
HAL Id: hal-02090087
https://hal.science/hal-02090087v1

Submitted on 4 Apr 2019 (v1), last revised 30 Jun 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tableau methods for reasoning with link keys
Manuel Atencia, Jérôme Euzenat, Chan Le Duc, Khadija Jradeh

To cite this version:
Manuel Atencia, Jérôme Euzenat, Chan Le Duc, Khadija Jradeh. Tableau methods for reasoning with
link keys. [Contract] 2.1, Laboratoire d’Informatique de Grenoble; INRIA Grenoble Rhône-Alpes;
Université Paris 8. 2019, pp.1-32. �hal-02090087v1�

https://hal.science/hal-02090087v1
https://hal.archives-ouvertes.fr

Reasoning for the description logic ALC with link keys

Manuel Atenciaa, Jérôme Euzenata, Chan Le Ducb, Khadija Jradeha,b

aUniv. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, F-38000 Grenoble, France
bUniversité Paris 8, LIASD, F-93526 Saint-Denis, France

Abstract

Data interlinking is a critical task for widening and enhancing linked open
data. One way to tackle data interlinking is to use link keys, which generalise
keys to the case of two RDF datasets described using different ontologies.
Link keys specify pairs of properties to compare for finding same-as links
between instances of two classes of two different datasets. Hence, they can
be used for finding links. Link keys can also be considered as logical axioms
just like keys, ontologies and ontology alignments. We introduce the logic
ALC+LK extending the description logic ALC with link keys. It may be
used to reason and infer entailed link keys that may be more useful for a
particular data interlinking task. We show that link key entailment can be
reduced to consistency checking without introducing the negation of link
keys. For deciding the consistency of an ALC+LK ontology, we introduce a
new tableau-based algorithm. Contrary to the classical ones, the completion
rules concerning link keys apply to pairs of individuals not directly related.
We show that this algorithm is sound, complete and always terminates.

Keywords: data interlinking, link keys, reasoning, description logics,
consistency, tableaux.

1. Introduction

Data interlinking is the task of discovering IRI references in different
RDF datasets that refer to the same thing. The output of data interlinking
is a set of identity links, typically specified using the owl:sameAs property.

Email addresses: Manuel.Atencia@inria.fr (Manuel Atencia),
Jerome.Euzenat@inria.fr (Jérôme Euzenat), Chan.Leduc@iut.univ-paris8.fr
(Chan Le Duc), Khadija.Jradeh@inria.fr (Khadija Jradeh)

Preprint submitted to Journal of Web Semantics February 8, 2019

owl:sameAs links are crucial to ensure interoperability in linked open data
[12].

Different approaches to data interlinking have been proposed [9, 20]. Link
keys are among them [3, 11]. Link keys generalise keys to the case of two
RDF datasets described using different ontologies. An example of a key is
the following:

({creator, title} key Work) (1)

stating that whenever two instances of the class Work share values for role
creator and for role title, respectively, then they denote the same entity. An
example of a link key is:

({〈creator, auteur〉, 〈title, titre〉} linkkey 〈NonFiction,Essai〉) (2)

stating that whenever an instance of the class NonFiction and an instance of
the class Essai, share values for roles author and auteur, and for roles title and
titre, respectively, they denote the same entity.

By nature, link keys can be used for data interlinking. For instance,
the previous link key could be used to discover links between books of two
bibliographic datasets, one using an English vocabulary and the other one
using a French vocabulary. The problem is that, in practice, link keys are
not given and need to be found.

One source of link keys is domain knowledge given by experts. Link
keys may also be automatically extracted from RDF data [3?]. Another
possibility is to infer link keys, which is the topic of this paper. Indeed, link
keys can be considered as logical axioms, and, together with other kinds of
knowledge such as keys, ontologies and ontology alignments, may entail new
link keys.

Link key inference can complement link key extraction. The link key
extraction algorithm described in [3] limits the search of link keys to link
keys composed of named properties and named classes only. This leaves out
complex link keys that may be helpful in practice. Reasoning can be used
to combine automatically extracted link keys with other available knowledge
to infer complex link keys that may be more useful for a particular data
interlinking task. Additionally, link key inference can be used to confirm the
belief of a domain expert that, given some knowledge, a set of property pairs
constitute a link key for a pair of classes.

The following example illustrates this. Knowledge is modelled in descrip-
tion logics, which are the basis for semantic web languages such as OWL2.

2

Example 1. Consider two library catalogs about books. In the first one the
main class is Work and contains a subclass NonFiction. creator and title are
a key in this ontology for the Work class as described in (1). In the second
ontology, there is a class Essai with auteur, lecteur and titre roles and classes
of people such as Philosophe. An alignment tells us that an NonFiction is
more general than a Essai which has at least one Philosophe as lecteur (e.g.
reader), that creator is equivalent to auteur and that title is equivalent to titre.
This can be expressed in description logics as:

NonFiction v Work (3)

title ≡ titre (4)

creator ≡ auteur (5)

NonFiction w Essai u ∃lecteur.Philosophe (6)

The key can be expressed as a link key:

({〈creator, creator〉, 〈title, title〉} linkkey 〈Work,Work〉) (7)

The set of statements (3–7) is sufficient for generating some links. However,
for a user, it is not easy to find this out and a program requires a lot of
inferences. It is thus useful to find more direct link keys entailed: they will
be easier to check by a user and can be directly processed by a link generator.
For instance, the link key (8) is entailed by (3–7):

({〈creator, auteur〉, 〈title, titre〉} linkkey

〈NonFiction,Essai u ∃lecteur.Philosophe〉) (8)

though the more simple link key (2) is not entailed.

In this paper, we introduce a reasoning algorithm to determine whether
an axiom — a subsumption relation between two concepts, an assertion or a
link key — is entailed from other axioms. We model knowledge in description
logics and we restrict ourselves to the description logic ALC, which allows
expressing negation, conjunction and disjunction of concepts, and existential
and universal role restrictions. The presented algorithm will be the basis for
extensions to deal with more expressive description logics. The language used
in Example 1 is slightly more expressive, as it covers role name equivalence,
but it can be rewritten as an ALC ontology to take these into account.

3

The proposed reasoning algorithm extends the standard tableau-based
algorithm for reasoning in ALC [26]. In this algorithm, entailment is reduced
to consistency checking: to decide if an axiom α is entailed by a knowledge
base O = 〈A, T 〉, consisting of a set A of assertional axioms and a set T of
terminological axioms, is equivalent to checking if O with the negation of α
is inconsistent, i.e. it does not have a model. We extend the ALC tableau
algorithm for deciding entailment to ALC knowledge bases O = 〈A, T ,LK〉
equipped with link keys. We show that link key entailment can be reduced
to consistency checking by expressing the negation of a link key as a set of
assertional axioms and we provide the necessary tableau completion rules
to deal with link keys. We prove that the algorithm is sound, complete and
that it always terminates. For that purpose, we use unravelled interpretations
because the canonical ALC interpretations may not satisfy link keys.

The remainder of the paper is organised as follows. Section 2 positions
our work with respect to data interlinking and works on reasoning with keys
in description logics. Section 3 describes the tableau-based algorithm and
proves its termination, soundness and correctness. Section 4 provides exam-
ples of the use of the algorithm. Section 5 proves the termination, soundness,
correctness and complexity of the proposed algorithm. Section 6 concludes
the paper and presents future work.

2. Related work

Data interlinking. Different approaches to data interlinking can be found
in the literature. They can be divided into two main categories: numerical
methods [28, 16, 27, 21] and logical methods [24, 13, 2, 1]. Numerical methods
compute a similarity between resources based on their property values and
establish links between those which are highly similar. Logical methods use
an axiomatic characterisation of what makes two resources identical in order
to find links between different datasets. Link keys fall into this category.

The added value of logical methods is to profit from logical reasoning. The
works [24, 13, 2, 1] propose rule-based approaches to infer same-as links that
are logically entailed from an input set of domain constraints and facts. In
[13], Hogan et al. use a subset of OWL 2 RL/RDF rules to derive owl:sameAs
relations within the whole linked open data corpora. In [2], Al-Bakri et al.
propose a different method that queries the linked open data cloud to im-
port only the necessary specific data for inferring or contradicting given tar-
get same-as facts. The method is based on the query-subquery algorithm for

4

answering Datalog queries over deductive databases. In [24], Säıs et al. intro-
duce a logical method that translates into rules schema constraints of RDFS,
extended with OWL-DL and SWRL primitives, and infers 100% correct de-
cisions of reference reconciliation and no reconciliation. In [1], Al-Bakri et
al. present a probabilistic framework to model and reason over uncertain
RDF facts and rules that is based on probabilistic Datalog [10]. The authors
report on experiments that demonstrate the gain of using reasoning (rule
chaining) for data interlinking by comparing their method with Silk [28].

The above-mentioned approaches focus on link inference, whereas the
main focus of the method described in this paper is to infer link keys. In this
sense, it will complement these approaches, as link key inference will provide
input knowledge to be translated into rules for inferring links.

Reasoning with keys and link keys in description logics. Keys have been in-
troduced in description logics as global constraints in a specific KBox [7, 18]
and as a new concept constructor [6]. Calvanese et al. [8] have shown how
to formalize keys in the DLR logic, and proved that the reasoning problems
such as satisfiability, entailment in that logic are ExpTime-complete. The
authors have indicated that DLR allowing for an arity of relations greater
than two and unary functional dependencies is undecidable. Keys based on
features (functional roles whose value belongs to a concrete domain) have
been introduced within the ALCOK(D) logic [18] and an extension of the
tableau method has been provided to deal with these logics. All undecid-
able cases identified in this work are related to the presence of a concrete
domain. Motik et al. [19] have proposed a combination of OWL-DL with a
kind of rules, namely, DL-safe rules, which are restricted such that decidabil-
ity is guaranteed. This restriction imposes that each variable occurring in
the premise (body) of such a rule must be bound to an individual explicitly
introduced in the initial ABox. Obviously, DL-safe rules allow to express
keys whose variables refer only to initial ABox individuals.

Link keys generalise keys to the case of different RDF datasets which can
be interpreted as description logics. The tableau method for reasoning with
link keys in ALC provided in this paper modifies and extends the algorithm
described in [11]. These modifications concern the addition of new comple-
tion rules and avoiding merging nodes. They have been applied to ensure
soundness, completeness and termination of the algorithm.

5

3. Tableau method for ALC+LK

This section describes a tableau-based algorithm for reasoning with link
keys in a centralised context where link keys are considered as specific axioms
stored in an ontology. We restrict ourselves to the extension of the description
logic ALC with link keys, denoted by ALC+LK.

First, we start in Section 3.1 by giving the necessary preliminaries to in-
troduce the algorithm. Then we show in Section 3.2 that ALC+LK ontology
entailment can be reduced to ontology consistency checking. Finally, the al-
gorithm described in Section 3.3 decides consistency of ALC+LK ontologies.

3.1. Preliminaries

The logicALC+LK extendsALC with link keys made up ofALC-concepts
and role names. This is defined below.

Definition 1 (Syntax of ALC+LK). Let C, R and I be non-empty sets of
concept names, role names and individuals, respectively. The set of ALC-
concepts (or simply concepts) is the smallest set such that

• every concept name in C, > and ⊥ are concepts, and

• if C,D are concepts and R is a role name in R then C u D, C t D,
¬C, ∀R.C and ∃R.C are concepts.

A general concept inclusion (GCI) is an expression of the form C v D
where C,D are concepts. A terminology or TBox is a finite set of GCIs.

An ABox assertion is an expression of the form C(a), R(a, b), a ≈ b or
a 6≈ b where C is a concept, R is a role name in R and a, b are individuals
in I. An ABox is a finite set of ABox assertions.

An ALC + LK link key1 (simply called link key) is an expression of the
form ({〈P1, Q1〉, . . . , 〈Pn, Qn〉} linkkey 〈C,D〉) such that 〈C,D〉 is a pair of
ALC-concepts and {〈P1, Q1〉, . . . , 〈Pn, Qn〉} is a non-empty sequence of pairs
of role names in R. An LKBox is a finite set of link keys.

A triple O = (A, T ,LK), where T is a TBox, A is an ABox and LK is
an LKBox, is called an ALC+LK ontology.

1Although it is possible to consider other types of link keys [?], in this paper, we
restrict ourselves to this one. Strictly speaking, this is rather ALC + LKin,∗.

6

By abuse of notation, we will write ({〈Pi, Qi〉}ni=1 linkkey 〈C,D〉) instead
of ({〈P1, Q1〉, . . . , 〈Pn, Qn〉} linkkey 〈C,D〉).

Below we define the semantics of ALC+LK.

Definition 2 (Semantics of ALC+LK). An interpretation I = (∆I , ·I) is
composed of a non-empty set ∆I, called the domain of I, and a valuation
·I which maps every concept name to a subset of ∆I, every role name to a
subset of ∆I ×∆I and each individual to an element of ∆I. The valuation
is extended to constructed concepts such that, for all concepts C,D and role
name R, the following is satisfied:

>I = ∆I

⊥I = ∅
(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(¬C)I = ∆I \ CI

(∀R.C)I = {x ∈ ∆I | ∀y.〈x, y〉 ∈ RI ⇒ y ∈ CI}
(∃R.C)I = {x ∈ ∆I | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}

An interpretation I satisfies a GCI C v D, denoted by I |= C v D, if
CI ⊆ DI. I is a model of a TBox T if I satisfies every GCI in T .

An interpretation I satisfies the ABox assertions

C(a) if aI ∈ CI

R(a, b) if 〈aI , bI〉 ∈ RI

a ≈ b if aI = bI

a 6≈ b if aI 6= bI

Given an ABox assertion α, I |= α denotes that I satisfies α. I is a model
of an ABox A if it satisfies every ABox assertion in A.

An interpretation I satisfies a link key ({〈Pi, Qi〉}ni=1 linkkey 〈C,D〉), which
will be denoted by I |= ({〈Pi, Qi〉}ni=1 linkkey 〈C,D〉), if

∀δ, η, x1, · · · , xn ∈ ∆I ,

δ ∈ CI ∧ η ∈ DI ∧
∧

1≤i≤n

((δ, xi) ∈ P Ii ∧ (η, xi) ∈ QIi)⇒ δ = η

7

I is a model of an LKBox LK if I satisfies every link key in LK.
An interpretation I is a model of an ALC+LK ontology O = (A, T ,LK)

if I is a model of T , A and LK. An ontology O is consistent if there exists
a model of O. An ontology O entails a GCI, an ABox assertion or a link key
α, written O |= α, if every model of O satisfies α.

We finish these preliminaries by introducing notations and definitions
that will be used in the paper. We use |S| to denote the cardinality of a set
S. Given an ALC+LK ontology O = 〈A, T ,LK〉, we denote by sub(O) =
sub(A, T ,LK) the set of all sub-concepts occurring in A, T and LK. The
size of an ontology O is denoted by ‖O‖ =‖A‖ +‖T ‖ +‖LK‖ where ‖A‖ is
the size of all assertions, ‖T ‖ the size of all GCIs and ‖LK‖ the size of all
link keys. It holds that |sub(O)| is polynomially bounded by ‖O‖ since if a
concept is represented as string then a sub-concept is a substring.

Finally, given two individuals s, t in I, we define the label of s as L(s) =
{C ∈ sub(O) | C(s) ∈ A} and the label of 〈s, t〉 as L(s, t) = {R ∈ R |
R(s, t) ∈ A}. We assume hereafter, without loss of generality, that the
individuals of all ABoxes are labelled in this way.

3.2. Reduction of ontology entailment to ontology consistency

In ALC+LK, ontology entailment of GCIs, concept assertions, equality
and inequality statements, and link keys is reducible to ontology consistency
checking. Indeed, given anALC+LK ontologyO = 〈A, T ,LK〉, two concepts
C,D and two individuals a, b:

O |= C v D iff 〈A ∪ {(C u ¬D)(x)}, T ,LK〉 is inconsistent

O |= C(a) iff 〈A ∪ {¬C(a)}, T ,LK〉 is inconsistent

O |= a ≈ b iff 〈A ∪ {a 6≈ b}, T ,LK〉 is inconsistent

O |= a 6≈ b iff 〈A ∪ {a ≈ b}, T ,LK〉 is inconsistent

where x is a new individual not present inO. Notice that ontology entailment
of role assertions may require considering negation of roles, which go beyond
ALC+LK expressivity.

This result can be extended to link keys. It is not necessary to express
link key negation, but sufficient to provide an ABox witnessing this negation.
Lemma 1 below proves that link key entailment can be reduced to consis-
tency checking: given a link key λ, O |= λ if and only if 〈A ∪ A′, T ,LK〉 is
inconsistent, where A′ represents the negation of λ.

8

Lemma 1 (Reduction of ontology entailment to consistency). Let O =
〈A, T ,LK〉 be an ALC+LK ontology. It holds that

O |= ({〈Pi, Qi〉}ni=1 linkkey 〈C,D〉) iff 〈A ∪ A′, T ,LK〉 is inconsistent

with A′ = {C(x), D(y), x 6≈ y}∪
⋃n

i=1{Pi(x, zi), Qi(y, zi)} and x, y, z1, · · · , zn
are new individuals not present in O.

Proof. Let λ = ({〈Pi, Qi〉}ni=1 linkkey 〈C,D〉). Assume first that O |= λ. Let
us show that O′ = 〈A∪A′, T ,LK〉 is inconsistent. By contradiction, assume
that O′ has a model I. Since A ⊆ A ∪ A′, then I must be a model of O
too. Moreover, since I is a model of O′, I must be a model of A′, which
means that xI ∈ CI , yI ∈ DI , 〈xI , zIi 〉 ∈ P Ii , 〈yI , zIi 〉 ∈ QIi and xI 6= yI .
This implies that I 6|= λ. Thus, we have a model I of O such that I 6|= λ.
Therefore, O 6|= λ, which contradicts the assumption.

Assume now that O 6|= λ. Let us show that O′ = 〈A ∪ A′, T ,LK〉 is
consistent. Since O 6|= λ, then there exists an interpretation I such that
I |= O and I 6|= λ (otherwise λ would be entailed). Since I 6|= λ, by the
semantics of link keys, there exists δ, δ′, δ1, . . . , δn ∈ ∆I such that δ ∈ CI ,
δ′ ∈ DI , (δ, δ1) ∈ P I1 , (δ′, δ1) ∈ QI1 , . . . , (δ, δn) ∈ P In , (δ′, δn) ∈ QIn and δ 6= δ′.
Let us extend I by defining xI = δ, yI = δ′, zI1 = δ1, . . . , z

I
n = δn. Then, I

is a model of A′. I is still a model of O. Therefore, I is a model of O′ and,
thus, O′ is consistent.

Thanks to Lemma 1, ontology entailment in ALC+LK can be reduced
to ontology consistency. The following section describes a tableau algorithm
for checking the consistency of an ontology in ALC+LK.

3.3. Tableau algorithm for ALC+LK
The algorithm to decide if an ontology with link keys O0 = 〈A0, T ,LK〉 is

consistent, starts with A0 and applies the completion rules listed in Figure 1,
guided by T and LK. The completion rules generate new ABoxes. If no
more rule is applicable to a generated ABox and this ABox does not contain
any obvious contradiction (called clash) then there exists a model of O0 that
can be built from the ABox, otherwise no model exist. This algorithm is
based on the standard tableau algorithm for reasoning in ALC [26] to which
we have added specific completion rules for dealing with link keys.

More precisely, we use A to denote a set of ABoxes and 〈A, T ,LK〉 is
a generalised ontology to be used by the method. At the beginning, A is

9

initialised with A0 = {A0}. 〈A, T ,LK〉 is said to be consistent if there
exists A ∈ A such that 〈A, T ,LK〉 is consistent.

The application of a completion rule transforms the set of ABoxes into
another set of ABoxes. There are two types of rules: deterministic and
non-deterministic rules. Each application of a deterministic rule replaces an
ABox A ∈ Ak by a new ABox A′ ∈ Ak+1. However, the application of
a non-deterministic rule replaces an ABox A ∈ Ak by several new ABoxes
A′1 . . .A′n ∈ Ak+1.

The algorithm then generates a sequence of sets of ABoxes:

A0,A1,A2, . . . (9)

such that Ak+1 is obtained from Ak by applying a completion rule. An ontol-
ogy 〈A, T ,LK〉 with A ∈ Ak is called a derived ontology from 〈A0, T ,LK〉
and A a derived ABox. Such a derived ABox A, and the corresponding
ontology, is called complete if no completion rule is applicable.

3.3.1. Preprocessing

As usual, to ease the description of the completion rules, we start with
a preprocessing step. All concepts occurring in the initial ontology are ex-
pressed into negation normal form (NNF), i.e. negation only occurs in front
of concept names. Any ALC-concept can be transformed to an equivalent
one in NNF by using De Morgan’s laws and the duality between existential
and universal restrictions. In addition, all concepts occurring in all link keys
are in NNF as well. Note that the NNF of a concept C can be computed in
polynomial time in the size of C [5]. For a concept C, ∼C will denote the
negation normal form of ¬C.

3.3.2. Blocking

As for ALC with GCIs, blocking (cycle detection) is necessary to ensure
the termination of the algorithm. Before giving the definition of blocking, we
make a distinction between old and new individuals. Let Ok = 〈Ak, T ,LK〉
be an ALC+LK ontology with set of individuals I 6= ∅. Assume that Ok is
derived from an initial ontology O0 = 〈A0, T ,LK〉 with a set of individuals
I0. We have I0 ⊆ I. An individual a ∈ I is called old if a ∈ I0, and new
otherwise. New individuals result from applying specific rules (in Figure 1,
→∃ is the only such rule). We will write I = Iold] Inew where Iold = I0
and Inew = I \ I0. In particular, O0 has old individuals only, and no new
individuals.

10

We assume that there is a total order over Iold = {s1, . . . , sn} with si < sj
for all 1 ≤ i < j ≤ n. If a rule adds a new individual s to an ABox, then <
is extended by setting si < s for all 1 ≤ i ≤ n and t < s if t was added to the
ontology prior to s. By construction, < is a total order over I = Iold] Inew.

For the sake of simplicity, we assume that, if an equality assertion x ≈ y
or an inequality assertion x 6≈ y belongs to A0 then x < y. This has no
impact on consistency checking because ≈ and 6≈ are symmetric.

Definition 3 (Order and equivalence among individuals). Let O = 〈A, T ,LK〉
be an ALC+LK ontology with a set of individuals I and an order relation <
over I. For each individual s ∈ I, we use s+ to denote the transitive closure
of s with respect to the relation ≈ (appearing in assertions), i.e. s+ is the
smallest set such that s ∈ s+, and if c ≈ b ∈ A or b ≈ c ∈ A with some
c ∈ s+ then b ∈ s+. The function e(s) associates to each individual s the
smallest element of s+ with respect to the order relation <.

Below we give the definition of a blocked element.

Definition 4 (Blocking). Let Ok = 〈Ak, T ,LK〉 be a derived ALC+LK
ontology with a set of individuals I = Iold] Inew. An individual s ∈ Inew is
blocked by an individual t ∈ Inew if t < s and L(s) ⊆ L(t). We denote by
b(s) the least individual (with respect to the total order <) that blocks s.

Notice that only new individuals may be blocked. Also, given a blocked
element s ∈ Inew, the existence and uniqueness of b(s) is guaranteed by the
fact that < is a finite strict total order (and, thereby, a well-order), so the set
of blocking elements of s, which is not empty, has a least element in < which
is unique. The following lemma proves that b(s) is always non blocked.

Lemma 2. Let Ok = 〈Ak, T ,LK〉 be a derived ALC+LK ontology with a
set of individuals I. If s ∈ I is a blocked individual then b(s) is not blocked.

Proof. By contradiction, assume that b(s) is blocked by an individual t ∈ I.
Then, t < b(s) and L(b(s)) ⊆ L(t). Since s is blocked by b(s), we have
b(s) < s and L(s) ⊆ L(b(s)). Hence, t < b(s) < s and L(s) ⊆ L(t), which
contradicts the definition of b(s).

3.3.3. Clashes

Clashes are atomic contradictions. Given an ontology with link keys
O = 〈A, T ,LK〉, we will say that A contains a clash if one of the two
following situations occurs:

11

• ¬-clash: {A(s),¬A(s)} ⊆ A for some individual name s and a concept
name A, or

• 6≈-clash: {x 6≈ y} ⊆ A with x ∈ y+ for some individuals x, y.

If A contains no clash, we say that A, and O, is clash-free.
The case when {⊥(s)} ⊆ A, for some individual s, will be considered

a ¬-clash too (implicitly, {⊥ v ¬>} ⊆ T and >(t) ∈ A for all t). We will
write A → ¬-clash and A → 6≈-clash if A contains, respectively, a ¬-clash
or a 6≈-clash.

3.3.4. Completion rules

Completion rules transform the ABox of a generalised ontology. They
leave the TBox and LKBox unchanged. This transformation is monotonic,
i.e. it only adds new assertions and never removes anything from the ontol-
ogy.

Figure 1 shows the list of completion rules of the algorithm. They are
standard completion rules for reasoning in ALC together with three more
rules to deal with link keys (→chooseLK1, →chooseLK2 and →LK) and a rule to
handle equality (→≈). The →LK rule translates the semantics of link keys.
The→chooseLK1 and→chooseLK2 rules make it explicit whether two individuals
a and b that satisfy the condition of a link key should be set as equal or
not. Certainly, given an interpretation I, the absence of an assertion C(a)
(resp. D(b)) from an ontology does not necessarily imply that aI /∈ CI (resp.
bI /∈ DI). For this purpose, we need to add ∼C(a) (resp. ∼D(b)) explicitly.

Contrary to [11], the→≈ rule does not remove any assertion from ABoxes.
It just makes L(x) = L(y), L(x, z) = L(y, z), L(z, x) = L(z, y) for some
individual z if x ≈ y belongs to the ABox A.

A derived ABox is closed if it is either complete or contains a clash. A
generalised ontology 〈Ak, T ,LK〉 is called closed if each A ∈ Ak is closed.
A closed generalised ontology 〈Ak, T ,LK〉 is called successful if there exists
A ∈ Ak which is complete and clash-free.

At this point, we have all the necessary elements to present the algorithm
for checking ontology consistency. Algorithm 1 below returns YES if it builds
a successful generalised ontology 〈Ak, T ,LK〉 from a generalised ontology
〈{A0}, T ,LK〉, and NO otherwise.

Before proving termination, soundness and completeness of the algorithm,
we illustrate it with examples.

12

Rule →u
Condition: A contains (C1 u C2)(s), but it does not contain both C1(s) and C2(s).

Action: A′ := A ∪ {C1(s), C2(s)}
Rule →t
Condition: A contains (C1 t C2)(s), but neither C1(s) nor C2(s).

Action: A′ := A ∪ {C1(s)}, A′′ := A ∪ {C2(s)}
Rule →∀
Condition: A contains (∀R.C)(s) and R(s, t), but it does not contain C(t).

Action: A′ := A ∪ {C(t)}
Rule →∃
Condition: A contains (∃R.C)(s) but there is no individual name t such that A contains

R(s, t) and C(t), and s is not blocked.

Action: A′ := A ∪ {R(s, t), C(t)} where t is an individual not occurring in A. Set x < t

for all individuals x in A.

Rule →choose

Condition: T contains C v D and there is an individual name s such that A does contain

neither ∼C(s) nor D(s).

Action: A′ := A ∪ {∼C(s)}, A′′ := A ∪ {D(s)}
Rule →chooseLK1

Condition: LK contains ({〈Pi, Qi〉}ni=1 linkkey 〈C,D〉), and there exist individual names

x, y, z1, . . . , zn such that Pi(x, zi), Qi(y, zi) ∈ A for 1 ≤ i ≤ n and {C(x),∼C(x)} ∩ A = ∅
Action: A′ := A ∪ {C(x)}, A′′ := A ∪ {∼C(x)}
Rule →chooseLK2

Condition: LK contains ({〈Pi, Qi〉}ni=1 linkkey 〈C,D〉), and there exist individual names

x, y, z1, . . . , zn such that Pi(x, zi), Qi(y, zi) ∈ A for 1 ≤ i ≤ n and {D(y),∼D(y)} ∩A = ∅
Action: A′ := A ∪ {D(y)}, A′′ := A ∪ {∼D(y)}
Rule →LK

Condition: LK contains ({〈Pi, Qi〉}ni=1 linkkey 〈C,D〉), and there exist individual

names x, y, z1, . . . , zn such that C(x), D(y), Pi(x, zi), Qi(y, zi) ∈ A for 1 ≤ i ≤ n, and

A ∩ {x ≈ y, y ≈ x} = ∅
Action: A′ := A ∪ {x ≈ y} if x < y, and A′ := A ∪ {y ≈ x} otherwise.

Rule →≈
Condition: A contains y ≈ x (with y 6= x), and Σ ∩ A 6= ∅,Σ \ A 6= ∅ where Σ is one of

the following sets of assertions: {C(x), C(y)}, {R(x, z), R(y, z)}, {R(z, x), R(z, y)}, for

some concept C, or some individual z and some role R

Action: A′ := A ∪ Σ.

Figure 1: Completion rules for ALC+LK.

13

Algorithm 1: Checking ontology consistency

Input : An ALC+LK ontology 〈A0, T ,LK〉
Output: Consistency of 〈A0, T ,LK〉

1 Initialize a set of ABoxes A = {A0} ;
2 while there is a completion rule r in Figure 1 which is applicable to

an individual s in some A ∈ A do
3 Apply r to s;

4 if there is a clash-free ABox A ∈ A then
5 return YES;

6 else
7 return NO;

4. Examples

This section provides a few examples of the use of the tableau-based
algorithm described in Section 3. Example 2, derived from [11], illustrates
a link inference. Example 3 shows the effect of the new →chooseLK rule.
Examples 4 and 5 show how the validity and non validity of the link keys of
Example 1 may be obtained. Finally, Example 6 shows the effect of blocking
and will be further used to illustrate the proofs of properties in Section 5.

Each example displays the initial entailment to check (when applicable),
the initial knowledge base corresponding to the reduction of the problem to
a unsatisfiability test and the application of the rules of the algorithm. Each
line corresponds to the application of a rule to an ABox. It identifies the rule
applied, the resulting ABox and the clashes (¬, 6≈) or completion (�) of the
ABox.

Example 2 (Chained link generation).

Entailment: (〈P,R〉 linkkey 〈C,D〉), (〈Q,S〉 linkkey 〈E,F 〉),
C(a), P (a, c), E(c), Q(c, v), D(b), R(b, d), F (d), S(d, v) |= a ≈ b

Initial knowledge base:

A0 = {C(a), P (a, c), E(c), Q(c, v), D(b), R(b, d), F (d), S(d, v), a 6≈ b}
T = ∅
LK = {(〈P,R〉 linkkey 〈C,D〉), (〈Q,S〉 linkkey 〈E,F 〉)}

14

Algorithm:

A0 →LK A1 := A0 ∪ {c ≈ d}
A1 →≈ A2 := A1 ∪ {P (a, d), E(d), Q(d, v), R(b, c), F (c), S(c, v)}
A2 →LK A3 := A2 ∪ {a ≈ b} 6≈

The unique closed ABox contains a clash. Hence, the entailment is valid.

Example 3 (ChooseLK in action).

Entailment: (〈P,Q〉 linkkey 〈C,D〉), (〈P,R〉 linkkey 〈C,¬D〉)
C(a), P (a, v), P (a, w), Q(b, v), R(b, w) |= a ≈ b

Initial knowledge base:

A0 = {C(a), P (a, v), P (a, w), Q(b, v), R(b, w), a 6≈ b}
T = ∅
LK = {(〈P,Q〉 linkkey 〈C,D〉), (〈P,R〉 linkkey 〈C,¬D〉)}

Algorithm:

A0 →chooseLK2 A01 := A0 ∪ {D(b)}
A02 := A0 ∪ {¬D(b)}

A01 →LK A03 := A01 ∪ {a ≈ b} 6≈
A02 →LK A04 := A02 ∪ {a ≈ b} 6≈

All closed ABoxes contain a clash. Hence, the entailment is valid.

Example 4 (Link key inference). This is the inference of the link key (8)
given in Example 1 (the concepts and role names correspond to the initials
of those of the example). The example is not expressed in ALC because
it contains role equivalence statements. However, an equivalent ALC+LK
ontology may be obtained through rewriting the ontology. Here, we encode it
by duplicating the ABox statements containing the equivalent properties.

15

Entailment: (〈C,C〉, 〈T, T 〉 linkkey 〈W,W 〉), N v W,T ≡ T ′, C ≡ A,N w
E u ∃L.P |= (〈C,A〉, 〈T, T ′〉 linkkey 〈N,E u ∃L.P 〉)
Initial knowledge base:

A0 = {N(d), C(d, v), T (d, w), A(d, v), T ′(d, w), (E u ∃L.P)(b), A(b, v),

T ′(b, w), C(b, v), T (b, w), d 6≈ b}
T = {N v W,N w E u ∃L.P}
LK = {(〈C,C〉, 〈T, T 〉 linkkey 〈W,W 〉)}

Algorithm:

A0 →u A1 := A0 ∪ {E(b), (∃L.P)(b)}
A1 →∃ A2 := A1 ∪ {L(b, v′), P (v′)}
A2 →choose A21 := A2 ∪ {(¬E t ∀L.¬P)(b)}

A22 := A2 ∪ {N(b)}
A21 →t A211 := A21 ∪ {(¬E)(b)} ¬

A212 := A21 ∪ {(∀L.¬P)(b)}
A212 →∀ A213 := A212 ∪ {(¬P)(v′)} ¬
A22 →choose A221 := A22 ∪ {¬N(d)} ¬

A222 := A22 ∪ {W (d)}
A222 →choose A2221 := A222 ∪ {¬N(b)} ¬

A2222 := A222 ∪ {W (b)}
A2222 →LK A2223 := A2222 ∪ {d ≈ b} 6≈

All closed ABoxes contain a clash. Hence, the entailment is valid.

Example 5 (Link key non inference). This is the non-inference of the link
key (2) in Example 1. The same comments as in Example 4 apply. For
readability, we adopted an ABox numbering scheme different from that of
other examples in which only the path leading to a complete and clash-free
ABox is numbered.

Entailment: (〈C,C〉, 〈T, T 〉 linkkey 〈W,W 〉), N v W,T ≡ T ′, C ≡ A,N w
E u ∃L.P |= (〈C,A〉, 〈T, T ′〉 linkkey 〈N,E〉)

16

Initial knowledge base:

A0 = {N(d), C(d, v), T (d, w), A(d, v), T ′(d, w), E(b), A(b, v), T ′(b, w), C(b, v),

T (b, w), d 6≈ b}
T = {N v W,N w E u ∃L.P}
LK = {(〈C,C〉, 〈T, T 〉 linkkey 〈W,W 〉)}

Algorithm:

A0 →choose A∗ := A0 ∪ {¬N(d)} ¬
A1 := A0 ∪ {W (d)}

A1 →choose A∗ := A1 ∪ {N(b)}
A2 := A1 ∪ {(¬E t ∀L.¬P)(b)}

A2 →t A∗ := A2 ∪ {¬E(b)} ¬
A3 := A2 ∪ {(∀L.¬P)(b)}

A3 →choose A4 := A3 ∪ {¬N(b)}
A∗ := A3 ∪ {W (b)}

A4 →choose A∗ := A4 ∪ {¬N(v)}
A5 := A4 ∪ {W (v)}

A5 →choose A6 := A5 ∪ {N(v)}
A∗ := A5 ∪ {(¬E t ∀L.¬P)(v)}

A6 →choose A∗ := A6 ∪ {¬N(w)}
A7 := A6 ∪ {W (w)}

A7 →choose A8 := A7 ∪ {N(w)}
A∗ := A7 ∪ {(¬E t ∀L.¬P)(w)}

A8 →chooseLK2 A∗ := A8 ∪ {W (b)}
A9 := A8 ∪ {¬W (b)} �

A9 is a complete and clash-free derived ABox. Hence, the entailment is
invalid.

Example 6 (Knowledge base consistency). This example is particular, since
it is only concerned with the consistency of a knowledge base. It is used in
the remainder for illustrating the proofs.

17

Initial knowledge base:

A0 = {(∃W.(∃R.> u ∃P.∃R.> u ∃Q.∃R.>))(a), P (s, a), Q(a, s)}
T = ∅
LK = {(〈R,R〉 linkkey 〈>,>〉)}

Algorithm:

A0 →∃ A1 := A0 ∪ {W (a, b), (∃R.> u ∃P.∃R.> u ∃Q.∃R.>)(b)}
A1 →u A2 := A1 ∪ {(∃R.>)(b), (∃P.∃R.> u ∃Q.∃R.>)(b)}
A2 →u A3 := A2 ∪ {(∃P.∃R.>)(b), (∃Q.∃R.>)(b)}
A3 →∃ A4 := A3 ∪ {R(b, c),>(c)}
A4 →∃ A5 := A4 ∪ {P (b, d), (∃R.>)(d)} b blocks d

A5 →∃ A6 := A5 ∪ {Q(b, e), (∃R.>)(e)} b blocks e �

The unique closed ABox is complete and clash-free. Hence, the initial knowl-
edge base is consistent.

Figure 2 (p. 22) displays the derived ABox corresponding to A6.

5. Properties of the method

We establish the termination (§5.2), soundness (§5.3), completeness (§5.4)
and complexity (§5.5) of the proposed method (Algorithm 1). But first, we
have to introduce properties which are necessary for the proof of soundness
and completeness (§5.1).

5.1. Some properties of derived ontologies

The following lemma shows a property of an ABox which is derived by
completion rules.

Lemma 3. Let Ok = 〈Ak, T ,LK〉 be a derived ALC+LK ontology with a
set of individuals I = Iold] Inew. It holds that

1. If R(a, c), S(b, c) ∈ Ak and a 6= b then a, b, c ∈ Iold.

2. If (a ≈ b) ∈ Ak then a, b ∈ Iold.

18

3. If (a 6≈ b) ∈ Ak then a, b ∈ Iold.

Proof. Assume first that the →≈ rule was not used in the derivation of Ak.
In this case, by the behaviour of the→∃ rule, the only kinds of role assertions
that may be included in Ak are: R(u, v) with u, v ∈ Iold, R(u, s) with u ∈ Iold
and s ∈ Inew, and R(s, t) with s, t ∈ Inew, where R is a role name. Therefore,
(∗) if R(u, v) ∈ Ak and v ∈ Iold then u ∈ Iold. Also, since the→∃ rule always
adds new individual names, we have (∗∗) if R(u, s), S(v, s) ∈ Ak and u 6= v
then s ∈ Iold. Item 1 of the lemma follows from (∗) and (∗∗).

Now, assume that (x ≈ y) ∈ Ak. If (x ≈ y) ∈ A0 then x, y ∈ Iold.
Assume that (x ≈ y) 6∈ A0. Then x ≈ y was added to A by applying the
→LK rule. This means that there are C,D, P1, Q1, z1, . . . , Pn, Qn, zn such that
({〈Pi, Qi〉}ni=1 linkkey 〈C,D〉), Pi(x, zi), Qi(y, zi) ∈ Ak. The same argument
as used above allows to conclude that x, y ∈ Iold.

Assume now that the →≈ rule was used in the derivation of Ak. Imagine
that this derivation was

A0 → A1 → . . .→ Ak

and that An →≈ An+1 (for 0 ≤ n ≤ k − 1) was the first application of
the →≈ rule. As before, the only role assertions that An may include are:
R(u, v) with u, v ∈ Iold, R(u, s) with u ∈ Iold and s ∈ Inew, and R(s, t) with
s, t ∈ Inew where R is a role name. Also, if (x ≈ y) ∈ An then x, y ∈ Iold. By
the behaviour of the→≈ rule, the same holds in An+1. Then, the same holds
in Ak too, and the same argument used before proves Item 2 of the lemma.

Finally, since no completion rule adds an inequality assertion to a derived
ontology, Item 3 holds too.

Lemma 4 is a consequence of Lemma 3 simply stating that the →LK rule
can only be applied to individuals of A0.

Lemma 4. Let Ok = 〈Ak, T ,LK〉 be a derived ALC+LK ontology with set of
individuals I = Iold]Inew. If there are distinct individuals x, y, z1, . . . , zn ∈ I
with C(x), D(y), Pi(x, zi), Qi(y, zi) ∈ Ak for 1 ≤ i ≤ n, then x, y, z1, . . . , zn ∈
Iold.

Proof. This is a direct consequence of Lemma 3, more precisely of the proof
of Item 2.

19

This lemma may seem surprising. It owes to the fact that, contrary to
constraints such as role-value-maps [25], link keys work backwards: they
take advantage of role value equality to identify role bearers. Role-value-
maps take advantage of role bearer equality to identify role values. Hence,
as soon as there cannot be role equality among individuals generated by the
tableau method, these individuals (in Inew) cannot be identified.

This does not render link keys useless: on the contrary, their role is to
identify individuals among the ABox, not those generated by the method.

5.2. Termination

To prove termination of Algorithm 1, we need to prove that it returns
YES or NO after performing a finite number of ontology transformations, i.e.
the loop between Lines 2-3 in Algorithm 1 is finite.

Proposition 1 (Termination). Let O0 be an ALC+LK ontology. Algo-
rithm 1 terminates on O0.

Proof. There are three factors that can affect the termination of Algorithm 1:
the generation of new ABoxes by the non deterministic rules (→t,→chooseLK1,
→chooseLK2 and →choose), the generation of new assertions by all rules and
especially of new individuals by the→∃ rule, and the possible non monoton-
ically increasing behaviour of these rule application. We address the three
issues.

First, Algorithm 1 adds an assertion to an ABox when a completion
rule is applicable, and never removes anything from them. This behavior
of Algorithm 1 is a consequence of the completion rules. Hence the ABoxes
can only grow. Similarly, the number of generated ABoxes can only increase.
Now let us prove that these are bounded.

Let Ak be a set of ABoxes built by Algorithm 1 from an ALC+LK on-
tology O0 = 〈A0, T ,LK〉. It holds that each ABox A ∈ Ak contains (i) the
initial assertions coming from 〈A0, T ,LK〉, (ii) individuals I = Iold] Inew,
(iii) concept assertions C(x) associated to each individual x, and (iv) role
assertions R(x, y) associated to two individuals x, y. Let ` =‖O0‖, we have
|sub(O0)| ≤ O(`). By the blocking condition, we have L(d) 6= L(d′) for all
new individuals d, d′ ∈ Inew with d 6= d′. Since L(d) ⊆ sub(O0), we obtain
|I| ≤ O(2`). Hence, |A| ≤ O(2`) for all A ∈ Ak.

Finally, the number of generated ABoxes is bounded. From each ABox
A, for each individual d and each concept C ∈ L(d) or an axiom C v

20

D there is at most one new ABox that is created and added by the →t,
→chooseLK1,→chooseLK2 and→choose rules. Moreover, when an application of a
nondeterministic rule to an individual d in A due to a concept C ∈ L(d) leads
to add a new ABox A′, C no longer triggers another application by the same
nondeterministic rule to the individual d in A′ copied from A. Therefore,
the number of generated ABoxes is bounded by |I|`×|I| ≤ O(22`).

Hence, Algorithm 1 can only generate a generalised ontology comprising a
finite number of bounded-size ABoxes and it only adds assertions and never
removes anything from the generalised ontology. Therefore, Algorithm 1
terminates.

5.3. Soundness

Since Algorithm 1 is a decision procedure, it is sound if it is ensured that
when it returns YES the input ontology is consistent. Thus, for soundness,
we have to prove that, if Algorithm 1 is able to derive a successful generalised
ontology Ok = 〈Ak, T ,LK〉, then O0 = 〈A0, T ,LK〉 has a model. For this,
we will use A ∈ Ak to define an interpretation I = 〈∆I , ·I〉, and show that
I is a model of O0.

As usual, derived ABoxes containing a clash do not represent models. One
may define I by interpreting all individuals in A as themselves, and then,
for every concept name A, s ∈ AI iff A(s) ∈ A, and, for every role name R,
〈s, t〉 ∈ RI iff s is not blocked and R(s, t) ∈ A, or s is blocked and R(b(s), t) ∈
A. This simple interpretation, called the canonical interpretation [4], is used
in the case of ALC. It also builds a model of O0 in case of complete clash-free
non blocked derived ABoxes.

It turns out that this does not work for complete clash-free blocked derived
ABoxes. Indeed, it may lead to a situation where I does not satisfy a link
key even though A is complete. This is illustrated by Example 7.

Example 7 (Inadequacy of the canonical interpretation). Figure 2 depicts
the single derived ABox A6 at the end of Example 6. d and e are labelled with
∃R.>, but they do not have R-offspring since they are blocked by b which is
also labelled by ∃R.>. The canonical interpretation I associated with such
a situation would simply be defined such that 〈dI , cI〉 ∈ RI, 〈eI , cI〉 ∈ RI

(and of course 〈bI , cI〉 ∈ RI). It is depicted in the left-hand side of Figure 3.
The problem is that I does not satisfy LK because d, e and b are different,
through they all share a value for role R.

21

s a

b

cd e

Iold

∃W.(∃R.> u ∃P.∃R.> u ∃Q.∃R.>)

∃R.> u ∃P.∃R.> u ∃Q.∃R.>, ∃R.>, ∃P.∃R.>, ∃Q.∃R.>

∃R.>∃R.>

blocked by b blocked by b

Q

P W

RP Q

Figure 2: Derived ABox corresponding to A6 in Example 6. It is complete, clash-free and
blocked.

In order to overcome the problem of Example 7, we will consider a differ-
ent interpretation I, that we call the unravelled interpretation. It is inspired
from the unravelling technique used in [15] to devise a (possibly infinite) tree-
like model from a derived ABox for the expressive description logic SHIQ.
We will show that the unravelled interpretation is a model of O0 indepen-
dently from whether the derived ABox is blocked or not.

The unravelled interpretation associates paths to individuals inAk. These
paths are sequences of names of individuals in the derived ABox. For in-
stance, p = 〈a, b, c〉 is such a path. Its last element (c) is called its tail and
we write tail(p) = c; its first element (a) is called its root. A path containing
only one element is called a root path.

Below we give the formal definition of the unravelled interpretation.

Definition 5 (Unravelled interpretation). Let O0 = 〈A0, T ,LK〉 be an ALC+LK
ontology; let Ak be a complete and clash-free ABox derived from O0 with set
of individuals I = Iold] Inew. The interpretation I = 〈∆I , ·I〉 of O0 unrav-
elled from Ak (or unravelled interpretation from Ak) is defined as follows:

1. ∆I is the smallest set of paths built as follows:

(a) ∆I contains a path pa = 〈e(a)〉 for each a ∈ Iold. In this case,
aI = pa.

(b) For each p ∈ ∆I such that R(tail(p), a) ∈ Ak, a ∈ Inew and a is
not blocked, ∆I contains a path p′ = 〈p, a〉.

(c) For each p ∈ ∆I such that R(tail(p), a) ∈ Ak, a ∈ Inew and a is
blocked, ∆I contains a path p′ = 〈p, b(a)〉.

22

2. For each concept name A, AI = {p ∈ ∆I | A(tail(p)) ∈ Ak}

3. For each role name R,

RI = {〈pa, pb〉 ∈ ∆I ×∆I | R(a, b) ∈ Ak} ∪
{〈p, p′〉 ∈ ∆I ×∆I | p′ = 〈p, a〉, R(tail(p), a) ∈ Ak, a is not blocked} ∪
{〈p, p′〉 ∈ ∆I ×∆I | p′ = 〈p, b(a)〉, R(tail(p), a) ∈ Ak, a is blocked}

From Definition 5, individuals of Iold are assigned a root path and equiva-
lent individuals are interpreted as the same root path. Each individual of Inew
generates paths in the unravelled interpretation obtained by concatenating
the path associated to their ancestor in the application of the →∃ rule to its
name if it is not blocked and the name of its blocking node otherwise. Hence,
each path in the domain ∆I of the unravelled interpretation is rooted at a
path corresponding to an old individual of the ontology, i.e. an individual of
A0.

It is possible to display the unravelled interpretation as an edge-labelled
directed graph such that each element of ∆I is a node and there is an edge
between two nodes if the pair of nodes belongs to the interpretation of a
relation. Edges are labelled by the set of roles in which the corresponding
pair appears. Figure 3 (right) displays such a graph.

The domain of the unravelled interpretation ∆I may be infinite because,
as illustrated in Example 7, paths for blocked nodes may end with one of
their ancestor in the derived ABox.

Example 7 (Unravelled interpretation). If I is the unravelled interpreta-
tion from A6 of Example 6, I interprets d and e as the same path indi-
vidual 〈a, b, b〉. In this way, the link key is satisfied by I. The unrav-
elled interpretation I is depicted at the right-hand side of Figure 3 as a
graph. It is a tree, albeit infinite, rooted in a root node (〈a〉). Actually,
the graph of unravelled interpretations corresponds to the image of a forest
made of trees whose branches extend to the sky, while underground their
roots can be connected and interleaved in an arbitrary way. Notice that
〈a, b, b〉, 〈a, b, b, b〉, 〈a, b, b, b, b〉 . . . belong to ∆I, i.e. ∆I is infinite. Also note
that, there is no pair of elements of ∆I have the same value for R because, at
each stage of the tree, the R-value is different: 〈a, b, c〉, 〈a, b, b, c〉, 〈a, b, b, b, c〉 . . .
Hence, the link key cannot apply.

23

s a

b

cd e

Q

P W

RP
Q

R

R

〈s〉 〈a〉

〈a, b〉

〈a, b, c〉〈a, b, b〉

〈a, b, b, c〉〈a, b, b, b〉

Q

P W

R
P,Q

R
P,Q

Figure 3: Left: Canonical interpretation corresponding to the derived ABox of Figure 2.
It does not satisfy LK since d, e and b have a common R-value and are different. Right:
Unravelled interpretation from the same derived ABox. It is infinite but satisfies LK since
all R-values are different due to different prefixes.

The unravelled interpretation from Ak is not an interpretation of Ok, as
it does not interpret individuals in Inew, but it is an interpretation of O0.
Proposition 2 shows that it is a model of O0.

The argument of the proof goes as follows: The interpretation unravelled
from 〈Ak, T ,LK〉 satisfies the ALC ontology 〈A0, T 〉. By Lemma 4, link
keys only apply to statements involving individuals of A0. Since the derived
ABox Ak is complete, it contains the result of the application of all link keys
(individuals from A0 cannot be blocked). Unravelling does two things: (a)
merging all A0 individuals related by ≈, and (b) expanding blocked indi-
viduals into (possibly infinite) trees. Hence, in both cases, all link keys are
satisfied because no different individuals satisfy the link key conditions.

Proposition 2 (Soundness). If Algorithm 1 derives a successful generalised
ontology from an ALC+LK ontology O0, then O0 is consistent.

Proof. LetO0 = 〈A0, T ,LK〉 be anALC+LK ontology andOk = 〈Ak, T ,LK〉
be the successful generalised ontology derived fromO0. This means that there
exists a complete and clash-free ABox Ak ∈ Ak.

To prove the lemma, we show that the unravelled interpretation I =
〈∆I , ·I〉 from Ak according to Definition 5 is a model of O0. Recall that
I = Iold] Inew where Iold is the set of the individuals in O0 and I is the set
of all individuals in Ok.

24

Apart from equalities x ≈ y ∈ A0, an application of the →LK rule
can add a new equality while no rule can remove any equality. Therefore,
each transitive closure a+ for some individual a changes monotonically, i.e.
a+(Ak−1) ⊆ a+(Ak) for every individual a where a+(X) denotes the transi-
tive closure a+ defined over an ABox X (cf. Definition 3). In the sequel, we
write a+ for a+(Ak). We rely on the following claims:

a ∈ Iold =⇒ aI = e(a)I = pe(a) (10)

a ∈ Iold =⇒ a+ ⊆ Iold =⇒ e(a) ∈ Iold (11)

a ∈ Inew =⇒ a+ = {a} (12)

Ak is complete and clash-free =⇒

{
L(x) = L(e(x)), and

L(x, y) = L(e(x), e(y))
(13)

The claim (10) is due to Definition 5 while the claims (11) and (12) are
direct consequences of Lemma 3(2). The claim (13) is a consequence of the
non-applicability of the →≈ rule.

To prove that I is a model of 〈A0, T ,LK〉, we have to prove that I
satisfies all assertions in A0, all GCIs in T and all link keys in LK.

Assume a ≈ b ∈ A0. This implies that a, b ∈ Iold and a, b ∈ a+. By the
claim (10), aI = pe(a) and bI = pe(b). Since, a, b ∈ a+ then e(a) = e(b), and
we have aI = bI = pe(a). Thus aI = bI .

Assume that R(a, b) ∈ A0. This implies that a, b ∈ Iold. We have aI =
e(a)I = pe(a) and bI = e(b)I = pe(b) due to the claim (10), and R(e(a), e(b)) ∈
Ak due to the claim (13). By Definition 5, 〈pe(a), pe(b)〉 ∈ RI , and thus
〈aI , bI〉 ∈ RI .

Assume a 6≈ b ∈ A0 with a < b. We have a, b ∈ Iold due to Lemma 3.
By the claim (10), we have aI = e(a)I = pe(a) and bI = e(b)I = pe(b).
By contradiction, assume that pe(a) = pe(b). This implies that e(a) = e(b)
and thus b ∈ a+, which is a 6≈-clash. This contradicts clash-freeness of Ak.
Therefore, pe(a) 6= pe(b) and aI 6= bI .

Assume E(w) ∈ A0. To show wI ∈ EI , we need to show a stronger claim:

For all p ∈ ∆I , if C(tail(p)) ∈ Ak then p ∈ CI (14)

Indeed, E(w) ∈ A0 and the claim (13) imply E(e(w)) ∈ Ak. In addition,
E(w) ∈ A0 and the claim (11) imply that w, e(w) ∈ Iold. By the definition
of I, there is some p ∈ ∆I such that p = wI = e(w)I and tail(p) = e(w).
From the claim (14), we obtain wI ∈ EI . We now show the claim (14). Let
us proceed by induction on the length of the concept C.

25

1. Assume that C = A with a concept name A and C(tail(p)) ∈ Ak. We
have CI = AI = {p′ ∈ ∆I | A(tail(p′)) ∈ Ak} by the definition of I.
Hence, A(tail(p)) ∈ Ak implies p ∈ AI .

2. Assume that C = C1 u C2 and C(tail(p)) ∈ Ak. Since Ak is complete
then the→u rule is not applicable, hence C1(tail(p)) ∈ Ak, C2(tail(p)) ∈
Ak. By induction hypothesis, p ∈ CI1 and p ∈ CI2 . Then, p ∈ CI1 ∩CI2 =
(C1 u C2)

I .

3. Assume that C = C1 t C2 and C(tail(p)) ∈ Ak. Since Ak is com-
plete then the →u rule is not applicable, hence C1(tail(p)) ∈ Ak or
C2(tail(p)) ∈ Ak. By induction hypothesis, p ∈ CI1 or p ∈ CI2 . Then,
p ∈ CI1 ∪ CI2 = (C1 t C2)

I .

4. Assume now that C = ∀R.D and C(tail(p)) ∈ Ak.

Let p′ ∈ ∆I such that (p, p′) ∈ RI . From the definition of I, we
consider the following two cases:

• R(tail(p), t) ∈ Ak and t is not blocked with t = tail(p′). Since Ak

is complete, the →∀ rule is not applicable, thus D(t) ∈ Ak. By
induction hypothesis, p′ ∈ DI . Hence, p ∈ CI .
• R(tail(p), t) ∈ Ak and t is blocked with b(t) = tail(p′). Since Ak

is complete, the →∀ rule is not applicable, thus D(t) ∈ Ak. Since
tail(p′) blocks t, we have L(t) ⊆ L(tail(p′)), and thus D(tail(p′)) ∈
Ak. By induction hypothesis, p′ ∈ DI . Hence, p ∈ CI .

5. Assume that C = ∃R.D and C(tail(p)) ∈ Ak. Since tail(p) is never
blocked and Ak is complete, the →∃ rule is not applicable, and thus
there exists t ∈ I such that R(tail(p), t) ∈ Ak, D(t) ∈ Ak. By claim
(13), we have R(e(tail(p)), e(t)), D(e(t)) ∈ Ak. By the claims (10), (12)
and Definition 5, e(tail(p)) = tail(p), and thus, R(tail(p), e(t)), D(e(t)) ∈
Ak. We distinguish the following two cases:

• Assume that e(t) is not blocked. By the definition of I and
R(tail(p), e(t)) ∈ Ak, there is some p′ ∈ ∆I such that tail(p′) = e(t)
and (p, p′) ∈ RI . Moreover, since D(e(t)) ∈ Ak and tail(p′) = e(t),
by induction hypothesis, p′ ∈ DI . Hence, p ∈ CI .
• Assume that e(t) is blocked. According to the definition of I and
R(tail(p), e(t)) ∈ Ak, there is some p′ ∈ ∆I such that tail(p′) =

26

b(e(t)) and (p, p′) ∈ RI . We haveD(e(t)) ∈ Ak impliesD(b(e(t))) ∈
Ak. By induction hypothesis, we have p′ ∈ DI . Hence, p ∈ CI .

6. Assume that C = ∼D and C(tail(p)) ∈ Ak. We have to show that
p /∈ DI . We proceed by induction on the length of D. If D is a
concept name then D(tail(p)) /∈ Ak since Ak is clash-free. By the
definition of DI , p /∈ DI . Assume that D = C1 u C2. This implies
that ∼D = ∼C1 t ∼C2. Due to completeness, Ak must contain either
∼C1(tail(p)) or ∼C2(tail(p)). By induction hypothesis, we have p /∈ CI1
or p /∈ CI2 . Hence, p /∈ CI1 ∩CI2 , and thus p /∈ DI . Analogously, we can
prove for the case of D = C1 t C2.

Now assume that D = ∃R.E. This implies that ∼D = ∀R.∼E. Let
p′ ∈ ∆I with (p, p′) ∈ RI . By Item 4, we have showed that p ∈ ∼DI ,
and thus p /∈ DI . Analogously, we can prove for the case of D = ∀R.E.

We now show that I satisfies all GCIs in T . Let C v D ∈ T and p ∈ CI .
We have to show p ∈ DI . Due to the completeness of Ak, i.e. the →choose

rule is not applicable, we have either ∼C(tail(p)) ∈ Ak or D(tail(p)) ∈ Ak.
If ∼C(tail(p)) ∈ Ak, then p /∈ CI due to Item 6, which contradicts p ∈ CI .
Hence, D(tail(p)) ∈ Ak and thus, p ∈ DI .

We now show that I satisfies link keys in LK. Assume that λ = ({〈Pi, Qi〉}ni=1

linkkey 〈C,D〉) ∈ LK. Let us prove that I satisfies λ. Let p, q, p1, . . . , pn ∈
∆I such that p ∈ CI , q ∈ DI , and (p, pi) ∈ P Ii and (q, pi) ∈ QIi for
1 ≤ i ≤ n. We have to prove that p = q. Since Ak is complete, then neither
the →chooseLK1 rule nor the →chooseLK2 rule may be applied, which means
that Ak contains either C(tail(p)) or ∼C(tail(p)), and either D(tail(q)) or
∼D(tail(q)). If ∼C(tail(p)) ∈ Ak or ∼D(tail(q)) ∈ Ak then p /∈ CI or
q /∈ DI by the claim (14), which contradicts p ∈ CI or q ∈ DI . Therefore,
C(tail(p)) ∈ Ak, D(tail(q)) ∈ Ak. We consider the following cases:

Assume that tail(pi) ∈ Iold for all 1 ≤ i ≤ n. We obtain tail(p), tail(q) ∈
Iold, Pi(tail(p), tail(pi)), Qi(tail(q), tail(pi)) ∈ Ak from the definition of I,
(p, pi) ∈ P Ii and (q, pi) ∈ QIi . Since Ak is complete, the satisfaction of the
link key implies tail(p) = tail(q). Hence, ptail(p) = ptail(q). From p = ptail(p)
and q = ptail(q), we obtain p = q.

Assume that tail(pi) ∈ Inew for some 1 ≤ i ≤ n. From the definition of
I, (p, pi) ∈ P Ii and (q, pi) ∈ QIi , we obtain pi = 〈p, tail(pi)〉 = 〈q, tail(pi)〉.
Thus, p = q.

27

5.4. Completeness

Since Algorithm 1 is a decision procedure, Algorithm 1 is complete if it
is ensured that when the initial ontology is consistent, the algorithm returns
YES. Thus, for completeness, we have to prove that if the initial ontology
〈A0, T ,LK〉 is consistent then Algorithm 1 is able to build a successful gen-
eralised ontology 〈A, T ,LK〉.

Proposition 3 (Completeness). If an ALC+LK ontology O0 is consistent,
then Algorithm 1 derives a successful generalised ontology from O0.

Proof. Assume that O0 = 〈A0, T ,LK〉 and that I = 〈∆I , ·I〉 is a model of
O0. We show that Algorithm 1 can build a generalised ontology 〈Ak, T ,LK〉
with a complete and clash-free ABox Ak ∈ Ak.

We maintain a function π which associates each individual s of an ABox
Ak ∈ Ak to an individual in ∆I , i.e. π(s) ∈ ∆I .

After applying a completion rule, we must update π in such a way that
π satisfies the following conditions:

C(s) ∈ Ak implies π(s) ∈ CI or π(b(s)) ∈ CI (15)

R(s, t) ∈ Ak implies 〈π(s), π(t)〉 ∈ RI or 〈π(s), π(b(t))〉 ∈ RI (16)

s 6≈ t ∈ Ak implies π(s) 6= π(t) (17)

s ≈ t ∈ Ak implies π(s) = π(t) (18)

According to Proposition 1, Algorithm 1 always terminates at some An.
Thanks to the function π with Conditions (15-18) which helps to choose a
“good” ABox Ak among several ABoxes Ak at each step k ≤ n, we will
show that there is an ABox An ∈ An which is mapped to ∆I by π such that
〈An, T ,LK〉 is clash-free.

Assume that there exists such a function π. We show that An is complete
and clash-free. When Algorithm 1 terminates, An must be complete. Assume
that A(s),¬A(s) ∈ An. By Condition (15), we have π(s) ∈ AI and π(s) ∈
(¬A)I . It is not possible since I is a model. If x 6≈ x ∈ An then π(x) 6=
π(x) due to Condition (17), which is a contradiction. Assume that x 6≈
y ∈ An with x ∈ y+. This implies that π(x) 6= π(y) and there are x ≈
x1, · · · , xn ≈ y ∈ An. From Condition (18), we obtain π(x) = π(y) which is
a contradiction. Therefore, An is clash-free.

Now, let us define π. For each s ∈ Iold, there is some sI ∈ ∆I since I is
a model of O0. We define π(s) = sI , and π(s) = π(s′) if s ≈ s′ ∈ A0. Let

28

R(s, t) ∈ A0. We have s, t ∈ Iold, and thus π(s), π(t) are defined. This implies
that 〈π(s), π(t)〉 ∈ RI since I is a model of O0. For individual assertions,
it holds that s 6≈ t ∈ A0 implies π(s) 6= π(t) since I is a model of O0, and
s ≈ t ∈ A0 implies π(s) = π(t) by the definition of π. Let C(s) ∈ A0. We
have s ∈ Iold, and thus π(s) is defined. This implies that π(s) ∈ CI since I
is a model of C. Therefore, Conditions (15-17) are verified for A0.

In the sequel, we consider each possible transformation performed by a
completion rule on Ak. Assume that there is an ABox Ak ∈ Ak such that
π(s) ∈ ∆I for each individual s occurring in Ak, and π satisfies Conditions
(15-18).

• The →u rule is applied to (C1 u C2)(s) ∈ Ak. Thus, C1(s), C2(s) ∈
Ak+1. By Condition (15) and π(s) ∈ ∆I , we have π(s) ∈ (C1 u C2)

I .
We obtain π(s) ∈ CI1 and π(s) ∈ CI2 since π(s) ∈ (C1uC2)

I = CI1 ∩CI2 .
Therefore, Condition (15) is preserved.

• The →∃ rule is applied to ∃R.C(s) ∈ Ak where s is not blocked.
Thus, the rule adds an individual t and C(t), R(s, t) to Ak. Thus,
C(t), R(s, t) ∈ Ak+1. By Condition (15) and π(s) ∈ ∆I , we have
π(s) ∈ (∃R.C)I . Since I is a model of (∃R.C), there is some t′ ∈ ∆I

such that 〈π(s), t′〉 ∈ RI and t′ ∈ CI . If t is not blocked, we define
π(t) = t′. Thus, Condition (15) and (16) are preserved. If t is blocked
by b(t), we define π(t) = π(b(t)). From Condition (16), we obtain
〈π(s), π(t)〉 ∈ RI . Moreover, L(t) ⊆ L(b(t)) implies C(b(t)) ∈ Ak+1.
From Condition (15), it follows π(b(t)) = π(t) ∈ CI . Hence, Condi-
tions (15) and (16) are preserved.

• The→∀ rule is applied to ∀R.C(s) ∈ Ak. If s is blocked then ∀R.C(b(s))
∈ Ak and π(s) = π(b(s)). Hence, it suffices to consider s that is not
blocked. By Condition (15) and π(s) ∈ ∆I , we have π(s) ∈ (∀R.C)I .
Assume that there is an individual t in Ak such that R(s, t) ∈ Ak. In
this case, the rule adds C(t) to Ak. Thus, C(t) ∈ Ak+1. Assume that t
is not blocked, by Condition (16) and π(s) ∈ ∆I , we have 〈π(s), π(t)〉 ∈
RI . Since I is a model of ∀R.C, we obtain π(t) ∈ CI . Thus, Condi-
tion (15) is preserved. Assume that t is blocked by b(t). We define
π(t) = π(b(t)). We have L(t) ⊆ L(b(t)), and thus, C(b(t)) ∈ Ak+1.
From Condition (15), it follows π(b(t)) = π(t) ∈ CI . Hence, Condition
(15) is preserved.

29

• The →LK rule is applied to individuals x, y, zi with C(x), D(y) ∈ Ak,
Pi(x, zi), Qi(y, zi) ∈ Ak for 1 ≤ i ≤ m. According to Lemma 4, we have
x, y, zi ∈ Iold for 1 ≤ i ≤ n. Thus they are not blocked. By Condition
(15) and (16), we have π(x) ∈ CI , π(y) ∈ DI , 〈π(x), π(zi)〉 ∈ P Ii and
〈π(y), π(zi)〉 ∈ QIi for 1 ≤ i ≤ n.

The →LK rule adds x ≈ y to Ak. We obtain (x ≈ y) ∈ Ak+1. Since
I is a model of O0, I must satisfy the link key. Hence, xI = yI , and
thus π(x) = π(y). Therefore, Condition (18) is preserved.

• The →≈ rule is applied when (x ≈ y) ∈ Ak. It makes L(x) = L(y)
and L(x, y) = L(e(x), e(y)). This rule does not change individuals,
Condition (17) and Condition (18) are preserved. If it adds C(x) to Ak

when C(y) ∈ Ak (or vice versa) then Condition (15) is preserved since
π(x) = π(y) and π(y) ∈ CI imply π(x) ∈ CI . If it adds R(x, z) (resp.
R(z, x)) to Ak when R(y, z) ∈ Ak (resp. R(z, y)) then Condition (16) is
preserved since π(x) = π(y) and 〈π(y), π(z)〉 ∈ RI (resp. 〈π(z), π(y)〉 ∈
RI) imply 〈π(x), π(z)〉 ∈ RI (resp. 〈π(z), π(x)〉 ∈ RI).

• The→t rule is applied to (C1tC2)(s) ∈ Ak. It transforms Ak to Ak+1

with C1(s) ∈ Ak+1, and adds a new ABox A′k+1 with C2(s) ∈ A′k+1.
By Condition (15) and π(s) ∈ ∆I , we have π(s) ∈ (C1 t C2)

I , and
thus, either π(s) ∈ CI1 or π(s) ∈ CI2 . Assume that π(s) ∈ CI1 . In this
case, we choose Ak+1 including s with π(s) ∈ CI1 . This implies that
Condition (15) is preserved in Ak+1. Assume that π(s) ∈ CI2 . In this
case, we choose A′k+1 including C2(s).This implies that Condition (15)
is preserved in A′k+1.

• The →choose rule is applied to (∼C t D)(s) ∈ Ak with C v D ∈ T .
In the same way, we can choose an ABox among Ak+1 and A′k+1 such
that Condition (15) is preserved.

• the →chooseLK1 rule is applied to individuals x, y, zi with y < x, C(x) ∈
Ak, D(y) ∈ Ak, Pi(x, zi), Qi(y, zi) ∈ Ak for 1 ≤ i ≤ m. This rule
transforms Ak to Ak+1 with C(x) ∈ Ak+1, and adds a new ABox A′k+1

with ∼C(x) ∈ A′k+1.Since I is a model, we have either π(x) ∈ CI

or π(x) ∈ ∼CI . Assume that π(x) ∈ CI . In this case, we choose
Ak+1 including x with π(x) ∈ CI . This implies that Condition (15) is
preserved in Ak+1. Assume that π(x) ∈ (∼C)I . In this case, we choose

30

A′k+1 including ∼C(x).This implies that Condition (15) is preserved in
A′k+1.

• the →chooseLK2 rule. Analogously.

This completes the proof of preservation of Conditions 15-18 for each appli-
cation of a completion rule.

5.5. Complexity

Proposition 4 (Complexity). Let O0 = 〈A0, T ,LK〉 be an ALC+LK ontol-
ogy. Algorithm 1 runs in doubly exponential time in the size of O0.

Proof. According to the proof of Proposition 1, Algorithm 1 generates a col-
lection Ak of ABoxes such that |Ak| ≤ O(22`) and |A| ≤ O(2`) for all A ∈ Ak

where ` =
∥∥〈A0, T ,LK〉

∥∥. Since Algorithm 1 never removes anything from an

intermediate ABox, the complexity is bounded by O(22`). Therefore, it runs
in deterministic doubly exponential time in the worst case (2ExpTime).

It is known that ALC with general concept axioms is ExpTime-complete
[22]. This result provides a lower bound of the reasoning problem inALC+LK.
The doubly exponential complexity of Algorithm 1 is caused by the interac-
tion between the nondeterministic behavior, i.e. a new ABox is duplicated by
non deterministic rules such as the →t rule, and exponential generation of
new individuals by the →∃ rule. Moreover, we know from Lemma 4 that the
completion rules related to the application of link keys are applied only to old
individuals Iold whose cardinality is polynomial in the size of the ontology.
This means that link keys are not responsible of the doubly exponential com-
plexity resulting from Algorithm 1. An open question is whether ExpTime
is the tight lower bound of consistency checking in ALC+LK.

The following theorem is a consequence of all propositions established
until now.

Theorem 1. ALC+LK consistency can be decided in doubly exponential
time in the size of ontologies.

31

6. Conclusions and Future Work

Link keys are a generalisation of keys in RDF datasets to different RDF
datasets described using different vocabularies. As such, they can be used
for data interlinking. In previous work, we showed that link keys can be
extracted from RDF data and used effectively for interlinking datasets. In
this paper, we have addressed link key reasoning. Reasoning with link keys
can be used to combine automatically extracted link keys with other different
kinds of knowledge to infer new axioms. In particular, it can infer new link
keys that may be better adapted to a specific data interlinking task.

We have proposed a tableau-based algorithm for reasoning in theALC+LK
logic, an extension of ALC with link keys. We have provided proofs of its
soundness, completeness and termination.

Reasoning in ALC+LK is more challenging than ALC. It requires the
introduction of new completion rules: the →chooseLK1, →chooseLK2 and →LK

rules to deal with link keys, and the→≈ rule to handle equality. In addition,
the canonical interpretation used for proving the soundness of the standard
ALC algorithm cannot be directly used for ALC+LK. We have introduced
the unravelled interpretation to prove it.

In the future, we plan to study extensions of the algorithm for reasoning
with link keys in more expressive description logics allowing for inverse roles
and number restrictions. We also plan to extend the expressiveness of link
keys by considering roles (beyond role names) and link key covering eq-
conditions [?].

Also, we will study if ExpTime is the tight lower complexity bound
for consistency checking in ALC+LK, and, if so, design a worst-case optimal
tableau algorithm. For this, one possibility is to use an exponential structure
for representing ontology models inspired from compressed-tableau [23, 17].

We plan to implement the algorithm for ALC+LK with basic techniques
of optimisation known in the literature such as absorption and backtracking
[14]. These techniques will allow to reduce the number of useless ABox
axioms generated by the current algorithm, e.g. useless equality statements
generated by the →≈ rule.

Last but not least, we will evaluate the impact of link key inference on
data interlinking. We plan to combine link key inference with link inference
based on rules to ensure scalability, and we will use RDF datasets described
by semantically rich ontologies such as Insee COG and GeoNames in the
geographic domain, or British Library and BNF (National Library of France)

32

in the bibliographic domain.

Acknowledgements

This work has been partially supported by the ANR project Elker (ANR-
17-CE23-0007-01).

[1] Al-Bakri, M., Atencia, M., David, J., Lalande, S., and Rousset, M. (2016).
Uncertainty-sensitive reasoning for inferring sameAs facts in linked data.
In ECAI 2016 - 22nd European Conference on Artificial Intelligence, 29
August-2 September 2016, The Hague, The Netherlands - Including Pres-
tigious Applications of Artificial Intelligence (PAIS 2016), volume 285 of
Frontiers in Artificial Intelligence and Applications, pages 698–706. IOS
Press.

[2] Al-Bakri, M., Atencia, M., Lalande, S., and Rousset, M.-C. (2015). In-
ferring same-as facts from linked data: an iterative import-by-query ap-
proach. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, January 25-30, 2015, Austin, Texas, USA., pages 9–15. AAAI
Press.

[3] Atencia, M., David, J., and Euzenat, J. (2014). Data interlinking through
robust linkkey extraction. In Schaub, T., Friedrich, G., and O’Sullivan, B.,
editors, Proc. 21st european conference on artificial intelligence (ECAI),
Praha (CZ), pages 15–20, Amsterdam (NL). IOS press.

[4] Baader, F., Buchheit, M., and Hollunder, B. (1996). Cardinality restric-
tions on concepts. Artificial Intelligence, 88(1-2):195–213.

[5] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and Patel-
Schneider, P. F., editors (2007). The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press.

[6] Borgida, A. and Weddell, G. (1997). Adding uniqueness constraints to
description logics (preliminary report). In Deductive and Object-Oriented
Databases, 5th International Conference, DOOD’97, Montreux, Switzer-
land, December 8-12, 1997, Proceedings, volume 1341 of Lecture Notes in
Computer Science, pages 85–102. Springer.

33

[7] Calvanese, D., De Giacomo, G., and Lenzerini, M. (2000). Keys for free
in description logics. In Proceedings of the 2000 International Workshop
on Description Logics (DL2000), Aachen, Germany, August 17-19, 2000,
CEUR Workshop Proceedings, pages 79–88. CEUR-WS.org.

[8] Calvanese, D., De Giacomo, G., and Lenzerini, M. (2001). Identification
constraints and functional dependencies in description logics. In Proceed-
ings of the Seventeenth International Joint Conference on Artificial Intel-
ligence, IJCAI 2001, Seattle, Washington, USA, August 4-10, 2001, pages
155–160. Morgan Kaufmann.

[9] Ferrara, A., Nikolov, A., and Scharffe, F. (2011). Data linking for the
semantic web. International Journal of Semantic Web and Information
Systems, 7(3):46–76.

[10] Fuhr, N. (2000). Probabilistic datalog: implementing logical information
retrieval for advanced applications. Journal of the American Society for
Information Science, 51(2):95–110.

[11] Gmati, M., Atencia, M., and Euzenat, J. (2016). Tableau extensions for
reasoning with link keys. In Proceedings of the 11th International Work-
shop on Ontology Matching co-located with the 15th International Seman-
tic Web Conference (ISWC 2016), Kobe, Japan, October 18, 2016., CEUR
Workshop Proceedings, pages 37–48. CEUR-WS.org.

[12] Heath, T. and Bizer, C. (2011). Linked Data : Evolving the Web into a
Global Data Space. Morgan and Claypool.

[13] Hogan, A., Zimmermann, A., Umbrich, J., Polleres, A., and Decker,
S. (2012). Scalable and distributed methods for entity matching, con-
solidation and disambiguation over linked data corpora. Web Semantics:
Science, Services and Agents on the World Wide Web, 10(0):76–110.

[14] Horrocks, I. (2007). Implementation and optimization techniques. In
The Description Logic Handbook: Theory, Implementation and Applica-
tions (2nd edition), pages 329–373. Cambridge University Press.

[15] Horrocks, I., Sattler, U., and Tobies, S. (1999). Practical reasoning
for expressive description logics. In Proceedings of the International Con-
ference on Logic for Programming, Artificial Intelligence and Reasoning
(LPAR 1999). Springer.

34

[16] Isele, R., Jentzsch, A., and Bizer, C. (2011). Efficient multidimensional
blocking for link discovery without losing recall. In Proceedings of the 14th
International Workshop on the Web and Databases 2011, WebDB 2011,
Athens, Greece, June 12, 2011.

[17] Le Duc, C., Dong, T., Lamolle, M., and Bossard, A. (2016). Raison-
nement fondé sur un tableau compressé pour les logiques de description. In
https://www.supagro.fr/jfpc jiaf 2016/Articles.IAF.2016/LeDuc IAF 2016.pdf.
Acte de collogue, JIAF 2016.

[18] Lutz, C., Areces, C., Horrocks, I., and Sattler, U. (2005). Keys, nom-
inals, and concrete domains. Journal of Artificial Intelligence Research,
23:667–726.

[19] Motik, B., Sattler, U., and Studer, R. (2005). Query answering for
OWL-DL with rules. J. Web Sem., 3(1):41–60.

[20] Nentwig, M., Hartung, M., Ngonga Ngomo, A.-C., and Rahm, E. (2017).
A survey of current link discovery frameworks. Semantic Web, 8(3):419–
436.

[21] Ngomo, A. N. and Auer, S. (2011). LIMES - A time-efficient approach
for large-scale link discovery on the web of data. In IJCAI 2011, Pro-
ceedings of the 22nd International Joint Conference on Artificial Intelli-
gence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages 2312–2317.
IJCAI/AAAI.

[22] Pratt, V. R. (1978). A practical decision method for propositional dy-
namic logic. In Proceedings of the tenth annual ACM symposium on Theory
of Computing, pages 326–337.

[23] Pratt-Hartmann, I. (2005). Complexity of the two-variable fragment
with counting quantifiers. Journal of Logic, Language and Information,
14(3):369–395.

[24] Säıs, F., Pernelle, N., and Rousset, M. (2007). L2R: A logical method
for reference reconciliation. In Proceedings of the Twenty-Second AAAI
Conference on Artificial Intelligence, July 22-26, 2007, Vancouver, British
Columbia, Canada, pages 329–334. AAAI Press.

35

[25] Schmidt-Schauß, M. (1989). Subsumption in KL-ONE is undecidable.
In Proc. 1st conference on the Principles of Knowledge Representation and
Reasoning (KR), pages 421–431. Morgan Kaufmann.

[26] Schmidt-Schauß, M. and Smolka, G. (1991). Attributive concept de-
scriptions with complements. Artificial Intelligence, 48(1):1–26.

[27] Suchanek, F. M., Abiteboul, S., and Senellart, P. (2011). PARIS: prob-
abilistic alignment of relations, instances, and schema. PVLDB, 5(3):157–
168.

[28] Volz, J., Bizer, C., Gaedke, M., and Kobilarov, G. (2009). Discovering
and maintaining links on the web of data. In The Semantic Web - ISWC
2009, 8th International Semantic Web Conference, ISWC 2009, Chantilly,
VA, USA, October 25-29, 2009. Proceedings, volume 5823 of Lecture Notes
in Computer Science, pages 650–665. Springer.

36

