 2.0 sequence diagrams. In 5th
Int. Conf. on Application of Concurrency to Sys-
tem Design, pages 6–14.

Group, O. M. (2005). Omg unified modeling lan-
guage (omg uml), superstructure version 2.5.

Group, O. M. (2015). Omg unified modeling lan-
guage (omg uml), superstructure version 2.2.

Harald, S. (2003). Semantics of interactions in uml
2.0. In HCC, pages 129–136.

Harel, D. and Maoz, S. (2008). Assert and negate re-
visited: modal semantics for uml sequence dia-
grams. In Software and System Modeling, pages
237–253. John Wiley & Sons, Inc.

Huszerl, G., Waeselynck, H., and Zoltán Égel,
András Kvi, Z. M. (2008). Refined design and
testing framework, methodology and application
results.

Juliana, K. F. (2006). Modelling concurrent interac-
tions. Theor. Comput. Sci., pages 203–220.

Knapp, A. and Wuttke, J. (2006). Model checking
of uml 2.0 interactions. In Kühne, T., editor,
Models in Software Engineering, pages 42–51.
Springer.

Li, X., Liu, Z., , and He., J. (2004). A formal seman-
tics of uml sequence diagram. In Australian Soft-
ware Engineering Conference IEEE Computer
Society, pages 168–177.

Maoz, S., Harel, D., and Kleinbort, A. (2011). A com-
piler for multimodal scenarios: transforming lscs
into aspectj. ACM Trans. Softw. Eng. Methodol.,
pages 18:1–18:41.

O.Tahir, C.Sibertin-Blanc, and J.Cardoso (2005). A
causality-based semantics for uml sequence sia-
grams. In 23rd IASTED International Confer-
ence on Software Engineering, pages 106–111.
Acta Press.

øystein Haugen, Husa, K. E., Runde, R. K., and
STAIRS (2005). Towards formal design with se-
quence diagrams. In Software and System Mod-
eling, volume 4, pages 355–357. John Wiley &
Sons, Inc.

Shen, H., Virani, A., and Niu, J. (2008). Formalize
uml2 sequence diagrams. 11th IEEE High As-
surance Systems Engineering Symposium, Nan-
jing, China, pages 437–440.

Youcef, H. (2006). Branching time semantics for
uml 2.0 sequence diagrams. Lecture Notes in
Computer Science: Formal Techniques for Net-
worked and Distributed Systems, pages 259–
274.

Zoltán, M. and Hélène, W. (2011). The many mean-
ings of uml2.0 sequence diagrams: a survey.
Software & Systems Modeling, pages 489–514.


