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EXECUTIVE SUMMARY

Data interlinking is a critical task for widening and enhancing linked open data. One way
to tackle data interlinking is to use link keys, which generalise keys to the case of two RDF
datasets described using different ontologies. Link keys specify pairs of properties to compare
for finding same-as links between instances of two classes of two different datasets. Hence,
they can be used for finding links. Link keys can also be considered as logical axioms just
like keys, ontologies and ontology alignments. We introduce the logic ALC+LK extending
the description logic ALC with link keys. It may be used to reason and infer entailed link
keys that may be more useful for a particular data interlinking task. We show that link key
entailment can be reduced to consistency checking without introducing the negation of link
keys. For deciding the consistency of an ALC+LK ontology, we introduce a new tableau-
based algorithm. Contrary to the classical ones, the completion rules concerning link keys
apply to pairs of individuals not directly related. We show that this algorithm is sound,
complete and always terminates.
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ELKER INTRODUCTION

1. Introduction

Data interlinking is the task of discovering IRI references in different RDF datasets that refer
to the same thing. The output of data interlinking is a set of identity links, typically specified
using the owl:sameAs property. owl:sameAs links are crucial to ensure interoperability in
linked open data [Heath and Bizer 2011].

Different approaches to data interlinking have been proposed [Ferrara et al.|2011; Nentwig
et al. 2017]. Link keys are among them [Atencia et al. [2014; (Gmati et al. 2016]. Link keys
generalise keys to the case of two RDF datasets described using different ontologies. An
example of a key is the following:

({creator, title} key Work) (1.1)

stating that whenever two instances of the class Work share values for role creator and for
role title, respectively, then they denote the same entity. An example of a link key is:

({(creator, auteur), (title, titre) } linkkey (NonFiction, Essai)) (1.2)

stating that whenever an instance of the class NonFiction and an instance of the class Essai,
share values for roles author and auteur, and for roles title and titre, respectively, they denote
the same entity.

By nature, link keys can be used for data interlinking. For instance, the previous link
key could be used to discover links between books of two bibliographic datasets, one using
an English vocabulary and the other one using a French vocabulary. The problem is that,
in practice, link keys are not given and need to be found.

One source of link keys is domain knowledge given by experts. Link keys may also be
automatically extracted from RDF data [Atencia et al. [2014; Atencia et al. |2019]. Another
possibility is to infer link keys, which is the topic of this paper. Indeed, link keys can be
considered as logical axioms, and, together with other kinds of knowledge such as keys,
ontologies and ontology alignments, may entail new link keys.

Link key inference can complement link key extraction. The link key extraction algorithm
described in [Atencia et al.|2014] limits the search of link keys to link keys composed of named
properties and named classes only. This leaves out complex link keys that may be helpful
in practice. Reasoning can be used to combine automatically extracted link keys with other
available knowledge to infer complex link keys that may be more useful for a particular data
interlinking task. Additionally, link key inference can be used to confirm the belief of a
domain expert that, given some knowledge, a set of property pairs constitute a link key for
a pair of classes.

The following example illustrates this. Knowledge is modelled in description logics, which
are the basis for semantic web languages such as OWL2.

Example 1. Consider two library catalogs about books. In the first one the main class is
Work and contains a subclass NonFiction. creator and title are a key in this ontology for the
Work class as described in . In the second ontology, there is a class Essai with auteur,
lecteur and titre roles and classes of people such as Philosophe. An alignment tells us that
an NonFiction is more general than a Essai which has at least one Philosophe as lecteur (e.g.
reader), that creator is equivalent to auteur and that title is equivalent to titre. This can be
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expressed in description logics as:

NonFiction T Work
title = titre

creator = auteur

e N N T
e e e
S Ot W
N N N

NonFiction 3 Essai M Alecteur. Philosophe
The key can be expressed as a link key:
({(creator, creator), (title, title) } linkkey (Work, Work)) (1.7)

The set of statements 1s sufficient for generating some links. However, for a user,
it 1s not easy to find this out and a program requires a lot of inferences. It is thus useful to
find more direct link keys entailed: they will be easier to check by a user and can be directly

processed by a link generator. For instance, the link key @ 1s entailed by :

({(creator, auteur), (title, titre) } linkkey
(NonFiction, Essai M Jlecteur. Philosophe)) (1.8)

though the more simple link key s not entailed.

In this paper, we introduce a reasoning algorithm to determine whether an axiom — a
subsumption relation between two concepts, an assertion or a link key — is entailed from
other axioms. We model knowledge in description logics and we restrict ourselves to the
description logic ALC, which allows expressing negation, conjunction and disjunction of
concepts, and existential and universal role restrictions. The presented algorithm will be
the basis for extensions to deal with more expressive description logics. The language used
in Example [1] is slightly more expressive, as it covers role name equivalence, but it can be
rewritten as an ALC ontology to take these into account.

The proposed reasoning algorithm extends the standard tableau-based algorithm for rea-
soning in ALC [Schmidt-Schaufl and Smolka 1991]. In this algorithm, entailment is reduced
to consistency checking: to decide if an axiom « is entailed by a knowledge base O = (A, T),
consisting of a set A of assertional axioms and a set 7 of terminological axioms, is equiva-
lent to checking if O with the negation of « is inconsistent, i.e. it does not have a model.
We extend the ALC tableau algorithm for deciding entailment to ALC knowledge bases
O = (A, T, LK) equipped with link keys. We show that link key entailment can be reduced
to comnsistency checking by expressing the negation of a link key as a set of assertional axioms
and we provide the necessary tableau completion rules to deal with link keys. We prove that
the algorithm is sound, complete and that it always terminates. For that purpose, we use
unravelled interpretations because the canonical ALC interpretations may not satisfy link
keys.

The remainder of the paper is organised as follows. Section [2] positions our work with
respect to data interlinking and works on reasoning with keys in description logics. Section
describes the tableau-based algorithm and proves its termination, soundness and correctness.
Section [4] provides examples of the use of the algorithm. Section [5] proves the termination,
soundness, correctness and complexity of the proposed algorithm. Section [6] concludes the
paper and presents future work.
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2. Related work

Data interlinking Different approaches to data interlinking can be found in the literature.
They can be divided into two main categories: numerical methods [Volz et al. 2009; Isele
et al. 2011} |Suchanek et al. 2011; Ngomo and Auer |2011] and logical methods [Sals et al.
2007; [Hogan et al. 2012; |Al-Bakri et al. 2015; Al-Bakri et al. 2016]. Numerical methods
compute a similarity between resources based on their property values and establish links
between those which are highly similar. Logical methods use an axiomatic characterisation
of what makes two resources identical in order to find links between different datasets. Link
keys fall into this category.

The added value of logical methods is to profit from logical reasoning. The works [Sals
et al. |[2007; Hogan et al. 2012; |Al-Bakri et al. [2015} |Al-Bakri et al.|[2016] propose rule-based
approaches to infer same-as links that are logically entailed from an input set of domain con-
straints and facts. In [Hogan et al. 2012], Hogan et al. use a subset of OWL 2 RL/RDF rules
to derive owl:sameAs relations within the whole linked open data corpora. In [Al-Bakri et al.
2015], Al-Bakri et al. propose a different method that queries the linked open data cloud to
import only the necessary specific data for inferring or contradicting given target same-as
facts. The method is based on the query-subquery algorithm for answering Datalog queries
over deductive databases. In [Sals et al. [2007], Sais et al. introduce a logical method that
translates into rules schema constraints of RDFS, extended with OWL-DL and SWRL prim-
itives, and infers 100% correct decisions of reference reconciliation and no reconciliation. In
[Al-Bakri et al. [2016], Al-Bakri et al. present a probabilistic framework to model and reason
over uncertain RDF facts and rules that is based on probabilistic Datalog [Fuhr 2000]. The
authors report on experiments that demonstrate the gain of using reasoning (rule chaining)
for data interlinking by comparing their method with Silk [Volz et al. |2009].

The above-mentioned approaches focus on link inference, whereas the main focus of the
method described in this paper is to infer link keys. In this sense, it will complement these
approaches, as link key inference will provide input knowledge to be translated into rules for
inferring links.

Reasoning with keys and link keys in description logics Keys have been introduced
in description logics as global constraints in a specific KBox [Calvanese et al. 2000; Lutz
et al. [2005] and as a new concept constructor |[Borgida and Weddell [1997]. Calvanese et al.
[Calvanese et al. [2001] have shown how to formalize keys in the DLR logic, and proved that
the reasoning problems such as satisfiability, entailment in that logic are EXPTIME-complete.
The authors have indicated that DLR allowing for an arity of relations greater than two
and unary functional dependencies is undecidable. Keys based on features (functional roles
whose value belongs to a concrete domain) have been introduced within the ALCOK(D)
logic [Lutz et al. 2005] and an extension of the tableau method has been provided to deal
with these logics. All undecidable cases identified in this work are related to the presence of
a concrete domain. Motik et al. [Motik et al. [2005] have proposed a combination of OWL-
DL with a kind of rules, namely, DL-safe rules, which are restricted such that decidability
is guaranteed. This restriction imposes that each variable occurring in the premise (body)
of such a rule must be bound to an individual explicitly introduced in the initial ABox.
Obviously, DL-safe rules allow to express keys whose variables refer only to initial ABox
individuals.

Link keys generalise keys to the case of different RDF datasets which can be interpreted
as description logics. The tableau method for reasoning with link keys in ALC provided
in this paper modifies and extends the algorithm described in |[Gmati et al. 2016]. These
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modifications concern the addition of new completion rules and avoiding merging nodes.
They have been applied to ensure soundness, completeness and termination of the algorithm.
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3. Tableau method for ALC+LK

This section describes a tableau-based algorithm for reasoning with link keys in a centralised
context where link keys are considered as specific axioms stored in an ontology. We restrict
ourselves to the extension of the description logic ALC with link keys, denoted by ALC+LK.

First, we start in Section by giving the necessary preliminaries to introduce the
algorithm. Then we show in Section that ALC+LK ontology entailment can be reduced
to ontology consistency checking. Finally, the algorithm described in Section decides
consistency of ALC+LK ontologies.

3.1 Preliminaries

The logic ALCH+LK extends ALC with link keys made up of ALC-concepts and role names.
This is defined below.

Definition 1 (Syntax of ALC+LK). Let C, R and I be non-empty sets of concept names,
role names and individuals, respectively. The set of ALC-concepts (or simply concepts) is
the smallest set such that

— every concept name in C, T and L are concepts, and

- if C, D are concepts and R is a role name in R then CN1 D, CU D, -C, VR.C and
JR.C' are concepts.

A general concept inclusion (GCI) is an expression of the form C' T D where C,D are
concepts. A terminology or TBox is a finite set of GClIs.

An ABox assertion is an expression of the form C(a), R(a,b), a = b or a % b where C
s a concept, R is a role name in R and a,b are individuals in I. An ABox is a finite set of
ABozx assertions.

An ALC + LK link keyﬂ (simply called link key) is an expression of the form

({<P1, Q1>7 AR <Pn7 Qn>} “nkkey <C> D))

such that (C,D) is a pair of ALC-concepts and {(P1,Q1),...,(Pn,Qn)} is a non-empty
sequence of pairs of role names in R. An LKBox is a finite set of link keys.

A triple O = (A, T, LK), where T is a TBox, A is an ABox and LK is an LKBoz, is
called an ALC+LK ontology.

By abuse of notation, we will write ({(P;, Qi) }I" linkkey (C, D))
instead of ({(P1,Q1),- .., (Pn,@n)} linkkey (C, D)).
Below we define the semantics of ALC+LK.

Definition 2 (Semantics of ALCH+LK). An interpretation T = (AZ,-T) is composed of a
non-empty set AT, called the domain of Z, and a valuation - which maps every concept
name to a subset of AT, every role name to a subset of AT x AT and each individual to an
element of AT. The valuation is extended to constructed concepts such that, for all concepts

L Although it is possible to consider other types of link keys |Atencia et al.|2019|, in this paper, we restrict
ourselves to this one. Strictly speaking, this is rather ALC + LK™,
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C, D and role name R, the following is satisfied:

TI:AZ
1T =90
(cn DY =c*nD*
(CuD) =c*uD*
(=C)F = AT\ C*
)

(BR.C)E = {z € AT | Jy.(z,y) e RE Ay e CT}

An interpretation T satisfies a GCI C C D, denoted by T = C C D, if CE C D*. T is a
model of a TBox T if I satisfies every GCI in T .
An interpretation I satisfies the ABox assertions

C(a) if ot € C*
R(a,b) if (a*,b*) € R*

a~bifat =b"

abifat £t

Given an ABox assertion o, T |= « denotes that T satisfies a. T is a model of an ABox A
if it satisfies every ABoz assertion in A.

An interpretation T satisfies a link key ({(P;, Qi) }1—; linkkey (C, D)), which will be de-
noted by T = ({(P;, Qi) 1, linkkey (C, D)), if

Yo,m, @1, ,xn € AZ,

seCtAneD A N\ ((6,3) € PEA(nx) €Q)=d=n
1<i<n
7 is a model of an LKBox LIC if T satisfies every link key in LIC.

An interpretation I is a model of an ALCHLIC ontology O = (A, T, LK) if T is a model
of T, A and LK. An ontology O is consistent if there exists a model of O. An ontology
O entails a GCI, an ABox assertion or a link key o, written O = «, if every model of O
satisfies a.

We finish these preliminaries by introducing notations and definitions that will be used
in the paper. We use |S| to denote the cardinality of a set S. Given an ALC+LK ontology
O = (A, T, LK), we denote by sub(O) = sub(A, T, LK) the set of all sub-concepts occurring
in A, 7 and LK. The size of an ontology O is denoted by ||O|| = || A|| +||T]| +||£K]| where
|| A is the size of all assertions, || T || the size of all GCIs and ||[LK|| the size of all link keys.
It holds that |sub(O)| is polynomially bounded by ||O|| since if a concept is represented as
string then a sub-concept is a substring.

Finally, given two individuals s,¢ in I, we define the label of s as L(s) = {C € sub(O) |
C(s) € A} and the label of (s,t) as L(s,t) = {R € R | R(s,t) € A}. We assume hereafter,
without loss of generality, that the individuals of all ABoxes are labelled in this way.

3.2 Reduction of ontology entailment to ontology consistency

In ALC+LK, ontology entailment of GCIs, concept assertions, equality and inequality
statements, and link keys is reducible to ontology consistency checking. Indeed, given an
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ALC+LK ontology O = (A, T, LK), two concepts C, D and two individuals a, b:

OECLCDiff (Au{(CN=D)(x)},T,LK) is inconsistent
O C(a) iff (AU{=C(a)}, T, LK) is inconsistent
OkEFaxbiff (AU{a % b}, T, LK) is inconsistent
OkFEazbiff (AU{a=b},T,LK) is inconsistent

where z is a new individual not present in . Notice that ontology entailment of role
assertions may require considering negation of roles, which go beyond ALC+LK expressivity.

This result can be extended to link keys. It is not necessary to express link key negation,
but sufficient to provide an ABox witnessing this negation. Lemmal[I] below proves that link
key entailment can be reduced to consistency checking: given a link key A\, O = X if and
only if (AUA', T, LK) is inconsistent, where A’ represents the negation of \.

Lemma 1 (Reduction of ontology entailment to consistency). Let O = (A, T,LK) be an
ALCH+LK ontology. It holds that

O E ({{(P;,Qi)} linkkey (C, D)) iff (AU A", T, LK) is inconsistent

with A" = {C(z), D(y), = % y} UU;_ {Pi(w, 21), Qi(y, 2:) } and 2,y,21, -+ , 2 are new indi-
viduals not present in O.

Proof. Let A = ({(P;, Qi) }I~; linkkey (C, D)). Assume first that O = A. Let us show that
O' = (AUA, T, LK) is inconsistent. By contradiction, assume that O’ has a model Z. Since
A C AU A, then Z must be a model of O too. Moreover, since Z is a model of ', T
must be a model of A, which means that 2% € CZ, y* € DT, (aZ,2]) € P, (y*,22) € QF
and 27 # y?. This implies that Z & A. Thus, we have a model Z of O such that Z [~ .
Therefore, O [~ A, which contradicts the assumption.

Assume now that O [~ X. Let us show that O’ = (AU A, T, LK) is consistent. Since
O [~ A, then there exists an interpretation Z such that Z = O and Z = A (otherwise A would
be entailed). Since Z j& A, by the semantics of link keys, there exists §,d,d1,...,6, € AT
such that 6 € CZ, &' € D%, (§,61) € PL,(¢',01) € QF,...,(6,6,) € PE,(8,6,) € QL and
§ # &'. Let us extend Z by defining 27 = 6, y* = §',2F = 61,...,2% = 6,. Then, 7 is a model

ren

of A'. T is still a model of O. Therefore, Z is a model of O and, thus, O’ is consistent. [

Thanks to Lemma [1] ontology entailment in ALC+LK can be reduced to ontology con-
sistency. The following section describes a tableau algorithm for checking the consistency of
an ontology in ALC+LK.

3.3 Tableau algorithm for ALC+LK

The algorithm to decide if an ontology with link keys Oy = (Ap, T, LK) is consistent, starts
with Ay and applies the completion rules listed in Figure guided by 7 and LK. The
completion rules generate new ABoxes. If no more rule is applicable to a generated ABox
and this ABox does not contain any obvious contradiction (called clash) then there exists a
model of Oy that can be built from the ABox, otherwise no model exist. This algorithm is
based on the standard tableau algorithm for reasoning in ALC [Schmidt-Schaufl and Smolka
1991] to which we have added specific completion rules for dealing with link keys.

More precisely, we use A to denote a set of ABoxes and (A, T,LK) is a generalised
ontology to be used by the method. At the beginning, A is initialised with Ag = {Ap}.
(A, T, LK) is said to be consistent if there exists A € A such that (A, T, LK) is consistent.
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The application of a completion rule transforms the set of ABoxes into another set of
ABoxes. There are two types of rules: deterministic and non-deterministic rules. Each
application of a deterministic rule replaces an ABox A € Ay by a new ABox A’ € Ay ;.
However, the application of a non-deterministic rule replaces an ABox A € Aj by several
new ABoxes A} ... Al € Agiq.

The algorithm then generates a sequence of sets of ABoxes:

Ao, AL Ao, ... (3.1)

such that Ay, is obtained from Ay by applying a completion rule. An ontology (A, 7T, LK)
with A € Ay, is called a derived ontology from (Ao, T, LK) and A a derived ABoz. Such a
derived ABox A, and the corresponding ontology, is called complete if no completion rule is
applicable.

3.3.1 Preprocessing

As usual, to ease the description of the completion rules, we start with a preprocessing step.
All concepts occurring in the initial ontology are expressed into negation normal form (NNF),
i.e. negation only occurs in front of concept names. Any ALC-concept can be transformed
to an equivalent one in NNF by using De Morgan’s laws and the duality between existential
and universal restrictions. In addition, all concepts occurring in all link keys are in NNF as
well. Note that the NNF of a concept C' can be computed in polynomial time in the size of
C' [Baader et al. 2007]. For a concept C, ~C will denote the negation normal form of =C.

3.3.2 Blocking

As for ALC with GClIs, blocking (cycle detection) is necessary to ensure the termination of
the algorithm. Before giving the definition of blocking, we make a distinction between old
and new individuals. Let Oy = (Ag, T, LK) be an ALC+LK ontology with set of individuals
I # (. Assume that Oy is derived from an initial ontology Oy = (Ao, T, LK) with a set
of individuals Iy. We have Iy C I. An individual a € I is called old if a € Iy, and new
otherwise. New individuals result from applying specific rules (in Figure —3 is the only
such rule). We will write I = I,jq ¥ Lep Where I = Iy and Ipe,, = I\ Ip. In particular, Oy
has old individuals only, and no new individuals.

We assume that there is a total order over I,q = {si,...,sp} with s; < s; for all
1 <i<j<n. If arule adds a new individual s to an ABox, then < is extended by setting
s; < sforalll <i<nandt< siftwas added to the ontology prior to s. By construction,
< is a total order over I = I ;g W Ieq-

For the sake of simplicity, we assume that, if an equality assertion x = y or an inequality
assertion x % y belongs to Ay then = < y. This has no impact on consistency checking
because =~ and % are symmetric.

Definition 3 (Order and equivalence among individuals). Let O = (A, T, LK) be an ALC+LK
ontology with a set of individuals I and an order relation < over I. For each individual s € 1,
we use sT to denote the transitive closure of s with respect to the relation ~ (appearing in
assertions), i.e. s is the smallest set such that s € sT, and if c~xbe Aorb~ce A
with some ¢ € sT then b € sT. The function e(s) associates to each individual s the smallest
element of sT with respect to the order relation <.

Below we give the definition of a blocked element.
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Definition 4 (Blocking). Let O = (A, T, LK) be a derived ALC+LK ontology with a set
of individuals I = I jqW Inew. An individual s € Iy is blocked by an individual t € ey
if t < s and L(s) C L(t). We denote by b(s) the least individual (with respect to the total
order <) that blocks s.

Notice that only new individuals may be blocked. Also, given a blocked element s € I,,eq,
the existence and uniqueness of b(s) is guaranteed by the fact that < is a finite strict total
order (and, thereby, a well-order), so the set of blocking elements of s, which is not empty,
has a least element in < which is unique. The following lemma proves that b(s) is always
non blocked.

Lemma 2. Let Oy = (A, T, LK) be a derived ALC+LIK ontology with a set of individuals
I. If s € I is a blocked individual then b(s) is not blocked.

Proof. By contradiction, assume that b(s) is blocked by an individual ¢ € I. Then, ¢ < b(s)
and L(b(s)) C L(t). Since s is blocked by b(s), we have b(s) < s and L(s) C L(b(s)). Hence,
t <b(s) <sand L(s) C L(t), which contradicts the definition of b(s). O

3.3.3 Clashes

Clashes are atomic contradictions. Given an ontology with link keys O = (A, T, LK), we
will say that A contains a clash if one of the two following situations occurs:

— —~clash: {A(s),—A(s)} C A for some individual name s and a concept name A, or
— #-clash: {z %y} C A with z € y* for some individuals z,y.

If A contains no clash, we say that A, and O, is clash-free.

The case when {L(s)} C A, for some individual s, will be considered a —-clash too
(implicitly, { L T =T} C T and T(¢) € A for all t). We will write A — —-clash and A —
#-clash if A contains, respectively, a —-clash or a %-clash.

3.3.4 Completion rules

Completion rules transform the ABox of a generalised ontology. They leave the TBox and
LKBox unchanged. This transformation is monotonic, i.e. it only adds new assertions and
never removes anything from the ontology.

Figure shows the list of completion rules of the algorithm. They are standard com-
pletion rules for reasoning in ALC together with three more rules to deal with link keys
(—chooseLK1, —*chooseLk2 and —pk) and a rule to handle equality (—x). The —px rule
translates the semantics of link keys. The —chooserk1 and —>chooseLK2 ules make it explicit
whether two individuals ¢ and b that satisfy the condition of a link key should be set as
equal or not. Certainly, given an interpretation Z, the absence of an assertion C(a) (resp.
D(b)) from an ontology does not necessarily imply that a” ¢ C7 (resp. % ¢ D). For this
purpose, we need to add ~C(a) (resp. ~D(b)) explicitly.

Contrary to [Gmati et al.2016], the —~ rule does not remove any assertion from ABoxes.
It just makes L(x) = L(y), L(x,z) = L(y, 2), L(z,x) = L(z,y) for some individual z if z ~ y
belongs to the ABox A.

A derived ABox is closed if it is either complete or contains a clash. A generalised
ontology (A, T, LK) is called closed if each A € Ay, is closed. A closed generalised ontology
(Ak, T, LK) is called successful if there exists A € Ay which is complete and clash-free.
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Rule —n

Condition: A contains (C1 M Cy)(s), but it does not contain both Ci(s) and Ca(s).

Action: A" := AU {C1(s),Ca(s)}

Rule —,

Condition: A contains (C1 U C2)(s), but neither C1(s) nor Ca(s).

Action: A" := AU{C1(s)}, A" := AU{Ca(s)}

Rule —v

Condition: A contains (VR.C)(s) and R(s,t), but it does not contain C(t).

Action: A" = AU{C(t)}

Rule —3

Condition: A contains (3R.C)(s) but there is no individual name ¢ such that A contains R(s,t) and C(t),
and s is not blocked.

Action: A" := AU{R(s,t),C(¢t)} where t is an individual not occurring in A. Set = < ¢t for all individuals z
in A.

Rule —choose

Condition: T contains C' T D and there is an individual name s such that A does contain neither ~C(s) nor
D(s).

Action: A" .= AU{~C(s)}, A" .= AU{D(s)}

Rule —chooseLk1

Condition: LK contains ({(P;, Q:)}i=1 linkkey (C, D)), and there exist individual names z,y, z1,..., 2
such that P;(z,2),Qi(y,2:) € A for 1 < ¢ < n and {C(z),~C(z)} N A =0 Action: A" := AU {C(z)},
A" = AU{~C(z)}

Rule —chooseLk2

Condition: LI contains ({(P;, Q;)}i=; linkkey (C, D)), and there exist individual names z,y, z1, . .., zn such
that Pi(z,z:),Qi(y,z) € Afor 1 <i<nand {D(y),~D(y)}NA=10

Action: A" :== AU{D(y)}, A" := AU {~D(y)}

Rule —1x

Condition: LK contains ({(P;, Q;)}i=; linkkey (C, D)), and there exist individual names z,y, z1, . .., zn such
that C(z), D(y), Pi(z,2),Qi(y,zi) € Afor 1 <i<n,and AN{z~yy~az}=0

Action: A .= AU{z~y}if x <y, and A" := AU {y ~ z} otherwise.

Rule —x

Condition: A contains y ~ x (with y # z), and XN A # 0, \ A # 0 where ¥ is one of the following sets of
assertions: {C(z),C(y)}, {R(z,2), R(y,2)}, {R(z,z), R(z,y)}, for some concept C, or some individual z and
some role R

Action: A" = AUX.

Figure 3.1: Completion rules for ALC+LK.
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At this point, we have all the necessary elements to present the algorithm for checking
ontology consistency. Algorithm [I] below returns YES if it builds a successful generalised
ontology (A, 7T, LK) from a generalised ontology ({Ao}, T, LK), and NO otherwise.

Algorithm 1: Checking ontology consistency
Input : An ALCH+LK ontology (A, T, LK)
Output: Consistency of (Ao, T, LK)

1 Initialize a set of ABoxes A = {Ag} ;

2 while there is a completion rule r in Figure which is applicable to an individual s
in some A € A do

3 L Apply r to s;
4 if there is a clash-free ABox A € A then
5 L return YES;

6 else
Lreturn NO;

EN|

Before proving termination, soundness and completeness of the algorithm, we illustrate
it with examples.
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4. Examples

This section provides a few examples of the use of the tableau-based algorithm described in
Section[3] Example[2] derived from [Gmati et al.[2016], illustrates a link inference. Example3]
shows the effect of the new —chooseLk rule. Examples [4 and [f] show how the validity and
non validity of the link keys of Example [I] may be obtained. Finally, Example [6] shows the
effect of blocking and will be further used to illustrate the proofs of properties in Section

Each example displays the initial entailment to check (when applicable), the initial knowl-
edge base corresponding to the reduction of the problem to a unsatisfiability test and the
application of the rules of the algorithm. Each line corresponds to the application of a rule
to an ABox. It identifies the rule applied, the resulting ABox and the clashes (-, %) or
completion ([J) of the ABox.

Example 2 (Chained link generation).
Entailment: ((P, R) linkkey (C, D)), ({(Q, S) linkkey (E, F')),
C(a), P(a,c),E(c),Q(c,v), D(b), R(b,d), F(d),S(d,v) Fa=b
Initial knowledge base:
Ap ={C(a), P(a,c),E(c),Q(c,v),D(b), R(b,d), F(d),S(d,v),a % b}
T=0
LK = {((P,R) linkkey (C, D)), ({Q,S) linkkey (E, F'))}

Deriwations:

Ao —1k Ay =AU {c~d}

Al — AZ = -Al U {P(a7 d)a E(d)7 Q(dv U)v R(b7 C)a F(C)7 S(C, U)}

Az =LK Az = Ay U{a ~ b} ”

The unique closed ABox contains a clash. Hence, the entailment is valid.

Example 3 (ChooseLK in action).
Entailment: ((P,Q) linkkey (C, D)), ((P, R) linkkey (C,—D))
C(a), P(a,v), P(a, w), Q(b,v), R(b,w) = a =

Initial knowledge base:

{C(a), P(a,v), P(a, w), Q(b,v), R(b, w), a 7 b}
0

LK = {({P,Q) linkkey (C, D)), (P, R) linkkey (C,=D))}

Derivations:
-AO —>chooseLK?2 A01 = A() U {D(b)}
Az == AgU{=D(b)}
Ao1 =LK Aoz := Ag1 U {a = b} 7”3
A2 =LK Apg := Ago U {a = b} aé

All closed ABoxes contain a clash. Hence, the entailment is valid.
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Example 4 (Link key inference). This is the inference of the link key @ given in Exam-
ple|1) (the concepts and role names correspond to the initials of those of the example). The
example is not expressed in ALC because it contains role equivalence statements. Howewver,
an equivalent ALCH+LIKC ontology may be obtained through rewriting the ontology. Here, we
encode it by duplicating the ABox statements containing the equivalent properties.
Entailment: ((C,C),(T,T) linkkey (W,W)),N C W, T = T'.C = AN J EN3LP
((C, A), (T, T") linkkey (N, ET13L.P))

Initial knowledge base:

Ao = {N(d),C(d,v), T(d,w), A(d,v), T'(d, w), (E M 3L.P)(b), A(b,v),
T' (b, w),C(b,v), T(b,w),d % b}
T={NCW,NJEN3L.P}
LK ={({C,C),(T,T) linkkey (W, W))}

Derivations:
Ao —n Ay = Ao U{E(), (3L.P)(b)}
A1 —3 Az = Ay U{L(b,v), P(v')}
A2 — choose Az = A U{(-EUVL.~P)(b)}
Agg := Ay U{N ()}
Az =L Aog11 = Ao U{(=E)(b)} -
A212 := A U{(VL.=P)(b)}
Ao12 =y Ag13 i= Ag12 U {(=P)(v")} -
A22 —choose Azo1 := A U {~N(d)} -
Aoz 1= A U{W (d)}
A222 —choose A2221 1= Ao U{=N(b)} B
A2z20 1= Az20 U{W (D)}
A222 =LK Azaaz = Aggge U {d ~ b} Y

All closed ABoxes contain a clash. Hence, the entailment is valid.

Example 5 (Link key non inference). This is the non-inference of the link key in
Example [1. The same comments as in Example [{] apply. For readability, we adopted an
ABozx numbering scheme different from that of other examples in which only the path leading
to a complete and clash-free ABox is numbered.

Entailment: ((C,C),(T,T) linkkey (W,W)),N C W, T = T',C = AN J EN3LP
(C, A), (T, T") linkkey (N, E})

Initial knowledge base:
Ayp = {N(d),C(d,v), T(d,w), A(d,v), T'(d, w), E(b), A(b,v), T'(b,w), C(b,v),
T(b,w),d % b}
T={NCW,NJEN3IL.P}
LK ={((C,C),(T,T) linkkey (W, W))}
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Derivations:
Ao —choose A, = Ay U {-N(d)} -
Ay = AU {W(d)}
A1 —choose A=A U{N ()}
Ay i= Ay U{(~EUVL.~P)(b)}
Az =04 A=A U{-E(b)} -
As == As U {(VL.~P)(b)}
A3 —choose Ay = A3 U{=N(b)}
A, = Ay U {W (b))}
A4 —choose Ay =AU {=N(v)}
As = Ay U {W(0)}
A5 —rchoose Ag = A; U{N(v)}
A= A5 U{(-EUVL.~P)(v)}
A6 —>choose A= Ag U{-N(w)}
Az = A U {W (w)}
A7 —choose Ag == A7 U{N(w)}
A, = A7 U {(<E UYL~P)(w)}
As —chooseLK2 A=A U{W(b)}
Ag = Ag U {=W(b)} O

Ag is a complete and clash-free derived ABox. Hence, the entailment is invalid.

Example 6 (Knowledge base consistency). This example is particular, since it is only con-
cerned with the consistency of a knowledge base. It is used in the remainder for illustrating
the proofs.

Initial knowledge base:

Ao ={EW.(3R. T N 3IP3IR.TN3Q.3R.T))(a), P(s,a),Q(a,s)}
T=0
LK = {((R, R) linkkey (T, T))}

Derivations:

Ay —3 Ay = AgU{W(a,b),(3R. T NIPIR.TMNIQ.3IR.T)(b)}

Ai —n Ay = A U{(3R.T)(b),(3PIR.TMNIQ.IR.T)(b)}

Ay —n Az := A, U{(3P3R.T)(b),(3Q.IR.T)(b)}

As —3 Ay := A3 U{R(b,c), T(c)}

Ag —3 As = A4 U{P(b,d),(3R.T)(d)} b blocks d
As —3 Ag := A5 U{Q(b,e),(IR.T)(e)} b blocks e [J

The unique closed ABox is complete and clash-free. Hence, the initial knowledge base is
consistent.
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Figure (p. displays the derived ABox corresponding to Ag.
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5. Properties of the method

We establish the termination (§5.2), soundness (§5.3)), completeness (§5.4) and complexity
(§5.5)) of the proposed method (Algorithm . But first, we have to introduce properties
which are necessary for the proof of soundness and completeness (§5.1)).

5.1 Some properties of derived ontologies

The following lemma shows a property of an ABox which is derived by completion rules.

Lemma 3. Let O = (A, T, LK) be a derived ALC+LK ontology with a set of individuals
I = 1,44 Lheyw. It holds that

1. If R(a,c),S(b,c) € Ax and a # b then a,b,c € Iyq.
2. If (a = b) € A, then a,b € I,4.
3. If (a # b) € A, then a,b € I,4.

Proof. Assume first that the — 4 rule was not used in the derivation of Ag. In this case, by
the behaviour of the —3 rule, the only kinds of role assertions that may be included in Ay
are: R(u,v) with u,v € Iyq, R(u,s) with u € Iyq and s € Lyew, and R(s,t) with s,t € Lew,
where R is a role name. Therefore, () if R(u,v) € A and v € I,q then u € I,4. Also,
since the —3 rule always adds new individual names, we have (xx) if R(u,s),S(v,s) € Ag
and u # v then s € I,)4. Item [1] of the lemma follows from (k) and ().

Now, assume that (z ~ y) € Ag. If (x = y) € Ag then z,y € I,4. Assume that (v ~
y) € Ap. Then xz ~ y was added to A by applying the —px rule. This means that there are
C,D,P1,Q1,21,. .., Py, Qn, 2, such that ({{P;, Q) iz linkkey (C,D)), Pi(z,2),Qi(y, =) €
Ap. The same argument as used above allows to conclude that x,y € I,4.

Assume now that the —x rule was used in the derivation of Aj;. Imagine that this
derivation was

A0—>A1—>...—)Ak

and that A, —~ Any1 (for 0 < n < k — 1) was the first application of the — rule. As
before, the only role assertions that A, may include are: R(u,v) with u,v € Iyq, R(u,s)
with u € Iq and s € Iew, and R(s,t) with s,t € I,e, where R is a role name. Also, if
(xr = y) € A, then z,y € I,,5. By the behaviour of the —~ rule, the same holds in A, ;.
Then, the same holds in Ay too, and the same argument used before proves Item [2] of the
lemma.

Finally, since no completion rule adds an inequality assertion to a derived ontology, Item [3]
holds too. O

Lemma [4 is a consequence of Lemma [3] simply stating that the —px rule can only be
applied to individuals of Ag.

Lemma 4. Let O = (Ag, T, LK) be a derived ALC+LK ontology with set of individuals I =
1y gWlhew- If there are distinct individuals x,y, 21, . . ., 2z, € I with C(x), D(y), P;(z, z;), Qi(y, i) €
A for 1 <i<mn, then z,y,21,...,2n € Iyq.

Proof. This is a direct consequence of Lemma [3| more precisely of the proof of Item O
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This lemma may seem surprising. It owes to the fact that, contrary to constraints such
as role-value-maps [Schmidt-Schauf3 [1989], link keys work backwards: they take advantage
of role value equality to identify role bearers. Role-value-maps take advantage of role bearer
equality to identify role values. Hence, as soon as there cannot be role equality among
individuals generated by the tableau method, these individuals (in I,,e,) cannot be identified.

This does not render link keys useless: on the contrary, their role is to identify individuals
among the ABox, not those generated by the method.

5.2 Termination

To prove termination of Algorithm [l we need to prove that it returns YES or NO after
performing a finite number of ontology transformations, i.e. the loop between Lines in
Algorithm [T] is finite.

Proposition 1 (Termination). Let Oy be an ALC+LK ontology. Algorithm terminates
on Oy.

Proof. There are three factors that can affect the termination of Algorithm|[I} the generation
of new ABoxes by the non deterministic rules (—y, —chooseLK1; —chooseLK2 and —choose)s
the generation of new assertions by all rules and especially of new individuals by the —5
rule, and the possible non monotonically increasing behaviour of these rule application. We
address the three issues.

First, Algorithm [I] adds an assertion to an ABox when a completion rule is applicable,
and never removes anything from them. This behavior of Algorithm [I]is a consequence of
the completion rules. Hence the ABoxes can only grow. Similarly, the number of generated
ABoxes can only increase. Now let us prove that these are bounded.

Let A be a set of ABoxes built by Algorithm [1] from an ALC+LK ontology Oy =
(Ao, T, LK). It holds that each ABox A € Aj contains (i) the initial assertions coming
from (Ao, T, LK), (ii) individuals I = I,q W Iney, (iil) concept assertions C(z) associated
to each individual x, and (iv) role assertions R(x,y) associated to two individuals z,y. Let
¢ =|Opl|, we have [sub(Op)| < O(¢). By the blocking condition, we have L(d) # L(d') for
all new individuals d, d’ € I, with d # d'. Since L(d) C sub(Qp), we obtain |I| < O(2%).
Hence, |A| < O(2) for all A € Ay.

Finally, the number of generated ABoxes is bounded. From each ABox A, for each
individual d and each concept C' € L(d) or an axiom C C D there is at most one new ABox
that is created and added by the =, = choosel. K1, —chooseL k2 and —choose TUles. Moreover,
when an application of a nondeterministic rule to an individual d in A due to a concept
C € L(d) leads to add a new ABox A’, C no longer triggers another application by the same
nondeterministic rule to the individual d in A’ copied from A. Therefore, the number of
generated ABoxes is bounded by \I]éxm < 0(228).

Hence, Algorithm [1| can only generate a generalised ontology comprising a finite number
of bounded-size ABoxes and it only adds assertions and never removes anything from the
generalised ontology. Therefore, Algorithm [I] terminates. O

5.3 Soundness

Since Algorithm [I]is a decision procedure, it is sound if it is ensured that when it returns YES
the input ontology is consistent. Thus, for soundness, we have to prove that, if Algorithm
is able to derive a successful generalised ontology Ok = (A, T, LK), then Oy = (Ao, T, LK)
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Figure 5.1: Derived ABox corresponding to Ag in Example [6] It is complete, clash-free and
blocked.

has a model. For this, we will use A € Ay, to define an interpretation Z = <AI , -Z), and show
that Z is a model of Oy.

As usual, derived ABoxes containing a clash do not represent models. One may define 7
by interpreting all individuals in A as themselves, and then, for every concept name A, s € AT
iff A(s) € A, and, for every role name R, (s,t) € R’ iff s is not blocked and R(s,t) € A, or s
is blocked and R(b(s),t) € A. This simple interpretation, called the canonical interpretation
[Baader et al. [1996], is used in the case of ALC. It also builds a model of Oy in case of
complete clash-free non blocked derived ABoxes.

It turns out that this does not work for complete clash-free blocked derived ABoxes.
Indeed, it may lead to a situation where Z does not satisfy a link key even though A is
complete. This is illustrated by Example [7]

Example 7 (Inadequacy of the canonical interpretation). Figure depicts the single de-
rived ABox Ag at the end of Example[6. d and e are labelled with R. T, but they do not have
R-offspring since they are blocked by b which is also labelled by AR.T. The canonical inter-
pretation T associated with such a situation would simply be defined such that <dz, cI> € R,
(ef,ct) € RT (and of course (b%,c) € RT). It is depicted in the left-hand side of Figure .
The problem is that T does not satisfy LK because d, e and b are different, through they all
share a value for role R.

In order to overcome the problem of Example[7], we will consider a different interpretation
7, that we call the unravelled interpretation. It is inspired from the unravelling technique used
in [Horrocks et al. |1999] to devise a (possibly infinite) tree-like model from a derived ABox
for the expressive description logic SHZQ. We will show that the unravelled interpretation
is a model of Oy independently from whether the derived ABox is blocked or not.

The unravelled interpretation associates paths to individuals in Aj;. These paths are
sequences of names of individuals in the derived ABox. For instance, p = (a,b,¢) is such a
path. Its last element (c) is called its tail and we write tail(p) = ¢; its first element (a) is
called its root. A path containing only one element is called a root path.

Below we give the formal definition of the unravelled interpretation.

Definition 5 (Unravelled interpretation). Let Oy = (Ao, T, LK) be an ALC+LK ontology;
let Ay, be a complete and clash-free ABoz derived from Oy with set of individuals I = 1,4 W

Inew. The interpretation T = (AT, T) of Oy unravelled from Ay, (or unravelled interpretation
from Ay) is defined as follows:

1. AT is the smallest set of paths built as follows:

(a) AT contains a path p, = (e(a)) for each a € Iq. In this case, aX =
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(b) For each p € AT such that R(tail(p),a) € Ak, a € Inew and a is not blocked, AT
contains a path p' = (p,a).

(c) For each p € AT such that R(tail(p),a) € Ay, a € Ihew and a is blocked, AT
contains a path p' = (p,b(a)).

2. For each concept name A, AT = {p € AT | A(tail(p)) € Ay}

3. For each role name R,

RT = {(pa, py) € AT x AT | R(a,b) € A} U
{(p.p) € AT x AT | p = (p,a), R(tail(p),a) € Ag,a is not blocked} U
{(p,p') € AT x AT | p' = (p, b(a)), R(tail(p), a) € Ay, a is blocked}

From Definition [b| individuals of ;4 are assigned a root path and equivalent individuals
are interpreted as the same root path. Each individual of I, generates paths in the
unravelled interpretation obtained by concatenating the path associated to their ancestor in
the application of the —3 rule to its name if it is not blocked and the name of its blocking
node otherwise. Hence, each path in the domain AZ of the unravelled interpretation is rooted
at a path corresponding to an old individual of the ontology, i.e. an individual of Ay.

It is possible to display the unravelled interpretation as an edge-labelled directed graph
such that each element of AZ is a node and there is an edge between two nodes if the pair
of nodes belongs to the interpretation of a relation. Edges are labelled by the set of roles in
which the corresponding pair appears. Figure (right) displays such a graph.

The domain of the unravelled interpretation AZ may be infinite because, as illustrated in
Example [7] paths for blocked nodes may end with one of their ancestor in the derived ABox.

Example 7 (Unravelled interpretation). If Z is the unravelled interpretation from Ag of
Example @ T interprets d and e as the same path individual {a,b,b). In this way, the link
key is satisfied by Z. The unravelled interpretation I is depicted at the right-hand side of
Figure as a graph. It is a tree, albeit infinite, rooted in a root node ((a)). Actually, the
graph of unravelled interpretations corresponds to the image of a forest made of trees whose
branches extend to the sky, while underground their roots can be connected and interleaved
in an arbitrary way. Notice that {a,b,b), (a,b,b,b), (a,b,b,b,b) ... belong to AT, i.e. AT is
infinite. Also note that, there is no pair of elements of AT have the same value for R because,
at each stage of the tree, the R-value is different: (a,b,c),{a,b,b,c),(a,b,b,b,c)... Hence,
the link key cannot apply.

The unravelled interpretation from A is not an interpretation of Oy, as it does not
interpret individuals in e, but it is an interpretation of Oy. Proposition [2| shows that it
is a model of Oy.

The argument of the proof goes as follows: The interpretation unravelled from (A, T, LK)
satisfies the ALC ontology (Ap, 7). By Lemma |4} link keys only apply to statements involv-
ing individuals of Ag. Since the derived ABox Ay is complete, it contains the result of the
application of all link keys (individuals from Ay cannot be blocked). Unravelling does two
things: (a) merging all 4 individuals related by ~, and (b) expanding blocked individuals
into (possibly infinite) trees. Hence, in both cases, all link keys are satisfied because no
different individuals satisfy the link key conditions.

Proposition 2 (Soundness). If Algorithm derives a successful generalised ontology from
an ALCH+LK ontology Oq, then Oy is consistent.

23 of



DELIVERABLE 2.1 ANR-17-CE23-0007

R (a,b,b,b) (a,b,b, )
///’ /"_R::\\J P7QT /R
d e c (a,b,b) (a,b,c)
\ﬁ/ PQ]
» R
b (a,b) R
P TW PTW
s _a () a)
Q Q

Figure 5.2: Left: Canonical interpretation corresponding to the derived ABox of Figure
It does not satisfy LIC since d, e and b have a common R-value and are different. Right:
Unravelled interpretation from the same derived ABox. It is infinite but satisfies LK since
all R-values are different due to different prefixes.

Proof. Let Oy = (Ao, T, LK) be an ALC+LK ontology and O = (A, T, LK) be the suc-
cessful generalised ontology derived from Oy. This means that there exists a complete and
clash-free ABox A, € Ay.

To prove the lemma, we show that the unravelled interpretation Z = (AZ,-7) from Ay
according to Definition [5|is a model of Oy. Recall that I = I,;q W I,e, where 1,4 is the set
of the individuals in Oy and I is the set of all individuals in O.

Apart from equalities x ~ y € Ay, an application of the —1k rule can add a new
equality while no rule can remove any equality. Therefore, each transitive closure a™ for
some individual a changes monotonically, i.e. a*(Ax_1) C a*(Ag) for every individual a
where a*(X) denotes the transitive closure at defined over an ABox X' (cf. Definition [3).
In the sequel, we write a™ for a™(Ay). We rely on the following claims:

a€ lyy— aI = e(a)I = Pe(a) (5.1)
a € Iy = at C Iyqg = e(a) € I
a € Inew = at = {a}

L(z) = L(e(x)), and
L(z,y) = L(e(z), e(y))

The claim is due to Deﬁnition while the claims and are direct consequences
of Lemma . The claim is a consequence of the non-applicability of the — rule.

To prove that Z is a model of (Ay, T, LK), we have to prove that Z satisfies all assertions
in Ag, all GCIs in T and all link keys in LK.

Assume a ~ b € Ag. This implies that a,b € I,q and a,b € a™. By the claim ,
af = Pe(a) and bt = Pe(r). Since, a,b € a™ then e(a) = e(b), and we have al =t = Pe(a)-
Thus ot = bL.

Assume that R(a,b) € Ag. This implies that a,b € I,;5. We have a* = e(a)? = p, q) and
v =e(b)t = Pe(v) due to the claim , and R(e(a),e(b)) € Ay due to the claim . By
Deﬁnition (Pe(a)s Pe(v)) € R%, and thus (a”,b?) € R,

Assume a % b € Ay with a < b. We have a,b € I,4 due to Lemma By the claim
, we have a” = e(a)? = pe(y) and bF = e(b)? = Pes)- By contradiction, assume that

Ay is complete and clash-free = { (5.4)
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Pe(a) = Pe(p)- This implies that e(a) = e(b) and thus b € a™, which is a #%-clash. This
contradicts clash-freeness of Ay. Therefore, pe(q) # Pe(y) and at # T
Assume E(w) € Ag. To show w? € EZ, we need to show a stronger claim:

For all p € AZ, if C(tail(p)) € Ay, then p € C* (5.5)

Indeed, E(w) € Ap and the claim imply E(e(w)) € Ag. In addition, E(w) € Ay and
the claim imply that w,e(w) € I,q. By the definition of Z, there is some p € AT such
that p = w? = e(w)? and tail(p) = e(w). From the claim , we obtain w? € EZ. We now
show the claim . Let us proceed by induction on the length of the concept C.

1. Assume that C' = A with a concept name A and C(tail(p)) € Aj. We have CT = AT =
{p’ € AT | A(tail(p')) € Ax} by the definition of Z. Hence, A(tail(p)) € Ay implies
pc AL

2. Assume that C' = C1 My and C(tail(p)) € Ay. Since Ay, is complete then the —n rule
is not applicable, hence C(tail(p)) € Ay, Ca(tail(p)) € Ai. By induction hypothesis,
p€ CTand p e CL. Then, pe CINCT = (C1MCy)L.

3. Assume that C' = C1 UC5 and C(tail(p)) € Ay. Since Ay, is complete then the —, rule
is not applicable, hence C1(tail(p)) € Ay or Ca(tail(p)) € Ag. By induction hypothesis,
peCforpeCE Then, pe CTUCT = (C1UCy).

4. Assume now that C = VR.D and C(tail(p)) € Ayg.

Let p’ € AT such that (p,p’) € RZ. From the definition of Z, we consider the following
two cases:

— R(tail(p),t) € Ay and t is not blocked with ¢ = tail(p’). Since Ay is complete, the
—v rule is not applicable, thus D(t) € Aj. By induction hypothesis, p’ € DZ.
Hence, p € CT.

— R(tail(p),t) € Ay and t is blocked with b(t) = tail(p’). Since Ay is complete,
the —v rule is not applicable, thus D(t) € Ag. Since tail(p’) blocks ¢, we have
L(t) C L(tail(p')), and thus D(tail(p’)) € Aj. By induction hypothesis, p’ € DZ.
Hence, p € CL.

5. Assume that C' = 3R.D and C(tail(p)) € Ak. Since tail(p) is never blocked and Ay
is complete, the —3 rule is not applicable, and thus there exists ¢ € I such that
R(tail(p),t) € Ag, D(t) € Ay. By claim (5.4), we have R(e(tail(p)),e(t)), D(e(t)) € A.
By the claims (5.1)), and Definition 5], e(tail(p)) = tail(p), and thus, R(tail(p),e(t)), D(e(t)) €
Aj.. We distinguish the following two cases:

— Assume that e(t) is not blocked. By the definition of Z and R(tail(p),e(t)) € A,
there is some p’ € A such that tail(p’) = e(t) and (p,p’) € R%. Moreover,
since D(e(t)) € Ay, and tail(p’) = e(t), by induction hypothesis, p’ € D. Hence,
peCT.

— Assume that e(t) is blocked. According to the definition of Z and R(tail(p),e(t)) €
Ay, there is some p’ € AT such that tail(p’) = b(e(t)) and (p,p’) € Rf. We have
D(e(t)) € Ay implies D(b(e(t))) € Ag. By induction hypothesis, we have p’ € D*.
Hence, p € CL.
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6. Assume that C = ~D and C(tail(p)) € Ag. We have to show that p ¢ DZ. We proceed
by induction on the length of D. If D is a concept name then D(tail(p)) ¢ Ay since Ay
is clash-free. By the definition of DZ, p ¢ DZ. Assume that D = C;MCy. This implies
that ~D = ~Cy U ~C5. Due to completeness, Aj must contain either ~C' (tail(p)) or
~C5(tail(p)). By induction hypothesis, we have p ¢ CZ or p ¢ CZ. Hence, p ¢ CTNCE,
and thus p ¢ DZ. Analogously, we can prove for the case of D = Cy LI Cs.

Now assume that D = JR.E. This implies that ~D = VR.~E. Let p’ € A with
(p,p’) € RT. By Item we have showed that p € ~DZ, and thus p ¢ DZ. Analogously,
we can prove for the case of D =VR.F.

We now show that Z satisfies all GCIsin 7. Let CC D € T and p € CZ. We have to
show p € DZ. Due to the completeness of Ay, i.e. the —choose rule is not applicable, we have
either ~C/(tail(p)) € A, or D(tail(p)) € Ay. If ~C(tail(p)) € Ag, then p ¢ CT due to Item@7
which contradicts p € CZ. Hence, D(tail(p)) € Ay and thus, p € DZ.

We now show that 7 satisfies link keys in £C. Assume that A = ({(F;, @)}, linkkey
(C,D)) € LK. Let us prove that Z satisfies A\. Let p,q,p1,...,pn € AT such that p € C7,
q € D%, and (p,p;) € P* and (q,p;) € QF for 1 < i < n. We have to prove that p = q.
Since Ay is complete, then neither the —cpooserk1 rule nor the —cpooserk2 rule may be
applied, which means that A contains either C(tail(p)) or ~C'(tail(p)), and either D(tail(q))
or ~D(tail(q)). If ~C(tail(p)) € Ay or ~D(tail(q)) € Ay then p ¢ CZ or q ¢ D* by the claim
, which contradicts p € CF or q € DT. Therefore, C(tail(p)) € Ax, D(tail(q)) € Ag. We
consider the following cases:

Assume that tail(p;) € Iyq forall 1 <i < n. We obtain tail(p), tail(q) € Inq, Pi(tail(p), tail(p;)),
Q;(tail(q), tail(p;)) € Ay from the definition of Z, (p,p;) € P* and (q,p;) € QF. Since Ay is
complete, the satisfaction of the link key implies tail(p) = tail(q). Hence, Ptail(p) = Ptail(q)-
From p = pgiip) and q = pe,ji(q), We obtain p = q.

Assume that tail(p;) € Inew for some 1 < i < n. From the definition of Z, (p,p;) € P*
and (q,p;) € QF, we obtain p; = (p, tail(p;)) = (q, tail(p;)). Thus, p = q. O

5.4 Completeness

Since Algorithm [I]is a decision procedure, Algorithm [I]is complete if it is ensured that when
the initial ontology is consistent, the algorithm returns YES. Thus, for completeness, we
have to prove that if the initial ontology (Ag, T, LK) is consistent then Algorithm [1|is able
to build a successful generalised ontology (A, T, LK).

Proposition 3 (Completeness). If an ALCH+LK ontology Oy is consistent, then Algorithm
derives a successful generalised ontology from Q.

Proof. Assume that Oy = (Ag, T, LK) and that T = (A%,-Z) is a model of Oy. We show
that Algorithmcan build a generalised ontology (A, 7, LK) with a complete and clash-free
ABox Aj € Ay.

We maintain a function 7 which associates each individual s of an ABox A, € A} to an
individual in AZ, i.e. w(s) € AL.
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After applying a completion rule, we must update 7 in such a way that « satisfies the
following conditions:

C(s) € Ay, implies 7(s) € CF or 7(b(s)) € C*

R(s,t) € Ay, implies (r(s), 7 (t)) € R* or (r(s),n(b(t))) € R*
s # t € Ay, implies mw(s) # m(t)
s~ t € Ay implies m(s) = 7(t)

© o0 N O
—_ O — T

D.
D.
d.
d.

o~ o~ o~ o~

According to Proposition [T Algorithm [I] always terminates at some A,,. Thanks to the
function 7 with Conditions which helps to choose a “good” ABox A among several
ABoxes A}, at each step k < n, we will show that there is an ABox A,, € A,, which is mapped
to AZ by 7 such that (A, T, LK) is clash-free.

Assume that there exists such a function m. We show that A,, is complete and clash-
free. When Algorithm [1| terminates, A,, must be complete. Assume that A(s), 2A(s) € A,,.
By Condition (5.6)), we have 7(s) € A% and n(s) € (=A)%. It is not possible since 7 is a
model. If z % x € A, then m(z) # m(z) due to Condition (5.8)), which is a contradiction.
Assume that = % y € A, with x € y*. This implies that m(x) # 7w(y) and there are
T~ 21, .2, &y € A, From Condition (5.9), we obtain 7m(z) = m(y) which is a
contradiction. Therefore, A, is clash-free.

Now, let us define 7. For each s € I,;4, there is some s € AT since 7 is a model of Oy.
We define 7(s) = s, and 7(s) = n(s') if s = s’ € Ag. Let R(s,t) € Ag. We have s,t € I g,
and thus 7(s), 7(t) are defined. This implies that (r(s),n(t)) € R’ since Z is a model of Oj.
For individual assertions, it holds that s % ¢t € Ay implies 7(s) # 7 (t) since Z is a model of
Oo, and s ~ t € Aj implies 7(s) = w(t) by the definition of 7. Let C(s) € Ag. We have
s € I,q, and thus 7(s) is defined. This implies that 7(s) € C7 since T is a model of C.
Therefore, Conditions are verified for Ay.

In the sequel, we consider each possible transformation performed by a completion rule
on Ajg. Assume that there is an ABox Ay € Ay such that 7(s) € AT for each individual s
occurring in Ay, and 7 satisfies Conditions .

— The —n rule is applied to (C1MCy)(s) € Ag. Thus, Ci(s), Ca(s) € Agy1. By Condition
(5.6) and 7(s) € AT, we have 7(s) € (C1 M Cs)t. We obtain 7(s) € C¥ and n(s) € C
since 7(s) € (C1 M Cq)t = CF N CZ. Therefore, Condition (5.6)) is preserved.

— The —3 rule is applied to 3R.C(s) € Ay where s is not blocked. Thus, the rule adds
an individual ¢t and C(t), R(s,t) to Ag. Thus, C(t), R(s,t) € Ags1. By Condition
and 7(s) € AL, we have 7(s) € (3R.C)Z. Since T is a model of (3R.C), there
is some t' € AT such that (n(s),#) € R? and ¢’ € C%. 1If t is not blocked, we
define 7(t) = t'. Thus, Condition and are preserved. If t is blocked by
b(t), we define 7(t) = mw(b(t)). From Condition (5.7), we obtain (r(s),n(t)) € R%.
Moreover, L(t) C L(b(t)) implies C(b(t)) € Aj4+1. From Condition (5.6)), it follows
7(b(t)) = n(t) € CT. Hence, Conditions and are preserved.

— The —y rule is applied to VR.C(s) € Ayj. If s is blocked then VR.C(b(s)) € Ay and
m(s) = w(b(s)). Hence, it suffices to consider s that is not blocked. By Condition (5.6))
and 7(s) € AT, we have 7(s) € (VR.C)Z. Assume that there is an individual ¢ in Ay
such that R(s,t) € Ag. In this case, the rule adds C(t) to Ag. Thus, C(t) € Agi1.
Assume that ¢ is not blocked, by Condition and 7(s) € AT, we have (n(s),n(t)) €
R%. Since T is a model of VR.C, we obtain 7(t) € C*. Thus, Condition is
preserved. Assume that t is blocked by b(t). We define 7(t) = w(b(¢)). We have

27 of



DELIVERABLE 2.1 ANR-17-CE23-0007

L(t) C L(b(t)), and thus, C(b(t)) € Ag+1. From Condition (5.6, it follows w(b(t)) =
7(t) € CT. Hence, Condition (5.6) is preserved.

— The —k ruleis applied to individuals z, y, z; with C(z), D(y) € Ay, Pi(z, zi), Qi(y, zi) €
Ay for 1 < i < m. According to Lemma [d] we have z,y, z; € I,q for 1 <i < n. Thus
they are not blocked. By Condition and (5.7), we have w(z) € C%, 7(y) € D%,
(m(z),m(2)) € PE and (n(y),n(2)) € QF for 1 <i < n.

The —1k rule adds = ~ y to A,. We obtain (z ~ y) € Agy1. Since Z is a model of
Op, T must satisfy the link key. Hence, #7 = 37, and thus 7(z) = 7(y). Therefore,
Condition ([5.9) is preserved.

— The — rule is applied when (z =~ y) € Ai. It makes L(x) = L(y) and L(z,y) =
L(e(x),e(y)). This rule does not change individuals, Condition and Condition
(5.9) are preserved. If it adds C(z) to Ax when C(y) € Aj (or vice versa) then
Condition is preserved since 7(x) = 7(y) and 7 (y) € CT imply n(z) € CL. If it
adds R(z,z) (resp. R(z,x)) to Aj when R(y,z) € Ay (resp. R(z,y)) then Condition
is preserved since 7(z) = 7(y) and (7(y),7(2)) € RT (resp. (n(z),7(y)) € R?)
imply (7(z),7(2)) € RT (resp. (n(z),n(x)) € RT).

— The —, rule is applied to (C; U C2)(s) € Ag. It transforms Ay to Agy1 with Ci(s) €
Ag11, and adds a new ABox Aj, | with Ca(s) € Aj ;. By Condition and m(s) €
AT, we have 7(s) € (C1L1Cy)T, and thus, either 7(s) € C¥ or 7(s) € C¥. Assume that
7(s) € CE. In this case, we choose Ay including s with 7(s) € C#. This implies that
Condition is preserved in Ay, 1. Assume that 7(s) € C%. In this case, we choose
Al including Ca(s).This implies that Condition is preserved in Aj_ .

— The —choose Tule is applied to (~C U D)(s) € A with C C D € T. In the same way,
we can choose an ABox among Ay and Aj_ ; such that Condition (5.6) is preserved.

— the —chooserk1 rule is applied to individuals z,y, z; with y < z, C(x) € Ag, D(y) € Ay,
Pi(z, 2),Qi(y, zi) € Ay for 1 <i < m. This rule transforms A to Ai41 with C(x) €
Ag11, and adds a new ABox A, with ~C(x) € Aj,.Since Z is a model, we have
either 7(x) € O or n(x) € ~CT. Assume that 7(x) € CZ. In this case, we choose
A1 including x with 7(z) € C. This implies that Condition is preserved in
Aj11. Assume that 7(z) € (~C)%. In this case, we choose A}, | including ~C(x).This
implies that Condition is preserved in Aj_ ;.

— the —chooseLk2 rule. Analogously.

This completes the proof of preservation of Conditions for each application of a
completion rule. O

5.5 Complexity

Proposition 4 (Complexity). Let Oy = (Ao, T, LK) be an ALC+LK ontology. Algorithm|]]
runs in doubly exponential time in the size of Q.

Proof. According to the proof of Proposition [I] Algorithm [I] generates a collection Ay of
ABoxes such that |Agz| < O(2%) and |A] < O(2Y) for all A € A, where £ = | (Ao, T, LK)||-
Since Algorithm [I] never removes anything from an intermediate ABox, the complexity is
bounded by 0(22). Therefore, it runs in deterministic doubly exponential time in the worst
case (2EXPTIME). O
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It is known that ALC with general concept axioms is EXPTIME-complete [Pratt [1978].
This result provides a lower bound of the reasoning problem in ALC+LK. The doubly expo-
nential complexity of Algorithm [I}is caused by the interaction between the nondeterministic
behavior, i.e. a new ABox is duplicated by non deterministic rules such as the — rule, and
exponential generation of new individuals by the —3 rule. Moreover, we know from Lemma [4]
that the completion rules related to the application of link keys are applied only to old indi-
viduals I,;q whose cardinality is polynomial in the size of the ontology. This means that link
keys are not responsible of the doubly exponential complexity resulting from Algorithm [T}

An open question is whether EXPTIME is the tight lower bound of consistency checking in
ALC+LK.

The following theorem is a consequence of all propositions established until now.

Theorem 1. ALC+LK consistency can be decided in doubly exponential time in the size of
ontologies.
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6. Conclusions and Future Work

Link keys are a generalisation of keys in RDF datasets to different RDF datasets described
using different vocabularies. As such, they can be used for data interlinking. In previous
work, we showed that link keys can be extracted from RDF data and used effectively for
interlinking datasets. In this paper, we have addressed link key reasoning. Reasoning with
link keys can be used to combine automatically extracted link keys with other different kinds
of knowledge to infer new axioms. In particular, it can infer new link keys that may be better
adapted to a specific data interlinking task.

We have proposed a tableau-based algorithm for reasoning in the ALC+LK logic, an
extension of ALC with link keys. We have provided proofs of its soundness, completeness
and termination.

Reasoning in ALC+LK is more challenging than ALC. It requires the introduction of
new completion rules: the —chooselL K1, —chooseL k2 and —px rules to deal with link keys, and
the —~ rule to handle equality. In addition, the canonical interpretation used for proving
the soundness of the standard ALC algorithm cannot be directly used for ALCH+LK. We
have introduced the unravelled interpretation to prove it.

In the future, we plan to study extensions of the algorithm for reasoning with link keys
in more expressive description logics allowing for inverse roles and number restrictions. We
also plan to extend the expressiveness of link keys by considering roles (beyond role names)
and link key covering eg-conditions [Atencia et al.[2019].

Also, we will study if EXPTIME is the tight lower complexity bound for consistency
checking in ALC+LK, and, if so, design a worst-case optimal tableau algorithm. For this,
one possibility is to use an exponential structure for representing ontology models inspired
from compressed-tableau [Pratt-Hartmann 2005; Le Duc et al. [2016].

We plan to implement the algorithm for ALC+LK with basic techniques of optimisation
known in the literature such as absorption and backtracking |[Horrocks 2007]. These tech-
niques will allow to reduce the number of useless ABox axioms generated by the current
algorithm, e.g. useless equality statements generated by the — 4 rule.

Last but not least, we will evaluate the impact of link key inference on data interlinking.
We plan to combine link key inference with link inference based on rules to ensure scalability,
and we will use RDF datasets described by semantically rich ontologies such as Insee COG
and GeoNames in the geographic domain, or British Library and BNF (National Library of
France) in the bibliographic domain.
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